
JANUARY 2004

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-in-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Jamil Moledina jmoledina@cmp.com
Departments Editor

Kenneth Wong kxwong@cmp.com
Product Review Editor

Peter Sheerin psheerin@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-at-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Noah Falstein noah@theinspiracy.com
Steve Theodore steve@theodox.com

Advisory Board
Hal Barwood Designer-at-Large
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 404.658.1415

Account Manager, Northern California & Midwest
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Manager, Target Pavilion, Education, & Recruitment
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot e: twilmot@cmp.com t: 516.562.7081

GAMA NETWORK MARKETING
Director of Marketing Michele Maguire

Senior Marcom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Circulation Director Kevin Regan

Circulation Manager Peter Birmingham

Asst. Circulation Manager Lisa Oddo

Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.763.59581 f: 847.763.9606
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer Mike Mikos

President, Technology Solutions Robert Faletra

President, CMP Healthcare Media Vicki Masseria

Senior Vice President, Operations Bill Amstutz

Senior Vice President, Human Resources Leah Landro

VP & General Counsel Sandra Grayson

VP, Group Publisher Applied Technologies Philip Chapnick

VP, Group Publisher InformationWeek Media Network Michael Friedenber

VP, Group Publisher Electronics Paul Miller

VP, Group Publisher Enterprise Architecture Group Fritz Nelson

VP, Group Publisher Software Development Media Peter Westerman

VP & Director of CMP Integrated Marketing Solutions Joseph Braue

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

Corporate Director, Publishing Services Marie Myers

W W W . G A M A N E T W O R K . C O M

✎

E verybody talks about

videogames going global,

but when a single country

such as China represents

one-sixth of the world pop-

ulation, new forays into vast underserved

markets have industrywide implications.

Such is the case with both Nintendo’s

and Sony’s entrées into the Chinese mar-

ket: Nintendo has unveiled a China-spe-

cific piracy-resistant console system,

while Sony has announced plans to intro-

duce the Playstation 2 there.

Sony is launching the PS2 in China at

around 1,988 yuan, or $240 (relative to

per capita GDP, it’s as if a PS2 cost an

American $2,000). While the system is

extremely expensive, the software will be

much cheaper than software sold else-

where, being subject to different market

forces in China, namely those of the black

market. It’s well known that the piracy

rate in China is near-total (94% according

to Harvard’s Center for International

Development), compared with a relatively

manageable 37% in Japan, 24% in the

U.S., and 26% in the U.K.

The piracy issue is just one example of

why entering, much less succeeding in,

the Chinese market is more complicated

than simply deciding that if every person

in China bought your product for $1,

you’d have $1.3 billion. For starters, two-

thirds of the population still ekes out a

rural existence; on the flipside, more than

60 million Chinese now sport disposable

incomes greater than $10,000, a total

that continues to rise rapidly.

Is Microsoft at a disadvantage by not

bringing Xbox to the Chinese market at

the same time as Sony and Nintendo?

Yes and no. On one hand, market share

is power, whatever the market, and arriv-

ing third is not a strong position. On the

other hand, Microsoft, as an American

company, faces steeper obstacles to trade

in China than China’s Japanese neigh-

bors. If Nintendo and Sony can pave a

path for a Chinese videogame market,

Microsoft would have less risk to shoul-

der initially. However, the liabilities of

entering China would remain significant

for Microsoft for the foreseeable future.

The cultural oceans between China and

the West are vast and deep, including a

virtually nonexistent conception of intel-

lectual property ownership such as most

Westerners have. The communist govern-

ment involves itself heavily in business

matters, reserving — and exercising —

the right to alter economic regulations

drastically and without warning, which

can wreak havoc on any company’s long-

term business strategy there. Furthermore,

American companies face the unique

challenge that the Chinese government

keeps the yuan’s valuation artificially

pegged (which is to say, undervalued) rel-

ative to the now-sagging dollar. This tilts

the Sino-American trade imbalance far in

China’s favor, evaporating the potential

for U.S. companies conducting business

there to profit from favorable fluctuations

in an open currency exchange market.

Citing loss of American jobs to artificially

cheap Chinese exports, the U.S. is putting

increasing pressure on China, both via

direct talks and through the World Trade

Organization, to revalue and ultimately

float the yuan. Still, the Chinese govern-

ment maintains that it cannot stabilize its

currency on its own for at least 10 years.

Certainly there are western corpora-

tions that have blazed trails, persisted,

and become successful in China, and cer-

tainly the gang up in Redmond are

hatching some plan for the Chinese mar-

ket. Then again, following Sun’s

“Shanghai surprise” announcement at

Comdex that it had struck a deal with

the Chinese government for its open-

source software, Microsoft might just

consider turning its attention to India’s

billion folks, hoping for the better.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-in-Chief

www.gdmag.com

China:
Over One Billion Underserved

Videogame middleman closes shop. Capital

Entertainment Group (CEG), founded by

Xbox’s co-creators Seamus Blackley and

Kevin Bachus, disbanded, citing a lack of

funding to keep its operations going.

Blackley, Bachus, and a few other video-

game veterans envisioned CEG becoming

the middleman between developers and

publishers. As the industry’s first inde-

pendently funded production company,

CEG planned to develop high-quality

games — including original but risky

projects — and then find publishers who

would market, sell, and distribute the

games for a share of the profit. CEG dis-

covered its first publishing partner in

Sega of America. Bachus observed that

the industry will likely adopt CEG’s busi-

ness model in the next three years, but

the challenge is “finding investors who

share the appetite for risk.’’

Nintendo to debut new machine in Japan.
Nintendo declared its plan to debut a

new videogame machine in Japan next

year. It did not specify whether the new

machine, scheduled to be unveiled at E3

2004, will be a handheld; however, a

company statement

revealed that the product is not related to

either the Game Boy Advance or Game-

cube successor. The announcement came

soon after the company posted its first-

ever loss ($26.8 million, in the six

months ended in September) since going

public in 1962.

Unauthorized N-Gage-ment. Nokia’s mobile

gaming device N-Gage, which drew criti-

cism from the press for its high price

($299) and limited game offerings, took

another blow as hackers began reporting

on web sites and bulletin boards that they

had cracked Nokia’s proprietary N-Gage

software. This raises the possibility that

the games intended for the N-Gage hand-

set can now be played on any cell phone

or mobile device using the Symbian oper-

ating system, also used by N-Gage. Club-

Siemens, an unofficial site run by a

Norwegian duo working in London, post-

ed screenshots of what it claims to be N-

Gage games running on a Siemens AG

SX1 handset, reportedly without any lag

or operational deterrence.

WILD EARTH goes to theme parks. WILD

EARTH, the 2003 Independent Games

Festival Game of the Year, will soon be

available as a motion simulator at

selected zoos, amusement parks, and

other entertainment environments,

according to developer Super X Studios,

which created the game. The adventure

will allow two visitors to vicariously go

on a photo-safari trek through the

Serengeti. While demonstrating the tech-

nology at the International Association

of Amusement Parks and Attractions

(IAAPA) conference this winter, produc-

er-developer James Thrush commented

that zoos are particularly interested in

the “motion pod” for its interactivity, a

step beyond the current crop of passive

ride films. The worldwide availability of

the WILD EARTH ride is slated for

early 2004. q

Send all industry and product
release news to news@gdmag.com.

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | k e n n e t h w o n g

The motion pod for WILD EARTH, an interactive
motion simulator.

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

D I G I TA L G A M E S S U M M I T
LAS VEGAS RIVIERA HOTEL

Las Vegas, Nev.
January 7, 2004
Cost: $99–$499
www.ihollywoodforum.com

I N T ’ L C O N S U M E R E L E C -
T R O N I C S S H O W

LAS VEGAS CONVENTION CENTER

Las Vegas, Nev.
January 8–11, 2004
Cost: $75–$896
www.cesweb.org

U P C O M I N G E V E N T S

CCAALLEENNDDAARR
Gamepak for Truespace 6.6. Caligari

recently released Gamepak, a game-

development extension for its general-

purpose 3D modeling software True-

space 6.6. Using Truespace’s existing

modeling, texturing, and animation

tools as a foundation, Gamepak allows

users to generate game content in file

formats that are compatible with other

content-creation systems. Gamepak is

priced at $199. www.caligari.com

Stitch up a panorama. Realviz announced

Stitcher 4.0, the latest version of its

panorama-creation product. Stitcher

allows users to collate multiple 2D pho-

tographs and graphics into wide-angle

3D panoramic views. Version 4.0 offers

interoperability with Adobe Photoshop,

interactive Quicktime VR viewing,

enhanced interface and workflow man-

agement. Stitcher is available for Mac

as well as PC for $499.

www.realviz.com

Renderware Physics makes its debut.
Criterion Software, which acquired

Mathengine’s physics IP, has released

Renderware Physics. Available as either

a stand-alone product or a component

of Renderware Platform, the new

physics engine features character

dynamics, rigid-body dynamics, terrain

collision, flexible primitives, customiz-

able pipelines, configurable joints,

multi-platform solvers, and more. Price

varies depending on configuration.

www.renderware.com

B

8 j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r8

I nspeck EM is Inspeck’s suite of

editing and merging tools for

manipulating 3D images of

organic objects acquired with

the company’s line of digitizing

cameras. As with traditional laser or

point/grid scanning, the acquired data

must be post-processed in order to allow

its import into traditional modeling and

animation packages, such as Max or

Maya. Unlike other 3D data acquisition

systems, Inspeck EM captures texture

and model information concurrently, and

it also successfully scans hair.

With the Inspeck system, raw data is

brought in from the 3D camera/digitizer

and processed in an intermediate tool

called FAPS (not reviewed here), which

defines the digital images as individual

3D objects and textures. These are finally

brought into the EM software, which

gives users the tools they need to create

fully refined and functional 3D models

along with correctly mapped textures.

The process begins with the model

loading, and the user chooses all of the

models (usually around eight or nine of

them) representative of the different

views and angles of the complete object,

which will need to be assembled togeth-

er (called “registration” in EM) to cre-

ate the full model. For a human head,

the user would have a face-on view,

another view at 45 degrees (cheek view),

another at 90 degrees (ear view), and so

on, all the way around the head.

From here, it is up to the user to

assist the software in determining how

the models are to be merged together.

Once the starting model is loaded, such

as the face-on model, it becomes fixed

in space, and the user is required to tell

the software which model attaches to it

and where. This is a fairly painless

process which involves visually selecting

arbitrary corresponding, overlapping

points on each mesh. This is easily

achieved, as there is an accurate, pre-

mapped texture already applied and vis-

ible on each model section. Therefore,

the user can select freckles or moles

from each model section of a head and

use these as reference points. After this

is done in turn to each section of the

complete object, all of the mesh objects

are correctly placed in their correspon-

ding positions to each other, and the

user can merge these model sections into

a single high-quality, accurate 3D

model. A UV-accurate texture map is

created at the same time (able to be gen-

erated both cubically and cylindrically),

and with a bit of assistance from an

image-editing package, such as the accu-

rate and efficient integrated one, the 3D

model is usable almost instantly.

There are, of course, unavoidable

issues with the initial data that keeps the

overall EM process from being complete-

ly automatic. In general, each model sec-

tion has an inherent overlap associated

with it (for example, the frontal model of

a head contains some data from the

cheek model, and vice versa). There are

settings available that will automatically

trim out much of this overlap, but in

turn, this may cause other problems,

such as holes in the mesh. It is best to

keep the automatic trimming to a mini-

mum and to delete by hand as much of

this overlap as possible. This is one

aspect of the software that can become

very tedious, as the selection tools and

the ability to add or subtract from the

selection is prone to uncorrectable user

error, which may require a restart of the

selection process.

There are other interface issues as well.

Simple viewport manipulations, which

experienced users of other 3D software

take for granted, are not so simple here,

especially when working in registration

mode. Rotations and translations are

only possible in the 3D view, and not

possible in the orthographic views.

Zooms are achievable in the ortho views

but are not simple or quick enough to be

transparent in the user’s workflow.

I have found that simply breezing

through the registration process, almost

ignoring the cleanup process, and going

straight into merging the sections into

one model and then exporting is the

best bang-for-the-buck technique. The

software is going to give you a nice

model even if you don’t have time to

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

MICHAEL DEAN | Michael has over 10 years of experience as an artist in the game indus-
try, and does everything in the art process from painting textures to animating characters.

Inspeck EM
by michael dean

Building a 3D model of a human head from
camera-acquired data in Inspeck EM.

execute the recommended process.

However, the software’s functionality

doesn’t end at registration, merging, and

export. A primary concern of many mod-

elers, especially game modelers, is keep-

ing meshes lean and mean. Digitally

scanned data has never met this challenge

well. Usually, the process with a scanned

3D model involves a lot of optimization

in another 3D package to bring the poly-

gon counts down to a reasonable level.

That’s not usually so bad in and of itself;

however, when the artist has, say, 20

heads to do and each of them needs to be

scanned and brought down, it introduces

all kinds of new problems. The optimiza-

tion of several meshes, if using automatic

methods, usually will vary dramatically.

Vertex counts, weights, and bone influ-

ence between the models are different

enough that the artist has to start the

weighting process over and over again

from scratch.

Luckily, the EM software contains a

very nice morphing feature, which

allows the user to morph from a source

object (for example, an optimized,

usable in-game head) to a target object

(for example, a dense, scanned head).

Surface topology is very well maintained

within the user-set constraints, and

upon import back into a 3D software

package, the artist finds that the method

used to optimize the original model is

well applied to the morphed version of

that model. Because the morph targeting

is based upon point-cloud selections,

there is less worry about the morphing

being generic. This process is fairly

painless and can significantly ease the

burden of creating a large number of

similar models from scanned data of

very different subjects.

I highly recommend this software along

with its associated sibling software and

hardware for quickly and accurately pro-

ducing usable scanned organic data. It

takes some getting used to, and it’s diffi-

cult to just dive right in and work as you

always have. Once it’s learned, however, I

think that any artist will find that it is an

efficient way of digitally capturing and

processing many real-world objects into a

game development workflow.

Digital Anarchy’s
Texture Anarchy

by mark peasley

T exture Anarchy is a new series of fil-

ter plug-ins available for Photoshop.

The set consists of three plug-ins that give

the user the ability to create very sophisti-

cated procedural textures directly on a

Photoshop layer. A procedural texture is

one based upon mathematical algorithms

rather than real-world images, and can be

used to mimic some of the patterns found

in nature.

Once installed, the new plug-ins are

available through the filters dialogue.

They show up as Texture Anarchy

Explorer, Tiling Texture Anarchy, and

Edge Anarchy. All three tie into the same

basic procedural texture generator,

although each gives the user a different

set of controls and functionality.

Texture Anarchy Explorer allows the

user to create textures from a large selec-

tion of presets, randomly generate new

textures using the mutation sliders, or

control the creation “recipe” of a new

texture from scratch. Tiling Texture

Anarchy is almost identical to the

Explorer but allows for the creation of

perfectly repeating or tiled textures. The

final plug-in, Edge Anarchy, is all about

creating ornamental or distressed edge

effects for images and text.

The plug-ins have rooms or levels,

with each successive room having more

in-depth control over the creation and

blending of the texture. The first room

that users see after opening up the

Explorer or Tiling plug-in has basic edit-

ing controls such as blend type, opacity,

and bump percentage for a given texture.

In addition, one can control the size,

rotation, pan, and on/off component of a

given texture in the three main areas of

color, alpha, and bump. For those who

just want to experiment, there are a

series of buttons that allow the user to

randomize or “mutate” all of the ele-

ments that make up a texture. Through

the main menu controls at the top of the

screen, the user can access preferences,

presets, specific output channels, and

even a built-in screen saver which cycles

different textures onto the screen.

The layer editor, accessed by clicking on

a texture in the color or bump slot, allows

one to alter how a texture composites

with other textures, colors, and masks. By

double-clicking on a texture in the layer

editor, users are taken to the deep noise

editor. From here, one can select from 38

different noise types that are the founda-

tion of the textures, as well as alter the

opacity, blend type, and color gradients.

Tiling Texture Anarchy looks and be-

haves almost identically to the Explorer

except it outputs perfectly tiled textures.

By creating a Photoshop pattern from the

resulting file, any sized area can be filled

with the seamless texture.

Edge Anarchy allows for the creation of

decorative or distressed edge effects on

images or text. A word of caution — the

render mode needs to be set to “fast” or

“normal” for optimal use. Setting it to

“high quality” can easily lead to out-of-

memory system errors on even medium-

resolution images, although Digital

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 9

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

STATS
Inspeck
Montreal, Quebec
514.284.1101
www.inspeck.com

PRICE
$3,500 (sold with digitizer)

SYSTEM REQUIREMENTS
Windows 2000/XP, Intel Pentium III
800MHz or higher, 512MB RAM, 3D
accelerator.

PROS
1. Accurate organic models.
2. Adept at reproducing hair.
3. Simultaneous model/texture generation.

CONS
1. Clunky interface.
2. Tutorials need work.
3. Some stability issues.

INSPECK EM XXXX

Anarchy says that setting is for use with low-resolution images.

Overall, Texture Anarchy is a reasonably well-designed set

of plug-ins. Pros include unlimited texture combinations,

affordability, relatively short ramp-up time, and a thorough

manual. Downsides are that the UI layout and functionality is

sometimes unintuitive, the high demands Edge Anarchy places

on RAM, and the somewhat limited use of procedurally gen-

erated textures in game development. Available on Mac or PC

at $149, Texture Anarchy is a solid addition to your Photo-

shop plug-in arsenal.

XXXX | Texture Anarchy
Digital Anarchy

www.digitalanarchy.com

Mark creates racing games at Microsoft Game Studios.

The OpenGL Extensions Guide
by Eric Lengyel

reviewed by jeremy jessup

I n The OpenGL Extensions Guide, Eric Lengyel discusses spe-

cific extensions relevant to game development. The book

spans 19 chapters totaling 670 pages and retails for $59.

Extensions define new tokens and/or functions to serve as an

interface to specific hardware features. While they allow for the

OpenGL standard to utilize cutting-edge advances in technology,

the use of extensions compromises the cross-platform operability

until the extension is promoted to a core feature of the library.

In the first chapter, Lengyel describes how to query a par-

ticular OpenGL implementation for the existence of a given

extension on Windows and Apple computers, covering 79 of

the 338 officially recognized OpenGL extensions. The subset

selected for the book is appropriate for the target audience,

with many of the Unix workstation (SGI, HP) extensions

omitted in favor of PC/Mac functions — in particular those

created by Nvidia, which account for a third of the total.

Each extension is approached in a systematic and consistent

manner beginning with a table summarizing the OpenGL ver-

sion, dependencies, promotions, and related extensions. Then, the

extension is concisely discussed and followed by a description of

each new set of tokens or functions. The reader should have a

working knowledge of OpenGL and the graphics pipeline. Un-

fortunately, there are no examples or sample code.

While every official extension is documented on the OpenGL

web site, that information is very minimal. Lengyel does an

excellent job providing a broader view of the reason and usage

of an extension by presenting the functional information in a

clear and concise manner. There is some overlap, but Lengyel’s

book is actually more accessible for the OpenGL developer than

the OpenGL web site.

The last two chapters are the most exhaustive, each spanning

over 100 pages. Here, Lengyel describes the vertex and pixel

shader language in OpenGL. He also covers the grammar, syn-

tax, constraints, registers, and sub-instructions of the Archi-

tecture Review Board and Nvidia vertex program extensions.

It would have been helpful to have a hypertext version of the

book to ease cross-referencing various symbols. Also, the lack of

example code or any experience-based guidance makes it inap-

propriate for beginners, as you cannot learn OpenGL from the

book. Despite these shortcomings, the book does provide a valu-

able reference of many of the key graphical extensions for the

OpenGL developer. For those developers frequently using

OpenGL extensions, this is a great desktop reference that brings

together scattered information in a clear manner. q

XXXX | The OpenGL Extensions Guide
Charles River Media

www.charlesriver.com

Jeremy is a programmer for Rockstar San Diego.

XP R O D U C T R E V I E W S

Images produced with Texture Anarchy.

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r10

S higeki Yamashiro is in a unique

position in the game industry.

Having learned the art of game

development from none other

than Shigeru Miyamoto, he now

applies that knowledge as president and pro-

ducer for Redmond-based Nintendo Software

Technology (NST). He started 15 years ago at

Kyoto-based Nintendo Co. Ltd. (NCL) work-

ing for Miyamoto on F-Zero, and was also

involved with Donkey Kong Country, Pilot
Wings 64, and Ken Griffey Jr. Baseball.

After moving over to NST, he produced Wave
Race: Blue Storm and 1080°: Avalanche.

Running NST gives Yamashiro access to

diverse resources. In the middle of a project,

he can request NCL to give comments on the

latest build, and Miyamoto and his producers

give him rapid feedback. Furthermore, he has access to

Nintendo of America’s (NOA) U.S. market information and

their evaluation and testing team. On top of that, the roster of

game developers at NST sounds like the United Nations of

game design, with Nigerian-born, Spanish-raised lead designer

Vivek Melwani and a team from all over Europe. Yet the team

wasn’t assembled just for diversity’s sake — according to

Yamashiro, “this is the natural result of bringing the right

people together.”

Still, we were curious how Yamashiro faces the challenges of

integrating such a team while applying the craft, so we asked

him to share a few details about his methods.

Game Developer: What lessons did you learn working with Shige-
ru Miyamoto that you found repeatedly applicable down the road?

Shigeki Yamashiro: I had an opportunity to work with Mr.

Miyamoto for seven years at NCL. I learned a lot from him,

but one example I can give you is that you always need to

maintain the player’s perspective. Is it easy enough to under-

stand? Fun to control? Interesting enough to buy? These types

of questions should not only be asked but should be part of the

overall project goal.

GD: What processes did Miyamoto teach you to maintain the
player’s perspective?

SY: Frequent playtesting is a basic requirement that Mr.

Miyamoto expects from all game designers who work with

him. While the game designer is building the game design, you

need to review your design from the player’s point of view. Of

course during the later stages of game development, when your

game is playable, you can ask someone to play your game while

you watch from behind the player. Using this

technique you will see a lot of issues that

should be addressed.

GD: How would you compare game develop-
ment methods between NCL and NST?

SY: NCL has been developing games for

many years and, because of this, employees

there are very familiar with game development.

Here at NST, we are trying hard to perfect our

own unique method of game development —

using lessons from both Japan and here in the

U.S. Other differences come from cultural back-

ground, and that makes for hot discussions

about game design direction from a variety of

perspectives. But I don’t see any differences

regarding enthusiasm for making videogames.

GD: How do you integrate Nintendo’s and
international developers’ techniques?

SY: A typical western developer uses a design document and

makes a videogame by following that document. While mak-

ing 1080°: Avalanche we didn’t create a strict game design

document at the beginning. We had key concepts that we

wanted included in the game but many of the details and

design changes were implemented during the development

process. We need that flexibility because our primary focus is

on play control and interactivity for the player. For example,

implementing the feeling of speed or the rush of an avalanche

chasing you is easy to conceptualize, but it’s tough to write

into a document exactly how to achieve those sensations.

GD: What is the main advantage of developing in the U.S.?
SY: NST’s ultimate goal is making a videogame that appeals

to the international market. Pokémon is a worldwide success

because the style of play appeals to game fans of all nationali-

ties. Since NST is a new company, we are still working out the

formula for making games that are accepted worldwide. To

begin we decided to focus on the U.S. market, and once we

make a videogame that is successful with the U.S. audience, we

can step up and challenge our ability to entertain the world.

GD: To what extent will NST be involved in developing games for
the new Nintendo device reported to be released next year?

SY: At NST, we are always looking to find a new game

experience that people will love. I can’t tell you what we are

doing now, but don’t forget we were one of the initial devel-

opers for Nintendo Gamecube.

GD: What games are you playing now?
SY: Mario Kart: Double Dash!! and Animal Crossing e+

(Japanese version). q

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j a m i l m o l e d i n a

Game Designers Without Borders
Nintendo’s Shigeki Yamashiro on going global

Shigeki Yamashiro wants to make
games for everyone — literally.

D uring the autumn of 1994, I attended a small

conference in New Mexico called the USENIX

Symposium on Very High Level Languages. I

was in college at the time and also a member

of the contingent that thought “very high

level” meant features like closures and continuations. The con-

ference had been organized rather by folks who thought “very

high level” meant “language features that help you get a lot of

work done quickly.”

Among many things that happened that weekend, I had a

conversation with Larry Wall, the creator of the programming

language Perl, which had already proven to be quite popular.

During this discussion I suggested that Perl was icky because it

wasn’t very “orthogonal.”

In language design, orthogonality means a lack of redundan-

cy in the language’s feature set; there’s only one fundamental

way to accomplish any particular kind of task, so ideally you

achieve maximum expressive power with minimal linguistic

complexity. Among academic language designers, orthogonality

is one of the main sources of beauty in language design.

Wall took the position that orthogonality isn’t actually a

good idea. He explained, if you want to travel from point A to

point B in the example here (Figure 1), you’ll have to travel far-

ther if you can only move along the orthogonal grid lines (you

must travel the Manhattan distance); what you really want to

do here is move directly along the diagonal line between A and

B (and you must only travel the L2 distance).

Back then, I regarded this diagonality analogy as somewhat

ill-formed, an overzealous application of the term “orthogo-

nal.” But now, years of real-world experience later, I see that

Wall is right. Also, I am now more comfortable with mathemat-

ics, and I no longer think of the diagonality as an ill-fitting

metaphor. Rather, I think it’s a fairly accurate description, per-

haps even an isomorphism rather than an analogy. Nowadays

you can find references online to Wall’s philosophy, crediting

him for designing Perl to be a “diagonal language.”

Perl’s Doing Something Right

I f you’re fluent in Perl and working on a problem in Perl’s

domain (string and file processing), the language offers a

huge productivity boost above its competitors. Part of the rea-

son for this effectiveness is the diagonality principle. But it’s not

the only reason — some things can be attributed to the lan-

guage’s general high-levelness and the availability of many utili-

ty functions. Also, when programming in Perl, one tends to

adopt an attitude that software engineering and meditating on

structure are not so important to the task at hand. This allows

one to progress quickly toward a solution, unfettered by design

concerns. Though the latter effect is separate from the diagonal-

ity principle, I think diagonality encourages it.

Last month I discussed some of the frustrations we face with

regard to software development. As a thrust toward some kind

of solution, I’ve decided to make a new language, adopting

Perl’s diagonality principle but taking it in a different direction.

Whereas Perl originated in the system administration world, I

want my new language to be a tool specifically for writing

gameplay code, scripted events, and other manipulations of

objects in a world.

I’m whimsically naming my new language “Lerp” for two

reasons: the name is a permutation of “Perl,” and a common

abbreviation for “linearly interpolate.” Going back to our get-

from-A-to-B-on-a-grid example, Lerping from A to B gives you

the shortest-line path (assuming, ahem, that the space is linear).

Basic Design of Lerp

L erp is a fusion between the imperative style of a language

like C, and the declarative style of a language like Prolog.

When I read introductory books about Prolog, I am always

struck by how simple, intuitive, and powerful the language

seems, as long as I am still in the early chapters of the book. But

before long, say, around Chapter 3 or 4, Prolog suddenly gets

w w w . g d m a g . c o m 15

j o n a t h a n b l o wI N N E R P R O D U C T

Designing the Language
Lerp

J O N A T H A N B L O W | Jonathan
(jon@number-none.com) has been in New
York City for 10 days now and he still hasn’t
seen the Statue of Liberty.

FIGURE 1. An illustration of straight-line interpolation versus traveling
along orthogonal vectors to get from A to B, with e1 and e2 as the basis
vectors of the space. The green hypotenuse of the triangle is the short
path; the red sides of the triangle are the Manhattan path.

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

ugly. The reason is the orthogonality principle — Prolog has

some cool ideas about pattern matching, but then the language

designer had to go and try to build an entire Turing-complete

language out of those few ideas. As the old saying goes, “When

all you’ve got is a hammer, everything looks like a nail.” The

early intuitiveness of Prolog quickly falls prey to the weird

quasi-declarative semantics required to accomplish imperative-

style tasks.

I intend to make the pattern-matching part of Lerp more

intuitive. I’ll be using a beefed up version of last month’s simple

predicate logic system, integrated into the language in the same

way Perl uses regular expression matching: you have some

imperative code that goes along statement by statement; then

one of the statements happens to be written in a declarative

style, indicating a pattern-matching operation. The results of

that pattern match are subsequently available as variables in the

imperative code. Let’s say that I want to write a simple line of

Perl for extracting hours, minutes, and seconds. The input is a

variable called time, which is expected to contain a string for-

matted “HH:MM:SS” (where H, M, and S are digits). The =~ is a

pattern matching operator, and the sequence to the right of it is

a declarative description of how the string should be parsed.

So the code will look like this:

($hours, $minutes, $seconds) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

The regular expression facilities in Perl are responsible for a

significant chunk of Perl’s power. It’s my hope that the predi-

cate logic system can play a similar role in Lerp. Instead of pat-

tern matching on strings, I want to match patterns about facts

in the game world.

Integrating Pattern Matching

Iwant the pattern matching to integrate seamlessly into the

language design. I decided early on that a pattern-match

operation would return a data structure that could then be iter-

ated through, and made it a goal for the language to possess

powerful iteration capabilities.

Recall that last month I used parentheses and unquoted iden-

tifiers in order to designate a query: (sister ?x ?y). This query

was then matched against a database of fact or of inference

rules that were used to create facts.

Last month’s syntax was in keeping with a tradition for

implementing simple predicate logic interpreters in LISP-like

languages. But now that I want to embed pieces of predicate

logic in an imperative language, I find that I would rather use

parentheses for the traditional role of grouping imperative

expressions, and I’d like unquoted identifiers to indicate imper-

ative variables. So I adopted a new syntax where a query uses

square brackets, and predicate identifiers use a single quote:

[‘sister ?x ?y].

I could set up the language to use one global database to rep-

resent “the game world” but it seems best to provide the ability

to instantiate arbitrary databases. I will treat these databases

conceptually like C++ classes, and I will borrow the dot opera-

tor “.” to indicate a database query. Finally, I provide the

“each” keyword as a simple way of indicating an iteration, with

$_ being an implicit variable that gets assigned the value of each

iterated item, as in Perl. A simple program to print out all the

solutions of [‘sister ?x ?y] looks like Listing 1. It will print out

some results that look like this:

A solution is: [sister mark ann].

A solution is: [sister mark mary].

So far we can perform a query, but this doesn’t seem very

integrated or powerful; the situation just doesn’t have that Perl

magic to it yet. As the return value of that query operation, I

just got some tuples back. If I want to dig inside the tuples, I

will need to perform some extra operations to extract things.

This would be a bit tedious, and it seems like the most common

usage case (for example, I want to call a function, passing just

the values that match the query variable ?sis — the people who

are sisters of someone).

To make this situation nicer, I added some extra power to the

“each” iterator. If the list argument to “each” is a database query,

the parser inspects the query to find all the argument-matching

slots (like ?x and ?sis in Listing 1). Then it defines local impera-

tive variables, inside the body of the iteration, for each of those

slots. Now we’re really in the neighborhood of non-orthogonal

language constructs. The results help make things concise and

easy to read. See Listing 2, which generates output like this:

ann is a sister of mark.

mary is a sister of mark.

Further Features

O ften we want to perform queries on a relation that is

supposed to be one-to-one or one-to-zero. For example,

the carried_by relation (an entity can’t be carried by two peo-

ple — only by one or nobody). In this case it would be cum-

bersome to perform an iteration or to get the query result

back as a tuple, so I provide a special ?? variable that means,

“return the value of the item in this slot, not the whole

tuple.” Thus we can write this as follows: carried_by =

db.[‘carrying ?? item];

LIST ING 1 . QUERY, TUPLE RESULTS

proc show_sisters(Database db) {

results = db.[‘sister ?x ?sis];

each results {

print(“A solution is: “, $_, “.\n”);

}

}

LIST ING 2 . QUERY, NAMED RESULTS

each db.['sister ?x ?sis] {

print(sis, " is a sister of ", x, ".\n");

}

Then the value of carried_by will be either the guy who is car-

rying the item, or a null-like value if nobody is. (If multiple

matches are found for [‘carrying ?? item], an error is thrown.)

By giving an expression as the second argument of “each”

instead of a code block, we can make a new list out of the

query results, like this: results = each db.[‘sister mark ?sis] sis;

This makes a list containing each value of sis — much like

the LISP function mapcar. I also added the ability to “lift” an

iteration up through a function call. Assuming x is a variable

containing a list, I can say this: f(each x); And that is short-

hand for: each x f($_);

This is not a big gain so far, but it allows easy expression of

nested iterations. Suppose y and z are two more lists, then

f(each x, each y, each z); is shorthand for:

each x {

item_x = $_;

each y {

item_y = $_;

each z {

item_z = $_;

f(item_x, item_y, item_z);

}

}

}

except that in the shorthand version, it is assumed we don’t

care about the order in which the iterations happen.

Unified Data Structures

I now have this generalized database mechanism, but I don’t

yet have basic language support for traditional data struc-

tures (lists, trees, C++-style classes full of named slots, and the

like). Rather than build those data structures as separate lan-

guage subsystems, I chose to unify data handling within the

language and use the database model for everything. This helps

to ensure that we can leverage the expressive power of the pat-

tern matching on all of the frequently used language constructs.

Hash table functionality, or the ability to store values index-

ed by arbitrary keys, is already embodied by the semantics of

the database. Linked lists can be expressed within a database

pretty simply, as can arrays, so I won’t dwell on those. Once we

have C++-style classes (coming in a few paragraphs), you could

choose to build lists out of those as well.

In general, though, I doubt that structures like lists and

trees will be used very often in Lerp. Usually when we imple-

ment these data structures in other languages, we’re partici-

pating in a mentality of computation scarcity. We use lists

because appending to them is fast, and removing an object

out of the middle can be fast if the list is designed for it. Or

we use trees so that we can quickly maintain a sorted collec-

tion of objects, which remains sorted as the collection is mod-

ified. We’re only maintaining a sorted collection because we

don’t want to re-sort all the objects when it’s time to use them

(since that would take CPU cycles).

This CPU-scarcity attitude costs us a huge amount in terms of

software complexity. Whenever it’s possible not to treat compu-

tation as scarce, we can achieve much simpler, more powerful

programs. These days, that’s possible in an increasing number of

contexts, because computers are so fast, and large portions of

our programs are not speed-sensitive. That’s the area I’m aiming

for with Lerp. If you want to try to engineer a Lerp program to

use minimal amounts of CPU, you can do that, but the language

isn’t designed to make it a primary concern.

Struct Something

C ++ gives us the ability to define classes with named slots; I

wanted a similar capability in Lerp. I decided to use the C

“struct” keyword and to implement classes as databases. A def-

inition that looks like this:

struct Something {

Integer x = 0;

Integer y = 1;

String z = “Hello, Sailor!”;

};

turns into a database with the following entries:

[_member x Integer 0]

[_member y Integer 1]

[_member z String “Hello, Sailor!”]

You can use the dot operator to de-reference struct mem-

bers as lvalues or rvalues, and these are translated into the

appropriate database queries and assignments. For example,

“thing.x” is equivalent to “thing.[_member x ? ??]” (recall that a

pair of question marks indicates that we wish to return that

slot as the value of this expression; the single question mark

indicates a value that we don’t care about, without even both-

ering to name it). Under this scheme, we get introspection nat-

urally; to find out what members are declared on a class, you

can do this:

each thing.[‘_member ?name ?type ?value] { // Do something...

Sample Code and Next Month

S o far I have trotted out a bunch of language ideas. I’m not

doing this to convince you that this particular set of lan-

guage semantics is the greatest ever; rather, I want to provide

lots of concrete examples of diagonal language features for

games, sowing the field for discussion. Perhaps you think some

of these features should work differently, or that some of them

should be thrown out and replaced with entirely new ideas.

That’s good.

This month’s sample code (available at www.gdmag.com)

implements the features discussed in this article, and more. You

can play with the sample programs and see how they go. Next

month we’ll look at some even crazier high-level features —

note that we haven’t done anything special to accommodate

inference rules yet. q

w w w . g d m a g . c o m 17

A R T I S T ’ S V I E W s t e v e t h e o d o r e

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r18

S ubdivision surface tools are the big growth area in

modeling. In addition to increasing support from the

major vendors, this year has seen one stand-alone

subdivision modeler (Silo) released and another

(Modo) on the way. Subdivisions have largely

replaced NURBS as the medium of choice in film and visual-

effect applications. After all, what’s not to like? Combining the

smoothness of NURBS with the ease of free-form polygon model-

ing, subdivisions seem to offer the best of both worlds.

Unfortunately, information on how to work with subdivisions

is hard to find. This has more to do with the way subdivision

products have been grafted onto older technologies than with

the technology itself. A lot of the experienced subdivision mod-

elers cut their teeth on relatively obscure programs such as Mirai

or Wings3D; sometimes they appear to be speaking a dialect

that’s almost incomprehensible to artists with mainstream

NURBS or polygon modeling backgrounds. In this and future

columns, we’re going to take a look at subdivision modeling

fundamentals and try to clear up some of the confusion.

The algorithms for subdivision surfaces have been around

almost as long as those for NURBS, but the technology has

only gained prominence in the last five or six years. Pixar liber-

ated subdivisions from academic obscurity with the release of

Geri’s Game in 1997, which spotlighted a main character mod-

eled in subdivisions. Since then, subdivisions have rapidly

become the method of choice for organic character modeling.

NURBS remain more popular for mechanical and architectural

subjects, although this may have more to do with the compara-

tive maturity of NURBS tools and the misconceptions about

how to handle subdivisions than with subdivisions’ technologi-

cal limitations.

There are actually quite a few different algorithms for gener-

ating subdivision surfaces, including the poetic Butterfly

method and the Loop method (which has nothing to do with

looping, but was invented by someone named Loop). The most

popular is the Catmull-Clark method, developed in the late

1970s by Ed Catmull, when he was still a graduate student and

not yet president of Pixar. For the remainder of this discussion,

I’ll be describing Catmull-Clark subdivisions, since they are the

ones most game artists have seen and used.

The obvious advantage that subdivisions offer over NURBS is

in the construction of the control mesh. Because most packages

don’t allow you to render the control network of NURBS patch-

es, it’s easy to miss the fact that CVs and hulls are just the ver-

tices and edges of a quad poly mesh (see Figure 1). A NURBS

surface can only be built out of quads. That’s just what a

NURBS hull is, but it’s a mesh with severe restrictions. NURBS

have to be built out of a regular grid of quads. You can see this

quite clearly in the classic NURBS tools; bi-rails, extrusions, and

lofts are all different methods of generating four-sided shapes.

Even a NURBS sphere (or any revolved surface, for that matter)

is actually made from a four-sided patch — it’s just that its top

and bottom edges are scaled down to zero length, as can be

plainly seen in the texture maps on the sphere in Figure 1. The

quad patch restriction means complex forms have to be built out

of a network of separate patches. Unfortunately, the surface is

continuous (that is, smooth) only within patches. If two adjacent

NURBS surfaces aren’t aligned properly, cracks or creases occur.

In the last few years, tools like Maya’s Global Stitch or XSI’s

Continuity Manager have made it somewhat easier to manage

continuity between adjacent patches; nevertheless, the task is

still, to put it mildly (this is a family magazine), an impediment

to the natural flow of artistic genius.

Subdivisions, on the other hand, can handle any arbitrary

control mesh. Well, almost any — subdivision meshes have to be

manifold, meaning an edge can be shared by only two adjacent

faces. This isn’t much of a limitation, although, in some pack-

ages, trying to perform a subdivision on a non-manifold mesh

will simply reboot your machine. (If you 3D tools folks are

reading this, in future releases, a simple warning dialog will be

just fine, thanks.) The freeform control mesh is the reason most

packages lump subdivision and polygon modeling tools together

— tools for adding edges, deleting vertices, and so forth are

already part of the standard polygon toolbox. Under the hood,

Subdivide and Conquer

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer and
then moved on to work on games such as
Half-Life and Counter-Strike. He can
be reached at steve@theodox.com.

FIGURE 1. The control hull of a NURBS surface is really a quad mesh.

though, the creation of the smooth surface, whether by NURBS

or subdivisions, is accomplished by recursively subdividing and

smoothing the control mesh. In theory, this goes on infinitely,

until the result is a theoretically perfect “limit surface.” In prac-

tice, the subdivision will stop when the user (or the renderer)

decides there are enough polygons and calls it quits.

Not All Splines Are Created Equal

So, are subdivisions just NURBS with a freeform control

mesh? Not exactly. The difference lies in the math that han-

dles the subdividing and smoothing processes. The difference

between NURBS and subdivisions is the difference between non-

uniform rational B-splines (which is where the acronym NURBS

comes from) and uniform bi-cubic B-splines (maybe we should

call them UBBS?). This sounds more difficult to understand than

it really is. In Figure 2, we have a NURBS curve and a uniform

bi-cubic B-spline curve, both generated by subdividing and

smoothing the line segments connecting the control points. In

both cases, any given point on the curve is affected by four con-

trol points. But as you can see, identical control meshes don’t

produce identical curves. We’ll gloss over the mathematical rea-

sons; for our purposes, we can put the difference as follows: in a

NURBS curve, the influences of the control points are re-weight-

ed, effectively making the curve stiffer (as you can see clearly in

the illustration). NURBS curves are “normalized” and “rational-

ized” so they can be used to represent mathematically exact cir-

cles and ellipses; subdivision B-splines, however, always have a

tiny fudge factor when trying to reproduce perfect shapes. For

some CAD modelers and engineers, this difference may be criti-

cal, but for game applications, the imprecision of subdivisions is

a small price to pay for greater freedom.

The difference between the two types of splines often

unnerves NURBS veterans when they experiment with subdivi-

sion models. While the mechanism of pushing control points

around is the same, the results of a given control input are dif-

ferent — and different in a squishy, nonlinear way that can be

irritating, without being obvious enough to spot if you don’t

know what to look for. Moreover, because subdivisions are

“bendier,” some kinds of modeling become harder. In particular

it gets harder to lock down the tangents on a subdivision sur-

face, thus compound curves, fillets, and other mechanical

shapes modeled with subdivisions often seem to lack the crisp-

ness associated with NURBS models. This isn’t to say subdivi-

sions aren’t capable of representing non-organic models, but it

does suggest a lot of modelers who’ve moved on to subdivisions

have to watch out for vestigial NURBS instincts, which are just

a bit out of step with the technology.

Extraordinary Points

Now, we just finished explaining that subdivisions don’t

have to be quad patches, right? Absolutely — you can

throw a mesh made of any combination of N-gons at the subdi-

vision algorithm and you’ll get a smooth surface. However,

there’s smooth, and then there’s smooth; if you want smooth,

you have to understand a little about how the subdivision algo-

rithm works. The first thing to know is the subdivided mesh is

all quads, regardless of the topology of the original faces in the

control mesh. So the triangles and N-gons will be homogenized

down to quads once the subdivision begins. However, any ver-

tex in the control mesh that sits at the intersection of more or

fewer than four faces will still show up in the subdivided mesh

with the same number of neighbors (because the subdivision

happens exclusively inside the faces). Also, any N-gon that gets

turned into quads will end up with a point at its center that has

w w w . g d m a g . c o m 19

FIGURE 2. A NURBS spline (red) and a uniform bi-cubic spline (blue)
with the same control hull (yellow) produce similar curves.

FIGURE 3. N-gons are turned into quads by subdivision, but the mid-
point of an N-gon leaves an extraordinary point, with its shading glitch.

N neighbors (Figure 3). Since the smoothing algorithm assumes

quads (after all, at every recursion other than the first, it’s only

working on quads), it knows how to build four-way intersec-

tions with absolutely correct normals. However the normals at

the intersection of more or fewer than four quads will be slight-

ly off, meaning there will be a minor shading artifact on each

non-four-way intersection and in the center of each N-gon.

Avoiding these oddball vertices (mathematicians diplomati-

cally refer to them as “extraordinary points” or “poles”) is a

fetish in subdivision modeling. Some modelers argue that you

should build your mesh entirely out of quads to avoid the

extraordinary points, which will crop up in the middle of N-

gon faces. In practice, though, this isn’t always worth worrying

about, since the error is going to scale down as the surrounding

polygons get smaller with each subdivision. Moreover, in games

we’re so used to crappy Gouraud shading that it’s unlikely a

small normal error in a 3,000-polygon character mesh will

attract much attention. On the other hand, if you are creating a

100,000-polygon shiny marble vase with lots of traveling spec-

ular highlights for a movie, you’ll want to be sure the extraor-

dinary points aren’t positioned in prominent places.

Edge Loops

T he real problem with poles isn’t that they create shading

artifacts — it’s that they can change the behavior of the

surface under the control mesh. If you follow discussions of

subdivision modeling on the web, you’ll probably notice that

the term “edge loops” gets tossed around a lot (often with little

or no explanation as to what it means). The simplest definition

for an edge loop is a series of continuous edges that pass direct-

ly through four-way intersections in the control mesh. Edge

loops are important for a simple reason: a series of edges that

meets the definition of an edge loop is also the control hull of

one of those B-splines we discussed earlier. Edge loops termi-

nate at non-four-way intersections or the edge of a mesh (or

they meet up with themselves and become “loops” for real).

The four-way intersections are important because any other

kind of intersection offers no automatic way to choose which

edges continue the spline. The angle at which the edge loop

passes through the vertex doesn’t matter, so a T-intersection

with incoming edges that look like a straight line ends an edge

loop as completely as a five-way intersection that looks like a

broken windshield (Figure 4).

Because edge loops generate splines, the surface under a

series of edge loops is guaranteed to flow smoothly. But, as you

know from NURBS modeling, the endpoints of splines (NURBS

as well as subdivision B-splines) behave differently from mid-

points. Thus the surface under a pole vertex will have some

kind of deformity in it. You can see the effect very clearly in the

view shown in Figure 5. Since extraordinary points are influ-

enced by all of their incoming splines, they won’t show up as

sharp corners or points but merely as imperfections. However,

if you leave an extraordinary point on a contour that’s sup-

posed to be smooth, you’ll get an unsightly bulge or ding.

Moreover, while the surface flow under edge loops is typically

parallel to the edges in the controls, cusps are displaced in the

direction of the center of all the connected vertices (Figure 4

again). In low-resolution meshes, this causes shading artifacts

by disturbing the grain of the final mesh.

Does this mean you should never allow extraordinary points

into your mesh? There are certainly folks on the web who

advocate that, but in practice, that’s impossible. In fact, you

need pole points to terminate edge loops in places where you

don’t want clear continuity. Even more important, it’s impossi-

ble to get from areas of high detail (say, the face) to areas of

low detail (the back of the head) without creating poles. Gener-

ally speaking, you can hide poles either inside creases or in

areas of low curvature with relatively little chance of being

spotted. The only definite rule is not to place a pole along a

contour that will be visible in profile.

Coming Up

T hat’s pretty much it for the basic vocabulary of subdivi-

sion modeling. We’ll return to the “grammar” of subdivi-

sions in a couple of months, with some specific rules for

quadding meshes, managing details, and integrating NURBS

tools into subdivision modeling. Next month we’ll clean the

palate with some character rigging. q

A R T I S T ’ S V I E W

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r20

FIGURE 4. Vertices with more or fewer than four incoming edges termi-
nate edge loops. Compare the smooth splines in the right image with
the cusps created by the extraordinary points in the left image.

FIGURE 5. Adding edges to create an extraordinary point in the example
at right interrupts the original smooth contour. Vertex positions are the
same in both images.

K andinsky had it, as did

Scriabin and Messian. For

Tetsuya Mizuguchi, it

provided the concept

behind the game Rez,
while Jeff Minter’s 20 years of experi-

mentation with the idea sees him now

working on Unity. Its existence may be

controversial and the spelling difficult,

but synaesthesia is a concept capable of

providing a fertile ground of inspiration

for game designers.

Synaesthesia is defined as cross-modal

perception, the ability to interpret one

sensory input by another. It is most com-

monly understood as visualizing sound,

particularly in terms of abstract shapes

and colors, although it can refer to the

interpretation of any one sense by another.

Unfortunately, the very evidence that

suggests the condition actually exists also

indicates that it is entirely specific to the

person. John Harrison’s fascinating book

Synaesthesia: The Strangest Thing
(Oxford University Press, 2001) provides

compelling evidence that some people do

indeed see specific colors when looking

at words or listening to sounds, but each

synaesthetic responds in quite different

ways. But this column is about game

audio, so how can synaesthesia be rele-

vant for a broader audience?

Applied theory. As a digital medium,

one of the unique aspects of games is

that all content is stored in exactly the

same way, as binary data. Only when the

data needs to be displayed is it then

interpreted back into a meaningful form,

in the case of sound by passing it

through an A/D converter. If synaesthesia

in its truest sense is too specific to the

individual to be practically applicable,

much can still be learned from the con-

cept through the creation of synaesthetic-

like effects by building links between dif-

ferent sets of game data.

There are some very good instances of

these ideas being put into practice. United

Game Artists’ Rez may not have gotten

the recognition it deserves, but the level

of consideration given to the combined

effect of sound and imagery is impressive.

During development, the graphics and

sounds were created alongside each other,

a rare ideal that helped to create an

unusually cohesive game. Nana On-Sha’s

Vib Ribbon pushed this idea one stage

further by using the music to help gener-

ate the game world, with the amplitude

of the music tracks affecting the way in

which the landscape is generated.

Going mainstream. There will always be

more potential in creating closer integra-

tion between sound and graphics in

games that place unusual emphasis on

the audio, but the synaesthetic approach

can have wider application.

In games that aren’t aiming for film-

style realism, the music could be con-

trolled by the physics of the environment.

Abstract games such as Super Monkey
Ball could, like Rez, use the achieve-

ment of targets as a way to initiate new

musical elements. On simpler levels

where the task is straightforward, the

music may consist mostly of backing

tracks, while on more complex levels,

where there may be a series of goals to

achieve, each goal may trigger or alter a

music line.

For games that use physics as an inte-

gral part of the environment, certain val-

ues from the physics engine could be

passed to the music engine, making

changes in the sound design. In a dark,

Doom-style game, bumping into a metal

chain hanging from the ceiling could play

a sinister chord, the pitch of which lowers

in direct relation to the chain swinging.

Messian had visions of color when

hearing sounds, while Kandinsky “heard”

sound from his pictures. Similarly sound

can be data driven, or more rarely, as in

the case of Vib Ribbon, data may instead

be sound driven.

Personalizing explosions. To take the

example of an FPS such as Medal of
Honor, a grenade explodes, triggering

an explode animation while simultane-

ously playing one of a number of

grenade explosion sounds. Another view

might be to first randomly choose the

sound when an explosion routine is

called, then model the particle animation

of the explosion on the sound parame-

ters. The amplitude or frequency content

of the sound could be linked to the ani-

mation properties, still allowing for some

random features, creating an effect with

a high degree of integration.

Synaesthetic-like ideas see the audio as

much from a design perspective as an aes-

thetic one. Rather than treating the sound

design as an extraneous element that sits

on top of the game, the ideal for interac-

tive media can be to have the audio as

closely and deeply integrated into the

game as possible, its creation arising out

of close collaboration between the design-

er of the game, the programmers, and the

sound designers. q

P A U L W E I R | When Paul’s not off tripping the light fantastic, he
runs the sound design company Earcom (www.earcom.net). Recent
games include Ghost Master, Rogue Ops, Freestyle Metal X
and Warrior Kings: Battles.

Color Sound
Synaesthesia in Games

p a u l w e i rS O U N D P R I N C I P L E S

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r22

Modeling particle animation to sound can cre-
ate highly integrated effects for games like
MEDAL OF HONOR: RISING SUN.

T his is my third food-related

column in a row — and the

last for some time (I have

to stop writing while I’m

hungry). But before I move

on, I’d like to share some similarities

between game design and cooking.

One of the interesting qualities of

game design is that it’s a rare discipline

that combines the logical reasoning of

the left brain with the intuitive and

artistic sensibilities of the right. On the

one hand are the logical and scientific

elements of programming, math, and

physics; on the other hand are

the aesthetic and softer qualities

of art, music, and social interac-

tion.

Architecture is another one of

these disciplines, involving both

science and art. Accordingly, A
Pattern Language (Oxford

University Press, 1977) by

Christopher Alexander, an

insightful book on architectural

planning and building based on natural

considerations, has captivated many

designers and programmers.

Cooking and game development share

some interesting parallels. Consider a

recipe as the analogy for a game design

document. Both are essentially instruc-

tions for creating a product. Both

describe ingredients and how they are

put together. Both require a mix of sys-

tematic steps and improvisation. And the

measure of success is subjective — one

person’s delicacy is another’s disaster.

My interest was piqued when I real-

ized that the 400 Project rules I write

about here are in many ways similar to

cooking techniques. For example, one

recent rule was “Provide a Single

Consistent Vision.” This applies well to

cooking — the culinary version is “Too

Many Cooks Spoil the Broth.” In a

great restaurant, you often find a whole

army of people contributing to the

preparation of delightful meals, not

unlike what happens in well-run game

companies or successful movie studios.

Cooks also gain experience in special

techniques like swiftly whisking oil into

egg yolks to form mayonnaise, which

applies specifically to certain other

sauces (emulsions to left-brained chemi-

cally inclined chefs). This has parallels

to some of the 400 rules that also apply

only to distinct subsets of games.

Cooking up a hit. What is the practical

value of the analogy? It can help explain

some design issues to those unfamiliar

with game development. Sometimes

when a recipe turns out to be impracti-

cal, you just have to throw it out and

start all over (no amount of tinkering

will make that fallen soufflé rise). That’s

a useful example many successful games

have followed (and some disastrous

ones have ignored). I recently heard Will

Wright say he threw out the interface

for The Sims and started fresh 10 times.

And Sid Meier tried three different

recipes for a dinosaur game before

deciding it just wasn’t fun.

Also, one should be careful about

applying a feature to a game just

because it was fun in another. Lots of

people love chocolate for dessert, but it

doesn’t belong in beef stew. A great FPS

level design technique may not suit an

educational strategy game, but, as with

cooking, it can pay off to experiment by

trying different fusion styles, applying

French techniques to Asian ingredients,

for example. When war-game techniques

were crossbred with SimCity-style

building, a whole new genre of RTS

games took off.

From the mailbox. Finally, a little read-

er e-mail. Apropos to my “Too Many

Cooks” comment, Gregor Koomey of

The Crazy Factory points out the inter-

esting interplay between having one sin-

gle vision and getting input from many

sources. It’s certainly true that many

great games reflect both a single vision

and the incorporation of creative input

from many people.

I’ve also had some interesting

exchanges with Aubrey

Hesselgren about the issue of

fairness. Like consistency, it is

an essential ingredient in many

games but can ruin them if over-

done (like using too much salt in

your meals). One can be fair or

unfair to the player in many

ways. Should a game’s AI use

only the information available to

a human opponent, or should it cheat

by using hidden information? It would

seem fair to avoid cheating, but it is

hard to construct AI that even

approaches human intelligence in limit-

ed settings, so it may be much more

enjoyable for the player to face a chal-

lenging opponent. This can be done by

judiciously giving the AI some hidden

information, or letting it take advantage

of instantaneous computer-driven reflex-

es, and then adding some random fac-

tors for disguise.

If the game’s AI is made more enjoy-

able by being objectively unfair to the

player, does the overall game become

subjectively more enjoyable? There are

some interesting rules and trumping

information to consider. q

Food for Thought

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 23-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at noah@theinspiracy.com.

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r24

B E T T E R B Y D E S I G N

The measure of success for
a game or a meal is sub-

jective — one person’s del-
icacy is another’s disaster.

F R O N T L I N E A W A R D S

Ill
us

tr
at

io
n

by
 J

as
on

 H
ow

ar
d

St
at

ts

26 j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 27

F or Game Developer’s 2003 Front Line

Awards, the editors and judges must

have discovered the universal question

of life, the universe, and everthing in the

pursuit of the ultimate hardware and software

tools for game development, for we came up

with exactly 42 finalists in our Programming,

Art, Audio, Hardware, and Game Components

categories.

These finalists were culled from nomina-

tions from the public and our judges, and all

of them had to have been released between

September 1, 2002, and August 31, 2003.

These 42 represent those tools that our judges

deemed the best, most innovative, or most use-

ful products to their roles in the process of

developing videogames over that period. Even

though this marks the sixth annual FLAs,

there will be no resting for the seventh, and

we’re already starting to note the likely nomi-

nations for next year.

The 10 ultimate winners from that pool sur-

vived hands-on testing by our judges and

earned consistently high marks on the ballots,

which had separate scores for innovation,

interface, ease of use, cost, and utility/

integration.

In addition to these winners, Adobe Photo-

shop garners a long-overdue recognition as this

year’s Hall of Fame recipient. The Hall of

Fame Award honors a product at least five

years old which has proved itself indispensable

to the craft of game development.

We owe immense kudos to our panel of

judges, without whom we could not have put

these awards together at all. They are:

Programming: Ralph Barbagallo (Flarb

Development), Chris Corry (LucasArts), Jamie

Fristrom (Treyarch), Shawn Green (Gearbox

Software), Miguel Goncalves (Electronic Arts),

Spencer Lindsay (Rockstar San Diego), Justin

Lloyd (independent), Dani Sanchez-Crespo

(Novarama), and Andi Smithers (Pipedreams

Interactive).

Art: Tom Carroll (Rockstar San Diego), Mike

Crossmire (Mythic Entertainment), Michael

Dean (Ion Storm), Miguel Goncalves, and Sean

Wagstaff (independent).

Audio: Aaron Marks (On Your Mark Music),

Chuck Carr (Sony Computer Entertainment

America; recused from judging Scream and

Xact), Gene Porfido (Smilin’ Pig Productions),

Tom Hays (Treyarch), Todd Fay (G.A.N.G.

and Tommy Tallarico Studios; recused from

judging The SFX Kit), and Tommy Tallarico

(Tommy Tallarico Studios; recused from judg-

ing The SFX Kit).

Game Components: Eric Dybsand (Glacier Edge

Technology), Clinton Keith (Sammy Studios),

Justin Lloyd, James Loe (Gas Powered Games),

Albert Mack (Totally Games), William Mitchell

(Imperium Games), Cary Mednick (Midway

Games), and Jez Sherlock (Vicarious Visions).

Hardware and Hall of Fame: These awards were

balloted by judges across all the categories.

— Peter Sheerin

F R O N T L I N E A W A R D S

PHOTOSHOP

Photoshop has long been the flagship 2D texture creator and editor

for game developers everywhere. While there are alternative

image-editing packages, none can offer the ease-of-use and power that

Photoshop has maintained since the advent of user-friendly graphics

applications.

Though Photoshop doesn’t possess the interface customization

capabilities of some of its competitors, the interface has been evolving

since its initial release, and the years of user feedback and ultimate

familiarity with that interface make it simple to ignore some of the

small interface hurdles.

Photoshop’s greatest strength lies in the fact that there is no one

right way to do a task. The depth of the package is so complete that

achieving an objective can be accomplished equally well using a variety

of methods. These different methods allow for artists of different mind-

sets to pick and choose the path that works the way their mind works

best.

Another of Photoshop’s strengths is the layering system. Image lay-

ers are handled better in Photoshop than they are in any other image

editor. They are intuitive and don’t require abstract thought to use them

effectively (for example, every brush and every tool responds the same

in a layer as it does on a background).

The coup de grâce is the fact that Photoshop is widely considered

the industry-standard image-editing software; therefore a huge num-

ber of companies create plug-ins to handle almost any task that lends

itself to automation. Though they can be expensive, many are free, and

a huge number of them are quite useful. If there’s a 2D imaging task

that an artist needs to pound out quickly, Photoshop is always the first

package that comes to mind.

— Michael Dean

Adobe
www.adobe.com

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r

hall
of

fame

29

MAYA 5.0

Maya 5.0 is a powerhouse 3D application with
breadth and depth to cover any 3D project's

needs. The newly integrated Mental Ray adds
outstanding photorealistic rendering capabilities,
while new and improved polygon and subdivision
surface tools make game modeling much faster
and easier. Still, Maya's real ace in the hole is its
amazing MEL scripting language, which lets you
completely customize the program and quickly
write tools to provide just about any functionality
you can dream up. Maya's fast, customizable,
artist-friendly interface is also an important rea-
son to choose this program, and its new lower
cost doesn't hurt either.

— Sean Wagstaff

Singular Inversions
www.facegen.com

ZBRUSH 1.5

ZBrush was another wonderful surprise. I was taken aback by
the depth and robustness of this package. I was expecting a

simple utility but was rewarded instead with a program that nearly
has enough features to compete with the big boys. I feel absolutely
confident that I could do many organic models with it easier than
with Max or Maya.

In addition to its rich feature-set and standards compatibility, it
is also a low-profile application that doesn’t tax your system for
resources needed by other programs. With a bit more tuning,
ZBrush can one day compete head-to-head with the industry-lead-
ing content-creation tools.

— Michael Dean

Pixologic
www.zbrush.com

Softimage|XSI 3.5 — Softimage; Motionbuilder 4 — Kaydara; Kaldera for 3DS Max — Mankua; Brazil
Rendering System 1.2 — Splutterfish; Npower Booleans for 3DS Max — Npower Software; Voiceworks 3.1
for Maya 5.0 — Puppetworks; Speedtree RT 1.5 — Interactive Data Visualization

FINALISTS

w w w . g d m a g . c o m

Alias
www.alias.com

FACEGEN MODELLER 3.0

FaceGen Modeller was a great surprise. The software
does one thing, but it does it very well and very cheaply.

Being able to generate reasonably accurate head models
from photos of real-life subjects for just a few dollars a pop
is something a lot of modelers have dreamed of for a long
time. The mesh also comes across with a clean surface
topology and UV coordinates in-place and ready to go. The
resulting model is very easily exported to your favorite 3D
package, and, because of the clean surface topology of the
model, it is a simple matter to bring the LOD of the model
down without losing many important details. Combine this
with a tiny learning curve and the ability to do almost limit-
less variations on a head model in-software, and the pack-
age holds high value.

— Sean Wagstaff

art

F R O N T L I N E A W A R D S

hardware

30 j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r

Havok
www.havok.com

Pixomatic — RAD Game Tools; Renderware Graphics 3.5 — Criterion Software;
Renderware AI 1.0 — Criterion Software; Butterfly Grid 1.6 — Butterfly.net; CRI Sofdec
— CRI Middleware

FINALISTS

game
components

HAVOK 2

We know that the games we develop are

becoming more complex in the game

world and code base, demanding more of our

available resources and time. Creating an in-

house, robust physics solution can consume a

lot of development bandwidth, leaving other

parts of the game to suffer. With the Havok

Physics SDK it’s possible for game developers to

conquer the next frontier being explored, physi-

cal simulation and reaction, to feed the insa-

tiable craving of game players everywhere.

Havok 2 is the most powerful, resilient, and flex-

ible physics middleware solution available to

today’s game developers.
— Justin Lloyd

Line 6
www.line6.com

Spacetraveler — 3Dconnexion; 01V96 — Yamaha; Noah EX — Creamware; Voiceworks
— TC Electronic; Area-51m — Alienware

FINALISTS

VARIAX

The Line 6 Variax is a highly innovative
musical instrument, modeling the

sound characteristics of several popular
and expensive acoustic and electric guitars,
sitar, and banjo — all with incredible believ-
ability. Game composers strive to create an
identity for themselves and demand the
highest-quality instruments and sounds
they can afford. The Variax accomplishes
both demands by putting a large variety of
fresh sounds right at their fingertips. This
product is easy to use and can instanta-
neously be integrated into a game studio
environment. It saves precious space and
hard-earned money and is an incredible
time saver, which ultimately inspires cre-
ativity rather than gets in the way.

— Aaron Marks

VISUAL ASSIST .NET 7.1

Asign of a good tool is one that if you disable it, you
can’t continue without it. Visual Assist falls distinctly

into this category. Within five minutes of disabling this
very useful GUI enhancement tool for Microsoft’s Visual
Studio .NET compiler, you’re aching for those helpful lit-
tle features, like full color syntax. Amazingly, although
Visual Studio is in its seventh incarnation, it still can be
radically improved by integrating Whole Tomato’s superb
utility. Auto-corrections are almost effortlessly modified,
while class browsers and context searching help navigate
rapidly around complex code bases. It’s also extremely
fast and doesn’t bog down the compiler or the IDE with
annoying refreshes. All in all, a very tight little tool.

— Andi Smithers

Whole Tomato
www.wholetomato.com

Visual Studio .NET 2003 — Microsoft; Perforce 2003.1 — Perforce Software; Alienbrain 6.0 — NXN; DirectX
9.0 & HLSL — Microsoft; BREW 2.1 — Qualcomm; MIDP 2.0 — Sun Microsystems; Developer’s Suite for
J2ME 2.0 — Nokia

FINALISTS

Xoreax Software
www.xoreax.com

OPENGL ES

Right now OpenGL ES is a piece of paper.
Soon, it will become a reality on mobile

devices of all types. Previously, 3D on mobile
devices (including phones) meant using differ-
ent proprietary 3D APIs and engines. In some
cases, these APIs were exclusive to the ven-
dor, making the owner of the API the sole
provider of 3D content for it. Those days are over with OpenGL ES, an OpenGL imple-
mentation for small devices. The OpenGL ES specification contains all the basic needs
for 3D game developers and is surprisingly flexible. Now it’s up to hardware OEMs to
implement it correctly.

— Ralph Barbagallo

31w w w . g d m a g . c o m

INCREDIBUILD 1.3

Xoreax IncrediBuild is the first developer application that
makes you wish your project were larger so that

IncrediBuild can work its magic even better. With the ability
to compile very large projects, projects larger than most
people have ever worked on, not in tens of minutes, not
even in a few minutes, but in just one or two minutes, this
package really does save time and more importantly
money. At the end of the project, when compile times using
the traditional build method have slowed your progress to a
crawl, you’ll be wondering how you ever lived without this
package in your development toolbox.

— Justin Lloyd

programming

Khronos Group
www.khronos.org

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r32

F R O N T L I N E A W A R D S

Sound Ideas/
Tommy Tallorico Studios
www.sound-ideas.com

Nuendo 2.0 — Steinberg; VSL Complete Orchestral Package, Pro Edition — ILIO Enter-
tainments; Scream 1.0 — Sony; Xact — Microsoft; Peak 4.0 — Bias; Digital Performer
4.1 — MOTU; Urban Atmospheres — Steinberg; Absynth 2.0 — Native Instruments

FINALISTS

audio
THE SFX KIT

The SFX Kit is without a doubt the most use-

ful audio product for the game community

released this year. Not only are the more than

20,000 samples stored in industry-standard

WAV format, but practically every professional-

grade sound effect can be used off-the-shelf,

plugged straight into a game. Whether these

highly creative sounds are used stock or as ele-

ments to make fresh, innovative sounds, this

library has everything discriminating game

sound designers or developers would need to

get the job done. This product gets an enthusi-

astic recommendation to anyone in the video-

game business serious about standing out from

the rest of the crowd.
— Aaron Marks

Minnetonka Audio Software
www.minnetonkaaudio.com

SURCODE FOR DOLBY PRO
LOGIC II

Take a complex and expensive hardware

encoding unit, turn it into a simple and inex-

pensive piece of software, and you have a win-

ner. Surcode for Dolby Pro Logic II will receive

nonstop use in any game studio. It is simple to

use, does the job flawlessly using existing equip-

ment, and takes what can generally be an awk-

ward task and really makes it an invisible part of

the process. In contrast to today’s mindset of

“the more complex, the better,” Surcode’s

refreshing simplicity makes it a pleasure to use.
— Aaron Marks

n i n i a n e w a n gC L O U D R E N D E R I N G

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r34

Y ou’re standing on rolling hills beneath a bril-

liant blue sky. You look up and see huge

spherical white blobs suspended a few thou-

sand feet in the air. What’s wrong with this

picture? Perhaps you could use a better cloud-

rendering system.

In videogames that simulate outdoor reality, realistic clouds

can be one of the most compelling aspects of the scene.

Clouds can also set the mood — dark thunderheads for an

ominous scene, light puffy clouds for a happy mood.

Michelangelo spent years perfecting the heavens on the ceiling

of the Sistine Chapel, but we need to render realistic clouds in

milliseconds. Fortunately, we have more advanced tools to

work with. This article describes the cloud modeling and ren-

dering system that ships with MICROSOFT FLIGHT SIMULATOR

2004: A CENTURY OF FLIGHT.

Clouds in the real world consist of many types, such as

altocumulus, stratus, and cumulonimbus, and cloud coverages

ranging from a few sparse clouds to a dense, overcast sky.

Our cloud system models this range of cloud types and cover-

ages. MICROSOFT FLIGHT SIMULATOR allows users to download

real-world weather and see current weather conditions reflect-

ed in the game graphics, which means we need to generate

compelling visuals to match any scenario that could occur in

the real world.

The interactive nature of games necessitates that clouds

must look realistic whether the camera is far away, next to

the cloud, or traveling through the cloud. Another require-

ment is that we need to render at high framerates. MICROSOFT

FLIGHT SIMULATOR supports a wide range of machines, from

the latest PCs to those dating back several years, and the per-

formance must scale to this spectrum of machines.

Clouds need to be shaded appropriately to emulate both

sunlight and light reflected from the sky, especially for games

such as MICROSOFT FLIGHT SIMULATOR, which take place over

the course of day, spanning dawn, midday, dusk, and night.

We model the dynamic aspect of clouds by introducing a

method to form and dissipate them over time.

Previous Work

O ver the past 20 years, graphics researchers have modeled

clouds in many ways, including cellular automata, vox-

els, and metaballs. They also modeled cloud animation via

fluid dynamics. There are two reasons that these research

techniques have not been widely adopted by games. The first

is performance. Many of these systems produced screenshots

that were gorgeous but required multiple seconds to render.

The second is lack of artistic control. Imagine that you create

a cloud by running a set of fluid dynamics equations. You

examine the results and decide you would like a wispier top

on the cloud. You must then iterate through cycles of adjust-

N I N I A N E W A N G | Niniane has five years of game development experience at Microsoft Game Studios. Most recently she was a soft-
ware engineer lead on MICROSOFT FLIGHT SIMULATOR 2004: A CENTURY OF FLIGHT. She can be reached at niniane@ofb.net.

w w w . g d m a g . c o m 35

ing variables such as air humidity and temperature, and

recomputing the equations, which can require hours and still

may not produce the visual effect you had in mind.

Realistic results in cloud shading have been achieved by

simulating the scattering of light by particles as it passes

through the cloud, known as anisotropic scattering. This pro-

duces accurate self-shadowing and interesting effects such as

the halo when the cloud lies between the camera and the sun.

We created a simple shading model for our system, forgoing

these effects in exchange for fewer computations and higher

artistic control.

Many flight simulation games have featured clouds, recent

examples being FLIGHT SIMULATOR 2002, IL-2 STURMOVIK, and

COMBAT FLIGHT SIMULATOR III. A common approach is to paint

clouds onto the skybox texture, which has minimal perform-

ance overhead, but such clouds look two-dimensional and

never get closer as the camera moves toward them. A better

solution is to draw each cloud as a single facing sprite. This

solution looks realistic from a stationary camera but produces

anomalies as the camera rotates around it. A few recent games

use clusters of textured particles, similar to our system. Some

use unique textures for every cloud, which has a high video

memory cost as the number of clouds in the scene increases.

Other systems use small blurry textures, which results in

clouds that look volumetric but lack definition. All of these

systems also lack the ability to form and dissipate clouds.

Our system was inspired after hearing a GDC talk by Mark

Harris, who developed Skyworks, a real-time system that cre-

ated volumetric clouds from sprites. Harris dynamically gener-

ated an impostor for every cloud and achieved speeds of 1 to

500 frames per second. He also modeled the fluid motion

behind cloud animation. The limitation of his system is that it

cannot render large clouds, such as cumulonimbus, or dense

scenes of overcast clouds, due to the prohibitively high video

memory cost of generating large impostors. Our system is able

to address this limitation. In addition, we tackle the problem

of scaling to multiple cloud types.

Cloud Modeling

G iven that we want immediate visual feedback and full

control over the final result, how can we design the artis-

tic pipeline for modeling clouds? We model each cloud as five

to 400 alpha-blended textured sprites. The sprites face the

camera during rendering and together comprise a three-dimen-

sional volume. We render them back-to-front based on dis-

tance to the camera.

We wrote a plug-in for 3DS Max that creates cloud sprites

based on a 3D model composed of boxes. The artist denotes a

cloud shape by creating and placing a series of boxes, using

default 3DS Max functionality. The artist can create any num-

ber of boxes of any size and can choose to overlap the boxes.

The plug-in UI contains an edit field to specify the number

of sprites to generate. To create denser clouds, the artist would

set a number which is proportionately higher than the size of

boxes in the model. Wispier clouds would be created by setting

a lower number. There are generally 20 to 200 boxes for each

16-square-kilometer section of clouds, and the number of

sprites per box can vary between 1 to 100, depending on the

density. The UI also allows the artist to specify a range for the

width and height of each sprite, and choose between categories

(such as stratus and solid cumulus) that determine the textures

that will be automatically placed by the tool onto the sprites.

Figure 1 shows a screenshot of the tool UI.

The artist presses a button in the plug-in UI to generate the

cloud sprites. The plug-in creates a list of randomly placed sprite

centers, then traverses the list and eliminates any sprite whose

3D distance to another sprite is less than a threshold value (the

“cull distance”). This process reduces overdraw in the final ren-

dering and also eliminates redundant sprites created from over-

lapping boxes. We have found that a cull radius of 1/3 of the

sprite height works well for typical clouds, and 1/5 to 1/6 of the

sprite height yields dense clouds. Figure 2 shows screenshots of a

cloud model made of boxes and its corresponding sprites.

The plug-in creates an initial model of sprites, and the artist

can now edit them within 3DS Max. Having achieved the

desired visual look, the artist uses a custom-written exporter

to create a binary file containing the sprite center locations,

rotations, width, and height, along with texture and shading

information. These files are loaded during game execution

and rendered.

Textures

T o create a dozen distinct cloud types, we mix and match

16 32-bit textures for both color and alpha (see Figure 3).

The flat-bottomed texture in the upper right-hand corner is

used to create flat bottoms in cumulus clouds. The three foggy

textures in the top row are used heavily in stratus clouds and

have a subtle bluish-gray tinge. The six puffy textures in the

bottom two rows give interesting nuances to cumulus clouds,

and the remaining six are wispy sprites that are used across

all cloud types.

By creating interesting features inside the textures that

resemble eddies and wisps, we are able to create more realistic

looking clouds with fewer sprites. We place all 16 textures on

a single 512�512 texture sheet, which spared the cost of

switching textures between drawing calls to the video card.

We automatically generate mip-map levels for this texture

from 512�512 down to 32�32. To create more variations

from these 16 textures, the artist specifies a minimum and

maximum range of rotation for each sprite. When the binary

file is loaded into the game, the sprite is given a random rota-

tion within the range.

In-Cloud Experience

W e would like a seamless in-cloud experience that looks

consistent with the cloud’s appearance as viewed from

the outside, which does not often come with the commonly

used technique of playing a canned in-cloud animation. In our

system, as the camera passes through a sprite, it immediately

disappears from view. We encountered a problem because the

sprites rotated to face the camera, and during the in-cloud

experience, the camera was so close to the sprite center that

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r36

C L O U D R E N D E R I N G

FIGURE 1. A custom tool within 3DS Max allows the artist to set proper-
ties and generate cloud sprites.

FIGURE 2. Artists use boxes to build the shapes of clouds (left), and then let a custom tool in 3DS Max populate the boxes with sprites (right).

small movements in the camera position caused large rota-

tions of the cloud sprite. This resulted in a “parting of the

Red Sea” effect as sprites moved out of the way of the oncom-

ing camera.

We locked the facing angle of the sprite when the camera

came within half of the sprite radius. This removed the Red

Sea effect but caused sprites to be seen edge-on if they locked

and the camera then pivoted around them. Our solution was

to detect the angle between the sprite’s locked orientation and

the vector to the camera, and to adjust the transparency of the

sprite. The negative side effect is that the section of the cloud

near the camera appears less opaque.

Performance

M ICROSOFT FLIGHT SIMULATOR 2004 maintains framerates

of 15 to 60 frames per second on consumer PCs, even

in overcast scenes. We achieve this across a range of machines

with CPU speeds from 700MHz through 3.0GHz. Predictably,

the machines with older CPUs and video cards pose a particu-

lar challenge.

The heavy amount of overdraw in the clouds presents an

opportunity to improve performance. We use the impostor

technique invented by Gernaut Schaufler (see For More

Information) of dynamically rendering multiple clouds into a

texture that we then display as a billboard. We create an

octagonal ring of impostor textures around the camera, each

with a 45-degree field of view. We can render hundreds of

clouds into a single impostor. Our system compares clouds in

16-square-kilometer blocks against the ring radius and renders

only the sections beyond the radius into impostors. Cloud

blocks within the radius are rendered as individual sprites (see

Figure 4).

We allow the user to set the ring radius. A smaller ring

gives better performance but more visual anomalies, which I’ll

discuss later. A larger ring means fewer anomalies but less

performance gain from the impostors, since fewer clouds are

rendered into them.

We render the eight impostors in fixed world positions fac-

ing the center of the ring, and re-create them when the camera

or sun position has changed past threshold values. We recal-

culate all eight rather than a lazy recomputation, in case the

user suddenly changes the camera orientation. Empirical

results show that the user can move through 15 percent of the

impostor ring radius horizontally or 2 percent of the ring

radius vertically before recalculation becomes necessary.

To prevent variability in framerate when rendering to

impostors, we spread out the impostor calculation over multi-

ple frames. For video cards that support it, we do a hardware

render-to-texture into a 32-bit texture with alpha over eight

frames, one for each impostor. For the other video cards, we

use a software rasterizer to render into the texture over

dozens of frames, one 16-square-kilometer cloud block per

frame. When we update to a new set of impostors, we cross-

fade between the two sets.

We translate the impostor texture vertically up or down

based on the angle between the clouds and the camera. When

the clouds are displaced more than 10,000 feet vertically from

the camera, we stop rendering them into impostors because

the view angle is too sharp. The overdraw is much less when

w w w . g d m a g . c o m 37

FIGURE 4. An octagonal ring of impostors around the camera eyepoint
helps improve performance.

FIGURE 3. The 16 textures used to create a dozen cloud types (left) and two cloud varieties: stratus cumulus (middle) and cumulus congest (right).

the clouds are far away, so performance in this situation only

suffers slightly by not rendering into impostors.

Since video memory is frequently a tight resource on con-

sumer PCs, we designed the impostor system to have low

video memory usage. Our ring of eight impostors, each a

256�256 texture with 32-bit color, adds up to a video memo-

ry cost of 8 � 256 � 256 � 4 = 2 megabytes. When crossfad-

ing, both impostor rings are rendered, which adds another 2

megabytes during the transition.

Figure 5 shows our framerate for three scenes of varying

coverage, on two machines. We chose older machines for this

experiment to show that our results scale to machines with

slower CPUs and lower video memory.

System A is a 1.7GHz Intel Pentium with 768MB of RAM

and a GeForce2 GTS video card. System B is a 733MHz Intel

Pentium III with 128MB of RAM and a Riva TNT2 video card.

On older systems, such as 450MHz machines with 8MB

video cards, the fill rate is so expensive that even with the

impostor ring radius at eight kilometers, rendering the cell

block within the ring radius as individual sprites produces

framerates that fall below 20 frames per second for denser

cloud coverage. We created a simple LOD scheme that uses a

single sprite per cloud. Since our rendering method scales to

any number of sprites in the model, a single-billboard cloud is

merely a degenerate case of the model, and we needed no spe-

cial-case code to render or shade these models.

Shading: Every Cloud Has a Silver
Lining

W e chose not to simulate scattering of light from cloud

particles, instead using simple calculations based on

artist settings that yield a reasonable approximation. This means

we do not simulate clouds casting shadows on themselves, other

clouds, or other objects in the scene. The two factors that go

into our cloud-shading system are skylight and sunlight.

As rays of light pass from the sky through the cloud, they

are scattered and filtered by the particles within the cloud. As

a result, clouds typically have darker bottoms. To simulate

this, our artists use a color picker in 3DS Max to specify five

“color levels” for each cloud. The color level consists of a

height on the cloud with an associated RGBA color. These

levels are exported in the cloud description file.

Separately, for a set of times throughout the day, the artist

will specify a percentage value to be multiplied into the ambi-

ent color levels at each particular time of day. This allows the

ambient contribution to decrease approaching night.

The sun casts directional light on a cloud, which generates

dramatic scenes, especially around dawn and dusk. We simu-

late the effect so that areas of the cloud facing the sun receive

more directional light while areas facing away from the cloud

receive less.

Our artists specify shading groups, sections of one of 30

sprites that are shaded as a unit, when they build the clouds

in 3DS Max from boxes. On each box, they set a custom user

property with a shading group number, and sprites generated

for that box will belong to that shading group. These shading

groups simulate clumps on the cloud. We calculate the direc-

tional component of shading for a given vertex in the cloud

by first computing the vector to that point from the shading

group center. We also find the vector from the group center to

the sun and compute the dot product of the two vectors after

normalization.

The artist specifies a maximum directional color and mini-

mum and maximum directional percentages for a range of

times throughout the day. We multiply the resulting percentage

from the mapping function with the maximum directional color

specified by the artist, to get the directional color of the vertex.

To get the final vertex color, we add the ambient and direc-

tional colors to the color from the sprite texture. At this

point, we also multiply by the alpha value representing forma-

tion or dissipation of the cloud.

Formation and Dissipation

T he clouds look more realistic when they can form and dis-

sipate. We control the evolution of a cloud by adjusting

the transparency level of sprites.

We multiply a transparency factor into the alpha value for

each sprite vertex based on its position within the cloud.

When a cloud is beginning to form, we render only the sprites

whose center is within half of the cloud radius from the cloud

center, and we render them with a high transparency level that

we decrease over time. After these sprites have reached a

threshold opacity, we begin to render sprites whose center is

more than half of the cloud radius from the cloud center.

Cloud dissipation is simulated by reversing the process (see

Listing 1).

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r38

C L O U D R E N D E R I N G

FIGURE 5. Performance comparison, with and without imposters,
between System A (1.7GHz Intel Pentium, 768MB RAM, GeForce2 GTS)
and System B (733MHz Intel Pentium III, 128MB RAM, Riva TNT2).

Limitations and Extensions

O ur system is well suited for creating voluminous clouds

but less suited for flat clouds. Of the four basic cloud

types — cumulus, stratus, cumulonimbus, and cirrus — our

system easily handles the first three. However, cirrus clouds

are so flat as to be almost two-dimensional, and it would

require a large number of small sprites to model them using

our approach, which would cause a performance hit. Instead,

we represent cirrus clouds with flat textured rectangles.

Because sprites within each cloud are sorted back-to-front

to the camera, moving the camera can occasionally result in

popping as sprites switch positions in the draw order. This

effect is more noticeable at dawn and dusk, when directional

shading plays a greater role, but has not been jarring enough

in our experience to necessitate a solution such as caching the

previous sort order and crossfading.

As mentioned previously, our shading model does not

include cloud shadows, self-shadowing, or the halo effect

when the cloud is between the sun and the camera. One

potential solution is to precalculate the lit and shadowed

regions of the cloud for a set of sun angles. We can load this

information at run time and interpolate based on sun angle.

The ring of impostors can create visual anomalies. The

clouds in the impostor do not move relative to each other,

which means the parallax looks wrong. Also, distant objects

must be drawn either in front of or behind all the clouds in

the impostor, instead of in front of some and behind others.

We could mitigate this by adding additional rings of impos-

tors, but that increases video memory usage.

In the future, we would like to implement some of our tech-

niques into vertex shaders, as more of our user base upgrades

to video cards that support hardware vertex shaders. Our sys-

tem can be extended to other gaseous phenomena, such as

fog, smoke, and fire. Fog is a natural candidate, since it is

essentially a stratus layer placed close to the ground. The

problem is getting rid of the hard lines where sprites intersect

the ground polygons. We can either split the sprites along the

ground or multiply by a one-dimensional alpha texture based

on the altitude.

Research into fluid simulation has produced realistic anima-

tions of clouds as they change shape. This creates more exten-

sive morphing than our system of formation and dissipation,

but it frequently does not yield enough control to the artists

over the final result. It can be difficult to tweak the humidity

and other parameters just right to have a cloud form over

three minutes, or to ensure the cloud that forms looks a par-

ticular way.

A solution more appropriate for games and movies may be

one that combines our artistic modeling with fluid simulation

by using simple rules for cloud morphing in combination with

our system of textured particles. For example, we could use

weather variables such as humidity, airflow, and temperature

to rotate, translate, and adjust transparency on individual

sprites within the cloud to change the overall shape of the

cloud. It would give the impression that wisps are being

blown by the wind, or that clouds are condensing or breaking

into several pieces. q

Download a video describing the cloud-rendering system at
www.gdmag.com.

Mark Harris and Anselmo Lastra. “Real-Time Cloud Rendering.”
Computer Graphics Forum, vol. 20, issue 3. Blackwell, 2001.

Gernaut Schaufler. “Dynamically Generated Imposters.” Modeling
Virtual Worlds — Distributed Graphics, ed. D. W. Fellner, MVD
Workshop, 1995.

F O R M O R E I N F O R M AT I O N

w w w . g d m a g . c o m 39

Thanks to Adrian Woods and John Smith, two very talented
artists from Microsoft, without whom this work would not have
been possible.

A C K N O W L E D G E M E N T S

LISTING 1. Calculating the alpha value of a vertex when
forming and dissipating the cloud.

vertex is the (x, y, z) with respect to cloud center.

cloud_radius is the radius of the cloud bounding box.

alpha_at_edges controls how much to fade out the edges;

this increases from 0 to 255 over time.

alpha_of_cloud controls the transparency of the entire cloud;

this starts out at 255.

time_delta is the time that passed since the last frame.

float alpha;

if (fade_out_to_edges)

{

float radial_magnitude = cloud_radius -

vector_magnitude (vertex);

radial_magnitude = max (0, radial_magnitude);

alpha = (alpha_of_cloud - radial_magnitude * alpha_at_edges /

cloud_radius) / 255.0f;

}

alpha = min(1.0f, max(0.0f, alpha));

if (alpha_at_edges < 255)

alpha_at_edges += 255 * time_delta / time_to_fade_cloud_edges;

else

alpha_of_cloud -= 255 * time_delta / time_to_fade_cloud_core;

P O S T M O R T E M

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r40

d a n i e l a r e y

JAK I I PRODUCTION GOALS

• Surprise the market by taking the
game in an unexpected direction.

• Age up the universe while still
retaining elements of the style.

• Give Jak a voice.

• Evolve the integration of story and
touch on more mature themes.

• Eliminate boring collection as a
primary task.

• Leverage the mechanics that
worked in the first game and add
to them.

JAK I I START TO F IN ISH

2 years
335,000 person-hours
227 pages of script
22 audio recording sessions
12.2 pencil-miles of drawings
841,000 lines of run-time code
12,000 cans of Diet Coke
1 ocean of Goldfish crackers

41w w w . g d m a g . c o m

W hen Naughty Dog

released Crash
Bandicoot for the

Playstation in

September 1996, the

novelty of 3D gaming was still a fresh and

invigorating force. The Crash series took

advantage of the new 3D environments

while still retaining many of the linear

motifs of classic 2D design. The series was

a great success, but as the transition to

Playstation 2 began in earnest, Naughty

Dog began experimenting with no-load,

open environments, and various forms of

nonlinear gameplay, which culminated in

the release of Jak and Daxter: The
Precursor Legacy for Christmas 2001

(see “Postmortem: Naughty Dog’s Jak and
Daxter,” April 2002). This new game was

greeted with great enthusiasm and quickly

reached Greatest Hits status, leaving no

doubt that we would develop a sequel. We

also knew we had significant room for

improvement, especially in light of the

changing competitive landscape.

In the early months of 2002, the entire

company met for pre-production meetings

at the ski lodges of Mammoth, Calif. In

between mountain board runs and bone-

jarring wipeouts, we slowly devised a plan.

Never content with playing the same old

sequels ourselves, we didn’t just want to

create another game with new levels and a

big fat “2” superimposed over a catchy

subtitle. We decided to shock everyone with

a bold change in direction.

We looked deeply at the current state of

platform gaming, and although we had

tremendous respect for those who had

shaped the genre, we felt that after break-

ing through the 3D dam and flooding

down the ravine of possibilities, platform

games had run their current course. We

saw the genre suffering from a general

malaise and a waning audience, and we

were convinced that this atrophy was due

primarily to lack of innovation in a chang-

ing market, especially in light of new gam-

ing paradigms that had evolved. Gone were

the days when coin collect-a-thons in neon

bright worlds were enough to excite play-

ers. The maturing videogame audience

wanted more realistic themes and intense

experiences, and platform games had the

decidedly uncool stigma of G-movie kiddie

fare. Naughty Dog decided that if we could

make Jak II more mature, add a deeper

emotional layer to the action, and increase

the entertainment value of the entire expe-

rience, we could reignite interest in action

platforming.

Jak and Daxter’s immersive no-load

system had already evolved the way players

move through platform games by eliminat-

ing discrete levels bound by obvious load

times. We also admired the freeform, emer-

gent mechanics of sandbox titles such as

Grand Theft Auto III. Then it hit us.

G A M E D A T A

PUBLISHER: Sony Computer

Entertainment

NUMBER OF FULL-TIME

DEVELOPERS: 48

LENGTH OF DEVELOPMENT: 2

years of full production

RELEASE DATE: October 14, 2003

PLATFORM: Playstation 2

OPERATING SYSTEMS USED:

Windows NT, Windows 2000, Linux

DEVELOPMENT SOFTWARE USED:

Allegro, Common Lisp, Visual C++,

Maya, Photoshop, X Emacs,

Sound Forge, Visual SlickEdit,

tcsh, Exceed, CVS

D A N I E L A R E Y | Daniel is the creative director at Naughty Dog. As a senior game designer for
the last 14 years, he has contributed to the success of many well-known videogame franchises,
including the multi-million-selling CRASH BANDICOOT 2, CRASH: WARPED, CRASH TEAM RACING,
JAK AND DAXTER, and most recently JAK II. Prior to joining Naughty Dog, he honed his skills
with Electronic Arts, Accolade, Sega of America, and Crystal Dynamics, where he helped cre-
ate such hits as CRASH N’ BURN, TOTAL ECLIPSE, GEX 3DO, and GEX: ENTER THE GECKO.

P O S T M O R T E M

Why not take our no-load system and build a huge, living city,

then let loose a platform character like Jak in it? From this idea

grew the concept for Jak II.

What Went Right

1. Jak gets a pair. Recognizing the changing audience,

our biggest goal for Jak II was to mature the universe.

We wanted to remain true to the original vision of the first

game but add more maturity to the visual style. This decision

required extensive exploration by the art department, starting

naturally with the central hero. Since the first game was about

Daxter’s transformation, we decided early on that Jak II would

be Jak’s story and his evolution. Daxter was already a resound-

ing success, having been named “Original Game Character of

the Year” in the second annual Game Developers Choice

Awards, but Jak was a different story. Extensive feedback told

us that Jak had less personality than a slug on Prozac.

Jak himself was graphically redesigned to reflect a new tough-

ness, commensurate with

the grittier theme of the

game. Jak’s new military-

inspired threads, slicked-

back hairstyle, soul patch,

lethal weapons, and his

Dark Jak side all began to

add fresh visual interest.

We also realized we’d

made a serious mistake in

not giving Jak a voice in

the first game. Muting

him had damaged his

ability to interact with

characters, made for

awkward scenes, and left

the character pixel-thin.

Casting began in earnest,

and Mike Erwin won the

pivotal role. Jak’s new

voice gave him an instant

personality boost, and

allowed banter for the

first time with Daxter

(voiced by Max Cassela).

Other characters and

background enhance-

ments followed, and after

many design iterations,

we arrived at the new

look for Jak II. The story

was also given a darker

edge and swam in more

adult themes like revenge,

love, betrayal, and death,

all rare elements in platform games. Even though the game still

retained much of the cartoon feel, the new designs shed some

of their earlier iconic sugar coating, moving the game more

toward the mainstream Playstation 2 audience.

2. Emotion in motion. Another major success in Jak II
was the increased role of the story. Naughty Dog had

flirted with deeper story motivation in the first Jak and
Daxter, but in Jak II we wanted the game’s story to really

matter, providing true cause and effect, context, and meaning

for all actions in the game. Platform game stories have tradi-

tionally been thin at best, but with the living, breathing world

of Jak II it took on a whole new significance.

We wanted players to be driven forward in the game not just

by the fun, but also by a sincere desire to find out what would

happen next. We called this concept “narrative as reward,”

defining a clear system of precisely placed story plot points, spe-

cial-effect cinematic sequences, and entertaining humor vignettes

as the primary reward for completing each gameplay challenge.

The story evolved into

90 minutes of cinematic

sequences linked inex-

orably to gameplay. This

tight coupling between

game and story required

specifics in the dialogue

that locked down play

elements to an uncom-

fortable degree. As we

recorded and animated

the scenes, it became

increasingly difficult to

eliminate or adjust

gameplay because of

these links. To combat

this, we kept the story as

flexible as possible with-

out breaking the cause-

and-effect chain by hav-

ing a few alternate

recordings for vital plot

and character revelations

attached to a variety of

backup gameplay tasks.

We also built in what we

called stand-alone levels,

which, if needed, we

could excise from the

game (and the schedule)

without greatly affecting

the story experience.

In the end, the story

was very well received.

Players loved the ani-

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r42

The concept art for Jak from the first (left) and second (right) games shows a
subtle but clear maturing of the character.

w w w . g d m a g . c o m 43

mated sequences and told us they looked forward to them

while playing. This underscores the value of an emotional play-

er connection in videogames, a vital aspect of future develop-

ment as we move toward more sophisticated entertainment

production values.

3. Fat city. Making the huge city hub for Jak II (20 times

the size of a single Jak and Daxter level) was a massive

undertaking but well worth the investment. By adding this

“game within a game” to the platform experience, we hoped to

create a new expression of the genre. The sense of place and pur-

pose was designed to keep the player plugged into the world as

never before. Gamers weren’t just playing a succession of plat-

form levels; they were visiting a “breathing” universe.

The city presented significant challenges, since it was popu-

lated with a multitude of citizens, an AI police force, and a

rigid body physics traffic system, making for complicated com-

binatorial events. The traffic system was a complex web of

interlocking paths and sophisticated AI to handle the multitude

of disruptions on the system. The programmers had to manage

traffic jams, cross patterns, and, the fun part, violent player

actions upon the vehicles.

Memory and load constraints dictated how fast we could

drive through the streets, and loading limits and line-of-sight

issues forced the city to be more mazelike than we had original-

ly intended. Since the entire city obviously couldn’t fit into

memory, load planes were painstakingly placed to hide the

actual geometry swaps, and visual pop-ins were slowly tested

out of existence (well, almost).

Also, since our city could be viewed from a variety of inter-

nal and external locations, it forced an incredibly complex sys-

tem of multi-resolution geometry levels. Still, to look down at

the city from the palace, or back at it from the mountain tem-

ple, made all the headaches worth it. People have told us that

during their play experience, they found themselves stopping

just to admire the view, or to watch a sunrise. To us, that’s the

definition of immersion.

4.Move set integration. Gameplay integration was

another accomplishment in Jak II, our mantra being

“If we give something to the player, we let them keep it and use

it whenever they please.” When Jak gets a new item, such as

the JetBoard, players can (and do) pull it out wherever they

want. Needless to say, this created considerable nightmares for

bleary-eyed level designers trying to contain myriad combinato-

rial approaches to their level challenges. In the end, however,

the freedom gave players a wonderful richness of play options.

Jak already had combo punches and jumps in his moveset,

but in Jak II we gave him a gun and allowed him to combo

that as well. Jak can jump up and shoot down, or jump up and

do a helicopter-spinning rapid-fire attack. He can punch with

the gun, or perform hit-and-shoot rapid-fire combos, all with

fluid interpolation of animation. As a result, Jak has a total of

373 unique animations, using interpolation blending techniques

to smooth the transitions.

Shooting in third person can often be suboptimal because of

the imperfect limitations of visual information and control for

the player. In Jak II, we wanted the mechanic to be skill-based,

while simplifying the action of drawing a bead on an enemy,

without intruding heavily on the fast action aspects demanded

of platform challenges. To this end, we chose an auto-assist gun

mechanic that reasonably solved this dilemma.

The world of JAK II sheds the primary colors of the first game (left) for darker, grittier textures (right).

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r44

These efforts added up to choices for the player and an

unprecedented level of anytime/anywhere move integration with

evolving toys. Players love freedom, and they especially love it

when a world lets them choose a variety of solutions for the chal-

lenges they face. The multiplicity of moves and philosophy of any-

where-use objects in Jak II allowed that freedom to flourish.

5.We got game. Ultimately the diversity of Jak II’s game-

play became its biggest strength and our proudest

achievement. It’s difficult to label Jak II simply a platform game,

since there are so many gameplay types folded together. Jumping

isn’t the primary player response in Jak II. You also get to drive

multiple vehicles in a huge city (including a stadium with high-

speed race courses), create havoc with a solid run-and-gun shoot-

ing element and multiple upgradeable gun types, trick and grind

anywhere with a Tony Hawk–style JetBoard, crash-and-smash

the world with a Titan Powersuit, play mini-games, and work

with characters in AI-assisted escort tasks. Our goal was to

achieve a diversity of gameplay in Jak II that would keep the

game fresh for the player, and the challenges evolving.

It appears playground worlds are here to stay, and as long as

they thrive, a bold variety of play mechanics will be a great

asset to open-ended gaming. Of course, caution is advised.

More is clearly not always better. We have found it’s best to

focus on a core set of mechanics, and only after those are play-

ing well, then add new layers of complexity. It’s also important

to be willing to kill your babies, mechanics that simply aren’t

working, even if considerable resources have been sunk into the

concept. I’ve heard this referred to as the “alpha apocalypse,”

but we suggest you do it sooner than that.

What Went Wrong

1. The Babel factor. We have always prided ourselves in

working closely with our worldwide partners to include

their needs in our development choices, but in the case of Jak II
it became more difficult than ever. Jak II’s enormous story

assets quickly became an unwieldy mess as over four hours of

in-game speech and cinematic sequences, broken into hundreds

of VAG files, required localization for seven languages.

The sheer volume of files for all languages moving in and out

of our office quickly became hard to track, especially when late

dialogue changes were called for. To help combat this immense

data tracking complexity, we created a Spoken Audio List that

combined in one place every single dialogue line in the game,

who said it, where it was said, and where is was in terms of

U.S. recording, localization, in-game placement, filters and

effects, and so on. This list grew into a huge document, but it

became our invaluable audio bible, and we prayed to it daily.

Without this comprehensive list in one place we would have

been unable to track the vast flood of VAG files as they came

and went.

Even with the audio bible, we wasted valuable production

time and gained a good number of ulcers fighting needless

audio fires, and without some last minute heroics, we would

have been in trouble.

2. Facing the music (again). Our Achilles’ heel of late,

the sound and music spec became a monstrous data-

wrangling challenge. The sheer quantity of in-game events,

foley effects linked to movies, and various other sound issues

became a logistical nightmare. Add to that the in-game music

and scoring for the large array of cinematic scenes, and you can

see how quickly the problem multiplied. The biggest sound

challenge in open gaming is that you can’t simply load a dis-

crete bank of sounds in a closed environment and call it a day.

Jak II’s open environments were always evolving, so we had to

devise a complex system of bank swaps and loads.

Naughty Dog’s in-house sound group burned vampire hours

to fill the world with audio cues and stuff them into tight mem-

P O S T M O R T E M

JAK II’s models, shown on the left of the images below, contain 10,000–15,000 polygons each, far more than in the first game (right images).

ory constraints. Also, since some of our movies were being fin-

ished very late, we had our foley cinematic group working

around the clock to finish the multitude of effects across 90

minutes of movie. We left them too little time in the end, and

we missed some very important sound cues. The simple solu-

tion here: Don’t send game objects and movies for sound and

foley work right up until the last few days of production, and

don’t expect inhuman man-hours to make up the difference.

Once again our game music, although very well orchestrated,

lacked enough depth to sustain the entire game. Since music is

such a vital aspect of emotion and mood, and Jak’s story turned

in a number of directions, we failed to adequately cover the

range of playtime the average player would experience. Also,

due to our constant game data streaming, Jak II’s in-game

music was limited to MIDI, and this became a sad limitation

when the scope of the adventure demanded so much more. We

experimented with a range of channels with interactive elements

to vary the mood depending on context (for instance adding a

drum beat overlay when Jak pulls out the gun), but many peo-

ple felt some of it was too heavy handed, and we ended up

minimizing much of the work.

We had every one of these problems on Jak and Daxter, so

I’m afraid we can’t plead ignorance this time. Once again we

underestimated the volume of work and allowed ourselves to be

understaffed, only adding people to fight fires when it was

much too late. Pulling up the rear is never an easy task, but our

sound group was left dangling in the wind and worked diligent-

ly to mitigate bad planning on our part. This is an area of pro-

duction we will move up in priority next time.

3.Read my lips. Staying ahead of the game curve was

difficult for the animation department as well. Rework

became a serious drag on productivity and a blight on the

schedule. One example was when we lost time reworking a

number of animations that spelled out specific numbered game-

play requirements in the dialogue. For instance, we created a

scene where a crime boss character named Krew told Jak how

many money bags he needed to pick up in a task around town.

For safety, we recorded a spread of numbers, but after cutting

the scene, blocking, animating, and lip-synching, our game test-

ing revealed that we needed to adjust the number. Changing

cases like this were an understandable source of frustration for

the animators.

As we improved our methodology, we learned to be more

generic with certain gameplay-specific numbers in the dialogue

and to use screen overlays to convey details. When we really

needed a specific number cited in a scene for some reason, we

recorded many, many variations to give the designers and ani-

mators enough coverage. Then we blocked the shot so that the

character speaking the offending (and likely variable) line could

be either off-screen or conveniently in an over-the-shoulder

shot, effectively hiding his lips, when the high-risk line was spo-

ken. These techniques allowed any required changes to be easily

dropped into the AIF later with no impact whatsoever on the

animation side. Still, we lost considerable animation time to

reworking before we defined and implemented these tricks.

4.Particle man, particle man. Jak II’s particle effects

grew to become extremely elaborate. They also became

a nasty bottleneck at the end of the production pipeline.

Special-effects programming can be one of the most cost-effec-

tive investments in terms of bang-for-the-buck polish and over-

all environmental look to a game. Particles add incredible life

to a scene: moving smoke, dust bowls, heat effects, particulates

in the air, and even insects and birds can flesh out environments

with movement and verisimilitude.

P O S T M O R T E M

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r46

Up to six animators took over 14 months to complete JAK II’s 90 minutes of cinematic sequences using Maya.

Taking this lesson from Jak and Daxter, we jumped in with

both feet on Jak II — which turned out to be the problem, as

two feet meant only one person. We had some great particles

very early, but as we went along, we realized that we needed

more effects than we had budgeted for. Also, as the new high-

polygon sets for cinematics came online, they too required a

larger coverage of particle effects than we had expected. Add to

that a breakdown in communication between departments

about particle node placement and volume of particles in all

levels, and some objects being completed very late, and you can

see how the problem quickly escalated. We added a second par-

ticle programmer in the end, but when the dust settled (insert

particle effect here), it was too late, and we were forced to com-

promise the total number of effects in the game.

5. Leveling the playfield. Bringing backgrounds to tan-

gible life from flat 2D level maps is an art unto itself.

Unfortunately, we often added to the angst of the background

artists by designing area maps with too many unique elements,

or worse, unrealistic spatial relationships. Memory being an

ever-present constraint, the background artists had a challeng-

ing time taking a designer’s level map and remaining true to the

gameplay distances while still serving the production art guide-

lines for the level.

Naughty Dog uses an instanced geometry-building system of

“ties” with carpeted “t-frag,” and the artists wrestle to repre-

sent Jak II’s world with as few pieces as possible to achieve crit-

ical mass and balance in terms of design precision of gameplay,

memory, and aesthetic beauty.

The first design maps were too complicated, and early levels

needed to be reworked, costing valuable production time. We

attempted a system of rapid prototyping for levels but never

adequately solved the rework problem. The design department

had to learn to create more simplified maps and trust the artists

to fill in the variation.

As always, art is illusion, and our background artists began

to work miracles creating complexity with only a few building-

block instances of repeated geometry. By taking just a few

“ties” and linking them together in a wide variety of 3D pat-

terns, they were able to achieve so much more with less.

Ultimately, we became better at designing with a delicate bal-

ance between unique and repetitive elements, but not before

considerable time was lost in the learning curve, and these loss-

es caused a chain reaction of schedule adjustments, forcing us

to scale back some game areas.

Jumping Beyond Platforming

D espite the changing landscape of gaming, Jak II represents

two hard years of work by a talented team of profession-

als dedicated to bridging a widening gap between old and new

gaming. It was a tough haul, and we probably bit off more

than we could chew, as many of the What Went Wrongs indi-

cate. However, in the final analysis, we feel Jak II is the best

game Naughty Dog has ever produced, and we are proud of the

entertainment experience it represents.

We recognized the need to shed old assumptions about the

platform genre and to try to reenergize a wonderful style of

game that we all grew up with and love. Just as this year’s

Game Developers Conference slogan both challenges and

warns us to “Evolve,” so too platform games must heed the

call or risk being relegated to the dusty $5 bargain bin of life.

We’d prefer evolution, and we hope Jak II is a valuable step

down that path.

At Naughty Dog we are now convinced more than ever that

the quick reflex and button action of platform games, in what-

ever evolved forms they take, will always entice, entertain, and

challenge those who love a great playground. At the time of

this writing, Jak II is the fastest-selling release we’ve ever had,

beating our previous sales champion, Crash 3: Warped, by

over 50,000 units in the first two weeks. We hope this trend

continues and provides exciting proof that the market for plat-

form action games, in all their hybrid forms, is still very much

alive and kicking. q

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r48

P O S T M O R T E M

By blending various directional palettes with an ambient palette and deriving colors from a mood table list, Naughty Dog could present a wide
range of times of day.

T he misapplication of the term “genre,” or rather

the way that the game industry uses the word, lim-

its thematic innovation and can be damaging to

retail success. Shiny’s Sacrifice performed poorly

at retail due in part to the fact that it was crammed

into a “genre,” real-time strategy, with which it shared essen-

tially nothing. The Warcraft crowd found Sacrifice bewil-

dering, and it missed its real target. Similarly, the Max Payne
franchise is described as a third-person shooter “genre” game.

While stylistically correct, this description shortchanges the the-

matic and emotional impact of the game design.

In movie terms, genre theory refers to the study and classifi-

cation of films sharing stylistic, symbological, and structural

components. Genre theory seeks to classify a narrative’s themat-

ic intentions through examination of the manner in which these

elements are applied. In videogames, “genre” most often

describes control structure, victory conditions, and presentation

of the environment, when in fact these criteria are styles of

gameplay: “shooter” and “puzzle” are not genres. This misap-

plication prevents the development of

genre theory for games, a deficiency

which cripples narrative evolution in the

medium.

Problems of Distinction

I n other media, genres are classified by

creative structures. Game genres are

distinguished technically. We don’t

describe “paperback” and “hardcover” as

the genres of literature, but that’s the

equivalent of the current classification

system for games. Technical specifications

evolve independently of creativity, and to

use them as genre differentiators damages

the medium’s creative advancement.

This is not an attempt to get stores to rearrange their shelves.

Organization by style is more sensible than by theme. But the

current language is inadequate for game development’s creative

ontology. As game narratives increase in complexity, it becomes

correspondingly more challenging to develop intricate thematic

experiences. Lacking mature genre theory, developers can’t

unleash the full narrative or interactive potential of their games,

just as early filmmakers lacked such tools, depending instead on

pure motion pieces or hackneyed melodrama.

Film pioneer Louis Lumiere believed film was “a medium

without a future.” As the generations of students who’ve stud-

ied Lumiere films know, the statement was valid at the time

because genre theory didn’t exist yet. Lumiere films examined

movement, and there’s a limit to how often a moviegoer will

sit through a projection of a man walking. As genre theory

progressed, it became possible to tell increasingly complex

and powerful stories with the camera, allowing audiences to

evolve alongside theory. Stanley Kubrick’s 2001: A Space

S O A P B O X m a t t h e w s a k e y

j a n u a r y 2 0 0 4 | g a m e d e v e l o p e r56

continued on page 55

The Hidden Language
Of Genre

Ill
us

tr
at

io
n

by
 S

te
ve

 M
un

da
y

Odyssey expanded on

the examination of

movement by featur-

ing a woman walking

around a hatchway in

a lunar shuttle for sev-

eral minutes before

the audience “got”

the weightless envi-

ronment. Now the

same result is accom-

plished in seconds.

Evolving a Creative Grammar

B road genre theory should be a component of academia.

The next generation of developers will be the first edu-

cated at accredited game-studies institutions, and they will

place considerable value on the benefits of pure scholarship.

Curricula must include both technical and theory studies. The

vast majority of non-production film classes are devoted to

genre theory, typically focused on specific genre analysis or

the examination of major directors. Students of game develop-

ment would find value in a study of survival-horror’s common

structural elements, or a course on the “playing God” experi-

ence in Meier and Molyneux games.

There is already an enormous body of genre theory in film

and literature. Game developers and scholars can use this

material to great effect as groundwork for the development of

a unique genre vocabulary for games. It is also necessary to

break the habit of using the word “genre” to define game

style. Nomenclature performing double duty in this capacity is

ultimately just confusing.

Benefits of
Genre Study

W ith the birth of a

shared vocabulary

in genre theory, the indus-

try will gain a stronger

defense against opponents

of the medium. It is con-

siderably more difficult to

attack something possess-

ing a solid artistic consen-

sus. Developers, meanwhile, will have access to the tools and

understanding necessary to produce thematically innovative

games. Audience understanding of game genre will allow users

to more effectively determine those genres that resonate most

with them, which may help reduce high return rates.

There is no doubt that gaming lacks a complete language of

its own. What it has is largely borrowed from the cinema, but

film has no language for interactivity. Proper and distinct appli-

cation of genre theory to game development and game studies

means better games. The clumsy melodrama of early cinema is

laughable compared to the slick productions of today, an

improvement that stems from potent genre theory. Considering

how thematically impressive videogames are even when they

don’t have genre theory, their narrative power when they do

will be staggering. q

M A T T H E W S A K E Y | Matthew is a professional writer, design-
er, and gaming consultant, working with developers to leverage
game technology for electronic learning. He writes the monthly
Culture Clash column at www.igda.org and contributes to various
gaming sites. Contact him at matthewsakey@comcast.net.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

Redefining “genre”to refer to con-
tent instead of format will help

validate the industry by establish-
ing a solid artistic consensus

	04gameplan
	06indwatch
	08prodrev
	12profile
	15innerp
	18artview
	22soundp
	24betterby
	26frontline
	34f-wang
	40postmort
	56soapbox

	return:

