
Beating Wallhacks using Deep Learning  
with Limited Resources  

 
Junsik Hwang  

Machine Learning Engineer @ Nexon Korea

Topics
problem definition: wallhack in FPS
real problems & solutions

vs. limited data
vs. limited signal
vs. limited trust

project output
takeaways

Prerequisites
- What is Deep Learning
- How convolution layers work
- PyTorch (optional)

Problem Definition

Sudden Attack
- Developed by NexonGT  

released in 2005
- 15M+ Users & 260K+ MAU 

in South Korea
- #3 FPS in South Korea  

(PUBG > OW > SA)

Wallhacks in FPS
- See through walls
- Ruins fair competition
- Less obvious than other 

hacks such as aim hacks
- Most commonly used

Existing Measures and Limitations

- Game software protection: first line of defence  
> abusers bypass the security check eventually 

- Server-side log analysis: outlier detection 
> hard how to tell “seeing through walls”  
 with position coordinates and kill/death ratio

Live Bot Detection

Seeing is Detecting
- The surest way to detect wallhacks is to see how they see.

screenshots*: game screen only

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

manual classification 
by game managersban abusers

Looks obvious to us, Human

Looks obvious to us, Human

Looks obvious to us, Human

Looks obvious to us, Human

But Manual Inspection is Laborious
- Pros: 

- reliable / error-free 

- Cons:  
- labour-intensive 
- inspect 1,000 images/hour 
- gamers play when we rest

Number of Users per hour

00 03 06 09 12 15 18 21

work hours

Deep Learning excels in Image Classification

- ImageNet classification task: classify 1,000 classes
- ResNet surpassed human baseline in 2015

top 5 error rates (%)

0

7.5

15

22.5

30

2011 2012 2013 2014 2015

human

Algorithms

ImageNet Task

Beating Wallhacks using Human Labour

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

manual classification 
by game managersban abusers

- Instead of going through images one by one…

Beating Wallhacks using Deep Learning

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

Automatic Ban
by Deep Neural Network

- Let’s automate the detection process with Deep Learning

Beating Wallhacks using Deep Learning

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

classification with
Deep Neural Networkban abusers

- Let’s automate the detection process with Deep LearningAnd they lived

Happily
Ever After

Beating Wallhacks using Deep Learning

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

classification with
Deep Neural Networkban abusers

- Let’s automate the detection process with Deep LearningAnd they lived

Happily
Ever After

vs. Limited Data

Deep Learning requires Big Data
- Instead of handcrafted features, DL learn features from data
- Thus generally not suitable for small dataset

function () = “CAT”

DL learns useful featuresfrom numerous images

And Big data requires Huge Investment
- Data acquisition / Preprocessing (ex. Labelling) are costly
- We started with a mere 10,000 unlabelled images

label = ?label = 5

MNIST Sudden Attack

- 60,000 images
- fully labelled
- 28x28 (grayscale)

- 10,000 images
- totally unlabelled & mixed
- 960x540 (RGB)

Harder than I expected
- Low resolution images to save storage space
- Some images are very confusing

??

Problem: 2,000 clean data to start with
- Prepared 2,000 wallhack / normal images (1,000 each)
- But is this big enough to run Deep Learning?

wallhack normal

Solution: Transfer Learning
- Borrow feature extractor from a successfully trained model

1,000 label classification1.2M 
images

Feature extractor Classifier
- Low level: lines & curves 
- High level: shapes & texture

Solution: Transfer Learning
- Don’t train the whole model: fine-tune NN with small datasets

1,000 label classification

wallhack/normal
binary classification

1.2M 
images

2,000
images

use pre-trained weights

Feature Extractor

Pre-trained Layers + New Classifier

Download model in PyTorch 

from torchvision import models
pretrained_model = models.resnet50(pretrained=True)

- Pre-trained models are available with PyTorch, TensorFlow, Keras

Conv / BN / ReLU / MaxPool

Residual Block

Residual Block

Residual Block

Residual Block

Global Average Pooling

Linear Layer Classifier

ResNet50

Pre-trained Layers + New Classifier
- Pre-trained models are available with PyTorch, TensorFlow, Keras

Conv / BN / ReLU / MaxPool

Residual Block

Residual Block

Residual Block

Residual Block

Global Average Pooling

Linear Layer

ResNet50

2048 x 7 x 7
CH H W

Feature maps

Feature maps after 
the last residual block

2048

Pre-trained Layers + New Classifier
- Pre-trained models are available with PyTorch, TensorFlow, Keras

Conv / BN / ReLU / MaxPool

Residual Block

Residual Block

Residual Block

Residual Block

Global Average Pooling

Linear Layer

ResNet50

2048 x 1 x 1
CH H W

After GAP

Global Average Pooling 
shrinks height and width to 1

nn.AdaptiveAvgPool2d((1, 1))

Pre-trained Layers + New Classifier
- Pre-trained models are available with PyTorch, TensorFlow, Keras

Conv / BN / ReLU / MaxPool

Residual Block

Residual Block

Residual Block

Residual Block

Global Average Pooling

Linear Layer

ResNet50

1000
Target label

After Linear

ImageNet model classifies 
1,000 target labels

..

nn.Linear((2048, 1000))

Pre-trained Layers + New Classifier
- Pre-trained models are available with PyTorch, TensorFlow, Keras

Conv / BN / ReLU / MaxPool

Residual Block

Residual Block

Residual Block

Residual Block

Global Average Pooling

Linear Layer

ResNet50

2
Target label

After Linear

we have 2 labels: Wallhack / Normal
nn.Linear(2048, 1000) nn.Linear(2048, 2)

Effect: Worked well!
- Pre-trained ResNet50: 80% test accuracy with 2,000 images

Input Output
Fine-tuned
ResNet50

Image Credit: Little Britain

Effect: OK with 1 GPU
- Takes less than 20 minutes with a single NVIDIA 1060 GPU

Input

Train the classifier only

Freeze the parameters 
of the feature extractor
Class CustomResNet

if toFreeze:
 for param in self.feature_extractor.parameters():
 param.requires_grad=False
else:
 for param in self.feature_extractor.parameters():
 param.requires_grad=True

Transfer Learning Strategies from CS231n
- Guideline based on the size and nature of your dataset
- We re-trained the full network after getting 10,000+ images

dataset size (large)

how similar it is
to the ImageNet

dataset[small & different]

[big & different] [big & similar]

[small & similar]

train  
from scratch

Retrain the  
full network

fine-tune  
classification layer

feature layers 
+ SVM

However: terribly overfitted
- Didn’t work with unseen maps and weapons
- Too many image features to learn

function(cool golden weapon) = “HACK”

function(seeing thru wall) = “HACK”

What we wanted

What we actually got

vs. Limited Signal

Problem:

relevant

Problem: Low Signal / Noise Ratio

irrelevant

relevant

- Too many irrelevant features 
spoil the training

- Model predicts based on  
kill marks or weapons 
NOT on wallhack figures

Compared to other classification tasks

MNIST ImageNet
irrelevant

relevant

Solution: Divide & Conquer in Patches (1)
- 1) Remove Top & Bottom  

- SA maps are mostly flat  
- Players tend to place targets 
 on the line of the crosshair

Solution: Divide & Conquer in Patches (2)
- 1) Remove Top & Bottom
- 2) Break into patches  

 - found optimal # of patches 
 via experiments 
 - single 960x540 image 
 > multiple 197x197 patches

Effect: Less prone to Noise

Input to NN Input to NN
WallhackNormal

Training Inference

Effect: the more data the merrier

…

- Generate 24+ patches from a single image

Downside: labelling all over again

…

- Re-labelled 5,000 wallhack / normal patches

Image Credit: The Simpsons

Effect: worked superbly with ResNet50
- Test accuracy: 92%

patches ResNet50

Effect: worked superbly with ResNet50
- Test accuracy: 92% + kind of object localisation effect

patches ResNet50 Draw boxes on
hack patches

Example

Downside: Confusing patches
- Figures on edges 

side effect of discretisation
- Even human inspectors 

find it difficult to tell

wallhack.

Same image region 
with different crop coordinates

hmm.. hmm..?

Looks ok

Downside: still makes mistakes

wallhack wallhack wallhackWhy?Why?

- Patch-wise inference helps but does not tell why

vs. Limited Trust

Hey everyone, it WORKS!!!
- Test accuracy 92% is amazing enough!

92%

8%

ML team:
Look, we made it!

Hey everyone, it WORKS?
- Test accuracy 92% is amazing enough?

92%

8%

ML team:
Look, we made it!

Community manager:
Even 99% is 
not good enough.

Same goal, Different approaches
- ML team explores new algorithms
- If it works, being a blackbox model is not a big deal

Model ML guy Model

Image Credit: Little Britain

Same goal, Different approaches
- Community managers face gamers directly
- Distrust comes from not knowing why

Community manager Gamer Community manager

Image Credit: Little Britain

We’re not there to show off
- But to make things easier and solve problems

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

Automatic ban
by Deep Neural Network

DL to enhance human productivity
- Filter out normal images as much as possible

users report  
suspicious players 
N times

security module 
sends screenshots*  
to the server

Automatic classification
by Deep Neural Networkban abusers 

via final manual inspection

Problem: More Accurate Bounding Boxes
- Bounding boxes shorten  

per-image inspection time
- Can wallhack localisation  

be more accurate?

Solution: Class Activation Map (CAM)
- CAM tells where the model look at for its prediction

“DOG”

“Learning Deep Features for Discriminative Localization”  
by Zhou et al (2016)

Image Detection without bounding boxes
- Weakly Supervised Learning: works only with image-level labels
- Bounding box coordinates are expensive to prepare

“DOG”“DOG”

Bounding box

Image-level Label
Bounding Box 
coordinates  
(x, y, width, height)

Image-level label

How CAM works

“Wallhack”

Feature extractor

Classifier

How CAM works

Feature
extractor

Feature
maps

2048 x 7 x 7

G
A
P

2048 x 1 x 1

“Normal”

“Wallhack”

1%

99%

Classifier

-0.5

4.1

Soft 
max

Knows where to look at What label to produce

Logits

How CAM works

Feature
extractor

Feature
maps

2048 x 7 x 7

G
A
P

2048 x 1 x 1

“Normal”

“Wallhack”

1%

99%

Classifier

-0.5

4.1

Soft 
max

weighted sum

2048

Logits

How CAM works

Feature
extractor

Feature
maps

2048 x 7 x 7

G
A
P

2048 x 1 x 1

“Normal”

“Wallhack”

1%

99%

Classifier

-0.5

4.1

Soft 
max

weighted sum

2048

7 x 7

GAP preserves spatial info

Logits

How CAM works

Feature
extractor

Feature
maps

2048 x 7 x 7

G
A
P

2048 x 1 x 1

“Normal”

“Wallhack”

1%

99%

Classifier

-0.5

4.1

Soft 
max

weighted sum

resize

2048

Drawing Bounding Box with CAM
input patch

Drawing Bounding Box with CAM
input patch CAM heat map

Drawing Bounding Box with CAM
CAM heat mapinput patch CAM bounding box

Effect: CAM result

Patch-wise Operation
- Input: patch
- Output: predicted label & bounding box

Patch "Wallhack"

More Efficient Inference

Patch-wise Operation for Screenshot
- Crop the original screenshot into patches for the model
- Get a Map of probabilities and CAMs

Patches Annotated  
patches

Original
screenshot

Wallhack 
probabilities

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

Patch-wise Operation for Screenshot
- Enables more conservative classification
- Stitching CAMs together to annotate the screenshot

Annotated  
patches

Annotated  
screenshot

Wallhack 
probabilities

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1 # hyper parameters for 
conservative decisions

wallhack_threshold = 0.5
number_of_hack_patches = 2

Wallhack

Problem: Unclear Patches
- Patch cropping might miss the wallhack figures

Problem: Unclear Patches
- Ambiguous wallhack figures due to cropping

ClearUnclear

Problem: Unclear Patches
- Fine-grained patches captures wallhack regions,  

but cropping and stitching becomes bulkier

Problem: Inefficient inference
- Use batch dimension for multi-patch processing

PatchesOriginal
screenshot

Mini-Batch
[9, 3, 197, 197]

Problem: Inefficient inference
- Can it process multiple screenshots in a single forward pass?

Looks complicated..
[9*N, 3, 197, 197]

More Convenient Inference
- Use patches to train the model
- And inference screenshots directly without cropping

Original
screenshot

Annotated  
screenshot

Wallhack 
probabilities

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

Screenshot as Input
- ResNet50 CAN take screenshots without resizing  

thanks to Convolutional Layers

2048 x 7 x 7

G
A
P

2048 x 17 x 30

Patch

Screenshot

3 x 197 x 197

3 x 540 x 960

*batch dim is omitted

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

0.9

Screenshot as Input
- GAP shrinks a feature map of any size into a single number

2048 x 7 x 7

G
A
P

2048 x 1 x 1
-2

1.5
2048 x 17 x 30

2048 x 1 x 1
-0.5

4.1
Patch

Screenshot

3 x 197 x 197

3 x 540 x 960

2048 x 2

*batch dim is omitted

Problem: Can’t process Screenshot
- AvgPool2d produces patch-wise information,  

but the linear layer returns RuntimeError

2048 x 7 x 7

A
P

7x7

2048 x 11 x 242048 x 17 x 30

2048 x 1 x 1
-0.5

4.1
Patch

Screenshot

3 x 197 x 197

3 x 540 x 960

2048 x 2

*batch dim is omitted
nn.AvgPool2d(kernel_size=7, stride=1)

RuntimeError  
size mismatch

Idea: Fully Convolutional Network
- FCN’s output is in proportion to the input size

*batch dim is omitted

“OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”  
by Sermanet et al (2013)

2048 x 7 x 7

conv 
1x1

2 x 7 x 7

1x1 conv manipulates channel dim

nn.Conv2d(2048, 2, 1, 1)

Idea: CAM with 1x1 conv
- Use 1x1 conv’s weight to generate CAM
“Adversarial Complementary Learning for Weakly Supervised Learning”  
by Zhang et al (2018)

ACoL CAM Original CAM - Feature Maps
- Linear Layer

- Feature Maps
- 1x1 conv

Solution: Fully Convolutional CAM
- AvgPool2d outputs a map of wallhack probabilities

G
A
P

-0.5

4.1

conv 
1x1

Avg  
Pool2d

7x7

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

2 -2.5 -2

4.5 04. 2.4

0.2 -2.4 0.4

Original CAM

Fully Convolutional CAM

2048 x 7 x 7 2048 x 1 x 1 2

2048 x 17 x 30

3 x 197 x 197

3 x 540 x 960 2 x 17 x 30 2 x 11 x 24

Linear

conv 
1x1

Solution: Fully Convolutional CAM
- Use 1x1 conv to generate CAM for screenshot

Avg  
Pool2d

7x7

Fully Convolutional CAM

2048 x 17 x 30 2048

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

2 -2.5 -2

4.5 04. 2.4

0.2 -2.4 0.4

weighted sum
resize

Effect: CAM without pre&post processing

Input CAM

Examples

Effect: debuggable dataset
- Use CAM to find helpful false positive patches

Effect: debuggable dataset
- Use CAM to find helpful false positive patches

Effect: debuggable dataset
- Use CAM to find helpful false positive patches

Effect: Active Learning with CAM
- Feed data that complement model’s weakness

Passive Learning

for patch in unlabelled_patches:
핵

— 50% —

Active Learning with CAM

Image Credit: The Simpsons

Project Output

Wallhack Detector

0.1 0.1 0.0

0.9 0.9 0.9

0.1 0.0 0.1

0.9Training

Inference

Input Output CAMModel

Wallhack Detector in Ban Process
- Filter out normal images and annotate wallhack regions

User Report

Manual Inspection

Wallhack
Detector

“Normal”

“Wallhack”

Realtime Dashboard
Probability filter

Wallhack probability

Account Number

Lead time until banned

before

after

0 400 800 1,200 1,600

Project Output

images processed daily

before

after

0 12,500 25,000 37,500 50,000

- Abusers get banned in 24 hours ▶︎ 2 minutes (0.001%)
- Number of images to inspect: 5,000 ▶︎ 50,000 (10x)

24 hours

2 minutes

5,000 images

50,000 images

Time spent for daily inspection

before

after

0 1 2 3 4

Project Output
- Shorten daily inspection: 4 hours ▶︎ 1 hour (25%)
- Free up community managers’ time for more valuable tasks

4 hours

1 hour

Focus more on
- hack tool trades
- new hack types
- better gaming experiencesSaved

Takeaways
1. Leverage Transfer Learning when your dataset is small.

2. Handcraft features when the signal is too weak.

3. Use Class Activation Mapping to make NN interpretable

4. Go make your own!

Questions?
Email - junsik.whang@nexon.co.kr
Blog - https://jsideas.net

 
https://career.nexon.com/

References
[1] Stanford CS231n Transfer Learning
[2] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba. 
 Learning Deep Features for Discriminative Localization 
 https://arxiv.org/abs/1512.04150
[3] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann Lecun.  
 Overfeat: Integrated recognition, localization and detection using convolutional networks.  
 http://arxiv.org/abs/1312.6229.
[4] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, Thomas Huang. 
 Adversarial Complementary Learning for Weakly Supervised Object Localization 
 https://arxiv.org/abs/1804.06962v1

https://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1804.06962v1

Appendix - CAMs
method Pros Cons

Original CAM linear weight based - suitable for basic ResNet
- forward pass

Grad-CAM gradient based
- compatible with any architecture
- better results than CAM

(sometimes)

- need gradient information
- slower than CAM

CAM
(ACoL)

1x1 conv weight 
based

- more convenient than CAM
- forward pass

LIME / RISE occlusion 
based - works on any algorithms - takes too long in our case

