<

UNREAL

DISTANCE FIELDS AND SIMULATION

TRICKS IN UE4
By Ryan Brucks

INntroduction

About Me

Started as Intern at Epic 15 years ago
Previously worked as LD and Environment Artist

Currently Principal Technical Artist

Mixture of R&D for tech demos and game development

. GEARS ~ |
EARSE CE
E;\NA] AN

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Some quick background about me so people realize | did not start out as a tech artist,
but rather slowly eased into it.

| hope to be able to demonstrate the link between how artists often intuitively
approach solving problems and a more classical mathematical approach, and the
union between them.

Overview

Driving behavior with math

Going over making Effects using

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This talk is meant to give people insight into different ways to think about creating
effects where most things are done using vertex shaders and driven parametrically.

After going over some basic behavior modelling, we will show ways to use more
advanced effects utilizing methods like distance fields or analytical gradients
construction from easily accessible sources like mesh UVs.

While it will present some mathematical concepts, the goal is to not assume much if
any prior knowledge and break things down from the simplest level up to more
complex, interesting examples.

Analytical Simulation

Basic

« Modeling Behavior with
as inputs

. Replaces regular simulation’

Y #UE4 | @UNREALENGINE

The basic idea for analytical simulation is that you pre-calculate the desired behavior

into some function and then simply look up into that function to get the desired result

|l ater. This is in contrast to 6regular si mul
some behavior every frame and re-updating and writing to some buffer.

Most standard particle systems (ie, both Cascade and Niagara in ue4) will actually be
writing to some buffer every frame to update positions, even if you are doing
something simple like a just gravity force.

Analytical Simulation

Synchronized Effects

Memory cost
Avoids Ticking cost

Deterministic

Y #UE4 | @UNREALENGINE

A function modifies some input

y = f(x)

« Simplest Function: y = x

. Afancy line!

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is just to first show the simplest possible function definition of y=x, which is a
linear line with a slope of 1.

Break

ng it down

The f(x) represents the function. Can be anything.
x represents your Input. Usually includes Time (plus other stuff).
They represents output.

Naming it y indicates plotting results on the Y axis.

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

This slide may be a bit boring, and it is understandable to want to skim past it. It is not
necessarily critical to applying the concepts presented, but | do feel it helps to
establish exactly what is the connection between the math we write as functions and
shaders and standard mathematical formulas. This is because you will often run into
functions expressed this way when reading white papers or researching a concept
that is expressed outside of the games industry.

Building practical examples

y = Sin(x) is a simple function
Use Time for x to get an animated Sin Wave
This is the foundation for many effects

Let’s build something practical from here!

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

We first look at a function less boring than a line. The most obvious one is the sine
wave and it actually forms the basis for a whole plethora of effects including but not
limited to: wind, water, earthquake shakes, tension on wires, flapping wings, bouncing
balls etc.

A Bouncing Ball

By adding one operation to our function

we can modify it to do something else.
Add the Absolute Value operator.

Y =Abs (Sin(x))

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Just by adding the absolute value, we can force everything to be positive. This is
useful for creating a series of pinched gradients that can be used for things like
bouncing balls.

A Bouncing Ball

Now let's use the function in a shader
This example takes the Sine of Time,

To a Vertex Shader
Using Time for x

Using the Output y as our

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Ok, enough "Math’, its material time!

What does that look like in UE4?

O Metallic

O sp

@ World Position Offset

(“Multiply(,100) ¥ /
A o

B

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

In UE4 creating vertex shaders is thankfully easy.
Just take a regular new material, and add instructions to the graph and hook them to
World Position Offset.

What about user control?

Control timing by Subtracting Start Time
Clamp Resultto >0

Only need to set one value once

Can modify the result from there

A Power adjustment is shown

3 #UE4 | @UNREALENGINE Af) uNREAL ENGINE

Since time normally continues from 0 until as long a the game is running, we might
need to prevent animation from happening until some interaction occurs.

An easy way to do that is pass in a Scalar
clamping the result to positive values.

This is like having a linear, local time for an object and the value for the start time of
the interaction only has to be set ONCE.

Then that result can be modified and turned into the desired modelled behavior.

