
Applications of Unity's DOTS
in "Return to Empire"

Thousands of Soldiers Battle On One Mobile Screen

Jian Xiao

jamesjxiao@tencent.com

TiMi Studio Group of Tencent Games

Cangjian Hou

cangjianhou@tencent.com

TiMi Studio Group of Tencent Games

Principal Client Programmer Principal Engine Programmer

Tencent Games is established in 2003. We are a leading global platform for game development,
operations and publishing, and the largest online game community in China.

Tencent Games has developed and operated over 140 games. We provide cross-platform
interactive entertainment experience for more than 800 million users in over 200 countries and
regions around the world. Honor of Kings, PUBG MOBILE, and League of Legends, are some of
our most popular titles around the world.

While providing the best game experience, we strive to serve the community. We have taken
the lead in creating a balanced and healthy game environment for underaged players, as
ensuring the well-beings remains our priority.

Meanwhile, we actively promote the development of esports industry, work with global partners
to build an open, collaborative and symbiotic industrial ecology, and create high-quality digital
life experiences for players.

This is Tencent Games - an inspirer of happiness and explorer of game value. While bringing
joy to players around the world, we are exploring more possibilities of video games.

Spark More.

Background and Introduction01 Return to Empire

Use of DOTS02 Practical experience and methodology

Performance Optimization03 Mobile games performance sensitive

01 Background and Introduction
Return to Empire

Game: Return To Empire

• Full 3D SLG mobile game

• 1000+ character units

• Outside large battlefields

Challenges

More than one thousand
soldiers fighting on a mobile

screen?
(Targeting 30 FPS on mobile)

Unity DOTS
(Data-Oriented

Technology Stack)C# OOP?
C++ Plugin?
DOTS!

⚫ In 2019, no preceding mobile games on the market
have used DOTS technology on a large scale.

⚫ Tight development schedule.

⚫ This is an ADVENTURE!
✓ We have close cooperation with Unity official

✓ We are up for the challenge!

data-based multi-threading
large-scale computing

02 Use of DOTS
Practical experience and methodology

Use Of DOTS – Concepts

DOTS
(Data Oriented Technology Stack)

ECS
(Entity Component

System)

C# Job
System

Burst
Compiler

Entities：Game Objects

Components： Data

Systems：Behavior

Easy-to-use Multithreading

SIMD instruction optimization

A brief introduction to Unity DOTS

Code Design

ECS Code of "Return to Empire"

Systems Components

Systems drive Data changes

Job System

Burst Compiler

Sample

A simple function using ECS

m_npcGroup = GetEntityQuery(new EntityQueryDesc()
{

All = new ComponentType[]
{

ComponentType.ReadWrite<LineMoveData>(),
ComponentType.ReadWrite<Translation>(),
ComponentType.ReadWrite<Rotation>(),
ComponentType.ReadWrite<RotationLerpData>(),
ComponentType.ReadWrite<CityNpcPropertyData>(),

},
});

drive soldiers to walk in the city

Related Components

LineMoveData

Translation

Rotation

RotationLerpData

CityNpcPropertyData

CityLineMoveSystem

public struct LineMoveData : IComponentData

{

public bool ReTarget;

public float MoveSpeed;

public float TargetYaw;

public float3 TargetPos;

public float3 StartPos;

public float3 FinalPos;

}

[BurstCompile]
struct LineMoveJob : IJobChunk
{

public float deltaTime;

[ReadOnly] public ArchetypeChunkEntityType ArchetypeChunkEntityType
public ArchetypeChunkComponentType<CityNpcPropertyData> ArchetypePropertyType
public ArchetypeChunkComponentType<LineMoveData> ArchetypeLineMoveType
public ArchetypeChunkComponentType<Translation> ArchetypeTranslationType
public ArchetypeChunkComponentType<Rotation> ArchetypeRotationType
public ArchetypeChunkComponentType<RotationLerpData> ArchetypeRotationLerpType

public void Execute(ArchetypeChunk chunk, int chunkIndex, int firstEntityIndex
{

var chunkEntities = chunk.GetNativeArray(ArchetypeChunkEntityType);
var properties = chunk.GetNativeArray(ArchetypePropertyType);
var lineMoves = chunk.GetNativeArray(ArchetypeLineMoveType);
var translations = chunk.GetNativeArray(ArchetypeTranslationType);
var rotations = chunk.GetNativeArray(ArchetypeRotationType);
var rotationLerps = chunk.GetNativeArray(ArchetypeRotationLerpType

for (int i = 0; i < chunk.Count; i++)
{

var entity = chunkEntities[i];
var property = properties[i];
var lineMoveData = lineMoves[i];

Experience

Key points to make good use of DOTS

Job dependencies, read and write order, determine the concurrency of the
entire system.

By controlling the frequency on demand for different systems,
better game performance can be achieved .

1. Job Dependency Optimization

4. Reduce System Frequency

Reduce stuttering and make the game running smoother

3. Split logic and visualization

2. ECS and non-ECS in parallelization

Further improve the overall concurrency of the game.

1 Dependency

Write dstPos

Write
quaternion

RotateJob

Write To

MoveJob

MoveJob

SkillJob

TimeLine

TimeLine

NO

YES

FPS
improvement

MoveSystem

RotateSystem

RotateSystem

MoveSystem

Write-Write Conflict: split data

public struct ParabolaEffectData
: IComponentData
{

public quaternion quaternion;
public float3 srcPos;
public float3 dstPos;

}

public struct ParabolaEffectRotateData
: IComponentData
{

public quaternion quaternion;
}

public struct ParabolaEffectMoveData
: IComponentData
{

public float3 srcPos;
public float3 dstPos;

}

Write To

One after ahother Comsume longer time

1 Dependency

Write To

Read From

MoveJob

Write To

Read From

Sync

SkillJob

MoveJob

SkillJob
Sync Per Frame

TimeLine

TimeLine

NO

YES

FPS
improvement

MoveSystem

SkillSystem

PositionComponent

MoveSystem

SkillSystem

Position1Component

Position2Component

Read-Write Conflict: data redundancy

1 Dependency Analysis Tool

We developed a tool for visualizing dependencies between systems

By using this tool, we can easily find design bottleneck

Without this tool, we can only analyze by reading code, which is very inefficient…

1 Dependency Analysis Tool

Before After

SoldierFireSkillSystem

1 Dependency

Dependencies
Optimize

significant
effect! 6.24ms: Dependency mess

1.77ms: Dependency good

SimulationSystemGroup

2 ECS and non-ECS in parallelization

Lua Logic

Game One Frame

C# Logic ECS.sys LateUpdate Render

Lua Logic C# Logic LateUpdate Render

…

ECS.job1

ECS.job2

ECS.pb

ECS.job1

ECS.job2

ECS.pb

Game One Frame

…

Main thread

Job thread

Job thread

Main thread

Job thread

Job thread

ECS.sys

ECS.sys: JobSystems.Call
ECS.pb: CommandBuffer.playback

Wait until jobs finish…

No wait-time

2 ECS and non-ECS in parallelization

Non-ecs logic

ecs logic

Before After

3 Split logic and visualization

LogicData…

RenderStateData…

RenderStateData…

ArtAsset…
VisualEntities

GameLogicSystems

GameRenderSystems

Sync After Logic

LogicEntities
➢ lightweight

➢ heavyweight

One Entity = Logic Entity + Visual Entity

3 Split logic and visualization

A Chunk = 14 Entities

A Chunk = 32 logic Entities

A Chunk = 24 visual Entities
Chunk(16KB)

⚫ Data is arranged more tightly
⚫ Async loading of ArtAsset
⚫ Art-Asset Entities reuse

Game running smoothly
without assets-load blocking

4 Reduce System Frequency

Reduce frequency to reduce CPU overhead

Reduce MoveSystem freq to 12fps

barely noticeable changes!

1000+ soldiers move

Power consumption reduced by 0.23w

AND

03 Performance Optimization
Mobile games performance sensitive

Cangjian Hou

cangjianhou@tencent.com
TiMi Studio Group of Tencent Games

Principal Engine Programmer

Return to Empire, Starting point

3D Top-Down View Strategy Game
• Freely control
• 1000+ character units
• Completed the preliminary game logic development and

did some optimization work
• Start using DOTS to improve game performance

Technical Target
• Compatible with OpenGL ES3.0 (need support GPU instancing)

• Custom Unity 2019.4.x (source access)

• Custom Unity HybridRender 0.5.2-preview.4 with Hybrid Render V1

Hybrid Render Pipeline

Logical
Phase

Initialization
System Group Convert GameObjects to Entities

Simulation
System Group Sync Entities' Positions, Etc.

Presentation
System Group Create Batch Information

Initialization

Update

PreLateUpdate

Player Loop

Render
Phase

Cull Filter Batch Information

Render Pass Rendering Entities Per Pass

Challenges

Logical
Phase

Initialization
System Group

Simulation
System Group

Presentation
System Group

Initialization

Update

PreLateUpdate

Player Loop

Render
Phase

Cull

Render Pass

Asset Compatibility

Base Load too High

No Custom Shader Material Overrides

Asset compatibility

Unity’s suggestions

• Conflict with our existing asset production workflow
• Conversion is unnecessary or not supported in the scene

Runtime Conversion
• Slow: Take 10ms+ to convert a single gameObject
• Risky: Component types may not be supported

SubScene: store a large number of objects

Prefab Data Assets

Deserialize World Default World

Asset compatibility

Offline

Our Solution

Runtime
Entity A

Entity B

Entity A

Entity B
Move ToLoad ToData

Assets

~1+ms

Create Batch Info with Multi-Threading

Find all the Chunks with
RenderMesh

[Main Thread]

Sort the Chunks
[Main Thread]

Generate Batch Info
[Main Thread]

1.22ms0.08ms

3.01ms

1.40ms

A typical entity batch processing workflow

Create Batch Info with Multi-Threading

Chunk 0

RenderMesh 0

RenderMesh 1

Thread 0 Thread 1 Thread 2 … Thread M

RenderMesh 0

RenderMesh 1

…

RenderMesh N

Chunk 1

Chunk 2
ChunkPosition = RenderMeshIndex * maxThreadIndex + currentThreadIndex

Batch Info

Different RenderMeshes mean Different Batches

Using multi-threading to find all chunks that share the
same RenderMesh

Chunk0 Chunk1 Chunk2

Create Batch Info with Multi-Threading

Find all the Chunks with
RenderMesh

[Main Thread]

Sort the Chunks
[Multi-Threaded]

Merge
[Main Thread]

0.24ms0.08ms

0.29ms

0.01ms

Optimized multi-threaded batch processing workflow

Optimization for LOD

LOD 0 LOD 1 LOD 2 LOD 3

Prefab LOD Structure
• Prefabs in our game have four levels of LOD

Optimization for LOD

4 Chunks

LOD Group

4 LOD Meshes

LOD Group Structure Optimization

Original Prefab Default LOD Structure Optimized LOD Structure

Root

Less entities, fewer chunks, better performance
• Sync Positions : 2.2ms → 0.94ms
• Create Batch Information: 0.29ms → 0.18ms

1 Chunk

Root

Single LOD mesh with other 3 mesh IDs

Optimization for LOD

LOD0
• Not loaded

LOD1
• Not loaded

LOD2

• Use this

LOD Streaming
• Higher LODs are replaced with lower LODs when they are not loaded or when there is

rendering pressure

Faster loading time, lower memory usage, higher rendering efficiency

Base Load Optimization

~6ms

~2ms

Before

After

No more main thread bottleneck

Custom Shader Material Overrides

GPU-friendly data

• Create a matching IComponentData
struct for every custom shader
instanced property

• All member types in the struct are
float4, conforming with the std140
layout

C# Define

Shader Define

Compiled Shader

Custom Shader Material Overrides

RenderMesh0 Start RenderMesh1 Start

Entity 0

Invisible
No need to copy

• Pre-allocate a large buffer based on the number of entities

• Copy the Instance data of the RenderMeshes to be displayed into
the allocated buffer

Optimized Instance param copy

Chunk 0
Instance Data Buffer

Copy To

Entity 2

RenderMesh 0

Instance param0

Instance param1

Instance param2

Instance param0
Instance param1

Instance param2

Custom Shader Material Overrides

URP Compatibility

• Filter RenderMeshes to be drawn based on the current
pass configuration, with caching

Render RenderMeshes
• Submit the collected data
• Disregard camera distance sorting (based on TBR)

Filter RenderMeshes

Jian Xiao
jamesjxiao@tencent.com

Cangjian Hou
cangjianhou@tencent.com

