10C15

Imagination Developers Connection

PowerVR Graphics -Latest Developments and Future Plans

Latest Developments and Future Plans

A brief introduction

• Joe Davis

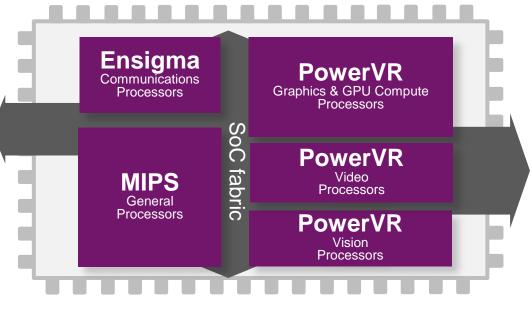
- Lead Developer Support Engineer, PowerVR Graphics
- With Imagination's PowerVR Developer Technology team for ~6 years

PowerVR Developer Technology

• SDK, tools, documentation and developer support/relations (e.g. this session ⁽ⁱ⁾)

Company overview

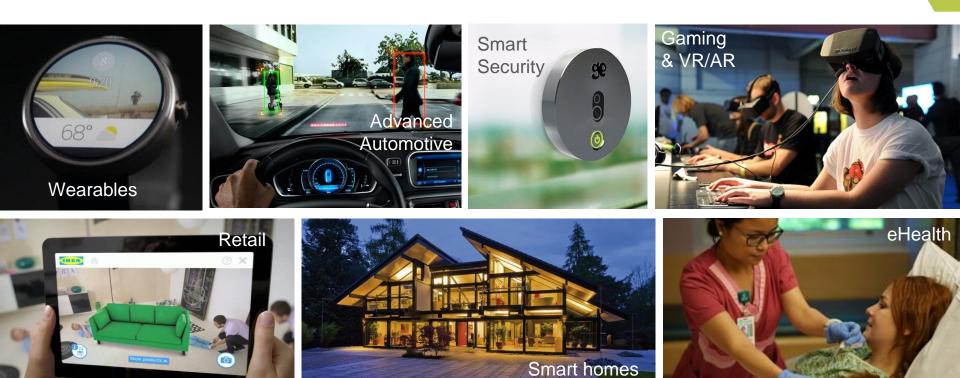
facebook.com/imgtec


@PowerVRInsider | #idc15

About Imagination

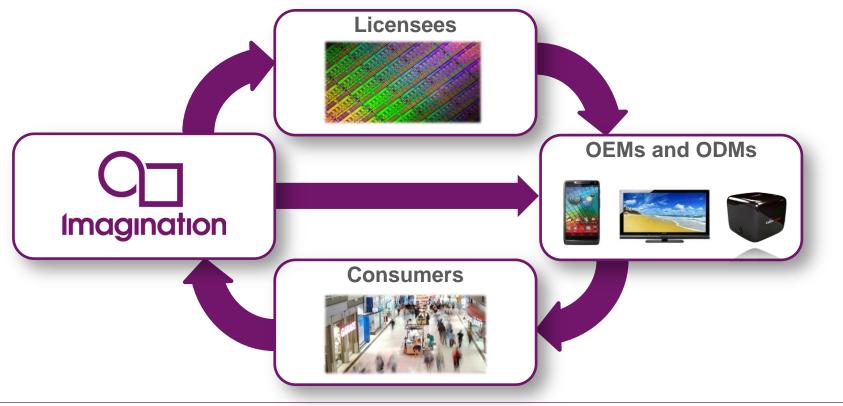
Multimedia, processors, communications and cloud IP

Driving IP innovation with unrivalled portfolio


- Recognised leader in graphics, GPU compute and video IP
- #3 design IP company world-wide*

About Imagination

Our IP plus our partners' know-how combine to drive and disrupt



About Imagination

Business model

idc

About Imagination

Our licensees and partners drive our business

Idc

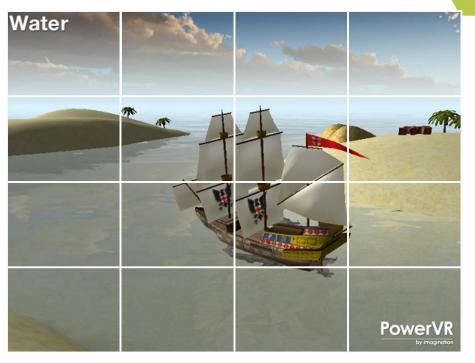
PowerVR Rogue Hardware

PowerVR Rogue

Recap

Tile-based deferred renderer

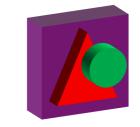
- Building on technology proven over 5 previous generations
- Formally announced at CES 2012
- USC Universal Shading Cluster
 - New scalar SIMD shader core
 - General purpose compute is a first class citizen in the core ...
 - ... while not forgetting what makes a shader core great for graphics



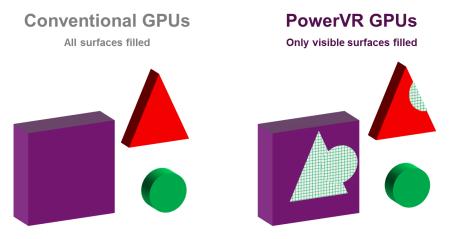
TBDR *Tile-based*

Tile-based

- Split each render up into small tiles (32x32 for the most part)
- Bin geometry after vertex shading into those tiles
- Tile-based rasterisation and pixel shading
- Keep all data access for pixel shading on chip



TBDR Deferred



Deferred rasterisation

- Don't actually get the GPU to do any pixel shading straight away
- HW support for fully deferred rasterisation and then pixel shading

@PowerVRInsider | #idc15

Rasterisation is pixel accurate

TBDR Bandwidth savings

- Bandwidth savings across all phases of rendering
 - Only fetch the geometry needed for the tile
 - Only process the visible pixels in the tile

Efficient processing

- Maximize available computational resources
- Do the best the hardware can with bandwidth

per-frame bandwidth

Saves bandwidth for other parts of your render

Maximizing core efficiency

Lighting up the USC less often is always going to be a saving

Geometry fetch and binning is often more than 10% of

Minimizing bandwidth

- Texturing less is a fantastic way to save power

TBDR Power savings

Rogue USC Architectural Building Block

• Unified Shading Cluster

- Basic building block of the Rogue architecture
- Laid out in pairs, with a shared TPU

• 1, 0.5 and 0.25 USC designs are special

- Different balance in the design
- Tend to find their way into non-gaming applications

@PowerVRInsider | #idc15

15

Rogue USC Shader Architecture

- 16-wide in hardware
- 32-wide branch granularity
 - We run half a task/warp per clock
- Scalar SIMD
- Optimized ALU pipeline
 - Mix of F32, F16, integer, floating point specials, logic ops

Pipeline datapaths

Configurable in the IP core

- F16 paths were sometimes optional, thankfully not any more
- F16 paths performance increased significantly after the first generation

Performance in your shader

- F32 paths are dual FMAD
- F16 paths can do different things per cycle depending on shader
- ISA is available for you to interrogate though, with disassembling compilers

Unified Shading Cluster Array							
USC0	Texture Unit USC1						
į							
USCn-1	Texture Unit	USCn					

Rogue USC Scalar

Scalar ALUs

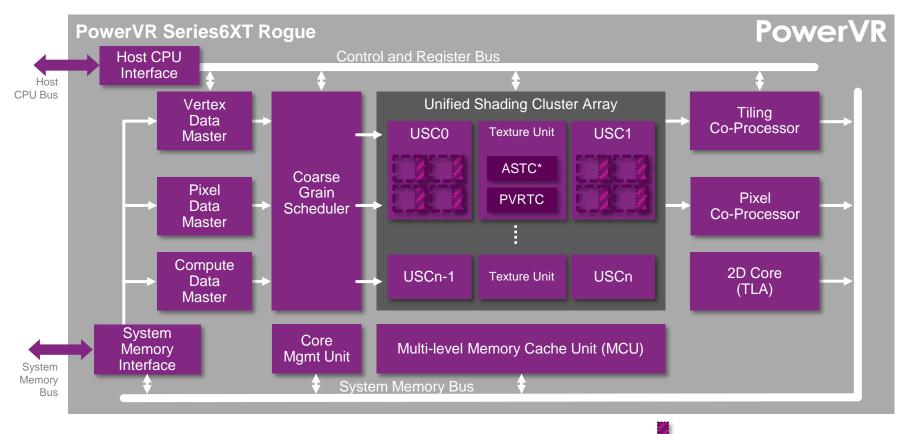
- Hard to understate what a benefit this is
- Seems obvious to do, right?
- Vector architectures are just hard to program well
- Scalar isn't a free lunch
- Makes performance a lot more predictable for you

Rogue USC *Programmable output registers*

- The pixel output registers in the ISA are read/write
- One per pixel
- Width depends on IP core
- We expose it programmatically with Pixel Local Storage
 - Worked closely with ARM (thanks, Jan-Harald!)

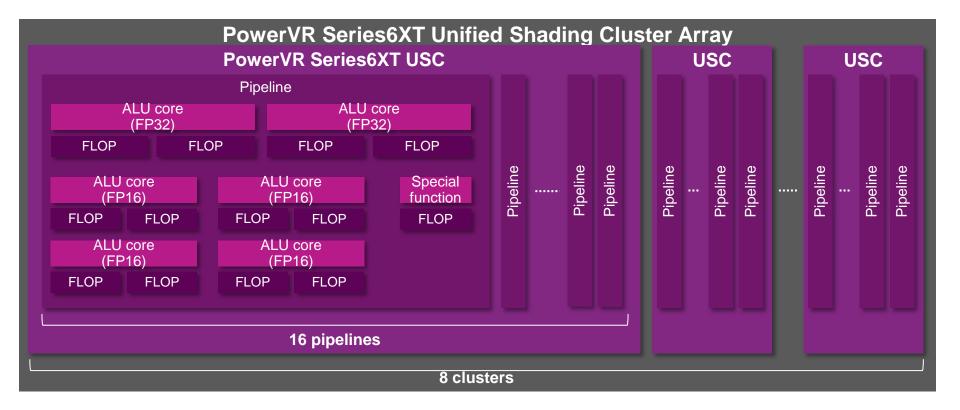
Evolution

Health Warning: Really Bad Diagrams[™]



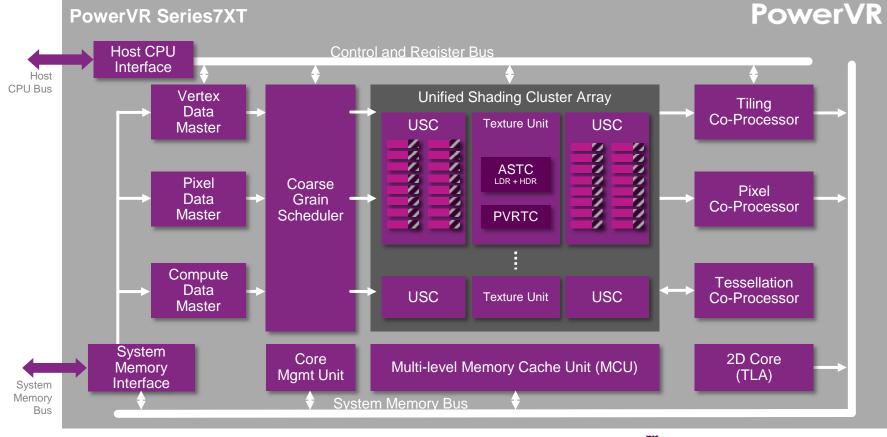
Rogue Evolution

- Architecture has changed quite a bit over time
- Rogue in 2010 still mostly looks like a Rogue today
- Significant evolutionary changes across the architecture
- Lots of it driven by developers before the IP is baked
- Lots of it driven by also analysing your stuff anyway

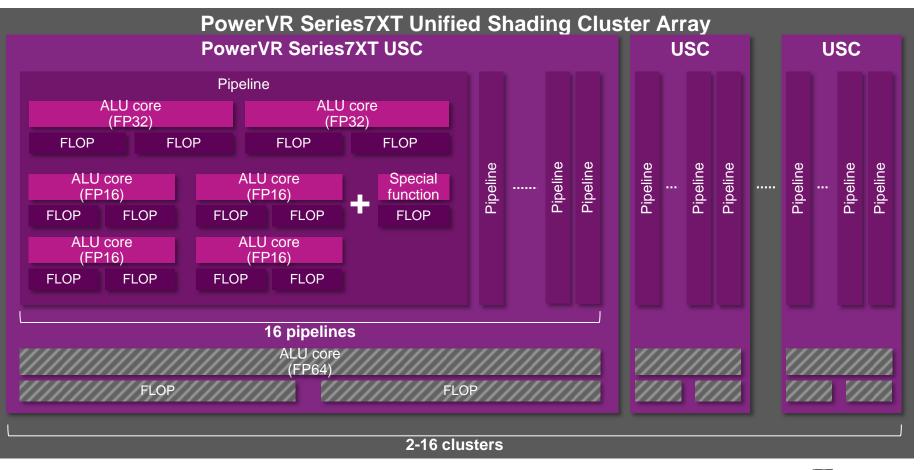


Extra low power GFLOPS

Supports both LDR and HDR ASTC formats


Series6 to Series6XT

Lots of lessons learned


- Improved scheduler
- Streamlined ISA
- Improved compute task efficiency
- Completely new F16 datapath
- Improved front-end for sustained geometry performance
- ASTC

Extra low power GFLOPS

Series6XT to Series7XT

Adding features and smoothing off rough edges

- Changed how the architecture scales
- Improved USC
- Streamlined ISA
- Features
 - Hardware tessellation
 - DX11-compliant USC (precision mainly)
 - FP64

facebook.com/imgtec

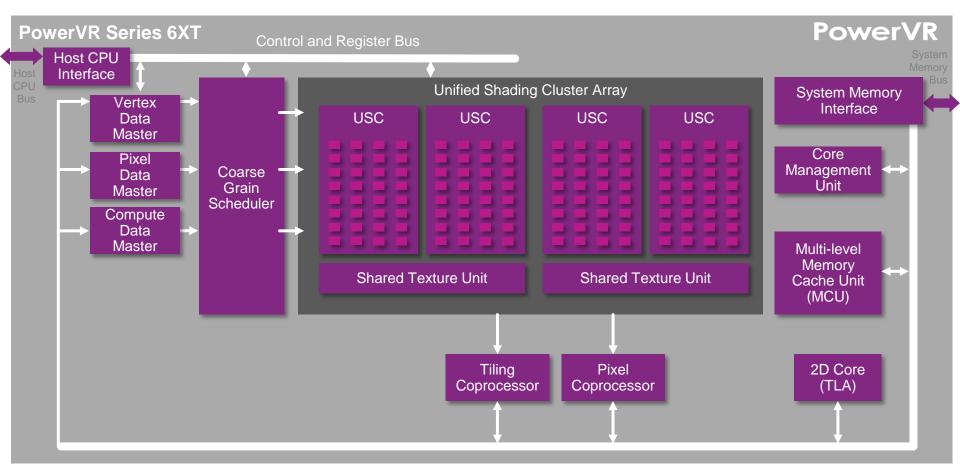
c 🄰 @PowerVRInsider | #idc15

Into the future

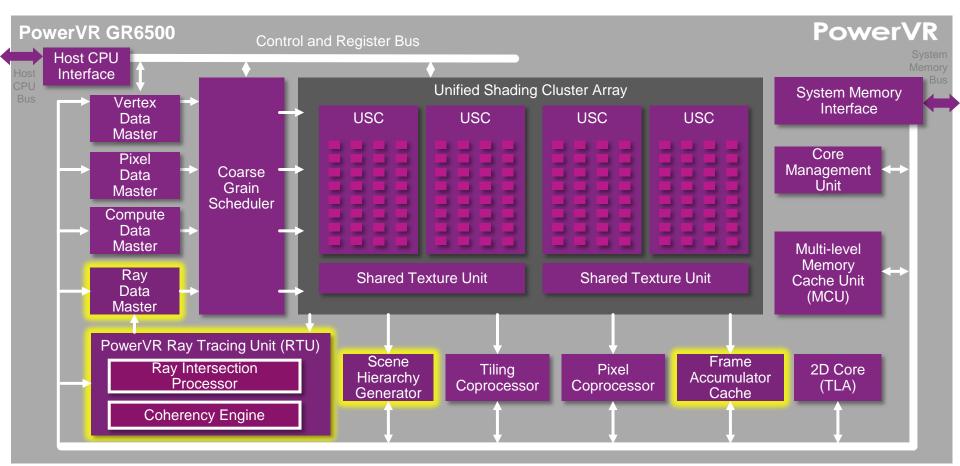
- Exciting changes being worked on across the architecture
 - USC
 - Front-end
 - Scaling
 - Stuff you want!
- You can help
 - We love feedback about the architecture and how it could best fit what you're doing
 - Don't be shy

IdC

PowerVR Wizard Ray Tracing Update



Ray tracing is the ability for the shader program for one object to be aware of the geometry of other objects.

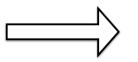


PowerVR Architecture

PowerVR Graphics Wizard Architecture

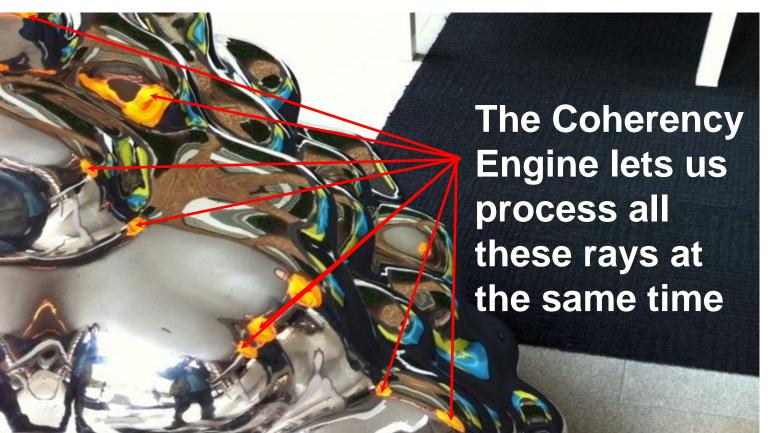
3 Unique Features of Wizard

- Fixed-function Ray-Box and Ray-Triangle testers
- Coherence-Driven Task-Forming and Scheduling
- Streaming Scene Hierarchy Generator

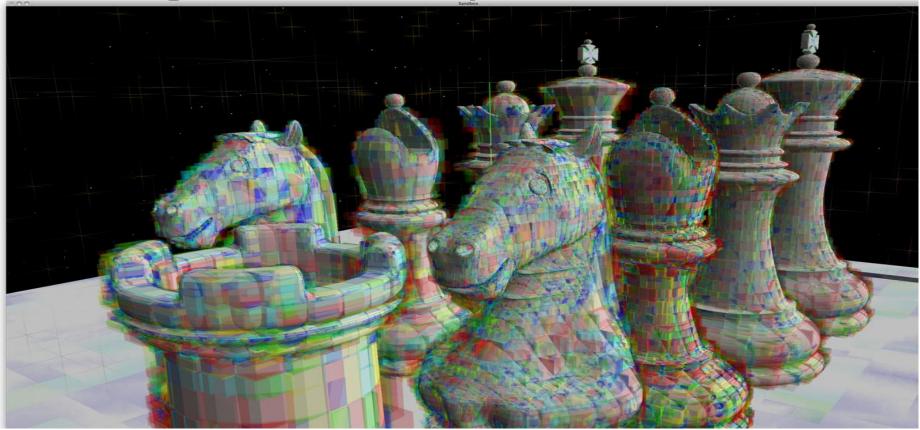




Fixed-Function Ray-Box and Ray-Triangle Testers


44x Less Area for Box Testing

| USC |
|-----|-----|-----|-----|-----|-----|-----|-----|
| USC |
| USC |
USC	
USC	
USC	
USC	



Coherence-Gathering

Streaming Scene Hierarchy Generator

Ray tracing is the ability for the shader program for one object to be aware of the geometry of other objects.

Just a few use cases

Hybrid Shadows, Reflections, etc.

Augmented Reality

Production- Order-Independent Quality Renders Transparency

Ambient Occlusion

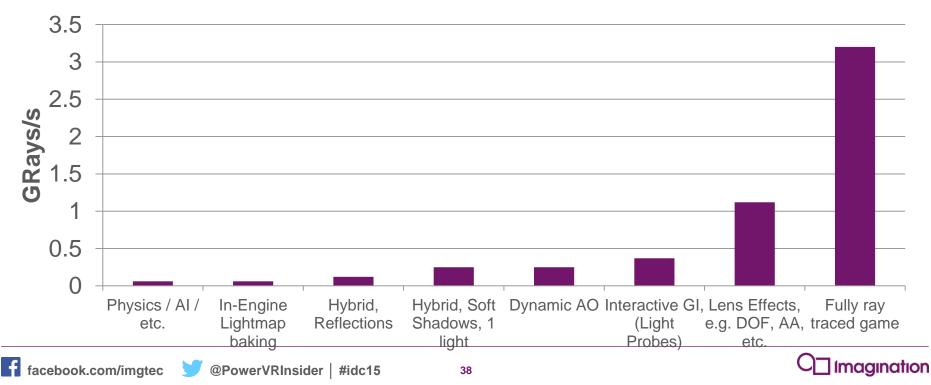
Asset creation / compression

Global Illumination

Physics & Collision Detection

Virtual Reality Lens correction, Ultra-low latency rendering, Lenticular Displays

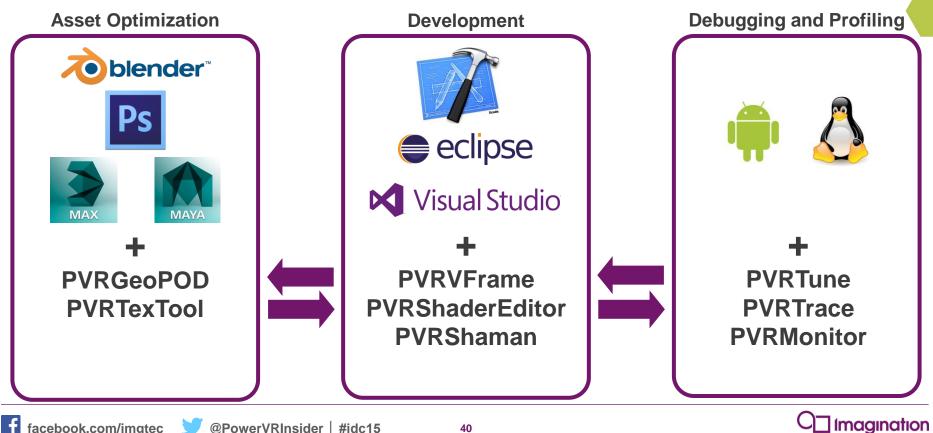
A.I. & Line of Sight Calculations


Rapid photoquality output

Ray Tracing Requirements

Sustained Ray Throughput at 1080p, 60fps

Technique vs Ray throughput



PowerVR developer tools

PowerVR Tools

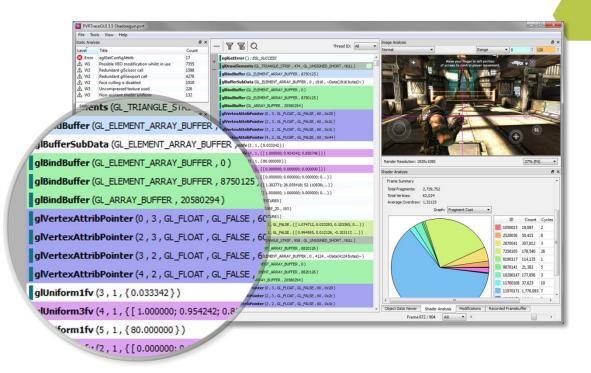
PowerVR Tools

Release schedule

- PowerVR Tools release process
 - Minor revision roughly every 6 months

- Recent/upcoming releases
 - 3.5 SDK (April 2015)
 - 4.0 SDK (due September 2015)

PVRTrace

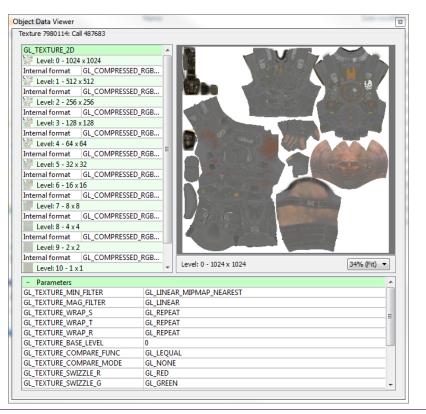

What is PVRTrace?

OpenGL ES API tracer

- OpenGL ES 1.x, 2.0 and 3.x recording libraries
- GUI for analysis

Features

 Inspect, analyse and playback captured data

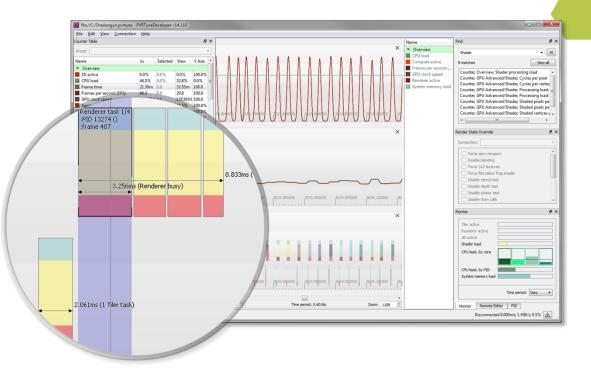


PVRTrace

New render state & data inspectors

Current Call						
glVertexAttribPointer: Call 487321						
EGL State EGL Obje	cts OpenGL ES State	OpenGL ES Objects				
Variable		Value				
- Program						
GL_CURRENT_PROGRAM		2940042				
- Textures						
GL_ACTIVE_TEXTURE		GL_TEXTURE0	-			
- GL_TEXTURE0						
GL_TEXTURE_BINDING_	_2D	7490107				
GL_TEXTURE_BINDING_CUBE_MAP		910013				
- GL_TEXTURE1						
GL_TEXTURE_BINDING_2D 9380134						
 GL_TEXTURE2 						
GL_TEXTURE_BINDING_2D		6370091				
GL_TEXTURE_BINDING_CUBE_MAP		10080144				
- GL_TEXTURE3						
GL_TEXTURE_BINDING_2D		350005				
- Framebuffers						
GL_DRAW_FRAMEBUFFER_BINDING		0				
GL_READ_FRAMEBUFFE	R_BINDING	0				
- Renderbuffers						
GL_RENDERBUFFER_BINDING		70001				
- Buffers						
GL_ARRAY_BUFFER_BINDING		21210303				
		8120116				
- Blending						
GL_BLEND		GL_FALSE				
GL_BLEND_EQUATION_ALPHA		GL_FUNC_ADD				
GL_BLEND_EQUATION_RGB		GL_FUNC_ADD				
GL_BLEND_SRC_ALPHA		GL_ONE				
GL_BLEND_SRC_RGB		GL_ONE				
GL_BLEND_DST_ALPHA		GL_ONE				
GL_BLEND_DST_RGB GL_ONE						

f facebook.com/imgtec


PVRTune What is PVRTune?

PowerVR graphics core performance analyser

- GUI for analysis
- On-device server

Features

Real-time performance data

PVRTune

Real-time GPU profiler

New counters

• GPU clock speed, triangles culled, Hidden Surface Removal efficiency, SLC memory reads/writes and more

GUI changes

- Simplified setup and navigation
- Graphics and Compute modes
- Tree view for counters (Overview, Tiler, Renderer etc.)

PVRShaderEditor

PVRShaderEditor 2.5 🗕 🗖 🤛					
File Edit	View Source Help				
Ø M	™ 🛱 🐰 🖻 🖻 Q 💥 <\>↑ <\?> OD		-		
FragShader.f:	h 🗵	Γ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>// Calculate the tex coords of the fragment (using it's position on the screen), not lowp vec3 vAccumulatedNormal = vec3(0.0,0.0,1.0); mediump vec2 vTexCoord = gl_FragCoord.xy * RcpWindowSize; // Test depth for fog lowp float fFogBlend = clamp(WaterToEyeLength * RcpMaxFogDepth, 0.0, 1.0); #ifdef ENABLE_DISTORTION</pre>		<pre>1 : wdf drc0 2 : smp2d.fcnorm drc0, sh20, r0, sh4, _, r12, 3; 3 : smp2d.fcnorm drc0, sh20, r2, sh4, _, r8, 3; 4 : smp3d.fcnorm drc1, sh32, r4, sh16, _, r15, 3; 5 : frcp i0, r7 6 : sop r11.joutj, sh2.f16.e0, i0, sub, c0, 0 7 : wdf drc0 8 : sop i1.f16.e0.joutj, r8, 0.oneminus, add, r12, 0.onemin sopmov is5, r13</pre>		
ragment	Shader: Compile succeeded.	Profiling Settings			
		Per-Line Cycle Estimate Total: 34 Emulated Cycle Total:			
			Compiler: G6x00 Version: REL/3.4@3147479		

Line: 1 Col: 1 INS

Emulated Cycles: -Temporary Registers Used: -Primary Attributes Used: -Non-Dependent Texture Loads: -Global USC Instructions: 0 ıdc

f facebook.com/imgtec

@PowerVRInsider | #idc15

46

Release schedule

• DDK (Driver Development Kit) release process

- Reference driver source code released to PowerVR IP licensees
- Minor revision roughly every 6 months
- Top-tier customers engage early. Drivers in products shortly after official DDK release

- Release date
 - Q4 2014 (release 1)
 - Q1 2015 (release 2)
- OpenGL ES: Key features (release 1)
 - OpenGL ES 3.1
 - Compute shaders, shader storage buffer objects, draw indirect and more
- OpenGL ES: Key features (release 2)
 - Android Lollipop support

- Release date
 - Q2/Q3 2015

- OpenGL ES: Key features
 - Android Extension Pack (AEP)
 - ASTC, blend equation advanced, GPU shader model 5 and more
 - sRGB PVRTC
 - Pixel local storage
 - 128/256 bits per-pixel on-chip

- Release date
 - Q4 2015

OpenGL ES: Key features

- Bicubic texture filtering
- Shader group vote
- Polygon offset clamp
- Pixel local storage 2
 - Simultaneously write to pixel local storage and a framebuffer attachment

idc

Vulkan

About

idc

What is Vulkan?

- New open standard API developed by the Khronos group
- Designed for high-efficiency access to graphics and compute on modern GPUs

Key features

- Minimizes driver overhead and enables multi-threaded GPU command preparation
- Designed for mobile, desktop, console and embedded platforms
- Designed for all GPUs tile based GPUs are first-class citizens!
- SPIR-V binary intermediate language for shaders

Vulkan

PowerVR driver status

PowerVR Vulkan driver

- Driver development on-going
- Working with key partners on initial content bring up
- More details at SIGGRAPH 2015
 - Khronos BoF: Vulkan, OpenGL, OpenGL ES 5:30 PM 7:30 PM

PowerVR Graphics

Future roadmaps

- What drives our roadmaps?
 - Market analysis
 - Customer feedback
 - Developer feedback

Upcoming events

- Imagination Developers Connection 2015 UK
 - 1st October, SOHO Hotel, London UK
 - Register here: <u>http://imgtec.com/idc/idc15-uk/</u>

• Agenda

- A full developer day including optimization tips, how to use ray tracing with raster graphics and more
- Also includes guest talks from Google and Digital Legends

Questions?

www.imgtec.com/idc