
GPU-based clay simulation and

ray-tracing tech in Claybook

Sebastian Aaltonen

Co-founder of Second Order

Introduction

ƀSebastian Aaltonen
ƀEx-Ubisoft senior lead programmer
ƀ 20 years of 3d programming experience

ƀSecond Order
ƀ Formed two years ago
ƀ Two employees (me and Sami)
ƀWe target PC and consoles
ƀClaybook is our first game

@SebAaltonen

Topics

ƀClaybook Overview

ƀSigned Distance Fields (SDF)

ƀRaytracing Signed Distance Fields

ƀClay and Fluid Simulation

ƀAsync Compute

ƀIntegration to Unreal Engine 4

Claybook Overview

ƀClay simulation game

ƀFully destructible environment

ƀUser generated content

ƀPC (Steam), Xbox One (X) and PS4 (Pro)

ƀSteam Early Access & Xbox Game Preview

Claybook Overview, cont

ƀClay modeled as signed distance fields (SDF)
ƀBoth world and characters are SDF based

ƀPhysics & fluid simulation running on GPU

ƀNo baked lighting, AO or shadows
ƀEverything must be real time

Claybook Trailer

https://www.youtube.com/watch?v=Q8quiLN7n04

https://www.youtube.com/watch?v=Q8quiLN7n04

Signed Distance Fields (SDF)

ƀSDF(P) = signed distance to nearest surface at P

ƀAnalytic distance functions
ƀPopular in demoscene productions

ƀHuge shader. Lots of math. No data

ƀVolume texture
ƀStore distance function. Trilinear filter

ƀWe use volume texture with mip maps

World SDF

ƀResolution = 1024x1024x512

ƀFormat = 8 bit signed

ƀSize = 586 MB (5 mip levels)

ƀDistance of [-4, +4] voxels
ƀ256 values / 8 voxels Ą 1/32 voxel precision

ƀMax step distance (world space) doubled per mip level

SDF Brushes

ƀBrush = Small offline baked volume texture
ƀResolution [323, 1283] = [32 kB, 2 MB]

ƀWorld SDF generated by combining N brushes
ƀEach brush has translation, rotation and uniform scale

ƀSmooth add/cut operations (exponential min/max)

ƀLayering system (operation ordering)

ƀRuntime performance not dependent on brush count

Compute Shader Intro

ƀSPMD = single program, multiple data
ƀMy slides are written from perspective of one thread

ƀUnless line starts with: ñGroupñ

ƀThread groups
ƀCompute dispatches are split to thread groups

ƀSync barrier + groupshared memory (GSM)

World SDF Generation on GPU

1. Generate SDF brush grid

2. Generate dispatch coordinates and mip masks

3. Generate level 0 in 8x8x8 tiles (sparse)

4. Generate mips (sparse)

Generate SDF Brush Grid

64x64x32 dispatch. 4x4x4 groups

1. Sample a brush volume at tile center T
1. Cull if SDF > grid tile bounds + 4 voxels
2. Accepted? Ą atomic add + store to GSM

2. Loop through brushes in GSM
1. Sample brushGSM[i] at cell center C
2. Accepted? Ą store to grid (linear)
3. Local + global atomic for compaction

Generate Dispatch Coordinates

64x64x32 dispatch. 4x4x4 groups

1. Read a brush grid cell

2. If not empty:
1. Atomic add (L+G) to get write index

2. Write cell coordinate to buffer

Generate Mip Masks

4x Dispatch (mips). 4x4x4 groups

1. Group: Load 1 voxel wider grid L-1 neighborhood
1. Downsample count!=0 mask and store to GSM

2. Dilate mask by 1 voxel (3x3x3 GSM nbhood)

3. Mask!=0 Ą Write grid cell coords (prev slide)

Generate Level 0 (sparse)

Indirect Dispatch. 8x8x8 groups

1. Group: Read grid cell coordinate (SV_GroupId)

2. Read a brush from grid and store to GSM

3. Loop through brushes in GSM
1. Sample brushGSM[i]
2. Do exp smooth min/max operation

4. Write voxel to WorldSDF level 0

Generate Mips (sparse)

4x Indirect Dispatch (mips). 8x8x8 groups

1. Group: Load 4 voxel wider L-1 neighborhood
1. 2x2x2 downsample (avg) and store as 123 in GSM
2. +-4 voxel band becomes +-2 voxel band

2. Group: Run 3 steps of eikonal eq in GSM
1. Expands band: 2 voxels Ą 4 voxels

3. Store 8x8x8 center of the neighborhood

Eikonal Equation (Wikipedia)

