


Some quick background about me so people realize I did not start out as a tech artist, 

but rather slowly eased into it.

I hope to be able to demonstrate the link between how artists often intuitively 

approach solving problems and a more classical mathematical approach, and the 

union between them.



This talk is meant to give people insight into different ways to think about creating 

effects where most things are done using vertex shaders and driven parametrically.

After going over some basic behavior modelling, we will show ways to use more 

advanced effects utilizing methods like distance fields or analytical gradients 

construction from easily accessible sources like mesh UVs.

While it will present some mathematical concepts, the goal is to not assume much if 

any prior knowledge and break things down from the simplest level up to more 

complex, interesting examples.



The basic idea for analytical simulation is that you pre-calculate the desired behavior 

into some function and then simply look up into that function to get the desired result 

later. This is in contrast to óregular simulationô where you will actually be applying 

some behavior every frame and re-updating and writing to some buffer.

Most standard particle systems (ie, both Cascade and Niagara in ue4) will actually be 

writing to some buffer every frame to update positions, even if you are doing 

something simple like a just gravity force.





This is just to first show the simplest possible function definition of y=x, which is a 

linear line with a slope of 1.



This slide may be a bit boring, and it is understandable to want to skim past it. It is not 

necessarily critical to applying the concepts presented, but I do feel it helps to 

establish exactly what is the connection between the math we write as functions and 

shaders and standard mathematical formulas. This is because you will often run into 

functions expressed this way when reading white papers or researching a concept 

that is expressed outside of the games industry.



We first look at a function less boring than a line. The most obvious one is the sine 

wave and it actually forms the basis for a whole plethora of effects including but not 

limited to: wind, water, earthquake shakes, tension on wires, flapping wings, bouncing 

balls etc.



Just by adding the absolute value, we can force everything to be positive. This is 

useful for creating a series of pinched gradients that can be used for things like 

bouncing balls.





In UE4 creating vertex shaders is thankfully easy.

Just take a regular new material, and add instructions to the graph and hook them to 

World Position Offset.



Since time normally continues from 0 until as long a the game is running, we might 

need to prevent animation from happening until some interaction occurs.

An easy way to do that is pass in a Scalar Parameter called ñStart Timeò and then 

clamping the result to positive values.

This is like having a linear, local time for an object and the value for the start time of 

the interaction only has to be set ONCE.

Then that result can be modified and turned into the desired modelled behavior.




