
APRIL 2004

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-in-Chief

Dominic Milano dmilano@gdmag.com
Managing Editor

Jamil Moledina jmoledina@gdmag.com
Departments Editor

Kenneth Wong kwong@gdmag.com
Product Review Editor

Peter Sheerin psheerin@gdmag.com
Art Director

Audrey Welch awelch@gdmag.com
Contributing Editors

Jonathan Blow jblow@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com

Advisory Board
Hal Barwood Designer-at-Large
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Group Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region and Europe

Afton Thatcher e: athatcher@cmp.com t: 404.658-1415
Account Manager, Northern California and Midwest

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Western Region and Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Account Manager, Target Pavilion, Education, and Recruitment

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel
Reprints Julie Rapp e: jarapp@cmp.com t: 510.985.1954

GAMA NETWORK MARKETING
Director of Marketing Michele Maguire
Senior Marcom Manager Jennifer McLean
Marketing Coordinator Scott Lyon

CIRCULATION

Circulation Director Kevin Regan
Circulation Manager Peter Birmingham
Asst. Circulation Manager Lisa Oddo
Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.763.59581 f: 847.763.9606
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President and CEO Gary Marshall
Executive Vice President and CFO John Day
Executive Vice President and COO Steve Weitzner
Executive Vice President, Corporate Sales and Marketing Jeff Patterson
Chief Information Officer Mike Mikos
President, Technology Solutions Robert Faletra
President, CMP Healthcare Media Vicki Masseria
Senior Vice President, Operations Bill Amstutz
Senior Vice President, Human Resources Leah Landro
VP and General Counsel Sandra Grayson
VP, Group Publisher Applied Technologies Philip Chapnick
VP, Group Publisher InformationWeek Media Network Michael Friedenberg
VP, Group Publisher Electronics Paul Miller
VP, Group Publisher Enterprise Architecture Group Fritz Nelson
VP, Group Publisher Software Development Media Peter Westerman
VP & Director of CMP Integrated Marketing Solutions Joseph Braue
Corporate Director, Audience Development Shannon Aronson
Corporate Director, Audience Development Michael Zane
Corporate Director, Publishing Services Marie Myers

W W W . C M P G A M E . C O M

✎

M
uch is made of the idea
that success hinges on
being in the right place
at the right time, and I
have to admit I’m start-

ing to believe it. All your careful plan-
ning, rigorous training, and heartfelt
passion count for just 49 percent of the
deal, if that. As for proof, I have strong
first-hand anecdotal evidence to support
that. There I was, calmly editing this
magazine when Jennifer Olsen slapped
the baton into my hand, before easing
down to more manicured greens. It’s
been a wild sprint since then, made
smoother through the sage guidance of
publishing veteran Dominic Milano, and
the inspiring support of the rest of the
Game Developer team. And to top it all
off, my lifelong addiction to videogames
is finally, finally counting for something
(see, Mom!).

Now doesn’t that sound familiar?
Apart from some eerie parallels between
my little shuffle and individual game
developers’ experiences starting new
projects, there’s been a sizable amount of
systemic musical chairs in the industry as
well. Jason Bell and Hajime Satomi were
certainly in the right place at the right
time, when they took the reins of
Turbine and Sega, respectively. Time
Warner is inching its way back into the
right place, by reestablishing Warner
Brothers Interactive. While three or four
studios faltered, just as many were rein-
carnated, such as Level of Detail
Software, Team Bondi, and Ready at
Dawn Studios, all populated by reposi-
tioned industry leaders.

This right place and time business
also has ramifications for the types of
platforms you create for, within the
umbrella of game development. For
example, in this issue, Ben Calica takes
an extensive look at the wide wireless
world, from platforms, to carriers, to
developers, to publishers in “The
Wireless Gold Rush” (page 28).
Through interviews and analysis, he

forges order from the chaos, and deliv-
ers insider facts and figures, along with
informed advice from industry leaders,
to help you determine whether the time
is right for you to insert your coin.

But things still aren’t that easy, as new
consoles and handhelds get closer to
launch. This year’s Game Developers
Conference could be one of those right
time and place crossroads where we’ll
learn exactly what’s coming up, and how
to develop for it. Whether it will make
more sense for you to balance your
resources in favor of the next generation
or continue to create with tried and true
SDKs for an installed user base may not
be addressed so concretely. Some of
those reincarnated studios think they
have the answer by focusing exclusively
on the next generation—suggesting
they’ve figured out the right place and
put themselves there at what they think
is the right time. Maybe being that
proactive tips the odds in your favor,
giving you 51 percent control over your
fate. Let’s see what happens.

The next issue. There have been some
hints dropped by the Game Developer
staff that we have something exciting
planned for the magazine in the near
future. Well, the future is rapidly
becoming the present, and the next issue
marks the magazine’s 10th anniversary.
What exactly is going on? As the ethere-
al Dave Bowman says in 2010,
“Something wonderful.” While that
doesn’t really tell you much, what the
monoliths actually do to the planet
Jupiter and the solar system in that
movie is pretty close to what we’re
doing with Game Developer.

So stay tuned.

CMP Media, 600 Harrison St., 3rd Fl., San Francisco, CA 94107 t:415.947.6000 f:415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jamil Moledina
Managing Editor

www.gdmag.com

Player 1 Inserts Coin

Origin facing closure. After shutting down
Westwood studios and relocating Maxis
to Lost Angeles, videogame publishing
giant Electronic Arts is reportedly put-
ting Origin Systems on the chopping
block. The Texas-based Origin staff was
offered a choice between relocation to
California or a severance package. Best
known for the ULTIMA ONLINE and
WING COMMANDER franchises, Origin is
a wholly owned subsidiary of EA.

Nokia admits N-Gage not engaging enough
buyers. Nokia’s CEO Jorma Ollila, who
has consistently expressed optimism for
the N-Gage in the past, finally admitted
to Financial Times sales of the device
were “the lower quartile of the bracket
we had as our goal.” Ollila says he will
wait until 2005 before passing judgment
on the hybrid phone-game device.
Initially priced $299, the device is cur-
rently selling for $100 less. Except for

announcing the shipping of

600,000 units of the device, Nokia has
not made public the retail sales figures.
The company originally hoped to sell
nine million units in the first two years
of product launch.

India touts game gods. Following in the
footsteps of its neighbors China, South
Korea, and Singapore, the Indian gov-
ernment is aggressively marketing its
game development talents through the
Federation of Indian Chambers of

Commerce and Industry. Capitalizing on
its reputation as one of the outsourcing
Nirvanas, India looks to establish part-
nerships between international game
publishers and the country’s leading
interactive entertainment firms, such as
Dhruva, Crest, and Jadoo. Last year
Dhruva signed up to work on a
Microsoft Game Studios project due for
release in August 2004.

3D mobile gaming contest underway.
Organized by Discreet and its mobile
game partners (including Nokia,
Orange, In-fusio, Nvidia, Criterion,
Ideaworks3D, Fathammer, IBM, Intel,
and others), the first international 3D
mobile gaming competition (www.
3dmobilegamingcontest.com) is under-
way. Launched at the Imagina 2004
tradeshow (Monaco), the contest allows
independent mobile gaming artists,
developers, and 3D freelancers to carry
out their creative concepts for mobile
games. It features more than $50,000
worth of prizes, trips, software licenses,
co-production opportunities, and a
chance to meet with mobile game devel-
opment luminaries. q

Send all industry and product release
news to news@gdmag.com.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r4

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | k e n n e t h w o n g

C O M P U T E R G A M E
T E C H N O L O G Y C O N F. 2 0 0 4

DAYS HOTEL & CONFERENCE CENTRE

Toronto, Canada
April 8–10, 2004
Cost: $220–$250
www.cgt.auc.ca

G A M E N E T W O R K S
C O N F E R E N C E & E X P O

HYATT REGENCY HOTEL

Long Beach, Calif.
April 27–28, 2004
Cost: $499–$799
www.scievents.com/gamenet

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Alienbrain Studio 7. NXN Software begins
shipping Alienbrain Studio 7 on April
15. Performance improvements include
multi-threading to take advantage of
multiple processor workstations and
servers, and faster creation of thumbnail
images. And among the 40 new features
are change sets for streamlined check-ins
and a revised administration module
that can use Windows Server databases
or LDAP servers to streamline the man-
agement and authorization of users
while supporting a single sign-on.
Alienbrain Studio 7 will be previewed at
GDC 2004. www.nxn-software.com

RT/Shader makes shaders easy. RTzen
launches a shader development tool,
RT/Shader, at GDC. It allows one to cre-
ate high-level shader programs visual-
ly—by assembling visual elements such
as textures and lighting effects. The
resulting shaders are previewed in real-
time for immediate feedback. RT/Shader

supports the Direct3D HLSL and
Nvidia’s Cg shading languages, and
includes a code editor in its IDE for
viewing and tweaking the code that
results from its calculations. The pro-
gram costs $1,995. www.rtzen.com

3D Mega Capturor DF. InSpeck has
announced its latest 3D capture device,
the 3D Mega Capturor DF, which can
scan a wider-sized range of objects than
can its other scanners without requiring
swapping of lenses or the use of two
scanners. The DF stands for Dual Field,
the two cameras it features. This pro-
vides the same capability to switch from
small to large objects the company’s 3D
Mega DF product offers, only with
greater convenience, making the process
of scanning various sized objects or mul-
tiple levels of detail much faster. Price is
not yet announced. www.inspeck.com

—Peter Sheerin

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F B

For a verdict on N-Gage, tune in sometime in
2005, says Nokia.

6 a p r i l 2 0 0 4 | g a m e d e v e l o p e r6

W
ith most major
graphics card ven-
dors offering up
DirectX9 and
OpenGL 1.4 com-

pliant (shader-capable) hardware, real-
time shader development is becoming
more viable and important. To help fur-
ther this technology, ATI plans to release
version 1.5 of its RenderMonkey shader
development utility at GDC 2004. There
may be some differences between the ver-
sion reviewed here, which was a preview
version available at press time, and the
final 1.5 version.

RenderMonkey 1.5 is a huge improve-
ment over 1.0. ATI has spent a lot of
time listening to the suggestions from
developers and artists, adding the fea-
tures that are most important to them.
To say the entire interface has been
revised to make it easier to write shaders
would be an understatement. Featuring
improved editing, better error reporting,
support for multiple render targets, and
better workflow integration, and an
additional shader language, this is a sig-
nificant update.

Editing features and OpenGL support.
The editing environment retains most of
the modular design of the previous ver-
sion but features some drastic revisions
in terms of streamlining interaction with
the user. The entire interface has been
revised to resemble Visual Studio.NET.
Many of the windows are now floating
windows that can be moved outside the
main window or docked, as in Visual
Studio. In fact the syntax highlighting
and editing preferences are all designed
to mimic those found in Visual Studio,
since that’s the development environment
most folks writing PC games are using.
The syntax colors are also configurable.
Most of these underlying rules for the

environment configuration are editable
XML or text files, allowing you to easily
create custom rules for syntax, project-
specific variable declarations, and so on.
There are syntax files for DirectX’s low-
level shader code, DirectX’s high-level
code (HLSL), and OpenGL 1.4’s shader
language (GLSL).

Though the HLSL compiler is part of
DirectX, it’s part of the driver in
OpenGL (I’ll let you ponder the shading
language optimization implications). This
means you’ll need a card that contains at
least an OpenGL 1.4 level driver (which
should be available from both ATI and
3DLabs by the time you read this) to try
out GLSL. Using a high-level shading
language insulates you from the actual
assembly language running on the graph-
ics card. However, whenever you need to
drop down to the assembly level,
RenderMonkey lets you view the low-
level code it generates. While you can
save or paste the generated file and turn
it into a shader, there’s no option to do
this directly from the user interface.

The shader setup has also been stream-
lined. RenderMonkey supports intelligent
drag-and-drop function, making it much
easier to add and reference textures, for
example. The creation and editing of
shader constants has also been improved.

Rendering environment changes. The
new version also makes good use of
tooltips—those popup boxes that are
common in most development environ-
ments. Not only do you get the usual cur-
rent variable values popping up (even for
complex types such as matrices and col-
ors), but you also get fairly intelligent
tooltips for other things: file paths for
model files, compilation targets for
shaders, and (my favorite) the description
element. Normally this is just a chunk of
text describing the current workspace or
effect. However when your mouse hovers
over it, the tooltip reveals the entire
description, making it easy to see the
works in progress or to-do items.

The rendering window now has hot-
key support for things like forcing texture
or models to be reloaded, toggling the
bounding box for objects, saving the cur-
rent image, or, most useful, displaying the
intermediate rendering pass results. For
example, creating a soft shadow around
an object typically requires blending
many passes to get a soft outline.

When rendering something as complex
as this (14 shadow and three object pass-
es), it’s a big help to see the results of
each pass. With RenderMonkey, all you
need to do is press the P key (for passes)
and you can see the results of each inter-
mediate pass (Figure 1), where each
intermediate pass is shown tiled in the
main rendering window.

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

Ron Fosner | Ron is a 3D programmer and consultant, and author of Real-Time Shader
Programming (Morgan Kaufmann). Reach him at rfosner@gdmag.com.

ATI’s RenderMonkey 1.5

FIGURE 1 . Generating soft shadows typically requires many passes. RenderMonkey 1.5 lets you
preview each pass separately for fine-tuning the shader.

by ron fosner

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

Another new smart feature is the ability
to use the mouse buttons and mouse posi-
tion as inputs to the shader. This makes it
easy to trigger different rendering paths
when testing out alternate algorithms and
when you need to switch quickly between
different paths or to lerp between values
as a function of mouse position.

In addition to standard variables such
as Projection Matrix, ViewProjection
Matrix, and WorldViewProjection
Matrix, version 1.5 adds many new pre-
defined variables, including viewing
parameters, many more cycling parame-
ters (plus the ability to set the cycle time
for these variables), some random values,
and the current rendering pass index.

Workflow improvements. Unless you’re
working in a large development group
with someone devoted to tools develop-
ment, you’ve really had no way of short-
ening the shader development cycle other
than to edit the shader code, fire up your
rendering engine, load in the new code,
test the code, then reedit the shader all
over (lather, rinse, repeat). ATI’s
RenderMonkey 1.0 (for HLSL) and
Nvidia’s CgFX Viewer (for Cg) were real-
ly the only prototyping tools out there,
and neither really fit into a production
environment. With RenderMonkey 1.5,
ATI has hit most of the usability
improvements that will let you speed up
shader editing and testing.

RenderMonkey has added support for
FX files through an improved FX file
exporter. Whenever possible, it will con-
vert to standard FX file notation. If
there’s no FX-file equivalent then it will
stick a comment in the top of the FX file.
Additionally there’s now built-in support
for .X mesh files.

You can enable auto-refresh for model
and image files as well as specify external
editors for these file types so you can
launch editors from inside the Render-
Monkey IDE. Thus if you discover a tex-
ture or a model that needs tweaking, you
can have RenderMonkey launch
Photoshop or 3DS Max (or whatever
tools you specify), edit the file, save it,
and switch back to RenderMonkey.
RenderMonkey can be set to check for
updates on the current shader resource
files and will automatically reload them
if it detects they have been edited.

ATI has also released the Render-
Monkey SDK, which allows you to inte-
grate it with your own development
tools. Using the SDK you can write your
own plug-ins for RenderMonkey, to cre-
ate a loader for an unsupported mesh
format, to make an exporter for your
own unique file format, or even a
dynamic shader updating mechanism
hooked into your own game engine.

So who should get this monkey? Short of
writing your own shader editor interface
for your game engine, the latest version
of RenderMonkey from ATI comes as

close as you can get. In fact, with the
SDK and some effort on your part, you
can probably achieve that as well. ATI
has made some significant improvements
to the RenderMonkey interface as well as
streamlined the editing effort. However,
there is still some room for improvement.
The rendering window can’t be dragged
outside the main window or made
fullscreen (say, onto a second monitor),
the lack of Intellisense and Auto-
completion in the shader editors is sur-
prising, and it would be nice if there
were more mesh formats supported
natively other than just .3DS and .X. The
biggest omission is the missing direct
integration with 3DS Max and Maya.
RenderMonkey still has an “artist
mode,” where only certain values (such
as colors) can be changed in an effect—
allowing you to safely hand off shaders
to non-programmer artists for tweaking.

Despite these shortcomings, this is the
first tool specifically designed to stream-
line the shader writer’s efforts and it’s
an excellent tool for that purpose. If
you write shaders but haven’t checked
out RenderMonkey yet, then try out
version 1.5.

Sharp’s Actius RD3D
peter sheerin

S
tereoscopic computer displays using
various techniques have been around

for many years. But they have never
quite caught on, due to the technology’s
inherent limitations. Sharp’s new technol-
ogy, however, overcomes several of these
issues and stands a good chance of turn-
ing the tide and bringing realistic stereo
imagery to far more applications.

The Actius RD3D features an auto-
stereoscopic display—one that provides a
stereoscopic image without the need for
wearing glasses or viewing tricks (such as
crossing your eyes) to create a true 3D
image. In the past, displays have accom-
plished this with various filters that can
provide one or several different viewing
areas, but such an approach renders the
display useless for normal work, since
the filters obstruct or distort non-stereo

XP R O D U C T R E V I E W S

a p r i l 2 0 0 4 | g a m e d e v e l o p e r8

STATS
ATI Technologies, Inc.
33 Commerce Valley Drive East
Thornhill, ON
L3T 7N6 Canada
http://www.ati.com/developer/tools.html

PRICE
Free

SYSTEM REQUIREMENTS
Windows XP, 2000 SP2, ME, or 98 SE,
DirectX 9.0b or OpenGL 1.4 installed
DirectX 9.0/OpenGL 1.4-compliant
graphics card, 128 MB RAM, 180 MB
free hard drive space.

PROS
1. The only OpenGL shader tool available.
2. Indifferent to GPU chipset—all you need

is DX9 or OpenGL 1.4 support.
3. Can be integrated into production

pipeline with some customization effort.

CONS
1. No Intellisense or Autocompletion.
2. Really requires a DX9 and/or OpenGL

1.4 capable graphics card. The DX hard-
ware emulation driver (“REF”) is excru-
ciatingly slow.

3. No debugging of shaders.

RENDERMONKEY 1.5
XXXX

images and application windows.
On a desktop, this is not so big a

problem, since it is fairly easy to connect
two monitors—one for stereo and one
for everything else. Obviously, though,
this is not a viable solution for a laptop
computer. Sharp’s solution uses a liquid-
crystal-based vertical-stripe filter that can
be disabled: turn it on, position your eyes
in the right spot, and you get a convinc-
ing stereo image; turn it off and you’d
never know there’s anything special
about this computer.

The $2,999 Actius RD3D is a large,
powerful portable computer that will
probably spend most of its time plugged
into AC power. It features a desktop
2.8GHz Pentium 4 processor, an Nvidia
GeForce4 440 Go graphics chip, a 15-
inch display, four USB 2.0 ports, a 4-pin
FireWire port, one PC CARD slot, and a
5-in-1 flash memory reader. At 11.7
pounds, it’ll make you hesitate to lug it
around everywhere. But these issues
don’t detract from what is an excellent
development platform to start experienc-
ing stereoscopic display and updating
your game design practices and tools to
support true 3D display.

Running 3D games. As previous efforts
at creating stereoscopic games have relied
on liquid-crystal shutter glasses, which
resulted in eyestrain because most home
monitors are capable of displaying only
at low refresh rates, very few games in
recent years have been designed with this
technology in mind. Performance short-
cuts such as placing HUD, cockpit, and
map displays in 2D space (instead of in
3D space) don’t matter when playing a
game on a normal monitor, but they can
make playing a game in 3D mode impos-
sible. The display driver makes some
assumptions about depth perception and
the distance of objects in a scene if the
game doesn’t provide a built-in stereo-
scopic mode. This can result in display
artifacts and occasional double visions
that vary from game to game.

In conjunction with Nvidia, Sharp has
posted on its 3D display web site (www.
sharp3d.com) a list of games that work in
stereo mode on the RD3D, ranking the
value and accuracy of the stereo imagery

to show how well a particular game will
work in stereo. For example, flight simu-
lation games don’t fare well because
much of the display geometry is focused
on infinity. On the other hand, nap-of-
the-earth helicopter simulations such as
COMANCHE are interesting exceptions.

In addition to some still-image stereo-
scopic editing and viewing applications,
our test unit came installed with a few
games to demonstrate the capabilities of
the unit—customers will receive JAMES

BOND 007: NIGHTFIRE, TIGER WOODS

PGA TOUR 2003, and NEED FOR SPEED:
HOT PURSUIT 2. I also installed Madden
NFL 2004. In playing these games, I
found that the stereo effect varied from
okay (QUAKE II) to very good (SPIDER-
MAN and MADDEN). After a little bit of
experimenting, I was able to find the
sweet spot that enabled the full stereo
experience. Moving slightly to one side
or the other, or tilting your head a bit,
first resulted in double images at the
edges of the screen. When I moved more,
the entire screen became double images.
Getting the software and notebook into
stereo mode at the same time is no easy
task. The stereo effect only works at
1,024x768. If a game defaults to
800x600 and triggers the stereo mode,
you must disable stereo in the display
driver control panel, reconfigure the
game, and enable stereo in the control
panel again. That’ll be a significant
obstacle hindering mass acceptance.

When I was in the zone, the effect was
very good—as good as or better than the
previous auto-stereoscopic displays I have
viewed in the past, and far better than the
monochrome anaglyphs of Mars that
NASA has been providing us with.

However, some high-contrast areas of
the stereoscopic images exhibited
slight ghosting. (Don’t get me started
on NASA’s decision to post virtually
all of the Mars rovers’ stereo images
using technology first pioneered in
1858, but this could explain a few
things about the Shuttle.) Since the
sweet spot is only an inch or two
wide, the zone is quite small. So the

effect works very well when you’re intent-
ly concentrating on a game to the point
that your posture is static, but it breaks
down to various degrees when playing
sports or similar games where bobbing or
tilting your head is a natural response.

Running 3D tools. No currently ship-
ping DCC software has a real-time shad-
ing display that will work in stereo mode
with the RD3D, though many can be
made to render stereoscopic movies that
will work. Sharp says 3DS Max 6 and
Lightwave can render two camera views
to a properly interlaced AVI movie that
will create the proper stereo effect, and
that Maya and Softimage can do this
indirectly—you’ll have to define multiple
camera paths and compose the stereo
movie in Premiere. This prevents you
from gaining the benefits of depth per-
ception while creating models.

For this stereoscopic technology to
work for game developers, DCC vendors
and game engine makers will have to add
direct support for Sharp’s vertical inter-
laced stereo mode (and the other viable
stereoscopic formats—page flipping, hor-
izontal interlacing, and so on) to their
programs, so developers can generate
content and games that will work seam-
lessly in stereo mode without the artifacts
and compromises that occur when the
display driver tries to recreate a stereo
scene after the fact. For now, getting
access to the SDK requires developers to
sign an NDA, but this technology has
enough potential that you should serious-
ly consider signing up.

XXXX | Actius RD3D
Sharp Systems of America

www.sharp3d.com

Peter Sheerin is the product review editor
for Game Developer.

XP R O D U C T R E V I E W S

a p r i l 2 0 0 4 | g a m e d e v e l o p e r10

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

Sharp’s Actius RD3D auto-stereoscopic laptop

I
magine picking up the phone to hear
Havok tell you your game is a bril-
liant implementation of their physics
engine. Midway’s Brian Eddy got that
call as he was finishing up Psi-Ops:

The Mindgate Conspiracy. The third-person
action game gives its commandos psychic pow-
ers and the ability to manipulate objects, ene-
mies, and environments using the standard
Havok 2 physics package. According to Tom
Lassanske, a developer relations engineer at
Havok, this illustrates how a creative developer
can offer unique gameplay elements to the cre-
ative player through physics.

This kind of validation prior to a game’s
release can certainly provide a confidence
boost, although Eddy has 14 years of experi-
ence to rely on to tell him he’s on the right track. While serving
as lead designer and executive producer of the title represents his
first console foray, he cut his teeth at Midway creating arcade
games such as Arctic Thunder and pinball titles such as
Medieval Madness and Attack from Mars. Havok’s seal of
approval notwithstanding, we were curious how Eddy ports over
to the console market.

GD: How did you choose to develop a third-person action game?
BE: We wanted to be able to show the main character physi-

cally doing the powers and interacting with the world on
screen. It’s much more satisfying to see your character actually
doing the Psi powers, especially since most of them are very
unique to this game.

GD: What attracted you to the idea of psychic soldiers?
BE: Most of the major world governments actually have Psi-

Ops programs. Some of the powers are enhanced from the
real life version for gameplay, but others, like remote viewing
(RV) are very similar. In doing a lot of digging into the covert
government Psi programs, it was pretty amazing and scary the
amount of research that has gone into Psi powers. Most of the
information we found was only recently made public or
declassified. Tie that in with the fantasy aspect of actually
having these extreme powers and being able to use them in a
real world setting just sounded like a lot of fun.

GD: To what extent does pinball’s play/reward model carry over?
BE: When you do something well on a pinball machine it

will reward you with a big light show, sound, music, and even
a free game. When you do something well in a videogame, like
kill a boss monster, take out a large troop of enemies, or figure
out a puzzle, you get a similar reward. They both try to create

an intense experience while tying into that the
emotional aspect of winning or losing. Even
though videogames are almost unlimited in
the directions you can take them, you still
need to set up rules and restrictions to make
the game a fun, focused experience.

GD: How did the Havok 2 middleware help?
BE: It provided a great foundation for us to

make the world feel real and solid. It allowed
us to quickly implement code for a water vol-
ume effect that includes force currents, imple-
ment that into the game, then use telekinesis
to throw a dead enemy ragdoll into the water,
have them float around and actually follow
those currents as you would expect. On top
of that, you can even shoot the body and see
the impact of the bullet impulses on it (they

get pushed around), all while the body continues to interact
nicely with the water. Or, you can land a crate on them, and
they’ll sink. The combinations are endless, and there’s no way
we would’ve been able to get all that going in the timeframe
we had without the solid foundation in place that using
Havok gave us.

GD: How can future games take advantage of realistic physics?
BE: Over the past few years graphics have been a big focus

in 3D games. Now, one of the next big areas to tackle in order
to bring more realism into games and make them feel more
immersive is physics. Imagine a world where given enough
power you could destroy everything in a room as if it were a
real structure in real life. Knock down enough walls or support
beams and the roof or even the whole building collapses. Start
a fire in one corner of a room and eventually it burns out of
control so that the whole room goes up in flames causing the
collapse of the building section by section so that you have to
try to escape. At this point we don’t quite have the processor
power to make something like that happen as a real physics
simulation. However, with the recently reported cell hardware
design of the next generation platforms we’ll start seeing this
kind of stuff become a reality and great physics will become an
entry level bar that games will need to succeed. Graphics will
continue to improve, but physics simulations will become
increasingly important, not just as a wow factor but as a part
of the game design and experience themselves.

GD: What games are you playing now?
BE: Not much at the moment, as we are focused very hard

on getting the game done. I did enjoy Halo, Devil May Cry,
and GTA3. q

a p r i l 2 0 0 4 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j a m i l m o l e d i n a

Levitating Physics
Midway’s Brian Eddy on mixing realism with psychic powers

Brian Eddy is RVing you right now.

R ecall that rotations can be represented by unit
vectors in four-dimensional space, which have
an algebraic structure. These 4-vectors are
known as the quaternions, and they’re especial-
ly useful for rotation interpolation problems, of

the sort required by animation and inverse kinematics systems.
An infinite number of paths transition from rotation A to rota-

tion B, but in general there’s only one “straightest” way to get
there, known as the torque-minimal path. Since this path travels
along the surface of the 4-sphere, it is inherently curved. The
function slerp walks along this path at a constant speed; slerp
was popularized in the computer graphics industry by Shoemake
(see For More Information on page 17).

Though quaternions are important, few game programmers
understand how they work; the slerp function, in particular, is a
mysterious black box. (Shoemake does not present a derivation
in his paper; he just gives the formula). Certainly you can derive
slerp by considering the geometry of a sphere in 4D space, but
such spheres are difficult to visualize. So I’d like to present a deri-
vation of slerp that works differently.

Slerp Solutions Are Coplanar

T he inputs to slerp are two quaternions, q0 and q1, as well as
a scalar parameter t that tells us how far to interpolate

between these. (t = 0 gives us q0, t = 1 gives us q1, and interme-
diate values of t give us quaternions on the path between q0

and q1).
The first useful thing to realize is that all results from the slerp

must lie in the plane P, defined by q0, q1, and the origin. I won’t
present formal proof here, because I want to get to the main
proof. But if you’d like a formal explanation, see Genevieve
Walsh’s paper, section 1.1, titled “Geodesics in the three-sphere.”

Because the hypersphere is symmetric in all directions about
the origin, we can reflect it across any plane that passes
through the origin, producing an equivalent hypersphere. We
reflect the sphere across P. Because P contains q0 and q1, q0 and
q1 stay in the same places. Since the rest of the sphere is
mapped to itself, the overall geometry is the same. So the short-
est path does not change. But since every point not contained
within P is moved by the reflection, we know the path must be
contained in P. (I have assumed here there is only one shortest
path, which is implicit in the idea of constructing a well-formed
slerp function; you can read about geodesics if you want to dig
deeper into this subject.)

If this handwaving argument is confusing, you can just take
it for granted that slerp always generates great circles of the
hypersphere, and great circles are always coplanar (since they
are circles).

How This Coplanarity Helps

Once we believe the results of slerp are all coplanar, the situa-
tion is still somewhat confusing, since the plane P is orient-

ed arbitrarily in 4D space. But we can employ a simplifying strat-
egy: suppose we build a transform that moves P from its arbi-
trary orientation onto the familiar XY plane. We can solve the
interpolation problem in 2D space, then transform the result
back to the arbitrary orientation in 4D.

Such a transformation could be represented by a 4�4 matrix.
However, it would take extra CPU to compute and apply the
transformation. Luckily for us, this transformation is unneces-
sary. If we feel like we need it, that’s because we are overly
attached to our coordinate systems. When we adopt a Zen-like
detachment from the idea of coordinates, we find that the prob-
lem is simple.

Linear objects, like vectors and planes, exist independently
from the methods we use to represent them (such as coordinate
systems). These objects always obey the properties of linear alge-
bra. Thus we can derive formulas directly from these linear prop-
erties, without ever mentioning coordinates—in the literature this
is called a coordinate-free derivation. Formulas with coordinate-
free derivations are very powerful; they must be true in all linear
spaces, regardless of petty details like the total number of dimen-
sions in the space (except perhaps for infinite-dimensional spaces,
which are tricky and we should take great care when venturing
into them, hic sunt dracones and all that.)

If you’re not used to thinking in a coordinate-free way,
Sheldon Axler’s book Linear Algebra Done Right is a good start
(see For More Information on page 17). For now I will show a
coordinate-free derivation of slerp using 2D illustrations (which
are all you need).

w w w . g d m a g . c o m 15

j o n a t h a n b l o wI N N E R P R O D U C T

Understanding Slerp,
Then Not Using It

J O N A T H A N B L O W | If you're looking for
Jonathan Blow, you’d better check under the
sea, because that’s where you’ll find him,
underneath the ... or you could just send email
to jblow@gdmag.com.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

Coordinate-Free Derivation of Slerp

Our inputs are two unit vectors, v0 and v1, and a scalar t. We
are solving for a vector r, whose angle with v0 is q = tq0,

where q0 is the angle between v0 and v1.
Figure 1A illustrates the problem. I have drawn v0 in the direc-

tion we usually use for the X axis when drawing the XY plane.
This by itself suggests a solution. If we had some vector v2 that
was orthogonal to v0, as the Y axis is to the X, then our solution
would be r = v0cosq + v2sinq.

Assume our input v1 is linearly independent from v0. (If it isn’t,
then the entire slerp problem is ill-formed; robust implementa-
tions of slerp contain a preamble to handle this case.) Since v0

and v1 are independent, we can ortho-normalize v1 against v0 to
yield v2, as in Figure 1B. That’s it—we’re basically done! The rest
is implementation details, like finding q0 from v0 and v1. Listing 1
contains pseudo-code for the whole function. That’s slerp—it’s
not some scary 4D thing. Listing 2 contains actual C++ source
code. Though this code is written specifically for some type called
a Quaternion, it is valid for vectors represented in an arbitrary
number of dimensions; so if you have some dynamic n-dimen-
sional vector class, you can just plug in the same source code.
(Perhaps you want to interpolate surface normals on the unit
sphere in R3.)

Suppose we’re not trying to be coordinate-free, but just want
to solve slerp in the XY plane. Then finding v2 is even easier;
we can just say v2 = v0 , that is, v2x = -v0y, v2y = v0x. But if we
then try and raise the problem to higher dimensions, we don’t
know what to do with this operator q. It assumes we are living
in XY coordinates, which is a relatively weak stance for an
operator to take.

There’s a cosmetic difference between this slerp and the
Shoemake code. Where I use a Normalize function, Shoemake
divides by sinq0. Indeed this has the same effect as
Normalization; some trig will tell you the length of v2 prior to
normalization is sinq0, so the divide turns it back into a unit
vector. I like to use the explicit Normalize, though, because it
emphasizes the vector nature of the computation. As to which
method is faster, that’s unclear, as it depends heavily on the tar-
get hardware. But you shouldn’t care, because if you’re calling
slerp in the first place, you are already in for a great deal of

slowness; small deviations in that slowness are not going to
matter much.

In fact, game programmers shouldn’t be using slerp as often as
they do. I think it’s an important function to understand—hence
this article—but a deep understanding of the function implies you
know when not to use it, which is most of the time.

Alternatives to Slerp

A s discussed in the paper by Muratori and Bloom (see For
More Information on page 17), there are three basic proper-

ties we often want when interpolating rotations: commutativity,
constant velocity, and minimal torque. Unfortunately, it seems
impossible to get all three at once. There are three major meth-
ods of quaternion interpolation, and each of those methods gives
you two of the three desirable properties. The choices are:
quaternion slerp (popularized by Ken Shoemake), normalized
quaternion lerp (which I will call nlerp from now on), and log-
quaternion lerp (also known as exponential map interpolation,
see the paper by Grassia). Quaternion lerp was discussed in the
Shoemake paper but not considered important there. It was pop-
ularized by Casey Muratori, and some of us consider it very
important in games now. See Table 1 for a handy summary of the
properties of each interpolation method.

Currently, slerp is considered the authoritative method for
rotation interpolation. This is because most programmers don’t
understand slerp, much less the alternatives; they just hear from
other people that slerp is the right thing to do, then they paste
the Shoemake routines into their source code. Shoemake present-
ed the concept well and his paper was very helpful and relevant.
But as Table 1 clearly suggests, we have several available solu-
tions, so we should choose the one that fits our problem best.

Right now there are a few major tasks in games for which we
use rotation interpolation; they involve mainly animation inter-
polation and inverse kinematics. (Camera control, for example,
can be viewed as a sub-problem of these.)

When building animation systems, programmers often use
slerp to generate rotations in between keyframes, then attempt
to optimize the slerp function so that the animation system runs
faster. For examples of slerp optimizations, see the Inner
Product article “Hacking Quaternions” (March 2002) or
Thomas Busser’s article “PolySlerp” (February 2004). Generally
these optimized slerps are slower and harder to understand
than the normalized linear interpolation. We should only be
using them if we really need our rotations to interpolate at con-
stant velocity.

But as Casey clearly pointed out to me, continuity and runtime
efficiency are the most important issues for an in-game animation
engine, and nlerp delivers these the best. It’s easy to get caught up

FIGURE 1: (A) We want to find the vector r that is at angle q from v0. (B)
Using v1, we build the ortho-normal basis { v0, v2 }, which allows us to
easily compute r.

COMMUTATIVE CONSTANT VELOCITY TORQUE-MINIMAL

quaternion slerp No Yes Yes
quaternion nlerp Yes No Yes
log-quaternion lerp Yes Yes No

TABLE 1 : Rotat ion interpo lat ion methods and
the propert ies they sat is fy.

in
the

idea that slerp is the right answer and to worry about nlerp’s
nonconstant velocity, but in reality the issue is unimportant. Slerp
is not the right answer unless the animator actually used quater-
nion keys with order-1 interpolation when authoring the anima-
tion, which is usually not the case. Unless we want to try to
duplicate all of the quirks of an animation package’s possible
rotation representations (which we don’t), we usually export ani-
mations to our game by sampling them at regular intervals from
the art package (perhaps sampling at 30Hz, with the samples
chosen in some convenient representation, like quaternions); then
we perform some compression on those samples (like spline fit-
ting) and save the result to disk.

Animators don’t even know what their animations look like
for time values between these 30Hz samples (or whatever frame
rate they authored the animation at). Since the animator isn’t
intentionally authoring poses at those time values, it’s silly to try
and duplicate those poses.

Because of this lack of intentionality, at runtime we’re concoct-
ing whatever rotation path we want to fill between samples. In
this context of just making stuff up, there’s no reason to spend
extra CPU on slerp since we don’t benefit from this expenditure.
(To see why it’s pointless, imagine the animator used Euler keys,
in which case the “right answer” is some path that’s non-torque-
minimal, with non-constant velocity, certainly nothing like what
slerp would give you.)

In fact, in a highly compressing animation export system, the
nature of the visible animation is controlled at a high level by the
spline fitter. The spline fitter is inherently going to adjust for the
properties of the low-level interpolator by introducing and
adjusting the knots of the spline until acceptable perceptual error

is

reached. So the exact properties of the runtime rotation interpo-
lator don’t really matter, so long as the path is not discontinuous
or harsh. Thus nlerp is really the best choice for these cases.

For inverse kinematics problems, such as example-based IK,
we tend to write iterative routines that solve for the goal rota-
tion. Such a routine doesn’t even try to hit the right answer on
the first iteration (it can’t do that), so the constant-velocity prop-
erty of slerp is not useful. So long as the interpolation is monoto-
nic, like nlerp, then the solver will find the goal without undue
trouble. For example-based IK solvers, and for animation systems
that blend more than two animations, commutativity is a highly
desirable property, since it ensures that the results of the blend do
not depend on the order in which the poses are mixed. Slerp does
not provide commutativity, but nlerp does. Commutative blends
are much easier to understand and work with. So nlerp is the
best choice for these tasks too.

Don’t Slerp

Game systems are big and complicated, so there may be occa-
sions where you really do want to use slerp. But right now, I

really can’t think of any; so I encourage you to reconsider the use
of slerp in your game if it’s in any danger of causing speed prob-
lems. Fast slerp approximations add complexity to your engine
and increase the difficulty of understanding the whole system, so
they should be avoided when nlerp suffices. q

w w w . g d m a g . c o m 17

F O R M O R E I N F O R M AT I O N

Sheldon Axler, Linear Algebra Done Right, 2nd ed., Springer, 1997.

Si Brown, “An Introduction To Representing Rotations In Quaternion
Arithmetic.” www.sjbrown.co.uk/quaternions.html

David Eberly, “Quaternion Algebra and Calculus,”
www.magic-software.com/Documentation/Quaternions.pdf

F. Sebastian Grassia, “Practical Parameterization of Rotations Using the
Exponential Map,” Journal of Graphics Tools, Vol. 3.3, 1998.
http://graphics.snu.ac.kr/OpenGL2003/10(1112)/expmap.pdf

Casey Muratori and Charles Bloom, “A Paper About Rotation Interpolation
That We Will Never Finish Because We Are Lazy,” referenced in gdalgo-
rithms mailing list.
www.gdalgorithms.org/archives/2003-05/459f4ae23eb2f34f.html

Ken Shoemake, “Animating Rotation with Quaternion Curves,” Computer
Graphics, Vol. 19, No. 3, July 1985.

Genevieve Walsh, “Great Circle Links in the Three-Sphere,” Ph.D. dissertation
from U.C. Davis.
www.ma.utexas.edu/users/gwalsh/dissertationfinal.pdf

LIST ING 1 : DERIVATION OF SLERP

; Inputs are: unit vectors v
0
and v

1
, scalar t

; v
0
and v

1
are linearly independent

Let q
0
= acos(v

0
. v

1
)

Let q = tq
0

Let v
2
= Normalize(v

1
- (v

0
. v

1
)v

0
)

return v
0
cosq + v

2
sinq

LIST ING 2 : C++ CODE FOR SLERP

// slerp(): v
0
and v

1
should be unit length or else

// something broken will happen.

Quaternion slerp(Quaternion const &v
0
, Quaternion const &v

1
,

double t) {

// Compute the cosine of the angle between the vectors.

double dot = dot_product(v
0
, v

1
);

const double DOT_THRESHOLD = 0.9995;

if (dot > DOT_THRESHOLD) {

// If the inputs are too close for comfort, linearly

// interpolate and normalize the result.

Quaternion result = v
0
+ t*(v

1
- v

0
);

result.normalize();

return result;

}

// Robustness: Stay within domain of acos()

Clamp(dot, -1, 1);

// theta_0 = angle between input vectors

double theta_0 = acos(dot);

// theta = angle between v0 and result

double theta = theta_0*t;

Quaternion v
2
= v

1
- v

0
*dot;

// { v
0
, v

2
} is now an orthonormal basis

v
2
.normalize();

return v
0
*cos(theta) + v

2
*sin(theta);

}

A R T I S T ’ S V I E Ws t e v e t h e o d o r e

a p r i l 2 0 0 4 | g a m e d e v e l o p e r18

I
n “A Joint Effort” (Artist’s View, February 2004), we
introduced the fix-up bones as a means of combating
the regrettable state of conventional real-time skin
deformation. Fix-ups work by reproducing a fraction of
the rotations in an animating skeleton. Assigning ver-

tices to the fix-up bones, rather than directly to the animation
skeleton, prevents the worst forms of vertex collapse around
problematic joints like shoulders. This month we’re going to
look at some advanced fix-up strategies for a different class of
deformation problems.

Sick and Twisted

T
he shoulder is clearly the worst villain of skin deforma-
tions, but there are many runners-up with different kinds of

deformation failures. The most notable contenders are twisting
joints. Necks, forearms, and biceps can all shrink or even turn
inside out when twisting around their long axes. The problem
stems from the same source we discussed in February. As with
ball-joints, the skinning algorithm interpolates vertices linearly
between their original and newly rotated positions. Naturally
the rotation of the vertices takes place along an arc. The inter-
polation, being linear, always cuts a chord on that arc, slicing
deeper into the volume of the model as the twist increases. At
180 degrees the chord passes right through the origin of the
arc—in other words, the bone—collapsing all of the vertices
down to a point (Figure 1).

The cure for this nasty hourglass effect is to adapt the strate-
gy we used for the ball-joint fix-ups described in the February
column. Twist fix-ups rotate around the long axis of a twisting
bone by some fraction of the real rotation. They carry their
assigned vertices to positions that reflect the correct rotational
interpolation. This preserves the volume of the geometry and
prevents the hourglass effect.

Doin’ the Twist

U
nlike ball-joint fix-ups, twist fix-ups only work in a single
axis. This means they have to be controlled by expressions

rather than constraints. So before we can build twist fix-ups,
we need some way of representing the twist as a number that
can be fed into an expression. Unfortunately, twisting (like
obscenity) is easy to recognize but hard to define. Consider the
arm of a typical animation skeleton. Intuitively we know that
the twist of the arm is the rotation around the axis between the
shoulder and the elbow. Naturally you’d assume that the Euler-

angle rotation value for the axis that points along the biceps
would be the twist value. The reality, alas, is a bit more com-
plex. Figure 2 shows three sets of F-curves, which produce
identical animations. The only difference among them is the
order in which the Euler rotations are executed. As you can see,
different rotation orders produce remarkably different results.

How can you get a good twist value then? The source of the
problem is that each rotation influences the meaning of the
numbers that come after it. Since each rotation changes the
meaning of the next, only the first term in an Euler sequence
has a stable meaning. Therefore, it’s possible to determine the
twist of a bone with Euler angles only if the twist axis is the
first axis in the rotation order. Before trying to build twist fix-
ups, double check the rotation order on your bones to be sure
the axis which points down the bone is the first Euler term
(Figure 3). In both Max and Maya the skeleton tools usually
create bones this way by default, with the x as the twist axis
and the rotation order set to the conventional x-y-z. But be sure
to check! Your defaults may have changed, and building skele-
tons out of disjointed parts can cause unpleasant surprises.

The bad news about deriving twist values from Euler angles is
Max’s animation-controller architecture makes it impossible to
get consistent Euler values from bones driven by IK, constraints,
or TCB rotations. For IK-driven bones, the twist angle value on

Twist and Shout: Fixing
Twisted Deformation

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer and
then moved on to work on games such as
Half-Life and Counter-Strike. He can
be reached at stheodore@gdmag.com.

FIGURE 1. The collapsing effects of twisting deformations.

the IK handle is often an adequate substitute and can be fed to
twist expressions. Generally, though, the only alternative for
Max users is to create a custom twist attribute and animate it by
hand. Ferreting information out of Max controllers for expres-
sion and script writing will be the subject of a future column.

Everybody do the Twist

O
nce you’ve succeeded in abstracting a twist
value from your bone, adding twist fix-ups is

pretty easy. Let’s look at a common example: a one-
link neck (Figure 4). The fix-ups themselves are
merely extra bones laid out along the length of the
neck. Fix-ups always form a parallel branch of the
animation hierarchy rather than an in-line part.
Here the fix-up bones are all children of the neck
bone, thus, siblings of the head and also of one
another. As siblings of one another, the numbers we
feed into their twist expressions will have consistent
meanings. Before the expressions are added, the fix-
ups’ rotations should be zeroed out so they start off
aligned exactly with the neck. Each fix-up should be matched to
a ring of vertices in the cross section around the neck. In this case
three fix-ups seems sufficient to keep the neck from collapsing.

In this example we have three fix-ups, located at the base of
the neck, one-third of the way down, and two-thirds of the way
down, respectively. Each fix-up gets an expression of its twist
axis, assigning a rotation proportional to the fix-up’s position
along the length of the bone. We don’t want the first fix-up bone
(the one at the base, located at zero-third of the way down) to
twist at all. The fix-up at one third of the way will rotate 33 per-
cent of the total twist, while the one at two-thirds of the way
reaches 66 percent. The remaining 33 percent of the total twist
rotation is handled by assigning vertices directly to the neck
bone itself, which of course rotates by three-thirds of the way.

The subtlety here is that the fix-ups are actually counter-
rotating, reversing the twist of their parent, the neck bone.
Therefore, the first fix-up rotates backwards by the whole twist
value, the second rotates negative two-thirds of the twist, and
so on. The mathematically-minded may express this as follows:

Fix-up rotation = (1 – the fix-up’s position a fraction of the
bone’s length) * (–1 * the bone’s twist).

As you can see, the setup is very simple and can be driven by
kindergarten-level expressions. If all you’re after is avoiding
twist-induced collapses, that’s all you need. If you’re feeling
adventurous, you can tweak the distribution of the twist by
changing the rate at which the fix-ups rotate. The previous
example is a simple linear distribution: each fix-up’s rotations
are mapped directly to its positions along the bone. You could
compare this to the behavior of an F-curve with linear tangents.
Changing that relationship will distribute the twist differently.
For example, if the twist expressions were set up as (1 – the fix-
up’s position over bone length, squared) (–1) (bone twist), you’d
get a slow start and a sharp end to the distribution of the
twist—in other words an ease-out F-curve. Don’t be afraid to
experiment if you have a particularly difficult piece of geometry
or motion. Don’t obsess over the math. There’s nothing wrong
with skipping the formulas and just fiddling with different con-
straints to get good-looking results.

Let’s Twist Again

S
o far we’ve tried using counter-rotating fix-ups to remove
parts of the rotation from the base of the neck. Often,

though, you may want to put twist fix-ups onto a bone that is
not itself twisting. Our hypothetical neck bone might be set up
with its twist rotation locked, and the twist value could be
derived from the rotation of the head instead. The fix-ups will
work equally well at preventing collapses. Using a downstream
bone to drive the fix-ups involves only two changes to the
arrangement we’ve already described.

The first difference is that the distribution of the fix-up bones
is reversed. In our example, we positioned fix-ups starting at
the bottom of the neck, since we wanted to remove the twist at

a p r i l 2 0 0 4 | g a m e d e v e l o p e r20

FIGURE 3. Where to check rotation orders in Max and Maya.

FIGURE 2. Euler F-
curves showing the
same animation but
three different rotation
orders.

A R T I S T ’ S V I E W

the base. If the neck is not twisting, though, we can eliminate
the fix-up at the base and assign the vertices there directly to
the (untwisted) neck bone. At the same time we’ll need to add a
fix-up at the upper end of the neck bone that will handle the
three-thirds rotation previously left to the neck bone.

The second difference is in the expressions. When the neck
was twisting, we needed the fix-ups to counter-rotate against
that twist. Now that the neck is not twisting, the fix-ups rotate
positively. The fix-up one-third of the way along rotates one-
third of the twist value, the fix-up two-thirds of the way along
rotates two-thirds, and so forth. The new expressions can be
summed up as follows: fix-up rotation = twist times the fix-up’s
position as a fraction of bone length.

You may ask, why drive the twist with a different bone? This
technique is particularly useful for fixing troublesome forearm
deformations. Although we conventionally rig characters with
ball-joints in their wrists, in reality the wrists have only two
degrees of freedom. The twisting motion actually comes above
the wrist, from the torsion of the ulna and radius bones in our
forearms. Long sleeve can disguise the problem, but bare-armed
characters are often afflicted with pinched, robotic wrists or rub-
bery Gumby-style forearms. Splitting out the forearm twist into a
separate bone is cumbersome for FK animation and problematic
for IK as well. With twist fix-ups driven by the wrist, though, it’s
easy to get reasonably good forearms without changing the ani-
mation rig at all (Figure 5).

Twist Off

T
he ultimate challenge for twist fix-ups is our old nemesis:
the shoulder. As we have lamented in the past, shoulders

are very tough to skin effectively. With a twist range of nearly
180 degrees, shoulders also cause nasty shearing in the upper
arm. It doesn’t help that the game industry’s steroidal mindset
creates a lot of characters with gigantic biceps that magnify

every twist problem. When we introduced ball-joint fix-ups in
February, we noted they can preserve the volume of a collapsed
shoulder but don’t protect against biceps shearing. Now we can
rescue the biceps as well by combining the best aspects of twist
and ball-joint fix-ups.

Relaxed Shoulder

A
hybrid ball-and-twist approach starts very much like our
first example, by adding twist fix-ups to the biceps bone.

These fix-ups will rotate backwards against the twist of the
biceps bone, as in the first example. The fix-up located on the
shoulder, though, works rather differently. Instead of being par-
ented to the bone, it’s parented to a ball-joint fix-up, also located
at the shoulder. The ball-joint fix-up will produce a weighted
average of the shoulder’s and clavicle’s rotations. The twist fix-up
then needs to counter-rotate against the twist component of the
shoulder's rotation to remove the twist from the base, just as in
the neck example. To do this, the twist fix-up’s expression will
equal the biceps’ twist times –1 times the weight coefficent of the
ball fix-up. When assigning vertices, simply ignore the ball-joint
fix-up and use only the twist fix-ups. The result of this should be
to spread the twist of the arm along the biceps without losing the
rotational compensation of the shoulder fix-up (Figure 6). This
goes a long way towards preventing the worst shoulder deforma-
tion atrocities. The fix-up bone technique we’ve described here is
still only a crude approximation of what really goes on under the
skin of a real person. There’s no denying it’s a hack; nevertheless,
it’s a pretty useful one and, despite the large chunk of text it
takes to describe it, not really very
difficult to implement. The biggest
handicap is the difficulty of
extracting twist data from Max
controllers, so if anyone out there
has developed good ways of get-
ting those Max numbers, feel free
to send them to me. I’ll share them
when we return to the topic of using
Max bones with expressions a few
months later. q

A R T I S T ’ S V I E W

22

FIGURE 4. Compare the difference between a single-joint neck and the
a neck with twist fix-ups in action.

FIGURE 6. A hybrid
ball-joint and twist
fix-up for easing
shoulder and biceps
collapses.

FIGURE 5. While a rotated forearm with twist fix-ups (foreground) looks
natural, the one without (background) looks like linked sausages.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r

G
ame music has
changed
immensely in the
past few years—
perhaps more so

than any other aspect of game
development. One of the most
alarming changes is the tremen-
dous number of people getting
into the business. What was
once a fairly niche market is
now mainstream: game music
has hit even Keyboard magazine
(www.keyboardmag.com). So, how do
you stand out and get noticed?

1. Remember your job. Ask game com-
posers/sound designers what their job is
and they’ll most likely say, “to create the
sound/music for games.” Wrong. You’re
hired to make the game better. Towards
that goal, you create music and sound
effects, certainly. But remember: first and
foremost, your job is to make the game
more fun, not to show off your composi-
tion or sound design prowess. That may
mean toning down the music or cutting
your favorite orchestration because it
doesn’t fit the game.

2. Get technical. Know the bits and
bytes of game audio. See the world from
the programmer’s eyes. Do you know
every way the system can make a sound?
What about the impact that a particular
method has on the rest of the system? By
knowing the systems inside out from an
audio perspective, you’ll be the leader in
creating the audio technical specifications
and delivering a top-notch soundtrack.

3. Know the publishing scene. Educate
the producer about how to publish
game soundtracks and be able to rattle
off the financial benefits they can reap
from your work. If your soundtrack is
nominated for a Grammy, you can be
sure you’ll be on their short list for their
next project.

4. Know your tools. Know what tools
are available from either the console

manufacturer or third party middleware
companies. Become an expert in all of
them. This part is important: practice
using them before your first job on the
system so you hit the ground running.

5. Have a full arsenal at your disposal.
Be able to create music and sound effects
in a wide variety of formats: Studio-gen-
erated effects, MIDI-generated effects,
parameterized sound effects, and more.
Know every way the game system can
create sound and be able to exploit the
options as appropriate.

6. Make the programmers’ job easier.
Make sure you are working with clear
specifications. Have the delivery format
and methodology spelled out. Deliver
crystal clear instructions to the pro-
grammers and schedule time with them
to assist in implementation. By saving
the programmers time and headaches,
you’ll impress the producer, which leads
us to the next point.

7. Make the producer’s job less stressful.
Keep the producer worry-free when it
comes to sound. Keep the big picture in
mind. (See #1). Don’t be afraid to chal-
lenge him or her on creative issues, but

know when to push and when not
to. Remember, audio is but only part
of what the producer has to think
about. Deliver the work on time, in
the right format.

8. Beware of the dark side. When
creating audio for multiple plat-
forms, it’s often easiest to work to
the lowest common denominator,
the set of features common across all
of them. While this is the quickest, if
you do this, you may end up com-
promising quality, and therefore rep-

utation. A few small platform-specific
tweaks can make a big difference.

9. Look for non-traditional niches. Ring
tones, mobile games, and web sites all
represent technologies looking for inno-
vative, interactive audio. Though not as
sexy as composing for a live orchestra
for a next-generation console, these gigs
can add significant income to your bot-
tom line, not to mention the networking
possibilities.

10. Push the boundaries. Be a leader in
the industry. See what interactive sound
and music tools there are and use them.
See if some physical modeling might be
appropriate. Show the team you know
game audio, you get game audio, and
they’ll look to you for leadership in this
(and future) projects.

Game audio is still a new and growing
field. By shining in these areas, you’ll set
yourself apart from the legions of com-
posers and sound designers who think all
there is to game audio is creating some
WAV files and putting them on an FTP
site. Let’s make sure it’s your phone that
rings the next time someone needs sound
for his or her latest game. q

B R I A N S C H M I D T | Brian currently serves as program manager
for Xbox audio and media at Microsoft. A member of the Game
Audio Network Guild’s board of directors, he has been in the multi-
media audio industry since 1987. He has composed music for more
than 120 interactive games, including JOHN MADDEN FOOTBALL,
JURASSIC PARK, and STAR WARS TRILOGY.

Stand Out and Be Heard

b r i a n s c h m i d tS O U N D P R I N C I P L E S

a p r i l 2 0 0 4 | g a m e d e v e l o p e r24

Ask game composers
and sound designers what

their job is and they’ll
most likely say, “to create

the sound/music for
games.” Wrong.

G
ames for mobile phones
have been a hot topic for
several years now, with lots
of interesting development
around the world. So this

month, we’ll examine some mobile game
design rules.

Greg Costikyan is a designer with con-
siderable experience. With a successful
career in the paper game community, he
went on to co-found West End Games,
spend many years at Crossover Tech-
nologies in early MMORPG development,
and, most recently, co-found Unplugged
Games to explore wireless game design.
At a GDC tutorial in 2002 Greg offered
the following rule:

Design to the medium’s strengths instead
of struggling with its limitations. It’s simi-
lar to my own “Begin to design by identi-
fying your constraints,” which I shared in
July 2003 (“2 for the Design Process,”
Better by Design), but I like Greg’s varia-
tion more. That’s a great rule for any
game, but is particularly relevant when we
consider a new gaming medium like
mobile phones. I’m accustomed to using
the term “platform” to characterize the
device running a game, but as Greg’s
choice of “medium” is more accurate and
elegant—not every game needs a comput-
er to play.

But what does this rule mean? Spec-
ifically, Greg suggests we consider the
advantages of a cell phone: it’s portable,
people carry it everywhere, and it’s con-
nected to other people. Based on those
features, focusing on simple games that
can be played quickly is a good idea.

I found a Postmortem on Gamasutra,
“Ngame’s CHOP SUEY KUNG FU” by
Matt Kelland (www.gamasutra.com/
resource_guide/20010917/kelland_01.
htm), to confirm this view. He notes
that Ngame had other more ambitious
games, but by creating a simple game
that takes advantage of dice-based
games (yet another game medium!), the
company had one of its biggest success-

es. I also found echoes of Greg’s rule in
another Gamasutra article, “Designing
Mobile Games for WAP” by Lasse
Seppänen (www.gamasutra.com/
resource_guide/20010917/seppanen_01.
htm). Lasse says it’s critical to know the
“limits and opportunities.” Let’s face
it—if you have access to a better medi-
um to play games, you won’t use the
cell phone. So you need to design games
that can be enjoyed in short, idle
moments. That’s an insight reinforced
by my experience. I don’t usually con-
sider playing games on my phone when
I have an alternative; my portable Game
Boy, for instance, makes a more prefer-
able system. But there are times when I
have a few minutes to spare and nothing
but my cell phone to keep me occupied.
Greg also confirms that, in his experi-
ence, compact games for casual gamers
have been more successful than full-fea-
tured games for hardcore gamers.

Design the game to fit the revenue
stream. That’s a rule suggested by several
designers. The revenue model is similar
to the old boxed game model; we’ve
grown so accustomed to retail distribu-
tion we often forget there are alternative
methods. Certainly makers of Internet-
distributed games and MMORPGs have

had to shift their thinking to maximize
their revenues.

For mobile games, the game should be
quite different depending on how it
intends to earn money. A game designed
for a hardware company to be built into
the phone won’t earn money by using the
networking capabilities of the phone.
Besides, it’ll take up valuable space on the
phone’s ROM. So we end up with simple
single-player games like SNAKE. A game
sold through a specific mobile carrier
could maximize phone calls or SMS data
by hooking the player with repeat play,
because the more people use their phones,
the more money the carrier makes. A
game created by an independent developer
should be designed to work with as many
phones and carriers as possible, so it
won’t alienate any potential market.

I’m personally intrigued by some of the
emerging technologies getting incorporat-
ed into mobile phones and PDAs. One
such technology is the global positioning
system that allows the game to know
where the player is physically located,
possibly playing with others in the same
physical vicinity, at a party or a rock con-
cert for example. Such games can, for
instance, require the players to change
their locations during the game. Bluetooth
and other local networking features would
facilitate some interesting trading games
modeled after MAGIC: THE GATHERING or
POKÉMON. For instance, trades can be
made automatically when other players
are nearby.

The possibilities are intriguing. As in
combat, the one who can mobilize quickly
and effectively is most likely to emerge as
the victor. q

Have Cell Phone, Will Play

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 24-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at nfalstein@gdmag.com.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r26

B E T T E R B Y D E S I G N

SNAKE EX (for Nokia Communicator 9200
series) can swallow your idle moments.

b e n c a l i c a

a p r i l 2 0 0 4 | g a m e d e v e l o p e r28

W I R E L E S S P U B L I S H I N G
Illustration by Steve M

unday

w w w . g d m a g . c o m 29

The Wireless
Gold Rush
I

t has been five years since wireless
games first started popping up on
the radar of game developers, first
as a curiosity, and then as a
potentially real business. This

time last year, the big conference room at
the Game Developers Conference was
jam packed with developers wanting to
know the scoop and being amazed at the
state of intriguing confusion they found.
Here was a market with hundreds of mil-
lions of potential customers, a micro-
billing model that actually seemed to be
working, and some pioneering kindred
developers who actually seemed to be
wearing smiles during an otherwise
painful time in the game industry. On the
other hand, there were no good numbers
to be found and few publishers. Instead
there were carriers who wanted to look
only at completed titles, cherry-picking
what they liked and leaving the rest like
so much scrap wood on the shop floor.
Now that a few years have passed, has
the smoke cleared? Do we know enough
now to make more reasonable invest-
ment decisions? And have we waited so
long that all the good claims are taken?
Is the gold rush in full swing, or are
there just a few played out streams left?

Where Things Are

A
few years ago, Nokia befuddled the
developer community by showing

up with a booth at GDC to promote, of
all things, cell phone games. They gave
away developer kits and showed off
black and white mini-screens with such
monster titles as Snake. Snake as it turns
out is hugely important to the Finns who
run Nokia. It was stuck on to one of
their phones in 1997 as a lark by some-

one in one of their engineering groups.
They were shocked to see how popular it
became, and it hooked our cold-weather
friends on the concept of gaming. Very
few in the gaming community realized
how significant they were. Nokia is to
mobile phones what Microsoft is to soft-
ware. Their little Snake game ended up
on more than 250,000,000 handsets
before the end of the second year.

It is important to realize the psycholo-
gy of this. Nokia, like Microsoft, is an
engineers company. They discovered
games as engineers do, with great excite-
ment, and as it turns out, absolutely no
historical context. These were not the
people who grew up on the Game Boy,
Lynx, Turbo Express, and Game Gear.
They lived through neither the great suc-
cesses nor debacles that have colored the
current generation of game developers.
They come with the wide-eyed innocence
of the unbeaten, and the frightening
strength of a giant. Their strength, how-
ever, was hidden from those with a U.S.-
centric perspective. And so we laughed at
this goofy company trying to get us to
take cellular phones seriously while we
were trying to see which platform was
going to give us the most textures and
polygons.

Part of the massive lack of interest had
to do with the rise and fall of the WAP
standard as a way to distribute and play
games via cellular phones. A number of
game developers, including later cellular
game superpower, Jamdat, had massively
underwhelming customer results with

this first generation technology. (There
are still some, by the way, who swear by
the royalty checks they are collecting for
WAP games even in current time.)

The next place mobile games started
to pop up on the radar was in Japan.
DoCoMo, the country’s largest mobile
service provider, had introduced a service
called I-Mode in 1999 and they were
successfully selling games as applications
using micro-payments charged directly to
a customer’s cellular bill. This was both
the long promised micro-payment
scheme in action and a pay-for-download
model that was actually working. There
were rumors of massive successes, but
that was there and this was here, and
there were lots of rationales why it
wouldn’t work here. They followed this
in 2001 with the launch of their I-Appli
service, concentrating on monthly sub-
scriptions of between 100 yen and 300
yen, rather then one-time download fees.
Major Japanese videogame houses from
Namco to Hudson started shipping cellu-
lar versions of their old games.

In 2002, Sprint and Verizon brought
out their own versions of DoCoMo’s
model, and the mobile phone videogame
market hit U.S. shores. AT&T quickly
followed, and a cavalcade of greatest hits
from the early 1980s moved from the
Atari 2600 and equivalent on to cell
phones. This shovelware approach didn’t
have as chilling an effect on the new
market as one would have thought
because of an interesting coincidence.
The demographic of folks who could

B E N C A L I C A | Ben is a frequent contributor to Gamasutra.com and Game Developer’s
sections on wireless gaming. In past lives he was director of production for Cyberflix
Games, where he worked on LUNICUS, JUMP RAVEN, and SKULL CRACKER. He also played a
key role in creating Apple’s Game Sprockets technology.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r

afford the $300 mark for the high-end
phones that could play the first set of
games tended to skew into the 30s to 50s
in age. Exactly the group who had
played the 1980s games in the first place.
Those games were the first hits, plus golf
and casino games, all of which were of
interest to the boomer and boomer plus
generation. By 2003 the business was in
full swing, with Verizon announcing
they’d had more than12 million down-
loads for their phones, the majority
being games and ringtones. The game
was clearly on.

The Politics of Mobile
Games

O
ne of the greatest challenges in wire-
less game development has to be the

clash of cultures between the game and
cellular phone worlds. Beyond a well doc-
umented clash of even basic terminology,
(“platform” means completely different
things in the two lingos), there is huge dif-
ference in the basic nature of who rules
the roost and how each group deals with
the other. The basic model in the game
world is that great games are the wood
that fuels the fire. The console makers
fight like crazy with each other to get the
best games on their platforms, hoping for
an exclusive if they can get it. Developers
take one of two approaches. They either
bring their pitch and credibility to the
table to attempt to get a publishing deal,

or they bring their reliability so they can
be the house that develops a great license
for the publisher. In either case, they trade
the risk the publisher is going to take in
funding their development for a smaller
piece of the final pie. And that risk is
quite real. In addition to the development
costs, the publisher is going to take the
horrific risk of producing “the right num-
ber” of units for the all-important
Christmas holiday. If they guess wrong,
they sit on a large number of units that
come complete with royalty pre-paid to
the console manufacturer. Publishers also
take care of distribution and advertising
and every other little thing to push the
game on to success.

The cellular world is utterly different.

The carriers (Sprint, Verizon, AT&T/
Cingular, and so forth) are the kings of
the hill. They own the customers down
to their toes and have grown up in a
world that exists to serve them. The
handset manufacturers, who include the
aforementioned, ultra-powerful Nokia,
bow to them like handmaidens. It is the
handset manufacturers who are in the
death grip with each other to show that
they have the coolest toys on the block,
and they are the ones who have been
propelling the game business forward.
But looking at the way they have set up
their developer relations programs
between the game developers and the
carriers gives a pretty good clue to the
nature of the relationship they are used
to. Nokia’s program, for example, pro-
vided a blind browsing area for develop-
ers to put up their completed wares for
the carriers to stroll past and cherry pick.
Get that? They wanted to have the devel-
opers put up completed work, done on
spec, in the hopes they might get a pub-
lisher to pick them up. On hearing this,
most traditional game developers just
laugh. One of the big changes in the last
year is in this area. The game developers
who were first to market, developed
good relationships with the carriers, and
by the virtue of those relationships,
stepped into the role of publishers. They
will now pay advances to get a game
developed, much the same way their con-
sole brethren do. They have less risk,

W I R E L E S S P U B L I S H I N G

Verizon Wireless
AT&T/Cingular Wireless
Sprint PCS
T-Mobile/VoiceStream

Nokia
Motorola
Sony/Ericsson
Samsung
LG
Siemens
NEC
Sanyo
Kyocera
Audiovox
Nextel

Jamdat Mobile
Sorrent
Mforma
THQ
Sony Pictures Mobile
Sony Online
Entertainment
Walt Disney Internet
Group
Bandai
Namco

Hudson Soft
Gameloft
In-Fusio
Sega
Blue Lava Wireless
Airborne Entertainment
Mobliss (now Index)
SK USA
Cybird
G-Mode
iFone

CARRIERS MAIN HANDSET MANUFACTURERS TOP 20 MOBILE GAME PUBLISHERS

The Mobile Game Publishing Landscape

30

Blue Lava’s mobile version of TETRIS, dowload-
able on a Sprint PCS handset.

because there are no manufacturing fees,
but they will give up one of their few
precious publishing slots, and that is
worth a great amount. They also often
bring great expertise and tools used to
deploy a title to many different handsets,
a contribution not to be underestimated.

Digital Shelf Space

P
art of the reason the carriers so
clearly hold the cards has to do

with who stacks the deck. In this case,
it’s the tiny set of nested menus on the
mobile phones that represents the equiva-
lent of the digital endcaps. While other
countries, such as Japan through
DoCoMo, have actually published print-
ed catalogs with thousands of applica-
tions, the U.S. carriers have much more
fear of overwhelming their customers,
and so are actually looking to reduce the

number of items on the deck from as
high as 300 this year down to 100. The
call is for quality and hits only. The other
related challenge is the amount of space
a developer has to get the attention of
their customers. These are unlike the
console or PC game business where there
is a combination of well read magazines
to use as a start and shelves to put boxes
full of teaser screen shots and copy. In
the mobile world you have a single sen-
tence of about 30 characters to grab
attention. “Retail space rules console
game sales. Similarly, deck space rules
wireless game sales. Keep your titles as
short and as informative as possible,”
advises Centerscore CEO Oliver Miao.

This is part of why licenses are so
important. If you have only five words,
having one of them be “Hulk” helps
quite a bit. The other tough factor is the
“what’s new” menu. It is gold while a

game is resting on it, and can represent
the end of sales when removed. One pos-
itive side is that each deck is customized
to the particular model of phone. Most
games do not run on all phones, so a
developer can get more attention on a
less popular phone if they want to
increase their overall sales. “Since last
summer or so, I’ve noticed a big differ-
ence in publishers’ expectations,” says
Marcus Matthews, principal of Blue
Heat Games, an experienced wireless
game developer. “There’s a huge flight to
quality and licenses. There’s enough feed-
back out now that poor quality and unli-
censed games aren’t selling well. It’s so
critical now, in some cases, publishers are
spending more money on the license than
developing the game. They’re also raising
the budgets for their games, understand-
ing that high quality games need more
time and recourses.”

w w w . g d m a g . c o m 31

a p r i l 2 0 0 4 | g a m e d e v e l o p e r32

So What’s a Winner?

T
his is a very tough question to
answer. In the console and PC world,

there are a number of analysts who have
set up watch all over the industry and
can give pretty accurate figures about
sales. In the mobile world, a side-effect
of all the carrier politics is that there is a
culture of secrecy that goes all the way
down to the developers and no one
wants to be the first to talk. This caused
great anger among the developers at the
GDC Wireless Forum last year, but
things have loosened up a bit. The ranges
are still pretty wide, but here are some
ideas about what a good title can sell.
On the low end, “50,000 units at $3,”
according to Matthew Bellows, publisher
of the wireless gaming site Wireless
Gaming Review and the Mobile
Entertainment Analyst newsletter. (More

on that $3 later when we talk about the
fun and frolic of pricing.)

The frustration about the lack of pub-
lic numbers is felt even within the indus-
try, such as at Qualcomm, the company
that provides BREW, one of the two
main delivery platforms for the industry.
Mike Yuen, their director of developer
relations, laments sell-through data is
extremely tough to come by since carri-
ers guard this info like gold in Fort Knox
and don’t readily share it. “We actually
see this data on an aggregate basis in the
BREW system among our carriers, but
we can’t share since the data belongs to
the carriers and the publishers/developers
and they would have to approve of us
releasing it,” said Yuen. It would be bet-
ter if the industry had an industry yard-
stick for everyone to measure against for
commonality, such as NPD Techworld.

On the other hand, Mitch Lasky at

Jamdat Mobile is very good and open to
providing public stats. In September 2003,
he said he had 4.4 million game down-
loads on BREW, 12 percent of his paid
downloads were Jamdat Bowling (the
major wireless hit), and 10 of his titles
had made more than $250K each. Do the
math and you can see the ROI multiples
are there for wireless games today. Scale
will come once more and more of the
installed base of consumers upgrade to
over-the-air downloadable game-capable
color handsets. This often takes a few
years and I truly believe that day will
come, probably sooner than later.

However, downloads aren’t necessarily
an ideal way to gauge whether a game is
a hit. Currently the majority of new
phones that are going out have the capa-
bility to download and play games, how-
ever, they represent a small fraction of
the mobile phone user base. The industry
calculates that phones get turned over in
a period of about 1.5 to 2 years. That
means the potential base of customers
for cell phone games increases every
month by an amount that is both regular
and significant. That is part of why folks
at companies like Jamdat have those wry
smiles every time you talk to them about
numbers.

W I R E L E S S P U B L I S H I N G

Sennari Mobile’s JAMDAT BOWLING, a major
wireless hit.

How Much Does It cost?

C
osts have been creeping up in the
last couple of years for mobile

phone game development projects, but
they are still small devices with budgets
and schedules a fraction of that of bigger
game projects. This is still a world where
a few folks in a garage can make a real-
deal game.

According to Kevin Gliner, CEO and
founder of Knockabout Games, “The
range is still fairly broad: $30,000 to
$70,000, 3 to 4 months. There are so
many variables though, not the least of
which is how many platforms to support:
J2ME, BREW, or both. Symbian and
Smartphone projects cost more as well.”
He continues, “A wireless game project is
much more engineering-centric. For us,
art takes about one quarter the time of
our programming effort. On a traditional
game project, the ratio is closer to even.
The real limitation is the download pack-
age size and available heap space on the
phone: art assets take a lot of space, so
there’s only so much you can do even if
you wanted to spend more time.”

Gliner goes on to speculate that the
amount of time spent on art relative to
coding should grow as high-speed net-
works become more commonplace and
handset memory increases. He says,
“Most wireless developers don’t use
common game industry tools as part of
their art pipeline (such as 3DS Max).
Without this expertise, they may struggle
to keep pace as the demand for quantity
and quality increases.” Gliner takes a
divide and conquer approach to working
with the platforms. He says, “Our proj-
ects typically have one full-time engineer
for the lead SKU (almost always BREW)
for the entire project, plus a full-time
engineer for the secondary platform
(J2ME). Porting to J2ME sometimes
takes as long as the original BREW ver-
sion if we’re really pushing the bleeding
edge in terms of handset capability.
Everything else is treated like a service
group: art, game design, QA, and project
management. That usually translates to
quarter-time for those resources on each
project.” Blue Heat’s Marcus Matthews

w w w . g d m a g . c o m 33

Wireless Developers’ Advice.

Make sure the project makes sense for your business.
Some deals may pay the bills, but add no long-term value to
your company. Do you want to build a reputation as a strong
sports developer? Then working on card games isn't going
to further that goal.

Build the best game you can, not the best game for the
budget. Or don’t work on a title that can’t be anything more
than mediocre because of budget. No one cares if you did
amazing work for the amount of time you spent on it. If all
you do is mediocre products, then mediocre products is all
you’ll be offered.

Design for the limitations of the medium. Don’t make
dumbed-down versions of games from other platforms.
Think about the core experience that makes that kind of
game fun, and use that to design the game from scratch for
the target handset.

Be wary about designing a game for the low-end and
porting up. If you fail to take advantage of the strengths of
the better handsets, your product is going to look weak on

those devices. Likewise, designing for the high end and porting down will cause
headaches if you haven’t designed a game that can also work on a low end device.

– Kevin Gliner, CEO and Founder, Knockabout Games

First, making good deals with publishers is the same as with traditional game devel-
opment (or any other entertainment medium). It’s a function of the reputation and quality of
the developer. It’s very, very tough for a first time developer with no prior track record to
negotiate a good deal.

Make sure you have enough of an advance to do a great game. There are a lot of hid-
den issues since no two phones are alike. Watch out for things like compatibility between
the emulator and the device, graphic performance, input speed, and sound support. Those
little problems can eat away at your time and increase your cost significantly.

Right now, it’s much easier to develop on BREW devices because the hardware is
more standard (all its phones use the ARM processor). But I don’t see this problem abat-
ing until three to four years out.

– Marcus Matthews, Principal, Blue Heat Games

Expectations often exceed reality. When your publisher has a successful track record
of launched titles, they will already have understood both the life cycle of wireless games
development and the technical possibilities of a handset.

Never develop a game without getting credit information for your studio in the game.
Unless you’ve developed over half a dozen titles, it’s a good idea to multiply the

expected work by two. With cell phones, it’s never as easy as you’d like it to be.
Utilize the help of big company developer programs—Qualcomm and Nokia have

been the best for us.
– Oliver Miao, CEO, Centerscore

Understand that the mobile game environment, is just that. It’s always changing at a
rapid pace. Make sure your development plan and bid accommodate needed changes.
Give the publisher some extras—an extra feature, an extra handset port, help them with
testing, and so forth.

– Mike Cartabiano, President of Sennari Mobile (JAMDAT BOWLING)

concurs, “The time and budget has gone
up in the past couple of years. When we
first started in fall 2001, the industry
was transitioning from the text-based
WAP days, where games cost up to
$10,000. So naturally, the publishers
wanted J2ME and BREW games done
for the same amount.” While publishers
tend to be vague about advances,
Matthews says that “today, a simple,
low budget game, like a card or puzzle
game, for BREW or J2ME would be
around $30,000, whereas a complex
action game with a robust feature set are
running upwards of $100,000. And
that’s not counting the N-Gage, which
supports 3D and is more like a
PlayStation or Game Boy Advance, and
has budgets of over $300,000.”

He compares mobile development to
that of Nintendo’s Game Boy Color. “The
Game Boy Color was a very limited device
and, thus, did not need large programming
and art teams. The typical mobile project
supports a couple of people, with the art
taking up a small part of the man hours.”

“An original game will take us
between one month to three months to
develop for one platform,” says
Centerscore’s Oliver Miao. “The average
time for development is typically two
months. Our longest game to develop to
date, a Garfield pinball game, took
four months. However, we plan on
development time increasing dramatical-
ly this year as handset capabilities and
quality expectations in the marketplace
continue to rise. I would not be sur-
prised to see development times double
by this time next year. Depending on
how involved and complicated a game
is, our development costs now range
between $20,000 and $100,000.”

How Much Do I Charge?

T
his time last year, pricing was a huge
debate. No one knew, including the

carriers, what kind of pricing model would
work for these games. So in the great
model of decision by committee, the carri-
ers and the publishers decided to put both
a monthly price of usually in the $2 to $3
range and an unlimited download for two

to three times that amount, just to see
what would work. A year later and that
has become, not an experiment, but the
answer. Game developers hope for the holy
grail of “subscribe and forget,” and more
often than not, at least for a few months,
they can get exactly that. According to
Blue Heat’s Matthews, “I think it’s too
early to tell. People are driving revenue
with one-time downloads and with sub-
scription sales. However, I haven’t noticed
any breakthrough models yet.”

Matthews extends his Game Boy Color
analogy into offering potential for
increased revenue per unit. “Now that
there are games that rival the Game Boy
Color, there is no reason mobile games
couldn’t be priced $10 to $20 if users
have paid $20 to $30 for a top Game Boy
Color title,” he says. “I think you’re going
to see a tiered pricing model, similar to
the PC market, where you’ll have the
AAA mobile games priced at the high end
($15 and up) and then unlicensed budget
games at the $2 to $4 range. The top
mobile publishers seem to have shifted to
a quality versus quantity strategy, which is
what has happened on consoles and the
PC as they matured.”

Qualcomm’s Mike Yuen adds, “The
ability for a publisher/developer to price
with flexibility in my mind is critical. For
example, being able to offer the user mul-
tiple purchase options and not just one.”
From his vantage point, “the most suc-
cessful pricing schemes thus far have been
one-time unlimited use and monthly sub-
scriptions. In the future you’ll see more
incremental value billing for content like
buying new levels or ancillary stuff like
ring tones or screen savers or wall paper.
You’ll also see gifting, bundling, and the
ability to do monthly subscription with
upsell within the subscription.”

What Does the Future
Hold?

S
o what does the next two years look
like in the cell phone world for game

developers? “That’s an issue of great con-
cern,” according to Blue Heat’s
Matthews. “Right now, there are just too
many handsets for North American pub-

lishers and developers to support prof-
itably. To get a reasonable penetration of
the capable handsets, developers should
support more than 40 devices. And that
number is increasing every month.”

However, as phones with better
graphics and more capabilities hit the
market, development industry will feel
an even greater strain. As Matthews
points out, “Until the industry or carri-
ers starts to coalesce around a hardware
standard, you’ll see numerous phones
with various features and price points
coming to market. Because the phones
are new, it will still require debugging
new issues, even though the phones are
more powerful.”

On top of that, developers must still
support the phones that were on the mar-
ket last year. While phones that were on
the market last year have been discontin-
ued, “you have a legacy of a few million
handsets that you can’t ignore, if you’re
trying to make money,” says Matthews.

Fortunately the industry has been pro-
ducing a number of standards bodies
from basic handset feature sets to 3D
standards to help guide the handsets in a
common direction. Unfortunately, with
number portability, the carriers are now
on the make for things to differentiate
themselves from the competition. And
the handset manufacturers are always in
a horse race to see who has the coolest
iron on the block.

As Matthews says, “One possible
direction, for which there are positive
signs, is for carriers to start emulating
the DoCoMo model, where the handset
vendors have to conform to a base hard-
ware platform. That’s one logical direc-
tion for handsets to go—until then, it’s
going to be a wild ride.”

Until that point, the chaos actually
works to open the world for more devel-
opers. The Hot list and decks for each
mobile phone model are customized to
only show the games that work with that
device. That means there are more places
to get a toe in. And given the growth of
the number of users with handsets capa-
ble of playing games and the success of
the micro-payments, extending that toe is
clearly worth it. q

a p r i l 2 0 0 4 | g a m e d e v e l o p e r34

W I R E L E S S P U B L I S H I N G

n o e l l l o p i sC O N T E N T P I P E L I N E

a p r i l 2 0 0 4 | g a m e d e v e l o p e r36

fter years of being almost
completely technology-
driven, the driving force

behind games is finally
swinging towards the

game content itself. Major technological
leaps are not making enough of a differ-
ence to set games apart from each other.
Game content will also continue getting
larger and more complex, as the amount
of it going into AAA games doubles
every few years. Yet, since there’s no
hardware upgrade for the artists and
designers themselves, content doesn’t get
created any faster.

A successful game needs to provide
top-notch content, and the best way to
provide it is to optimize the content
pipeline so artists and designers can cre-
ate, preview, add, and tweak new con-
tent as easily and rapidly as possible.

The content pipeline is the path all
the game assets follow, from conception
until they can be loaded in the game.
Game assets include everything that is
not code: models, textures, materials,
sounds, animations, cinematics, scripts,
and so forth. During their trip through
the pipeline, assets might be converted,
optimized, chopped to bits, or com-
bined, but come out in the format that
will be shipped with the final version of
the game.

The first issue to consider when defin-
ing the content pipeline is its efficiency.
With large teams of artists and designers
constantly creating and tweaking game
content, the content pipeline becomes a
critical path. A slight inefficiency in the

pipeline, such as taking one full minute
from the time a change is made to the
time it can be seen in the game, can easily
cost a company thousands of wasted
man-hours during the course of a project.
Alternatively, if the content creators don’t
preview their work as frequently, the
overall quality of the game will suffer.

The other main point to consider is
robustness. The content pipeline is the
jugular vein of a project: if it breaks it
can quickly kill the whole project. You
can’t afford to have 30 idle people wait-
ing for the pipeline to be fixed, or work-
ing around it and consequently losing
half their work. Whatever happens, the
pipeline must always work correctly.

Bird’s-Eye View of the
Pipeline

W
hat does an asset pipeline look
like? It depends on the project.

On one extreme, in some projects the
pipeline is minimal and informal: assets
are exported from their tool and loaded
directly in the game. While that might be
sufficient for small games, it usually
doesn’t hold up well in large projects.
Where are the files stored so multiple
people can work on them? How are
assets for multiple platforms dealt with?
How can the format of the resources be
changed easily? How can any extra pro-
cessing be applied to them?

On the other end of the spectrum,
pipelines can be very deep and elaborate.
Adding a new asset to the game requires
going to the pipeline guru and asking

Optimizing the
Content Pipeline

A

N O E L L L O P I S | Noel is a software engineer at Day 1 Studios, where he developed
the technology for the MECHASSAULT games. He’s also the author of C++ for Game
Programmers. Contact him at nllopis@gdmag.com.

him to add the new content, causing
turnaround time to suffer significantly.

This article presents a general pipeline
that many different game projects can
adopt and modify to fit their needs. It is
fairly lightweight and provides a quick
turnaround time, yet it allows for any
number of expensive steps to be per-
formed on the assets along the way. This
is the pipeline that we’re using at Day 1
Studios for our current Xbox project,
MechAssault 2. A previous incarnation
of this pipeline was used in the first
MechAssault. This pipeline might be a
good starting place if you’re just begin-
ning a new project, or you can try to
adapt some of the ideas that make sense
for your current situation.

Figure 1 shows the pipeline for some of
the major assets in MechAssault 2. The
following sections describe in detail each
of the pipeline stages.

Source Assets

S
ource assets are those created by
artists and designers, usually

through some specialized tool (both in-
house tools and off-the-shelf ones). A
source asset is one that can be put into Figure 1. A partial view of the MECHASSAULT 2 content pipeline (only models and textures shown).

3DS MAX
+ PLUG-INS

PHOTOSHOP
+ PLUG-INS

TEXTURE
.PSD

PHOTOSHOP
EXPORTER

TEXTURE
(.TIFF + OPTIONS)

MODEL + ANIMATIONS
.MAX

PLATFORM A
ASSETS

PLATFORM B
ASSETS

TEXTURE
(.TIFF + OPTIONS)

TEXTURE
(.TIFF + OPTIONS)

MAX
EXPORTER

CONVERSION PROGRAM + DLLS

PACKAGER PROGRAM

PLATFORM
B
ASSETS

TO THE GAME
(FAST PATH)

FI
N

A
L

 A
S

S
E

TS
IN

TE
R

M
E

D
IA

TE
 A

S
S

E
TS

(V
ER

SI
O

N
 C

O
N

TR
O

L
O

P
TI

O
N

A
L)

S
O

U
R

C
E

 A
S

S
E

TS
(IN

 V
ER

SI
O

N
 C

O
N

TR
O

L
)

PLATFORM
A
ASSETS

TO THE GAME
(NORMAL PATH)

w w w . g d m a g . c o m 37

MECHASSAULT 2’s models were exported as XML files including hierarchy information, meshes, and vertex data.

C O N T E N T P I P E L I N E

a p r i l 2 0 0 4 | g a m e d e v e l o p e r38

the pipeline and will be converted into
the final asset without any human inter-
vention. The key idea is that source assets
should contain all the information neces-
sary to add them to the game correctly. A
material should have all its specular
parameters specified, and a model should
have all the flags in the weapon barrels
so the game knows from what point to
shoot projectiles. This is what will allow
us to automate the pipeline later on.

The way source assets are created can
vary significantly. Sometimes they are
created through a set of different, very
specialized tools (one for modeling, one
for texture creation, one for specifying
game information, one to lay out a level,
and so forth). Other times, one large tool
(often done as a plug-in in the model-edi-
tor program) can be used to create all
the assets and export full levels.

Since the source assets contain all the
information needed for the final assets in
the game, we should treat them very
carefully and protect them from being
lost or accidentally overwritten. Using a
version control program provides a cen-
tralized location for all assets, prevents
people from overwriting each other’s
work, and keeps a history of previous
versions of each asset. Keep in mind that
source asset files can sometimes be as
large as several hundred megabytes each,
so make sure your version control pro-
gram is up to it and can also deal well
with binary files.

Pre-rendered movies and sound are
also game assets, but they’re often treat-
ed differently because of their huge size.
They might have a slightly different
path through the content pipeline:
maybe movies won’t be kept under ver-
sion control, or maybe they will but
only the most recent version will be
kept in the database.

Intermediate Assets

I
ntermediate assets are exported direct-
ly from the source assets, usually with

the tool they were created with. This
requires a bit more plug-in work in the
form of exporters if you’re dealing with
off-the-shelf tools.

The intermediate assets are in a for-
mat that is very easy to read, parse, and
extend without breaking backwards
compatibility. These assets should con-
tain all the information we could possi-
bly want in the future, even if some of it
gets discarded before the end. Loading
performance is of no consequence at
this point; we’ll leave that up to the
final assets.

Plain text files are the perfect match
for our requirements. In addition, XML
is a particularly attractive option to
structure those text files, especially if we
need to represent information hierarchi-
cally. Doing so will also provide us with
a whole range of tools and APIs to edit,
parse, and transform files with minimal
effort. If XML files are overkill for your
needs, you can still use a simpler format
like INI files or even write your own
with minimal effort.

Why have this intermediate asset for-
mat? The main reason is to provide a
buffer between the source assets and the
final ones. Final assets are optimized to
load blazingly fast, but as a result, their
format will often change and render pre-
vious versions unusable. In an ideal

world, we would be able to efficiently re-
export all source assets automatically
into the new final asset format.
Unfortunately, we don’t live in an ideal
world, and that is often impractical.
Many off-the-shelf tools used for model-
ing and texture creation are not easily
and efficiently driven from the command
line to batch re-export thousands of
models at the time. The intermediate for-
mat is not likely to change much during
the course of a project, so we can always
use it as a starting point to generate our
final assets.

Another reason for having this inter-
mediate format is to defer some of the
complex and time-consuming operations
like mesh optimizations or lightmap gen-
eration until a later time instead of doing
them at export time. Also, we often end
up creating a set of final assets for each
platform we’re dealing with. Without the
intermediate format, artists would have
to export a set of assets for each plat-
form, ensure they’re in synch with each
other, and wait while each set of assets is
converted and optimized every time an
asset is changed.

Last but not least, having an interme-

Manipulating MECHASSAULT 2’s assets in WorldBuilder.

a p r i l 2 0 0 4 | g a m e d e v e l o p e r40

C O N T E N T P I P E L I N E

diate format provides an excellent point
for debugging and experimenting for the
programmers. Intermediate assets should
be in a very easily readable format, so
anybody can view the contents of the
asset, and even make small modifications
for testing and debugging purposes with-
out having to re-export them.

For MechAssault 2 we’re exporting
full models into one XML file: all the
hierarchy information, meshes, vertex
data, and materials are included into one
large XML file. One of those files for a
detailed model can easily be 3 to 4MB.

As much as plain text is a really nice
format to work with, exporting textures
into text format would be overkill. In the
case of textures, we export them into 32-
bit TIFF files with custom information in
the comments field containing any infor-
mation the artists specified from within
Photoshop: bit-depth, dithering, mip-
mapping options, and such. The advan-
tage of this format is that all the image is
still there since it’s exported at full 32-
bits (although soon we’ll have to worry
about larger color channels), and images
can be examined with any program that
displays TIFF files. Again, mip-mapping,

changing bit depths, and dithering are
not cheap operations we want to do at
load time, but we’ll postpone all that
until later.

It can be very tempting to modify an
intermediate asset directly for many rea-
sons: a quick change right before a mile-
stone, or the change we’re trying to
make is not exposed through the plug-in
of the tool, for example. We did exactly
that in the first MechAssault and ended
up regretting it. We were too pressed for
time to provide good plug-ins for our
custom material types, so artists would
modify material parameters on the inter-
mediate assets directly. Those parameters
would get overwritten the next time
somebody else re-exported the model
and would have to be re-entered by
hand. If you absolutely must modify
intermediate assets, then consider provid-
ing full re-importing capabilities back
into your source assets; however, this is
usually not a trivial task. For
MechAssault 2 we’re sticking to only
making changes in the source and pro-
viding much better plug-in support, and
things are running much more smoothly.

Even though this intermediate format

is very flexible, chances are there will
come a time during a project when it will
be necessary to break backwards com-
patibility. Don’t fight it; get ready for it
instead. Make sure you have versioning
as part of the format, and that you can
easily run a script through all exported
intermediate assets and convert them to
the new format. Since you hopefully
chose an easily parsed format such as
XML, the conversion process should be
almost painless.

Final Assets

T
he final assets have been highly opti-
mized so they can be loaded and

used as efficiently as possible in their tar-
get platform. The specific file format
doesn’t have to be particularly robust or
withstand many format changes since the
final assets will be regenerated many
times a day. The number one goal here is
speed. Ideally, this resource should be a
direct memory image of the format it’ll
be in when it’s loaded in the game, so
that it can be loaded straight without
any parsing. The standard warnings
about optimizations also apply here:
don’t blindly optimize everything, and
spend your time in those assets where
you’ll get the most benefit.

If you’re doing multiplatform develop-
ment, you’ll probably want to have one
set of final assets for every platform.
That way Xbox textures can be in their
own format, and PS2 textures can be
packed and formatted differently. At Day
1 Studios, even though we were only
developing for the Xbox, we had two
sets of resources: one for the Xbox, used
in the game, and one for the PC, used in
our PC-based tools.

The type of operations done at this
stage range from quick ones such as sim-
ple format changes, to somewhat expen-
sive ones such as mip-map generation,
dithering, or compression, to really time-
consuming ones such as lightmap genera-
tion and mesh optimizations. At this
point we don’t care too much about how
long it takes to perform an operation; we
just care about the final result and how
optimized the final asset is. As a result ofCustom material editor and node properties plug-ins for 3DS Max.

this step some assets could be split into
different assets (for example, our model
XML file is split into several smaller files
containing vertex and index data), and
sometimes multiple assets get combined
into one larger asset (packing a set of
textures into one larger texture).

At Day 1 Studios, this step is per-
formed by a command-line conversion
tool, which takes a set of intermediate
assets and produces the final assets. The
actual conversion happens through a set
of conversion plug-ins implemented as
DLLs, each of which takes care of con-
verting a particular type of resource
(identified by file name extension or a
header on the file itself). Any resources
not handled by the conversion plug-ins
are just copied straight through without
any modifications.

Be warned that doing a full resource
conversion on all the assets of the game
can be a very time-consuming operation.
There can easily be hundreds of thou-
sands of files, and each of them needs to
be loaded, parsed, converted, and saved
in the new format. This process can take
up to several hours even with a fast CPU
and a very fast hard drive. Minimizing
this time will help with the overall turn-
around time, so you might want to pro-
file the conversion program to find any
obvious bottlenecks. Other solutions
include doing incremental conversions
(only convert files that have changed
since the last build), and doing distrib-
uted builds (have a farm of machines
where each one takes care of converting
a subset of the resources).

During this step we should also gener-
ate errors and warning messages as neces-
sary. Sometimes an asset won’t meet the
requirements to be converted successfully
(for example, a texture might be marked
as needing mip-maps but it has dimen-
sions that are not a power of two). It’s
much better to prevent invalid assets from
making it this far down the pipeline by
preventing them from being generated in
the first place, but we should still be ready
for them here. By keeping a log of all the
failed conversions and all the warning
messages, the art and design leads can
quickly identify what the problems are

and correct them for the next build.
If you have specific dependencies

between resources that need to be
enforced (for example, packing all the
textures for a particular model together
and the textures need to be converted
before they’re packed), you might want
to use an existing dependency-manage-
ment tool such as Make or Jam.

Catalog Files

T
he final step of the pipeline consists of
packing all the loose final asset files

into larger catalog files. A catalog file is
nothing more than a large file containing
other files inside, possibly along with their
names and hierarchy information.

The advantages of using catalog files
are pretty obvious: reduced number of
open/close file operations, enforced physi-
cal proximity between files, easier and
more efficient distribution of assets, faster
directory parsing, and so on. Surprisingly,
not all modern games provide catalog
files with their assets (you can usually tell
who the guilty parties are by the outra-
geously long load or install times).

Using a standard catalog file format
(such as .ZIP, .CAB, or even .WAD) is
very convenient because there are
already-made tools to create, load, and
view them. On the other hand, you
might not have as much control over
them as you want (for example, to
enforce a specific file alignment or
ordering for optimal seeking perform-
ance on a DVD).

In this step, the final assets for each
platform are packaged into separate files.
You might want to have separate catalog
files for each level, or have sound and
music on a separate catalog file from the
rest of the assets. Those strategies will
depend on how you need to load
resources in your game. Once these cata-
log files are created, they can be copied
onto the network and everybody can
copy them locally to their machines or
work with them directly from the net-
work if there’s enough bandwidth. The
game and the tools should be able to
read these files directly and load any of
the resources inside transparently.

w w w . g d m a g . c o m 41

The Fast Path

U
nfortunately, the process we’ve
described so far isn’t exactly speedy.

To make a change and see it in the game,
we need to go through the following
steps: modify a source asset, export the
intermediate one, check it in version con-
trol, kick off a resource conversion, and
wait for a few hours until new catalog
files are ready. That doesn’t meet our ear-
lier requirement of a fast turnaround time.

The solution is to provide a fast path
into the tools and the game that bypasses
all the time-consuming steps. In our case,
we made it so both the tools and the game
could load intermediate assets as well as
the final assets (see Figure 1 again). All an
artist has to do to see how his updated
texture looks in the game is to export the
intermediate asset, copy it on the directory
where the game or tool expects to find it,

and run the game. You can even provide a
macro or a button that does all those
steps at once, including launching the
game to the correct level. The artists just
make a change, push a button, and see
their new assets in the game. It can’t get
much easier than that.

How exactly is the local file loaded
instead of the one residing in the catalog?
That’s part of the magic of the file man-
ager. As far as the tools and the game are
concerned, they’re just opening a file like
any other. However, our file manager
gives local files priority over catalog files
so they override any similar entries in a
catalog file. Whenever the game attempts
to open that file, the file manager redi-
rects it to the local file. Otherwise it
loads it from the catalog as usual.

Since we designed the intermediate
format so it was easy to parse and mod-
ify, but not fast to load, isn’t that going

to slow loading levels down to a crawl?
It would if all the resources in the level
were in the intermediate format. The
idea is that only the assets that artists
and designers are working with at the
moment are going to be found locally in
the intermediate format, so load times
are only going to increase by a very
small amount.

This approach also requires that the
game and all the tools have code in them
to load and parse assets in their interme-
diate formats. That is not a trivial
amount of code, but chances are you’ve
already written it to make it part of your
conversion tool. However, you might
want to strip this code out of the final
shipped game, so separate it cleanly and
surround it with conditional compilation
statements so it’s easy to remove.

There is one important lesson we
learned from using this fast load path:
make sure that your fast load path and
your normal path (following the rest of
the pipeline) both produce the same
results; otherwise you’ll have some very
disconcerted artists who are not sure why
their assets look different after they
check them in. In our case, we were
using one library for texture conversion
in the slow path and a different one in
the fast path. The results were often simi-
lar, but sometimes different enough to
raise a few questions. Whenever possible,
use the same code in both paths.

Putting It All Together

N
ow that the whole pipeline is in
place, we can finally start thinking

about automating the process. It should
be relatively straightforward to create a
script to get the latest source or interme-
diate assets from source control, run the
conversion process on all of them, and
package them on the catalog files. Perl
and Python are some good glue lan-
guages for those types of tasks. The
most difficult aspect of the script is
making it robust enough to deal with
errors (network going down, version
control server being down, and so
forth), so take good care of that from
the beginning. With such a script in

C O N T E N T P I P E L I N E

a p r i l 2 0 0 4 | g a m e d e v e l o p e r42

place, we can run the resource build
automatically once or twice a day, or on
demand when new resources are needed.

The more we automate the content
pipeline, the more important feedback
becomes. People are not going to be
watching every step of the pipeline, so
we need to collect all the important
information and deliver it to the people
who care about it. In addition to gather-
ing all errors and warnings, we might
also want to collect other information,
such as memory footprints, texture
usage, or even some rough performance
statistics. All that is best done as a final
step to the resource build, running each
of the levels in the game with the latest
resource and executables. As a side bene-
fit, it also serves as a very rough smoke
test of the build.

Robustness was one of the goals of
the pipeline from the very beginning.
Part of it involves making sure the con-
version and packaging tools work flaw-
lessly and report any errors correctly.
The other part is making sure the game
and the tools are never left in an unus-

able state because of bad resources. A
good philosophy to maintain is that bad
data should never break the game or
tools; an artist or designer should never
be able to crash the game. It might
sound a bit radical, but it’s worth aim-
ing for that goal. Any engineering time
spent towards this will be paid back
many times over as soon as assets start
being added to the game at full speed.
When loading a level, take the time to
report any loading or initialization
errors, disable the entities that had
problems, and move on. In addition to
that, it’s helpful to put some sort of ugly
debugging model (a big pink lollipop in
our case) in place of any entity that
failed initialization.

Further Work on the
Pipeline

T
urnaround time is very good already,
but we’d like to make it even shorter.

We’d like the game to detect that some
assets have changed and load them on
the fly. This can be particularly beneficial

for games without discrete levels where
reaching specific locations is a time-con-
suming task.

A full resource build for MechAssault
2 can take up to an hour and a half.
We’d like to further investigate the possi-
bility of doing distributed builds. There
are open-source, general frameworks for
doing distributed operations that could
be easily added to the process. We might
also want to look into integration with
the build systems such as Apache Ant
for added robustness.

Games are very different from each
other and teams are organized differently,
so content pipelines will vary significantly
from project to project. It is important to
identify the assets for a given game, what
kind of operations will be done to them,
who will be working on them, and at
what stage of the development they will
occur. Use whatever pipeline organization
works best for your particular needs and
automate as much of it as possible. The
artists and designers in your team will
thank you for it, and you’ll end up with a
much better game in the end. q

C O N T E N T P I P E L I N E

a p r i l 2 0 0 4 | g a m e d e v e l o p e r44

a p r i l 2 0 0 4 | g a m e d e v e l o p e r46

G A M E D A T A

PUBLISHER: Ubisoft
DEVELOPER: Ubisoft Montreal

NUMBER OF DEVELOPERS: 65 at
peak (excluding testers)

LENGTH OF DEVELOPMENT:
27 months

DEVELOPMENT HARDWARE:
Average machine: Dual AMD Athlon

2000, 1GB RAM, Windows 2000,
PlayStation 2, Xbox, and GameCube

development kits,
PlayStation 2 Performer Analyzer

DEVELOPMENT SOFTWARE:
Microsoft Visual .Net 2003,
Metrowerks CodeWarrior,

PlayStation 2 Tuner, Incredibuild
RELEASE DATE: November 2003
TARGET PLATFORMS: Xbox, PC,

GameCube, PlayStation 2,
Game Boy Advance

PROJECT SIZE: 4188 files,
1,263,580 lines of code

PS2 BUGS: 11,520
XBOX BUGS: 936

GAMECUBE BUGS: 1,004
PC BUGS: 1,072

TOTAL BUGS: 14,613

P O S T M O R T E M y a n n i s m a l l a t

Y A N N I S M A L L A T | A producer for Ubisoft, Yannis’s primary
titles include PRINCE OF PERSIA: THE SANDS OF TIME and RAYMAN

ADVANCE. He also worked on production for the movies Little
Nicky, The Emperor’s New Groove, and Dinosaur.

47w w w . g d m a g . c o m

W
hen

Prince
of
Persia
was first

released in 1989, it got the
attention of the game industry.
It became an instant classic
and laid the foundation for the

action/adventure genre. The set-
tings were strong, the storytelling

was compelling, and the animations
were groundbreaking. The game
established new standards for what
the public should and would expect
from videogames to come.

By May 2001, a number of plat-
formers had been released since the
launch of the original Prince of
Persia. Most of them were inspired
by at least some of the elements that
made Prince of Persia an important
achievement. In Spring 2001, Ubisoft
announced it had acquired the Prince
of Persia license and gave the

Montreal team a mandate to start the
conceptual phase of the project.

Early on we identified the three
core areas that made the original
game a success. They are 1) captivat-
ing animations and character move-
ments, 2) intense fight sequences, and
3) clever and challenging levels and
the gameplay built around them. They
were the essence of the brand and, if
used with the right formula, the uni-
versal ingredients for a stellar
action/adventure game. We considered
them the heart and soul of the project.

So, there we were, a team of seven,
laying down the basis of what would
later become Prince of Persia: The
Sands of Time. Two game designers
worked on defining the main concept,
helping to build prototypes in real
time with the technical team. One ani-
mator created the major moves that
essentially brought the prince to life.

We then integrated two engineers
into the process. They started the

engine studies and helped the design
team conduct gameplay tests. A con-
cept artist was added to the mix to
illustrate game design ideas and pro-
vide initial art direction (to the
extent possible at this stage). He
also contributed creative ideas. The
final piece of the puzzle was the
producer, someone who would also
act as a game designer and creative
consultant, a role I gladly accepted.

A couple of months later, when we
were able to present our first mock
ups (AVI files showing how the
prince could move and interact with
his environment), we asked the origi-
nal Prince of Persia creator Jordan
Mechner to look at what we had
done. The result of the first presenta-
tion was inspiring. He was duly
impressed. He hopped on the train
and the core team started chugging
along full steam, beginning with the
pre-production phase and then
switching to the production period.

PRINCE OF PERSIA, an original creation by Jordan Mechner, was first released in the U.S. in 1989.
The game, which follows the adventures of a young prince’s efforts to save a princess, is regard-
ed by many analysts as the first true action/adventure game. The PRINCE OF PERSIA franchise has
seen two sequels since its conception: PRINCE OF PERSIA: THE SHADOW AND THE FLAME (1993) and PRINCE

OF PERSIA: 3D (1999). By 2001, Ubisoft felt the time had come for the return of the prince.

What Went Wrong

1.
Late arrival of the artistic
director. While the project effec-

tively began in June 2001 with a fast-
track conceptual phase, the art director,
Raphael Lacoste, did not join the project
until late April 2002. Although it didn’t
impair the final art direction, the very
late arrival of our artistic director did
create a huge challenge in time manage-
ment for the team of artists.

Prior to his arrival, several prototypes
had already been made showing the
prince’s movement set, level design ingre-
dients, and some technological break-
throughs, but nothing very impressive.
There was almost no art at all. The
game’s potential was demonstrated with
some very basic level design blocks and
monochrome textures.

Raphael’s first task was to define the
artistic direction and style of the game
and to develop all the necessary tools.
Light maps were to be added to the
engine at the 11th hour of pre-produc-
tion, along with many other effects (volu-
metric fog, filter, glow, and so on). The
most difficult challenge for the modelers
was to keep a steady production pace for
the maps while learning about upcoming
and unfinished tools. As a matter of fact,

the first final art wasn’t available until
the E3 2003 demo.

Coming back from the show, the team
saw the demo as the standard of quality
that should be consistently present
throughout the whole game. This seemed
impossible, considering just how much
we still needed to produce. The demo
was approximately 1/30 of the whole
game. But the risk management output
(including some scope reduction) and the
tremendous efforts of our highly motivat-
ed team resulted in visual quality that
surpassed that of the demo.

2.
Fuzzy validation process.
From the beginning, we knew

that dealing with such a well-known
license would present some challenges.
We needed a huge pre-production
process to help us establish clear goals,
which included completing character
behavior, macro designs, a compelling
storyline, and all tools. A playable proof
would then allow us to move forward
into production.

That said, we didn’t think pre-produc-
tion would last as long as it actually did.
When level production began, we had
planned for 10 months; it eventually
took more than 14, with a good list of
tools and fighting behavior still in pre-

production. Maintaining the right bal-
ance between creation and production
was hard, and there was no clear distinc-
tion between what was approved and
what still needed improvement.

The prince’s behaviors were often
changed, refined, and tweaked, which
required major modifications each time.
All of this was good for the game’s
overall quality, but we had already lost
precious production time designing,
implementing, and rejecting several
complete fight systems (in animation
and AI). The result was a chain reaction
that put other important deliverables in
jeopardy. For instance, we started
Farah’s (the princess) AI development
later than expected. We didn’t have
enough time to really polish the generic
AI-supporting level-design scripted
events. We had to take care of coopera-
tive gameplay case by case, level by
level, situation by situation. All this
postponed the start of the real debug-
ging period. We were faced with a
mountain of bugs that had to be fixed.
But the gold master release date was not
going to budge.

3.
Complicated enemies. The
prince’s character was the subject

of intense work during pre-production.

P O S T M O R T E M

a p r i l 2 0 0 4 | g a m e d e v e l o p e r48

Character production workflow, showing one of the prince’s enemies from concept to game.

Conception Modeling Texturing Rigging and Animation

With more than 780 animations, he was
obviously the most significant—and the
largest—component of the game.
Unfortunately, this left less time and
fewer resources to develop those who
would allow him to exploit all his abili-
ties: his enemies.

Enemies represent particular level
design ingredients. Being extremely
dynamic, they need to complement the
main character’s combat skills. At the
same time, they should also
increasingly challenge the players
and surprise them with unexpect-
ed behaviors in any given situa-
tion. We also used specific ene-
mies as tools to teach the player
how to fight better—an instru-
mental aid in the players’ learning
process.

Due to the late delivery of
final maps, all the enemies’
behaviors had to be developed
and coded on placeholder maps
(basically a floor), which did not
take into account the geometry
of the actual maps. Obviously,
in this situation, the enemies’ AI
came out way too bland, com-
pared to what it should have
been. Contextual enemies (such
as the Sandbirds, Sandtigers and
other mythical creatures) were
extremely cost-inefficient to pro-
duce. Some of them simply had
to be cut, whereas all the
bipedal enemies later required a
significant debug process.

4.
Lack of strong techni-
cal level design. From

the beginning, our game was all
about level design. Each of the
prince’s moves drove the micro-
gameplay. Much of what the
players would enjoy was rooted
in level design. Every aspect of
the prince’s behavior or anima-
tion had a match in the geometry
of a level. The game was very
context-sensitive: you need a
wall to make a wall-running
maneuver; you need a column to

slide down it.
We had to make our technical features

behave flawlessly. First of all, the
dynamic loading was not ready right
from the start of production, so we had
nightmares getting everything to fit in
memory and adjusting pre-fetch settings.
Making all these adjustments was very
tricky because we wanted everything
loaded in time. To avoid sudden move-
ments or pop-ups, we had to make

everything highly interdependent. On
top of that, we had to make sure our
rewind feature was always working,
since this was how objects/enemies were
destroyed—through dynamic loading
portals and the like. Combine all these
with a bunch of eager QA testers and
you get a pretty intimidating bug data-
base. Thankfully, the level designers and
the programming team were able to
squash all of the bugs.

So, were we starting to see light
at the end of the tunnel at this
point? Well, not quite. We were
forgetting another source of
problems. The game wasn’t
crashing anymore, but the ene-
mies were forgetting their objec-
tives. This led to broken game-
play, where enemies no longer
saw the prince or attacked him.
Furthermore, since you couldn’t
beat them, you couldn’t complete
the level. Even worse, the
princess was completely forget-
ting many of her crucial goals.

So much could have been
done in the earlier stages of
development to prevent these
problems. If only the maps and
gameplay had been delivered in
advance, a dedicated technical
level designer could have fore-
seen all these issues and fixed
them before alpha. Once again,
we were not dealing with the
problems in a strategic way; we
were putting out fires as they
occurred. Meanwhile, we were
creating a mountain of bugs to
deal with later.

5.
Data control. The way
the engine was built

meant the game data was stored
in one master file that contained
everything for the developers to
review: maps, models, AI, and
the rest. Everything was central-
ized in this file except sound and
videos. The situation didn’t
allow for multiple concurrent
data access on the same file, at

w w w . g d m a g . c o m 49

Conception

Design Layout

Level Design

Level Art

Map production workflow for building the Maharajah’s palace.

least without written permission.
We soon realized our team had become

too large to allow everyone access to the
master files at the same time. We inherited
a system that was designed with a small
team in mind, but it didn’t scale well to an
army of 45 in crunch mode. Many prob-
lems occurred: data was overwritten; the
server crashed; files got corrupt. A lot of
time was wasted because people had to
wait for their turns to enter their changes
on the network.

We tried to optimize the data control
at the very end of the project, by build-
ing a “data monkey” solution that
would allow simultaneous access
through a server while maintaining a
single repository for game data.
Unfortunately, the attempt to build such
a tool came too late and we never had
the chance to alter the system. The risks
involved were too serious.

One little thing we did, however, was
set up a simple file server to manage the
timing of all check-ins. At least the devel-
opers could work on something else
locally while waiting for project updates,
and we could give priority to people try-
ing to make critical changes.

What Went Right

1.
The will to achieve. A major ele-
ment that contributed to the suc-

cess of the whole project came from the
team itself, and we managed to keep the
initial motivation and chemistry strong
right up to the end. The team was (and
still is) a collection of extremely talented
people in every field.

The project started well with a very
powerful initial deliverable that helped
everyone to clearly see what we were
aiming for. At the start, the team was
composed of less than 10 core people in
complete harmony with one another—a
tight-knit family. We were able to main-
tain the most effective form of commu-
nication: honesty. Speaking harshly
about things that needed to be dis-
cussed was not a problem; we shared a
common desire: the success of the proj-
ect. No ego trip threatened the team’s
interest. Integration of newcomers

could have disrupted this cohesion, but
it didn’t, because we didn’t add large
numbers to the team all at once.
Instead, we chose to incorporate new-
comers one at a time, easing them into
the unit gently.

A succession of morale-boosting
events helped maintain the highest level
of energy and motivation within the
team: Sony decided to show the game at
its E3 booth, and our own demo of the
game at E3 was well received: people
turned out in droves as word spread
quickly that this was the game to see.
Our high motivation level and confi-
dence in the project allowed us to deal
with an incredible amount of pressure
(time and quality, for starters), accept
some difficult realities (scope reduction
and so on), and work extremely hard
for a very long period. From the E3
demo preparation (late February) to the
very end, we worked on average 16
hours per day, peaking at 20 to 48 con-
secutive hours sometimes. It’s not a
good model and we would prefer not to
work like this again, but it was essential
and the whole team was up for it, with
absolutely no complaint.

2.
Synchronization between ani-
mation and AI. The prince, as

he appears in the final game, was our
very first success and could not have
been achieved without a fantastic duo
that was paired up at the very begin-
ning. The lead animator and lead AI for
the main character worked very closely
together. There was no question of a
separate animation production on which
we would simply map the AI after-
wards. Both were conceived together,
created together, and generated and
implemented together. The two guys
actually placed their desks side by side
and worked as if they shared one brain.
This is apparent in the way animation
and control (AI) work seamlessly
together in the final version.

3.
Risk management. When
tough decisions needed to be

made, we made them. We reduced the
scope of the game at two crucial times:
just before Christmas 2002 and right
after E3 2003. Fortunately, these deci-
sions were made early enough in the
development process.

The first scope reduction was the

a p r i l 2 0 0 4 | g a m e d e v e l o p e r50

P O S T M O R T E M

Lighting sets the mood in a corridor of the Maharajah’s palace, as viewed through Ubisoft’s
internal playable level editor.

hardest to make, because we were still
far enough from the gold master date to
convince ourselves “everything would be
just fine.” Specifically, we were talking
about cutting an entire chapter that took
place in a slave village featuring exotic
gameplay elements. Cutting this specific
chapter meant having to tell the story
very quickly. We accepted this decision
because, in the end, everyone agreed it
was the right move; if we had made this
decision later, or worse, if we had
refused to trim it, we would never have
been able to finish the game on time.

When we got back from E3, we faced
the bitter reality of chaotic production:
most maps were not running at all;
some were not even close to completion.
Thus, the second scope reduction was
logistically easier to make, but still hard
on the team: it meant cutting some
things that we had spent a lot of time
working on, stuff that we were proud
of. But, here again, if we had made this
decision even a week later, we wouldn’t
have met our deadlines.

4.
Playable editor and other
tools. As I’ve said, this game

was all about level design. In Prince of
Persia: The Sands of Time, the game-
play was created mainly by the environ-
ment. Technically, all the level design dis-
tances had to be perfectly adjusted,
because the gameplay could not exist
with any degree of approximation.

When the prince grabs an edge from a

vertical-wall rebound, his detection zone
should be perfectly in synch with the
edge (in terms of spacing). This could
have been a very strict limitation in level
design creativity, but it wasn’t.

The editor was built to let level
designers play with a 3D view. This
allowed for quick corrections, thanks to
a trial-and-error approach. Adjusting a
column, adding a rope, or removing any
level design ingredients were done on
the fly and tested immediately by the
level designers. The most interesting and
crazy level design sequences were creat-
ed in a very short amount of time.
When the map was on the modeling
side, it was also extremely useful to
check whether the gameplay was altered
by the addition of extra art geometry
(such as a light torch on a wall where
the prince needs to run). The tool
helped us quickly devise interesting
gameplay ideas during pre-production,
then produce art geometry without
wasting time compiling everything for a
look at how the map was played.

5.
Integrated testing. Finally, we
provided development kits to as

many testers as possible. At peak time,
we had 14 PlayStation 2 development
kits for the team, four of which were
solely dedicated to QA testers reproduc-
ing very rare crash-bugs (with a special
debug “strike-team” to take over the
machine with a debugger and reverse-
engineer strange bugs in retail code).

This started a creative solution to a
recurring problem. One day, we realized
one of our testers was great at finding A
bugs—the rare, nasty ones. She was able
to find bugs no one else could. Initially,
each developer who was assigned to her
bugs got frustrated due to the time com-
mitment in fixing them. Then, we asked
her to join the team, equipped her with
a development kit, and with her work-
ing on the game itself, we got our A
bugs curve back to normal. We replicat-
ed the model to up to four integrated
testers within the team. This dramatical-
ly accelerated the pace of finding and
fixing bugs, freeing some time for the
developers to focus on the fixing side.
Eventually, these testers got into the
groove of things and spent many long
days and nights contributing to our col-
lective masterpiece.

1,001 Nights Later

A
nd there we were, at the end of
October 2003. After all the crazy

events we had experienced in the previ-
ous 36 months, the gold master was
finally delivered and the CD-ROMs
were pressed. We couldn’t believe it. We
had made it.

This team can be very proud of what
it achieved. I would gladly work with all
of them again in a second (in fact, I am),
and we are now ready to welcome new-
comers for the next installment of our
adventures. q

P O S T M O R T E M

a p r i l 2 0 0 4 | g a m e d e v e l o p e r51

The original PRINCE OF PERSIA titles stretched the boundaries of animation and art design.

I
t might be comforting to assume that, a century later, his-
torians, the general public, and even the impressionable
teenagers of the early 22nd century will still have access to
all the videogames created to date. In this digital age, it’s
tempting to believe copies of the videogames you’ve

helped create are never going to disappear. But it’s not completely
clear that’ll be the case, especially with titles from the 1980s and
early 1990s preserved on decaying magnetic media without a
central repository to officially archive game titles and other soft-
ware products. So is there anything we can do? Are copies of
some vintage games in danger of just disappearing forever?

The End is Near

S
ince the average lifespan of magnetic media such as floppy
discs has been estimated at 10 to 30 years, one thing is

clear: time is running out. You might ask, hasn’t all the archiv-
ing already been done? Aren’t the legally dubious abandonware
web sites such as The Underdogs safeguarding the industry’s
history? Although they don’t actually have the rights, aren’t
they keeping digital copies of a lot of classic games developers
and publishers have forgotten about completely? Well, yes, in
many cases they are, but the uneasy standoff between those try-
ing to enforce copyright laws and those who are happy (or
oblivious) enough to let their old titles live on unofficially
makes it impossible to have an authoritative archive made up
of posted-on-the-web disk images. You can’t create a reliable,
permanent archive of game-related materials that are publicly
distributable, because copyright crackdowns will (quite rightly)
make such venues go away. In some cases, people may use
abandonware sites as a sneaky way to justify piracy.

Well, here’s another option.
Could we expect game develop-
ers, publishers, and right-holders
to do all the work? Realistically,
with economic constraints and
the massive amount of complex
company consolidation that
goes on, most publishers do not
even have a comprehensive list
of videogames they own the
rights to. Even if they do, it’s
simply not worth their while (in
their view) to archive the vast
majority of the titles. With the
increasing popularity of classic-
retro compilations, publishers
are certainly revamping some

old titles for new consoles, but they’re often changing and
adapting along the way. Many good but obscure titles don’t
receive such treatments. You can’t expect companies to archive
their entire catalog for no monetary gain, even if they have the
will to do so. Elsewhere in the technology industry, the most for-
ward-thinking and history-conscious companies, such as IBM,
keep official archivists. Still, there are some things—such as orig-
inal production materials, source code, and other internal arti-
facts—that just can’t be preserved by outside institutions,
because they don’t have access to the data.

Institutional Approaches

T
he ideal would be to have a massive institutional collection
of games and other retail software, with all the original phys-

ical artifacts (box, manual, discs, and so on) stored in a safe
place, and a digital database with exact copies of the data on the
disc (not just illegal “cracked” images), stored for safekeeping.
For each game in the collection, you’d have a perfect digital copy
of it, so when the floppy discs are no longer readable, there’s a
private copy of the data stored for posterity. In addition, the data
can become available for public distribution whenever copyright
(finally) runs out and the program becomes public domain. In
some cases, the right-holder may decide to permit copying.

Some institutions are starting to make a move toward pre-
serving software properly. Stanford University has started a
game-preservation initiative. The Stephen F. Cabrinety
Collection in the History of Micro-Computing includes as yet
unpreserved retail software, largely videogames. Amassing well
into tens of thousands of classic games, it’s probably the largest

S O A P B O X s i m o n c a r l e s s

a p r i l 2 0 0 4 | g a m e d e v e l o p e r72

continued on page 71

Ill
us

tr
at

io
n

by
 D

om
in

ic
 B

ug
at

to

Preserving Your Games

ADVERTISER INDEX

institutional collection in the world. The Computer History
Museum in Silicon Valley is starting to look at software preser-
vation seriously too. But it’s going after largely software lan-
guages and packages (some of which are also in imminent dan-
ger of being destroyed) unrelated to games.

Legal Issues

I
’ve been working with the Internet Archive (www.archive.org),
a nonprofit institution that’s “building a digital library of

Internet sites and other cultural artifacts in digital form.” We
discovered possible archiving issues involving the Digital
Millennium Copyright Act (DMCA), which may have made it
impossible to legally archive early computer software and
games, even for accredited institutions wishing to store limited
amounts of private, non-circulating, archival images. So we peti-
tioned the Copyright Office about these access protection issues,
and the U.S. Copyright Office ruled in October 2003 that
exemptions should be added to the anti-circumvention clause of
the DMCA, to be valid until the next Copyright Office rulemak-
ing in 2006 (www.copyright.gov/1201/docs/librarian_statement_
01.html). The exception applies to “computer programs and
videogames distributed in formats that have become obsolete
and which require the original media or hardware as a condition
of access.”

This does not mean titles posted as abandonware are legal
to copy as you please, but it does arguably mean official insti-
tutions can make a limited amount of private archival copies
of classic software, provided they own the original physical
copy, and their copy doesn’t violate the DMCA. So the possi-
bility now exists for good archiving to happen, and we’re in
the early stages of starting software archiving projects. Bear in
mind, the Internet Archive does not claim to be the sole solu-
tion—just one of many possible contributors, especially now
that the DMCA exemption has arguably made classic game
archiving legal in the U.S.

This situation needs a critical mass of developers like you
bringing your technical knowledge to bear on the complex
archival problems. Your efforts may include donating old retail
software for archiving or even allowing some of the less finan-
cially important titles in your company’s back catalog to become
freely available through the archives. If there’s playable public
content in these putative software archives, alongside good meta-
data and information on the private content, then the pieces will
be in place to create a canonical archive of games, ensuring the
titles you worked on won’t disappear. q

S I M O N C A R L E S S | Simon is a former videogame designer
(Eidos, Atari), who now edits the popular tech web site Slashdot
(www.slashdot.org). He can be contacted at scarless@gdmag.com.

S O A P B O X

w w w . g d m a g . c o m 71

continued from page 72

Academy of Art College 63
Academy of G.E.T. 62
Activision 54
Aladdin Knowledge 5
Alias 11
Alienware 3
Araxis 32
Art Institute of Vancouver 42
Atari 55
ATI Technologies 35, 17A
Audio Images (Wacom) 19
Carnegie Mellon University 67
Castles Music 70
CCP Games 68
Charles River Media 41
Climas Group 57
Collins College 66
Cranky Pants Games 52
Cyberware 21
Fairfax Games 60
Full Sail Real World Education 62
IDA of Singapore 7
Inevitable Entertainment 54
Integrityware 68
Intel 53

Iron Lore Entertainment 59
Law Offices of Michael H. Golland 70
LucasArts 52
Metrowerks 14
Monolith 52
New Pencil 69
NXN Software 39
Omni Interactive 70
Perforce Software 13
Premier Press 25
Programmer’s Paradise 9
RAD Game Tools C4
Rainbow Studios 52
Rtzen Inc. C2
Sammy Studios 58
Savannah College of Art & Design 61
Softimage C3
Sony Computer 56
The Art Institute International 64
The Collective Inc. 54
The Hartecenter at SMU Guildhall 61
Trymedia Systems 31
University of Advancing Technology 65
Vancouver Film School 62
Vicon Motion Systems 27

COMPANY NAME PAGE COMPANY NAME PAGE

	02gameplan
	04indwatch
	06prodrev
	12profile
	15innerp
	18artview
	24soundp
	26betterby
	28f-calica
	36f-llopsis
	46postmort
	72soapbox

	return:

