
SEPTEMBER 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Input

600 Harrison Street, San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
Olga Zundel ozundel@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mp@pixelman.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region, Silicon Valley & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Business Technology Group Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group Robert Faletra
President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer

magazine is

BPA approved

W W W . G A M A N E T W O R K . C O M

A D I V I S I O N O F C M P M E D I A L L C

✎

4

I pulled out the box from my old
Atari 2600 last weekend. It’s the
same box which filled me with a
sense of wonder that afternoon
late in September 1981. After

spending an entire summer picking berries
I had saved up enough money to purchase
the latest in videogame technology. Exam-
ining the box last weekend I noticed the
controllers. I’m sure you remember them
— to describe them as elegant would be a
stretch, but they were certainly simple, and
rugged. One stick, one button. That’s real-
ly all you needed.

And then I looked at my Playstation 2’s
controller. It really isn’t much different.
Twenty years later, I have more sticks and
more buttons. O.K., the Playstation 2’s
controller has a pager-like vibrator in it to
give some haptic feedback, and some ana-
log controls, but really, that’s about the
sum total of 20 years of videogame con-
troller innovation.

What happened to my speech recogni-
tion? Head-mounted displays? Motion-
sensing trackers? Video-based interaction?
Datagloves? Have you seen the movie
Existenz? How about those hammocks
from Lawnmower Man?

O.K., some of these aren’t feasible for
technological reasons. But truth be told,
alternative input devices aren’t available
for two simple reasons.

Not Included

I n general, people don’t buy peripherals
for their consoles. They stick with what

came in the box, or perhaps they buy an
extra controller that is the same type as the
original. It doesn’t matter what peripherals
you ship after a console launch; if it does-
n’t come in the box, it is difficult to get
serious market penetration.

Not Supported

Of course, if developers can’t expect
people to have a particular input

device, why would they bother supporting
it? As a developer, you have enough work

to do. You’re much more likely to spend
time improving your game than ensuring
that some alternative input device is sup-
ported.

The only special cases where new input
devices have done passably on consoles are
when new consoles begin shipping with the
new devices so that developers can expect
an installed base. A good example of this is
the Playstation DualShock controller. Ever
since Playstations began shipping with
DualShock controllers, every new console
to appear has included two analog sticks.

But this creates evolutionary change, not
revolutionary change. Thus what you see
when you look at a modern-day console
controller is an evolved version of the orig-
inal Atari 2600 controller. How do we cre-
ate revolutionary change?

Nvidia’s treatment of DirectX 8 vertex
and pixel shaders shows a good model.
They bring in game developers to educate
them on how to take advantage of these
new features. They give away free hard-
ware. They educate the press. And they
make sure that there are “launch titles” —
games which take advantage of the new
features — as soon as the hardware hits
the market. In short, Nvidia has done the
exact same thing for GeForce 3 that con-
sole manufacturers do in the months and
years prior to launching a new console.

Input device makers need to take a les-
son from Nvidia and the console manufac-
turers. In order for a paradigm shift to
occur in the way we interact with games,
they need to educate developers and play-
ers to create buzz, and then make sure that
there are new games available which show
off the new features.

Until then, we’re all stuck with our sticks
and buttons. Which is fine, but in another
20 years I’m going to be running out of fin-
gers to twiddle things with, so someone
better get to work on a foot joystick.

And I better start doing some yoga.

Sega in transition. Sega is continuing its
transformation from hardware company to
software provider. The company reinforced
its decision to focus on its core businesses by
signing a number of European publishing
and distribution deals that could signal
Sega’s departure from the European market.
Sony Computer Entertainment Europe has
announced a deal to publish seven Sega
Playstation 2 titles in SCEE’s European PAL
territories. The deal also includes localiza-
tion into five languages for titles such as
ECCO THE DOLPHIN, FERRARI F-355, VIRTUA

FIGHTER 4, two SPACE CHANNEL 5 games,
and an as-yet-unannounced game code-
named “K-Project.” Infogrames is set to
publish several Sega titles there for other
consoles, including PHANTASY STAR ONLINE

VERSION 2 and VIRTUA STRIKER 3 for Game-
cube, CHU CHU ROCKET and SONIC ADVANCE

for Game Boy Advance, and JET SET RADIO

FUTURE and HOUSE OF THE DEAD 3 for
Xbox. Sega handed off the remaining
Dreamcast distribution for much of Europe
to Bigben Interactive last April.

Games are not the only thing Sega has on
its mind. The company is hoping to leverage
its entertainment expertise to build revenue
outside of the game business. While not yet
ready to announce any concrete plans, the
company believes that its computer graph-
ics, content development, and arcade man-
agement expertise should present opportuni-
ties. “We have been told that Sega has a lot
of hidden treasures,’’ said Munehiro
Umemura, general manager of Sega’s future
entertainment division, “We will dig them
up one by one, and will offer them to our
customers.” New businesses might include
educational and training software.

Exits for Lucas Learning and Midway.
Lucas Learning has cancelled its two
remaining announced products in develop-
ment and is pulling out of the consumer
game market. The company has discontin-
ued planned ports of STAR WARS SUPER

BOMBAD RACING for Macintosh and PC, and
will focus instead on creating and marketing
a line of curriculum-based educational soft-
ware directly to schools for use by students
in grades K through 12.

Midway recently ended an arcade tradi-
tion dating back to 1975. The company
officially announced its long-anticipated
decision to halt all coin-op game develop-
ment efforts. The company cited continuing

decline in the arcade market as well as a
desire to focus its efforts on home games for
next-generation console platforms. Closing
the coin-op business will result in layoffs of
close to 60 employees and a pre-tax charge
of $8 million.

Opening shots. With the biggest shots of
the console wars just about to arrive, Sony
made a preemptive strike by cutting the
price of the Playstation 2 before the
launch of rival systems. The price was
lowered to ¥35,000 ($280) from the cur-
rent ¥39,800 ($320). The lower price
applied only to Japan, with Sony leaving it
up to its subsidiaries to determine the
retail prices for their local markets.

Nintendo of America announced that
most of the 500,000 initial units shipped
for the Game Boy Advance launch sold in
a single week. Nintendo characterized it
as the most successful game console
launch in history. Sony disputed that
claim, holding that the Playstation 2
launch was more successful.

Titus holds Interplay shares. French
game publisher Titus saw its shares shoot
up as much as 10 percent after the com-
pany announced that it would not pursue
plans to sell its stake in Interplay Entertain-
ment. Titus had earlier announced that it
was in discussions that might result in the
sale of its share of Interplay. Titus’s holdings
currently stand at 34 percent of Interplay’s
stock and 40 percent of the voting rights,
making Interplay Titus’s single largest asset.
Titus also revealed that it might consider
increasing its stake in Interplay.

Infogrames hands down Humongous
layoffs. Eighty-two employees, more than
40 percent of the company’s workforce,

were laid off from Washington-based chil-
dren’s game developer Humongous Enter-
tainment. A spokeswoman for Infogrames,
which owns Humongous, said the compa-
ny’s remaining 117 employees will focus on
the company’s successful BACKYARD series
of sports games for children. New titles
based on popular Humongous properties
like Pajama Sam and Freddi Fish will be
produced only if the company sees
increased market demand.

Head office changes. Former Xbox
third-party relations director Kevin Bachus
has joined web game technology maker
WildTangent. While with Microsoft, Bachus
also served as group product manager for
DirectX and was an originator of the Xbox
concept. At WildTangent, Bachus will take
on the role of senior director of marketing.

Acclaim Entertainment has appointed
David J. Sturman to the post of chief tech-
nology officer. Formerly vice president of
software development for TheStreet.com,
Sturman will oversee the development of
Acclaim’s proprietary engines and tools for
next-generation titles, reporting to the exec-
utive vice president of product development.

Acclaim posts profitable Q3 results.
Acclaim marked its third straight profitable
quarter of its fiscal 2001 with a profit of
$0.2 million on net revenues of $38.6 mil-
lion in its third quarter, up from revenues of
$33.8 million for the same period last year.
Acclaim met much of its third-quarter profit
through a combination of higher net rev-

enues, reduced operating costs,
and debt reduction. q

6 s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
Jd a n i e l h u e b n e r a n d j e n n i f e r o l s e n | T H E B U Z Z A B O U T T H E G A M E B I Z

I M X - T H E I N T E R A C T I V E
M U S I C X P E R I E N C E
LOS ANGELES CONVENTION CENTER
Los Angeles, Calif.
October 9–10, 2001
cost variable
www.imxevent.com

P R O J E C T B A R - B - Q
GUADALUPE RIVER RANCH
Bourne, Tex.
October 18–21, 2001
cost: $2,150
www.projectbarbq.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Two of Sega’s SPACE CHANNEL 5 games for Playsta-
tion 2 are part of a European publishing and
localization deal with former rival Sony.

A lias|Wavefront bills Maya
4, the latest release of its
advanced 3D modeling and
animation package, as “the
easiest ever.” Although the

upgrade offers relatively few major new
features, Maya 4 sports dozens of work-
flow enhancements and refinements.

Workflow improvements. Maya veterans
will notice immediately that the workspace
has been rearranged. The basic tools have
been moved to a vertical bar along the left
side of the screen. This toolbar sports a
new Lasso selection tool, similar to the 2D
paint program standby. It’s an example of
what works best in the new Maya: a simple
addition that really enhances the workflow.
Other helpful additions include an align-
ment tool, similar to those in 3DS Max,
and a new menu option for inverting a
scene selection.

The viewports themselves have received
some notable enhancements. The API offers
a new class that lets users plug their own
game renderer right into Maya’s editor win-
dows. Unfortunately, Maya supports only
OpenGL-native rendering, so if your game
engine uses DirectX, it may not be possible
to get a perfectly faithful representation of
your renderer within the viewports. Never-
theless, the new class is a big step toward
eliminating unpleasant surprises from the
production pipeline. Even without addition-
al code, however, the editor windows can
display GL distance fog. Spots and direc-
tional lights can even cast depth-mapped
shadows in real time. Hardware texture
support has also been enhanced with more
control over filtering and both shaded and
flat-lit display modes.

Modeling tools. Maya’s highly regarded
modeling tools received only tweaks in this
version. The ability to texture patches within
a NURBS surface is a useful feature,
although the shader assignment, puzzlingly,
is lost when the NURBS surface is converted
to polygons. The polygon tools are basically
unchanged; a new command to select a line
of contiguous edges is handy for dealing

with seams in symmetrical
models. The addition of the
ability to animate vertex col-
ors rounds out Maya’s excel-
lent set of vertex lighting and
coloring tools. While the per-
formance costs may make it
slow to animate vertex colors
on dense meshes, it will be a
welcome trick for teams
dependent on vertex lighting.

Artisan tools. Artisan is
Maya’s powerful tool for
using a pressure-sensitive
brush to manipulate 3D
objects. Artisan is known
mostly as an elegant method
of sculpting geometry, but it
is also used for setting skin
weights, applying vertex col-
ors, and selecting components. Maya 4
makes Artisan tools fully compatible, at last,
with lower-end GL hardware (particularly
GeForce cards). The new architecture allows
painting and mirroring of Artisan strokes in
world space, where previous versions were
limited to operations in UV space and were
vulnerable to paramerization problems.
Oddly, only about half of the tools use the
new architecture in this release, and the
sculpt tools are among those that do not.
This seems like a case of deadline pressure
rather than a design decision.

Texturing and UV mapping. Maya 3 intro-
duced Paint Effects, a sophisticated 3D
painting plug-in which enables users to
paint either simple colors or complex proce-
dural geometry such as hair or foliage
directly into three-dimensional space. In
Maya 4, Paint Effects brushes have been
folded into the Texture Paint tool, allowing
users to paint effects ranging from natural
media to procedural hair, grass, and light-
ning directly onto a model. Texture Paint is
not ready to compete with dedicated 3D
paint software, though — painting perfor-
mance scales directly with texture sizes.
Textures that are 128�128 or 256�256
can be painted with some finesse (perfor-

mance on my 933MHz Pentium III machine
with a GeForce 2 card ranged from 50
frames per second to around 25). At
512�512, however, the frame rate drops by
half, and only simple tasks such as painting
out seams or making registration marks are
worthwhile; textures above 1024�1024 are
too cumbersome to work with at all. Image-
based functions like blur and smudge are
also slow and muddy. For touch-ups, fea-
ture registration, and painting masks for
procedural textures, however, the tool is
quite capable.

Maya’s well-regarded UV editor, the
Texture view, has been revamped for easier
navigation. You can now merge individual
texture vertices, where previous versions
would only merge or sew UV edges. A
handy new tool smoothes out tangled UV
borders, so that folded and mangled UVs
can be rationalized. Particularly for game
applications where texture space is such a
valuable commodity, Maya’s excellent UV-
editing tools are a strong attraction. Finally,
an excellent little utility allows the export of
UV map templates for texture painting with
pixel-registered accuracy and no recourse to
the Print Screen button.

Rendering. Maya’s renderer has historical-

8

ALIAS|WAVEFRONT’S
MAYA 4

by steve theodore

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

Maya’s user interface has been extensively redesigned for ver-
sion 4. Shown here are the viewport shadows and the improved
filtering renders.

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

XP R O D U C T R E V I E W S

10 s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

ly been plagued by odd texture filtering,
particularly on nonsquare textures. The new
renderer does a vastly better job, with clean-
er bump mapping and much better handling
of high-contrast borders. Another old glitch,
whereby NURBS surfaces tended to “leak”
in raytraced images, has been fixed. The
raytracer now handles translucent surfaces
much more realistically. Rendering is also
somewhat faster. Alias|Wavefront claims a 5
to 10 percent speed boost for most
machines, with more for Pentium 4s.

The rendering interface has gotten some
needed attention as well. A welcome touch
is the addition, at last, of automatic default
lighting to scenes being rendered. Maya
veterans will rejoice to see that the Render
Globals option menu is accessible through
a toolbar button. The Render Globals win-
dow, though still somewhat overloaded
with options, now offers the ability to store
preset combinations of rendering variables.
Finally, batch rendering no longer interjects
a file-save dialog before each render. The
cumulative effect of these small changes
really softens one of the only rough spots in
Maya’s interface.

Animation. This edition of Maya offers
animators some long-desired options as
well as powerful new tools. Maya can
now display “ghosting” in the viewports,
images of an animated object illustrating
past and future positions. Maya 4 can also
generate motion trails representing the
path of objects through space and time.
While neither of these display options lets
you edit keys directly, they are helpful aids
to visualization.

Animators will rejoice over the ability to
animate skeletons from inverse to forward
kinematics and back. While it’s always
been possible to combine FK and IK in
Maya (something many packages do not
support), it formerly required tiresome
hand-alignment of the keys at each transi-
tion. Maya 4 automates the process with a
single command that synchronizes the
transition cleanly. Although it is sometimes
necessary to recalculate the transitions
after an edit, the process is painless and
offers animators enormous flexibility.

Trax, Maya’s nonlinear animation sys-
tem, allows users to edit animated clips
much as a video-editing program edits
video footage. Maya 4 makes Trax more
approachable by simplifying the creation of

Character Sets — the nodes that collect ani-
matable attributes into “actors” for Trax to
choreograph. Character sets can now be
created through drag-and-drop editing in
the Relationship Editor or the Outliner.
Trax can even auto-create characters on the
fly. The rest of the Trax editor remains
basically unchanged, although it’s now pos-
sible to apply clips from the editor without
needing to bring up a Visor window. Clips
themselves now feature completely remap-
pable timing, or “time warps”: you can
slow, speed up, or even reverse the timing
of a clip without changing the underlying
keys. Many users will be disappointed to
find that time warps work only on clips,
however, and cannot be applied to individ-
ual animation curves outside of Trax.

One much-touted animation feature
turns out to be rather an anticlimax. Until
now, Maya has only supported Euler
(“XYZ”) representation of angles. While
Euler angles facilitate fine control of tim-
ing and help economize on the number of
keyframes required to describe a motion,
they are also vulnerable to gimbal locking
and wobbly interpolations. Maya 4 now
offers quaternion interpolation, which pre-
vents gimbal locks and rotates smoothly
between any orientation. This is particu-
larly useful in Trax, where it discourages
various kinds of Euler-induced mischief
when blending between clips. Disappoint-
ingly, however, the new quaternions don’t
support the f-curve key tangents that con-
trol interpolation in Euler keys. This
means the only way to control the speed
of a quaternion rotation is by setting more
keys, an inelegant solution unworthy of
Alias|Wavefront’s usual standards.

Character setup. Maya 4 greatly eases the
burdensome task of binding characters to
their skeletons. The elegant Paint Weights
tool, which uses the Artisan interface to
paint deformation weights directly onto a
skin, can now interactively select which
influence to paint without a clunky dialog
box. It also offers the ability to export
weight maps as editable bitmaps, allowing
skeletal assignments to be copied, archived,
and even pasted between similar characters.
A new Weight Pruning procedure lets you
eliminate vertex weights that are too small
to be useful, thus improving performance
and simplifying further editing. Buoyed by
improved Artisan performance, the setup of

complex skinnings is now almost pleasant.
Roundup. Alias|Wavefront made a com-

mendable decision in the planning of Maya
4. Resisting the lure of “featuritis,” the
company has refined Maya’s tools and
added a welcome level of polish to an
already powerful product. A few features
do seem rushed — the barebones imple-
mentation of quaternions, for example, and
the low performance ceiling on the Texture
Paint tool. On the whole, however, Maya 4
reflects Alias|Wavefront’s traditional high
standards. Maya 3 users should be pleased
with the upgrade, particularly the enhanced
animation and texturing features.

Those who have found Maya too intimi-
dating in the past, however, may not find
enough in this upgrade to convert them.
Maya offers sophisticated, highly flexible
tools instead of one-button, single-purpose
functions. While the interface is responsive
for knowledgeable users, those unwilling to
learn the nuances of the package may find it
difficult to approach. For the time being,
Maya may not be the ideal tool for an inex-
perienced team. Nevertheless, Maya’s latest
incarnation remains one of the defining
landmarks for all 3D animation and model-
ing and continues to set high standards for
the industry.

MAYA 4 XXXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

STATS
Alias|Wavefront
Toronto, Ontario, Canada
(800) 447-2542 or (416) 362-9181
www.aliaswavefront.com
Price: Maya Builder: $2,995; Maya Complete:

$7,500; Maya Unlimited: $16,000; upgrade
pricing available on request.

System Requirements: Windows NT 4 (SP 4 or
greater)/2000: Intel Pentium processor with
128MB RAM and a three-button mouse; also
available for IRIX, Linux support forthcoming.

PROS
1. New 3D texture painting tool.
2. Can keyframe IK or FK on the same joint

chain.
3. Simplified character setup.

CONS
1. Inconsistent upgrades to Artisan tools.
2. Limited options on quaternion rotations.
3. Low performance ceiling for Texture Paint

tool.

12 s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

DIGIMATION’S
BONES PRO 3

by stefan henry-biskup

B ones Pro 3 is the newest version of the
long-popular skin deformation plug-in

for 3DS Max. Appreciated for its ease of use
and simple interface, Bones Pro 3 continues
to fill a needed price
niche in the Max tools
world.

With skinning pro-
grams it is important to
remember that the soft-
ware’s features fall into
two categories if you
are developing for
games: those that can
be exported to your
real-time 3D engine
and those that are only
going to be usable for prerendered cinemat-
ics or sprites. Bones Pro 3 has some excellent
features in both areas.

The adjustment of the bone influences
over the model involves only two parame-
ters, Falloff and Weight. They can be adjust-
ed in real time with color-coding to show
how much the bone will affect the mesh. In
practice, the adjustment is smooth and per-
forms well on a mid-level machine (600-
MHz Pentium III with 128MB RAM and a
32MB TNT2 graphics card). Because the
influence values are so simple, hand-editing
of vertices is necessary to deal with unwant-
ed influence in tight spaces. Luckily, Bones
Pro 3 is equipped with a fine set of selection
tools for getting at vertices and dealing with
this. You can also more finely hand-weight
the vertices to given bones. It is easy to add
or remove bones from the skeleton and
retain the settings for the bones you keep.
File formats are provided to export the mesh
and skeleton data in text format. The cre-
ation of a mesh weighted to a skeleton is fast
and easy, just as the program intends.

In the higher-level skinning tools, things
that are going to be used only for work ren-
dered in Max, there are some very welcome
features. New with this version of Bones Pro
is the Meta Bone, a spherical primitive that
can be linked to the skeleton and displace
the mesh that lies around it. Examples that
come with the program demonstrate how
this can be used to maintain volume and
bone protrusions beneath the skin easily on

joints. The truly unique part of this func-
tionality is that the mesh is allowed to slide
over the volume of the Meta Bone. This is a
very powerful feature that will allow effects
no other program offers. There is also a
plug-in that lets you turn any geometry into
a Meta Bone, with my tests showing only
slightly slower performance. The other

major high-level feature is
the Bone Jiggler, a sec-
ondary motion modifier
that lets you add drag
and bounce to the mesh
to simulate weight and
flexibility. This is assigned
on a per-bone basis, so
you can add bones strate-
gically to get the effect
only in desired places.

Bones Pro works best
with meshes. It can be

assigned to patches or NURBS but will turn
both into meshes. It must be said that in
running Bones Pro 3 through its paces, the
software did lock up an otherwise stable
machine a noticeable amount of times. Only
the online manual was available, and it was
barely sufficient. If you are familiar with
these kinds of programs it’s easy to pick up,
but for a less experienced user it could be a
little confusing. It would also be nice if the
Meta Bone effect were stronger.

Bones Pro is old school, and for longtime
fans of the program that has always been its
appeal. It’s all about mesh and bone. Simple
and straightforward, without a lot of messy
envelopes and such to clutter and confuse,
getting a good setup is meant to be a breeze
and it is. At $495, Bones Pro offers a more
advanced skinning option than Max’s built-
in Skin modifier at less than half the price of
Character Studio. If you plan on using the
great new IK to do your skeletons, then it is
a good option.

XXXX| | Bones Pro 3
Digimation | www.digimation.com

PROKSIM’S NET-Z 2.0
by crosbie fitch

N et-Z 2.0 is the latest version of Prok-
sim Software’s networking middleware

designed specifically for games. It takes up
where networking layer APIs such as Win-
Sock, DirectPlay, and RTime leave off,
focusing squarely upon synchronizing dupli-

cated objects for games operating on Win-
dows 95/98/NT/2000/ME, Windows
CE/PocketPC, Linux, and Playstation 2.

Proksim has noted like few others in the
games industry that there is a higher-level
objective to address in enabling multiplayer
games, and this distributed systems
approach is designed to obtain a consistent
or synchronized game state. Naturally, there
are many aspects of the synchronization
process that require knowledge specific to
each application, and sensibly Net-Z has
many features to address this.

So with Net-Z you’re straight in at the
level of thinking about how you’re going to
architect your distributed system, whether
it’s simple client/server, totally egalitarian
peer-to-peer, or somewhere within the spec-
trum of those bounds. Thus, Net-Z allows
you to control how object state is arbitrated,
whether tied to a specific machine or spread
across all or a subset of machines. Given
that there is some burden to hosting an arbi-
trated object, or “duplication master” in
Net-Z terminology, the policy by which this
burden is shared is where Net-Z’s load-bal-
ancing feature comes into play. You can
either use a built-in policy (“equal object
numbers” or “equal weights of weighted
objects”) or you can hook in your own if,
say, some objects need a dynamic weighting.

Where Net-Z really demonstrates its
next-generation credentials is in scalability.
It can cope with ever greater numbers of
players and an ever-increasing size of game
world, without necessitating the use of
expensive game servers.

In its earlier 1.5 release, Net-Z duplicated
the game state across all participating com-
puters. This meant that although Net-Z-
based games were able to break through the
bandwidth barrier of the client/server archi-
tecture, they were still significantly bound
by bandwidth limitations. Although spread-
ing arbitration across multiple computers
greatly reduces the need for a dedicated
high-bandwidth game server, the game state
still needs to be synchronized (and 56Kbps
isn’t much). However, now Net-Z supports
a feature called duplication spaces. This is
an extremely useful and flexible concept
that can be used to decompose a game
world into relatively independent elements,
called cells. This is better than imposing an
ad hoc requirement as to how you partition
your game world, such as into a cubic grid

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

Meta Bone in action.

14 s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

(regular or octree), portal-connected rooms,
or server-tied territories. While these ad hoc
zoning mechanisms might still allow loca-
tion transparency (zones could be mobile
between computers for load balancing),
they’d still exhibit a hard-wired nature,
meaning a system oriented for a specific
class of application.

A duplication space allows you (rather
than the middleware vendor) to decide
your own zoning policy, because it is an
associatively computed mechanism. It
could be based on spatial coordinates, it
could be based on which room an object is
associated with, and it could even be based
on a dynamic spatial-partitioning scheme.
You can have different schemes for differ-
ent purposes; for example, duplication
spaces for high scores or other sensitive
player stats, duplication spaces for static
scenery, and duplication spaces for dynam-
ic objects. Perhaps visibility-based cells
might be useful. Cells don’t have to be
exclusive, either; you can even have a
multi-resolution duplication space with
small cells intended for distributing across
small computers, and medium and large
super-cells for more capable computers.

Net-Z represents a C++-programmer-
friendly integration of a distributed objects
system into a game. There’s still a big bene-
fit if you understand what’s going on down
below, but it’s nice to leave the mucky
plumbing to someone else. However, if you
do want to get your hands dirty, there’s
plenty of opportunity.

If I had to convert a game, or was famil-
iar with a single-player game engine and had
to use it to produce a multiplayer game
before Christmas, then I’d be happy to use
Net-Z. If I were writing a game from
scratch, then it’s probably a matter of eco-
nomics and how scalable I’d want to go as
to whether I’d opt for a full engine with net-
working built in, or whether to hook up an
existing engine to Net-Z.

XXX | Net-Z 2.0
Proksim Software | www.proksim.com

PocketPC Game
Programming
BY JONANTHAN S. HARBOUR

reviewed by curt tooley

T he rising popularity of PocketPC
(Windows CE 3.0 operating system)

handheld devices has led naturally to a
huge demand for games for
this platform. PrimaTech’s
PocketPC Game Program-
ming: Using the Windows CE
Game API aptly fills the void
of information about writing
game applications specifically
for PocketPC. The book is
nominally targeted at a begin-
ner/advanced level, which is a
bit confusing. A better choice
might be advanced begin-
ner/advanced. The first third of the book
contains information that is old hat to the
more experienced coder. Still, newcomers
to the PocketPC need to have some experi-
ence in coding and, most importantly, a
familiarity with C++.

Author Jonathan S. Harbour and his edi-
tor André LaMothe have compiled more
than 700 pages of clear, concise information
on game programming for the PocketPC,
offering readers a useful working knowledge
of the PocketPC platform and its limitations.
Harbour discusses programming require-
ments and offers incrementally developed
sample code to help readers maximize the
PocketPC’s capabilities.

Following the introductory chapters
introducing the PocketPC platform and
Windows CE 3.0, the next chapters cover
the use of Embedded Visual Basic and Em-
bedded Visual C++, as well as the Windows
CE Game API library, in clear detail. While
it’s not DirectX for the PocketPC, the
Game API, or GAPI, enhances the Poc-
ketPC’s ability to blit graphics (2D) to the
screen much faster than using the built-in
Windows CE GDI.

With clear and well-commented code
samples that actually work the very first
time, readers are able to see the fruits of
their labor as they write and compile them.
The samples help readers to build graphics
and sound routines that, while rudimentary,
illustrate the fundamentals of getting an idea
from concept to LCD.

Readers also get a thorough treatment of
the Embedded Visual Basic development sys-
tem for game programming. Although
Visual Basic is somewhat limited for game
applications, readers can and do create a full
game using the book’s examples and the
Embedded Visual Basic system. Experienced
readers may already understand that, as a

fully compiled system, Embedded Visual
C++ is much more powerful than
Visual Basic for creating game
applications. Still, even those with
no previous experience using
Embedded Visual C++ soon feel
right at home. Harbour knows his
material and explains it well to
those who don’t. Note that a
working knowledge of C++ is
necessary to fully grasp all the
information presented. Code sam-
ples in this section guide readers

in the creation of functional games, as well
as core game graphics and audio function
libraries for use with the game code in the
book and afterwards.

The final chapters of the book outline a
few important advanced development topics
such as war-gaming theory, computer con-
trolled players, game physics, infrared and
socket communications, and TCP/IP proto-
col for multiplayer gaming. As with earlier
chapters, Harbour illustrates his points with
working code samples.

The companion CD contains the Em-
bedded Toolset (Microsoft’s programming
suite that includes both Embedded Visual
Basic and Embedded Visual C++), the latest
version (1.2 as of this writing) of the
Windows CE Game API, along with all of
the source code described in the book.

Good book? Yes. Perfect book? No. The
selected commercial tools and their included
demos on the CD are overly hyped in the
book’s text. The book includes helpful infor-
mation on other software tools, but it seems
that those available for purchase are given
more space — it’s as though the reader must
suffer through a commercial in the middle of
a lesson. Better to give readers a URL if it’s
available, or some other basic information,
and be done with it. Furthermore, Harbour
might have offered more details on using the
Microsoft Embedded Toolset, and the
lessons on networking multiplayer games
could have been expanded upon.

Despite these minor shortcomings, at
$49.99, the book is worth picking up for
those who need a solid overview of Pocket-
PC game development. No matter your level
of experience you will find this a welcome
addition to your reference library. q

XXXX | PocketPC Game Programming
Prima Publishing | www.primapublishing.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

w w w . g d m a g . c o m 16

C yrus Lum is an elder statesman in the world of
game art. He began his 12-year career at Strategic
Simulations, and later established and ran art
departments at Crystal Dynamics and Iguana Enter-
tainment (later Acclaim), where he worked on such

hits as TUROK and the QUARTERBACK CLUB series. In 1999, he and
two fellow VPs from Iguana, Russell Byrd and Craig Galley,
founded Inevitable Entertainment, whose first game, a version of
TRIBES 2 for Playstation 2, debuted earlier this year at E3.

Game Developer. What was it like back in the olden days at SSI?
Cyrus Lum. Back then, everything was 2D, and then this small

program came out called 3D Studio. So I started playing with it.
3D Studio was this simple CAD program that you could actually
start to do some animation with. You could set some keyframes
and have some renderings come out that actually looked pretty
nice. I was trying to convince SSI, “Hey, you know it would be
great to get some long-format animation, it could be like a little
movie!” Nobody had heard of FMV or cinematics or anything like
that, so they were sitting there like, “Yeah, that’d be cool, but we
don’t have that much room on these 5-1/4-inch floppy disks.”

GD. You were offered a job at ILM at one point. Tell us about that.
CL.When I was ready to leave Crystal Dynamics, my biggest

struggle was trying to decide between Iguana and ILM. A lot of
my friends were saying it was an easy decision — ILM, of course!
But I sat down and I thought about what it is that I really enjoy
about doing computer graphics. And to me it’s having that creative
input. At ILM, even though you’d be able to get your name in the
lights and it’s exciting, you’re more like a contractor; it’s like a
print shop. If I want creative control, I want to make the decision
as part of the production company, the people who actually con-
tract ILM. I was thinking I would really miss that a lot. With
games, if I need to change something, I can. That was the thing
that told me right there, “O.K., Cy, I think you want to stay in
games.” You’ve got to follow your heart and not the hype.

GD. You set up at Iguana a unique environment for game artists to
learn and work in. Explain a bit about that.

CL. What I was offering was kind of like the Army of computer
graphics: “Hey, you wanna drive a tank? We’ll let you drive a tank!”
(Laughs.) We’ll train you! When I came up with that idea, a lot of
my other friends in the industry thought that when you train people,
they’re just going to leave for better opportunities. But I thought if I
can do the training and also create an environment that allows the
artist to feel like they’re growing, maybe that would allow me to
keep people. So I developed this system of career development. In
order to grow in the department, education was the single most
important thing. When you first come in, we will educate you. As
you start to learn and understand, in order for you to grow to the
next level, you need to educate someone under you to get them up

to your level. It allowed us
to get away from pigeonhol-
ing artists. I wanted to get a
system where people could
actually migrate to different
positions, so if you could train
someone to replace you, you
could actually move on to
something else. Knowl-
edge didn’t become a
job security thing. If
you can help to get
other people to under-
stand, that tells me that you understand what you’re doing, and you
have the right attitude for being open to helping other people grow.

GD. So you were successful in retaining your art staff that way?
CL. A lot of friends that I know, I talk to them every year and

they’re at a different place. And it always happens right after Sig-
graph. The first year we went, I took everybody and I came back
with the same number of heads. And I thought: this is a good sign.
Five years later, only two people had left. A lot of those people
came over with us to Inevitable, because of the great consolation
prize of providing an environment for people where it’s not like,
“Oh, I’m just giving you a job and that’s it.” I’m giving you a job,
I’m growing you, I’m investing in you. People understand that,
and the loyalty that gets generated is very important.

GD. You’ve seen all the 3D packages evolve over the years. What are
they still lacking that you wish they offered to game artists?

CL. Per-pixel shading is the big thing that everybody’s interested
in, but there’s not really an interface that allows an artist to get in
there and try to play with it. A per-pixel shader really needs a pro-
grammer sitting there and the artist talking to the programmer. But
we need some kind of interface that has some generic per-pixel
code that an artist can try out through sliders or something. There
are a lot of cool things you could do with it, but there currently
aren’t the tools available for artists to take advantage of that.

GD. Do you think game artists are on their way toward greater
recognition or greater anonymity?

CL. As a whole, game artists are seen as being responsible for
how good games look these days. With the amount of sophisticat-
ed graphics going into future games, it will continue to grow. In
terms of individual artists receiving greater recognition, it’s harder
to say. Most people seem to think that a game’s designer is also its
art director. In some cases that’s true, but in many it’s not. It
would be interesting to see if that changes in the future, especially
if games start to stray from hyper-realistic 3D and start to explore
other nonphotorealistic rendering styles. Maybe that can bring
more focus to individual artists. q

Cyrus Lum
Drawing on the Past

j e n n i f e r o l s e n | T A L K I N G T O P E O P L E W H O M A K E A D I F F R E R E N C E

P R O F I L E S

ABOVE. Inevitable Entertainment’s Cyrus Lum

w w w . g d m a g . c o m 19

SILICON
Stuntman

The Life of a

FIGURE 1. A character model demonstrating different action poses.

j e f f l a n d e r G R A P H I C C O N T E N T

rowing up, my friends and I were hooked on
action shows. I used to powerslide around in my
parents’ station wagon like it was some souped-
up car from The A-Team. We would all practice
sliding over the hood for a quick getaway like

Starsky and Hutch did on their Gran Torino. I am certain that if
we could have figured out how to build one of those jump
ramps from The Dukes of Hazzard, we would have done it and
probably killed ourselves.

Back then, we all wanted to be stuntmen. These artists get all
the excitement and action without having to actually act or learn
boring dialogue. So we practiced. We bumped, jumped, fought,
and fell. Bloody broken noses, sprains, and scrapes were worn
like a badge of honor. One time my friend, after attempting a par-
ticularly challenging (some would say stupid) trick on his BMX
bike, flew over the handlebars and busted his chin on the curb.
He ran home to have his mom take him in for stitches. We could
follow his blood trail home for the next six months, and as the
months passed, the story just got better and better.

These days, I am content to sit back and watch Jackie Chan
break bones and Steve Irwin bleed profusely from various animal
bites. I still get the same thrill without the risk of breaking my
nose again.

What I Really Want to Do Is Direct

A s a game maker, I would love to be able to direct my actors
to perform the kinds of stunts that any good action sequence

requires. I would like to take some of my virtual actors and put
them in a good location such as a barroom, and then direct one to
start a knock-down-drag-out bar brawl. You know the kind. A
room filled with chairs breaking on backs, bodies flying across the
room, and the barman wisely ducking behind the oak bar.

To create this scene, I could stick some animators on the job
and animate the entire sequence just as I envision it. However, I

want an interactive game, not a movie. I want a character to be
able to enter the situation and change the outcome. Characters
need to react to the situation, both dramatically as well as in a
physically plausible manner.

Last month, I began to apply some technology to deal with the
physically plausible part. I created a physical representation of an
actor that could be used for some limited dynamic simulation.
However, I would like to take a minute to look at the animation
side of the problem by describing my character animation system.

With hierarchical character animation, the animator creates a
target position and rotation for each bone in the actor’s body.
The actions can be either animated or static. In general, each
action would be a single move such as walking or sitting, as you
can see in Figure 1 from Curious Labs’ Poser program. This pro-
gram is a lot of fun for trying out a variety of different poses and
actions on different characters. As a bonus, you can save out
your action as a .BVH motion capture file that you can use for
your real-time characters.

I could create actions for every task that I want my actors to
perform and then just play them back when needed. However, if
my character is going to be very interesting, that could wind up
being quite a few actions. The actor can have a much larger range
of actions if I combine the basic actions in order to create new
actions. This technique has been used very successfully in games
such as HALF-LIFE and SOLDIER OF FORTUNE.

Character actions can be blended in a similar way to keyframe
interpolation. When an animation is created at a fixed rate, say
15 frames per second, and the playback of the game is much
faster, say 60 frames per second, the animation can look slow and
choppy. That is because there are not enough frames to make the
animation look smooth. However, it is possible to calculate in-
between frames that will smooth out the animation. I, as well as
many others, have written about the use of quaternions to calcu-
late these in-between frames of animation (see For More Infor-
mation). You can accomplish this by using spherical linear inter-
polation (SLERP) to find a quaternion that is a specified distance
between two existing quaternions. That is:

result = slerp(a,b,u);

where a, b, and result are quaternions and u is a value from 0 to 1.

This technique works very well for blending between two frames
of animation. You can also use the very same blending technique to

J E F F L A N D E R | When not sitting on
the couch watching extreme sports or old
seventies cop shows, Jeff directs the action
at Darwin 3D. Send your favorite stunt
story to him at jeffl@darwin3d.com.

generate new animations.
Consider the two character
poses in Figure 1. If the orien-
tation of each bone in each
pose was represented by a
quaternion, I could use the
SLERP function to blend
between the two poses. This
would be very similar to mor-
phing between two vertex
meshes, except in this case, the
only thing changing would be
the orientation of the bones in
the skeleton. This skeleton
could then be used to deform
the vertices of a skin mesh.

I like to think of this mathematical mixing of motion data as a
fader that allows you to gradually fade between two actions
dynamically. Of course, this technique can be expanded almost
limitlessly. You can feed the results from one SLERP operation into
the arguments of another blend. In much the same way that a
recording engineer can combine a variety of inputs and mix them
together to make something unique, you can now combine anima-
tion data of all types to make unique actions. You can see a flow-
chart of this mixing system in Figure 2.

One interesting application of this mixing motion idea is the
creation of a pseudo inverse-kinematics system. Think of a char-
acter aiming a weapon. The artist could create animations for
aiming up, down, left, and right to the maximum extent that the
character can reach. By mixing the left, right, up, and down
actions and combining the results, you can make the character
aim at any position within reach of the various actions. Now, of
course it may be much easier to use a simple iterative or analytic
IK function to do this type of simple aiming with look-at con-
straints. In fact, an algorithmic IK solution can be mixed in to one
of the SLERP functions just as if the artist had created the action.
In practice, I find this very useful for making an algorithmic
motion look more natural.

The basic motion mixer that I have described so far is not ade-
quate to create a real animation system. There is still a big problem.
In the process of mixing the animations, every joint is currently
mixed equally. This won’t produce the desired effect. Imagine com-
bining a “walk” and a “shoot” action as I have just described. The
“walk” action would involve the legs moving back and forth and
the arms swinging along the sides. For the “shoot” action, the char-
acter is probably standing still and raising his arms to aim.

As I have described the motion mixer so far, if you start with
the “walk” animation and then blend in 50 percent of the
“shoot” action, instead of a walking and shooting animation, I
will get a really bad walk with a very shaky aim and shoot. That
is because the motion mixer is doing what I said, not what I
wanted. When I tried to combine the walk and shoot actions,
what I wanted was a motion where the legs keep on walking and
the arms begin to move to the shoot position.

There was some information implicit in the shoot action of
which the system was unaware. The action of shooting in this

example simply involves raising the arms to aim and shoot. This
particular action really doesn’t involve the lower body, though
there may be a small amount of recoil to deal with if the weapon
is very large (as it always seems to be in most action games).
Likewise, an action such as the “kick” in Figure 2 would proba-
bly largely involve the legs only, so you may not want it messing
up the arms from the “shoot” action.

The solution to deal with these issues is to introduce a weight-
ing system into the motion mixer. For each bone in each action,
there is a weight value that describes how important each particu-
lar bone is to the action. You could probably calculate this weight
value automatically by looking at the amount of change in each
bone orientation throughout the action. However, I find it works
better to set these weight values manually in some manner. That
way, you have complete control over what parts of each action
you blend into the final motion.

This weighted motion-mixing system is adaptable enough to
provide a great deal of flexibility while still maintaining control
over the actual performance of all of the actions. However, even
with all the motion mixing, these actors have a pretty limited
repertoire. When it is time for a physically challenging action such
as falling off a ledge or tripping over a table, these actors may not
be up to the task. Here, the virtual stunt team can come in and
earn their pay.

Quiet on the Set

U sing the technique I described in last month’s column, “Last
Call at the House of Blues” (August 2001), I can take a

skeleton from a kinematic character and build a physical represen-
tation. In creating this representation, I use some information
about how I want the different joints in the object to move; for
instance which joints are going to be 1D and which joints need a
full 3D range of motion. You can see the physical representation
of my current stuntman in Figure 3.

The stuntman is composed of a series of points connected by
rigid links. The points are assigned masses that approximate the
relative mass of each part of the body so it will behave realistical-
ly when being simulated. There are also soft constraints consisting
of springs that try to keep the joints of the body within the
motion limits of the character.

As far as stuntmen go, this guy is pretty bad. He has no sense
of balance and can’t even walk. He apparently feels no pain,
either, since if he falls on his face, he will not put his hands out to
break his fall. However, the falls are pretty dramatic and provide

a great deal of variety.
Just like a real stuntman,

this system steps in when the
animation system is unable or
unwilling to perform an
action. For example, if I were
to hit my character in Figure 3
very hard across the jaw, I
would expect the character to
fall back onto that box behind
him. However, since the char-

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r20

G R A P H I C C O N T E N T

Walk Shoot

SLERP

KickSLERP

Result

FIGURE 2. The motion mixer.

FIGURE 3. The stuntman arrives on
the set.

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r22

G R A P H I C C O N T E N T

acter might have been anywhere when he was hit, I probably
don’t have an animation ready where the character falls over and
drapes over a box.

So the game detects when something interesting has happened,
such as when a character has hit another character hard in the
jaw. The motion mixer stops and the virtual stuntman assumes
the exact pose where the actor was standing. Clearly, the stunt-
man needs to be the exact same size and have the same skeletal
system as the actual game actor.

The game’s dynamics system is then turned on and a set of
forces is applied to the stuntman. These forces are a combination
of external forces such as the punch and any internal velocities that
have been generated by the animation system. This is accomplished
by comparing the current bone positions with the last animation
frame position.

Now the dynamics system takes over the animation of the char-
acter. Gravity pulls the character down and the force of the punch
pushes him backwards. In order for the character to stop, I will
need to do a bit of collision detection with the physical represen-
tation of the character. The floor is pretty easy, but creating a col-
lision object for the table is going to take some more work. A
table is a good candidate for a bounding box. I could make my
life easier by requiring that all collision boxes be aligned with the
world axis, but that would be a bit too restrictive.

So I will allow the character to collide with arbitrary bound-
ing boxes. This is done by using the separation plane method
that I discussed in “When Two Hearts Collide” (Graphic
Content, February 1999). This method works on the premise
that if I can find a plane that separates the stuntman from the
box, the objects are not colliding.

For each face on the box, I take the normal to that face (stored
or determined by the cross product of two edges) and one of the
vertices of the face. This gives me the point-normal form of the
plane of the face. Then, for each vertex in the stuntman’s collision
geometry, I create a vector by subtracting the point on the face.
The dot product of this vector with the face normal will determine
whether this vertex is outside the box. If it is not, the other five
planes of the bounding box are checked. If a separation plane can-
not be found, this vertex is colliding and I can resolve the collision
by moving the vertex just outside the box on the nearest plane.

So algorithmically, the method for checking the collision with a
box is:

for (each vertex, v, in collision geometry)

{

colliding = true;

for (each bounding box plane normal, n, and vertex, pv)

{

if (dotproduct(pv - v,n) < 0)

colliding = false;

}

if (colliding)

resolve collision for v;

}

Using this system, no vertex in the collision mesh will end up
inside the box, and the link constraints will keep the body from

falling apart. So what I get is
the goal of a dynamic character
that will fall down over a box.
You can see this in Figure 4.

You can see the problem with
this collision system. Even
though the vertices of the stunt-
man are not penetrating the
box, one of the edges of the
stuntman’s collision mesh is

going right through it. It is obvious that the vertex test alone isn’t
enough to make sure there are no penetrations. I need to check
the edges as well. I can go through each edge in the collision mesh
of the stuntman, take the cross product with an edge on each face
of the cube, and take the dot product of that vector with the cube
face normal. If that test fails for all six faces of the bounding box,
the edge is colliding and must be resolved.

Are We Ready to Wrap?

W ith the new collision detection in place, the stuntman falls
in a physically plausible manner. It integrates well with the

full motion-mixing system for kinematic animation. The dynamic
animations do look more believable than generic falling anima-
tion. However, the stuntman still looks pretty dead. It’s as if the
instant the character is hit, he falls over either dead or completely
passed out and nonresponsive.

In order for the character to look more like an actual stuntman, I
need to make the character react to the fall. Blending in a little bit
of generic “loss of balance” action may help quite a bit. I can also
fire off a new action once the dynamics system has come to a rest,
but we really need some intelligent dynamics in the stunt system.
My stuntman should understand how to regain his balance and
attempt to break his fall.

Unfortunately for me, that problem is a very difficult one that
has stumped many of the best robotics researchers in the world.
However, that doesn’t mean we in the game development communi-
ty shouldn’t keep working on it. But not until next month. q

FOR MORE INFORMATION

ARTICLES

Lander, Jeff. “When Two Hearts Collide” (Graphic Content, February 1999).

www.gamasutra.com/features/20000203/lander_01.htm

Lander, Jeff. “Slashing Through Real-Time Character Animation” (Graphic

Content, April 1998).

Shankel, Jason. “Interpolating Quaternions.” In Game Programming Gems,

edited by Mark DeLoura, 205–213. Rockland, Mass.: Charles River

Media, 2000.

POSER 4

Curious Labs

www.curiouslabs.com

FIGURE 4. He fall down, go boom.

w w w . g d m a g . c o m 25

n this column, I’ll examine some of
the issues you may want to consider
when starting to create a terrain tile
set for a game. When done well, the
terrain becomes a believable world in

which your characters come to life. The
user will simply accept your work as part of
the natural backdrop. Often, the best com-
pliment for a good environment is that it
doesn’t call attention to itself.

As the terrain artist, you may not have a
ton of texture memory space to deal with,
so it’s always a good idea to figure out how
to stretch your budget as far as possible.
Obviously, the larger the number of base
texture tiles, the more random (and hence
natural) the terrain will look. When only a
few terrain tiles are available, a repetitive
pattern becomes very obvious. The trick is
maximizing the usage of each texture while
minimizing the disjoint that occurs when
you see the same pattern over and over.

The Basics

B efore you begin, you will need to
evaluate the needs of your particular

project. Let’s assume that you are trying
to make one large plain of cooled lava
stone. In theory, you can accomplish this
with just one texture map tile and one
large polygon. You can tile the texture
map multiple times on the single polygon,
which gives the appearance of a higher
resolution on the terrain. While this
method works conceptually, it can quickly
lead to some technical problems, such as
the inability to add additional texture
variety into the field, and shading issues
over a large polygon.

Another method is establishing a grid of
polygons similar to a chessboard mesh.
You can map each square with a different
texture map, and there is a lot more flexi-
bility with what you can do on an individ-

ual square basis. This method addresses
some of the variety and shading issues as
well as making the process of editing and
tweaking much easier.

Now, suppose you want to add a lake of
molten magma to the middle of the land-
scape. With the single large polygon
method, you’ll quickly face some problems.
Since you can’t interrupt the tiled terrain
and insert a different texture map in the
middle of the sequence, you have to figure
out an alternative method. One such alter-
native is to include the lake in one large tex-
ture map. While this would allow you to
create a completely custom terrain, you will
quickly encounter texture memory usage
and texture resolution challenges.

The other alternative is to make a cus-
tom polygon for the magma only, and
then perform a Boolean operation on that
polygon, combining it with the other ter-
rain polygon. This too presents some par-
ticular problems if you are using vertex
shading to light your terrain. In addition,
making the seam between the two texture
types invisible will prove to be difficult, if
not impossible.

For this tutorial, I’ll focus on a more for-
giving method of maximizing the effect of
your tiled terrain by using a standard grid
and texture-mapping each polygon quad or
set of quads as a unique element. This
method will allow you to control the layout
of the textures much more accurately, and it
also provides vertex-shading advantages. In
addition, when you start to add vertical
information to your mesh, you will find

that the additional vertices give you more
control of the 3D aspects.

Creating the Basic
Flood Fills

W hen making a texture tile set, you’ll
need to create a minimum set of

tiles. The complexity of the planned envi-
ronment will determine the number of tiles,
how well the tiles appear visually without
showing repetitive patterns, and how many
different types of random tiles will be
required. The amount of available memory
for the terrain will impact all these factors.
As a good starting point, create the mini-
mum base set, then add to it only when
necessary. Reuse is king, so try to stretch
your texture budget as far as possible.

The number of different terrain types
you will have in your environment will be
another big impact on your tile set. This
impact can be compounded by which ter-
rain types can touch or transition with one
another. Take, for example, a terrain that
consists of water, sand, and grass. If water
can only touch sand and sand can only
touch grass, then you only have two tran-
sition sets to make. However, if water
touches grass as well, then an additional
transition set is required. As you can tell,
planning out the environmental require-
ments ahead of time makes a lot of sense.
You may find areas where you need to
limit the number of transitions in order to
keep the texture budget in check.

For the sake of argument and to keep

m a r k p e a s l e y A R T I S T ’ S V I E W

M A R K P E A S L E Y | Mark has been in the gaming industry
longer than he can remember. He’s currently working on Xbox titles
at Microsoft, and when not bleeding on the cutting edge, he’s
increasing his couch and mouse potato skills. His web site is
www.pixelman.com, and he can be reached at mp@pixelman.com.

the number of variations low, I’ll assume
that the new terrain will consist of two
basic ground types: stone (cooled lava) and
molten lava. This will require you to make
only one transition set. For now, don’t
concern yourself with the 3D aspects, and
assume that the terrain is a flat plain.

First, create the flood-filled texture for
each basic ground type. This is the basic
tile that is used as the default flood fill of
an area. If possible, since it stretches your
texture budget, it’s a good idea to make
the texture able to tile in any direction,
even if it’s rotated 90 or 180 degrees. This
will give you more visual mileage out of a
single texture by breaking up the repetitive
pattern of the texture when you lay it
down next to itself.

In Figure 1, you can see the stone tex-
ture in its original orientation. It’s easy
enough to use the Offset filter and Rubber
Stamp tool in Photoshop to make a texture
seamless, but you’re limited to only one
orientation. If you rotate it and try to
place it in a grid, the seam will be plainly
visible. In order to make a tile seamless
when it rotates, the texture needs to have
identical edge pixels on each of the four
sides. This requires a bit more work than
just using the Offset filter, but it also
extends the usability of the texture. With a
bit of Photoshop magic, you can create the
seamless effect pretty easily.

Making a Simple
Tileable Texture

T he first step in making a tileable tex-
ture is making your flood-filled texture

tileable. There are quite a few methods and

some programs devoted exclusively to this
process. Photoshop is more than adequate
for the job, so I’ll cover a method that
doesn’t require any special plug-ins.

After obtaining the proper source mate-
rial, choose a square section of the image.
Avoid source materials that have a strong
light direction embedded in the image.
This is mainly because once you rotate
and place the texture next to the original
orientation, there is a visible anomaly in
the lighting direction. If you take care,
you can make strongly highlighted tex-
tures work, but that takes a bit more
Photoshop work.

In this tutorial, I’ll actually use a source
that has a fairly strong highlight to make it
easier to see the seams. Be aware of the
image scale once it is mapped onto the ter-
rain. It’s very easy to find games out there
where the texture maps aren’t to the proper
scale for the characters or the environment.
Often, designers use the character texture
maps to drive the texture resolution for the
rest of the environment. Your main goal is
uniformity in your texture resolution. The
pixels per foot of your game should remain
fairly consistent.

Once you have selected your perfect
256�256 texture, it’s relatively easy to
make it a seamless texture when no rotation
is involved. To do this, load up the texture
in Photoshop, then go to Filter>Other>Off-
set. Set the Horizontal and Vertical settings
to 128 with the Undefined Area set to Wrap
Around. The seam is visible, and you can
then remove it using the Rubber Stamp
tool. Try to keep from blurring the image
too much, as it tends to make the end result
look fuzzy. It’s also a good idea to change
the offsets to different settings such as 64
vertical, 64 horizontal and then check the
seam again for visible anomalies.

Once you are done, check to see how it
looks in a tiled environment. First, make a
new Photoshop file, with the size set to
1024�768. Now open up the tiled texture
you have just created and select all. Go to
Edit>Define Pattern. This stores the tex-
ture as a repetitive pattern in the clip-
board. Now switch to the 1024�768
image and click on the Paint Bucket tool.
Go to the Paint Bucket Options panel and
select Pattern from the Contents pull-down
menu. Then, simply click anywhere in the
image to fill the area with the pattern.

This process gives you a good idea of
how the image will tile and whether there
are any areas that tend to stand out in the
repetitive pattern. Fix any obvious problems
immediately rather than waiting until later.
You’ll have to redo most of the steps after
this one if the edges don’t quite work.

Additional Flood-Fill
Patterns

A fter you create the first flood-fill tile,
you can quickly make additional

matching tiles. You may find that it’s nec-
essary to create three or four different
flood-fill patterns to make the terrain ran-
dom enough.

To create additional fills, you will need
more source images. In this case, the origi-
nal texture was a fractal pattern generated
in Corel Draw’s texture program, so by sim-
ply changing the seed number, you’ll be able
to make additional source material images
all with a very similar look and scale.

Once you obtain the new source image,
create a new Photoshop file that has the
new terrain as the first layer (I named mine
New Stone) and the tiled texture you previ-
ously made as the top layer. Now, with the
top Original Stone layer, make a selection
box that is approximately 30 pixels from
each edge. Accuracy isn’t critical here, since
you will be able to edit your work after the
fact. With the selection still active, go to
your Layers panel, and select the Add
Layer Mask icon on the bottom left. This
creates an active layer mask linked to your
New Stone layer, with the edge border
showing the Original Stone layer.

Now it’s time to do some Photoshop
work and edit the mask to blend the New
Stone edge into the Original Stone edge.
Don’t edit all the way up to the edge. If
you do, your new texture won’t match the
old texture at the seam. Once you com-
plete this task to your satisfaction, save off
a copy and collapse it down to create your
new tile. By inserting it into your 1024�

768 tile sample, you will be able to see
how it looks and how effectively it breaks
up your patterns.

Rotating the Edge

A fter examining the results of the two
or three flood-fill textures, you’ll

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

FIGURE 1. A basic stone texture that is seamless
in only one orientation.

begin to recognize the pattern unless
you’ve used several flood fills. Another
way to extend your texture budget is to
use a common edge on all sides. This
method allows you to rotate the texture 90
degrees in any direction and it will still
match. This technique also makes it much
more difficult for the viewer to detect the
pattern and requires a bit more Photoshop
expertise to create.

First, pick a side of the texture map
that will become your common edge. In
the case of the stone texture example, I’ll
pick the left edge. Create a selection box
that is flush with the top, bottom, and left
side of the texture map, and about 30 or
40 pixels wide (see Figure 2). Now copy
that piece of bitmap into the clipboard
and paste it down again (Control-C then
Control-V). This will place an exact dupli-
cate of the texture section right over the
original. Now make a selection set of the
layer you just placed down by pressing
Control and clicking on the layer in the
Layer panel. Rotate the selection 90

degrees clockwise by right-clicking on the
selection set, then choosing Numeric
Transform and inputting 90 in the Angle
section under Rotate. Now click and
move the selection set so that it aligns
with the top of the texture and name it
Top. Add a layer mask, and edit the inside
edge of the bitmap to blend it into the
underlying texture map.

If you paste again (Control-V), you will
get a new layer with the original left-hand
side segment that was residing in the clip-
board. Right-click on the segment, and
select Free Transform. Right-click once
again, and select Flip Horizontal. Now
press Enter to lock the transform into the
bitmap. Align with the right-hand side of
the texture map, add a layer mask, and
blend the inside edge to the rest of the
underlying texture. Be careful not to
remove the corner pixels. Rename the
layer Right. Now select the Top layer and
drag it into the Create New Layer icon on
the Layers panel. This will create a dupli-
cate of the Top layer. Rename it Bottom,

then select and apply Free Transform.
Choose Flip Horizontal, and you’re done
with the needed transforms. Now align it
to the bottom edge and add or subtract
from the layer mask layer to blend it into
the underlying texture. Once you have
done all three sides, you should have a
rotatable texture with a seamless edge.
Figure 3 shows the blended edges without
the underlying texture for clarity.

It is a good idea to test your new texture
by creating a duplicate of the file and col-
lapsing it down to one layer. Then run the
Filter>Offset on it with 128 horizontal, 128
vertical and Wrap Around in the settings.
This will make the nonrotated seams visible
if there are any anomalies. Make sure either
to undo or to run the Offset filter on it
again to return the texture to the rotatable
seam edge.

Now, select the texture and create it as a
fill pattern. Create a new 1024�768 file
and fill with the repeated pattern. Set the
guidelines or grids on the 256-pixel
boundaries and then paste a single texture
into one of the grids as a new layer. You
can now rotate the new layer 90 degrees
and align it with the grids or guidelines. If
you have done the steps correctly, it should
blend in with the seamed edge without a
visible line (see Figure 4).

In order to create a blended set, we will
also make a molten lava flood-fill texture,
utilizing the same techniques I’ve just list-
ed. The base lava texture was generated in
Bryce 4, then run through Photoshop for a
bit of image enhancement (see Figure 5).
Once you have a tileable, rotatable lava
tile, you are ready for the next step.

The Blend Set

A t the most basic level, there are only
three additional textures needed to

create a blended set. The entire set con-
tains five tiles: two flood fills and three
transitions. For clarity’s sake, I’ll refer to
them as the one-fourth blend, the one-half
blend and the three-fourths blend. With
these and a tiled environment, you can cre-
ate any sort of varied coastline required.
However, it’s good to note that making
three or four variants of each of these tex-
tures will make the transitions from one
texture to another much less visible and
more natural-looking.

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

FIGURE 2 (above left). A section of the left border is selected and rotated 90 degrees. FIGURE 3
(above right). After the same section is placed on the three sides of the texture, its edges are
erased to allow the texture below to show through. FIGURE 4 (below left). A test flood-fill pattern
with the rotatable texture utilized in various orientations. FIGURE 5 (below right). A secondary tex-
ture is created that is both seamless and rotatable.

First, make the one-half blend tile. To
create this tile, place the stone texture on
Layer 1 or the Background layer in a new
file you’ve created in Photoshop. Next,
open and copy the lava texture into the
clipboard. Paste the lava into the new file as
a second layer over the stone.

The next step is either to add guidelines
or to set your grid to show you where the
128-pixel point is on the side of the texture.
Once you do this, select the top half of the
texture, which should be a 256�128 selec-
tion box. On the layer mask, fill the selec-
tion with black to make it transparent and
hide the texture under the selection. Now
it’s time to go into the texture and add
some randomness. In the case of the stone
texture, I tried to follow some of the natu-
ral contours of the rock. By alternating
between black and white on the layer mask,
I was able to add or subtract stone to the
composite image as needed (see Figure 6).

Avoid eliminating or altering the pixels
at the very edge of the texture on either
side. If you do, you won’t have a tiled tex-
ture anymore. Also, try not to get too dra-
matic in the uniqueness of the transition.
If, for instance, you decide that a big pool
of lava would look good right in the mid-
dle of the transition, you will find that the

distinctness of this element becomes
apparent when the tile is repeated. If you
are using multiple variations, then a
unique tile every so often works quite
well. The base repeating tile should be
somewhat generic so that it doesn’t bring
attention to itself.

For the one-fourth blend and the three-
fourths blend, take the exact same steps
using the layer mask, editing only one quar-
ter of the texture. The quadrant you choose
is arbitrary, since the texture is rotated to
allow for all four directions. Figures 7 and
8 show the final edit on the textures.

Additional Textures to
Add Variety

Now that you’ve created the base set,
you will find that no matter how well

you created the texture, the repetitive
nature of the tiles is difficult to escape. If
memory allows, you can create variants
for each of these base sets. You can also
create unique “random” tiles. These are
special-case tiles or groups of tiles that
occur very sporadically (to minimize their
recognition) but give the terrain a more
natural look (see Figure 9). Try to create
variants that can also be reused to maxi-

mize your texture usage, such as a set of
three or four variants that all work togeth-
er and allow you to mix and match them.

Once you have your entire set, you can
always build another test screen that checks
for any problems in the tiled layout. With-
out the use of multiple transition types, the
terrain isn’t as natural as it could be, but
Figure 10 is a good example of a base set.

On the Horizon

T he methods I’ve just covered are just
one technique for terrain tile genera-

tion. Once you’ve mastered the basics,
you may find that there are things you can
do to enhance your textures even more. If
your game requires the use of a graphics
card, then you have some powerful ani-
mation possibilities at your disposal if you
have access to the hardware texture calls.
You will need to talk over the technical
requirements with your graphics program-
mer, but you can easily achieve such
effects as pulsing lava, flowing water, and
moving steam with animated textures. The
base requirement is that the game use a
graphics card, but with the latest-genera-
tion games, this is quickly becoming an
expected base system requirement. q

w w w . g d m a g . c o m 29

FIGURE 6 (upper left). The one-half blend tex-
ture. Note that the transition point on the edges
is at exactly the 128-pixel point. FIGURE 7 (upper
center). The one-fourth blend transition texture.
FIGURE 8 (upper right). The three-fourths blend
transition texture. FIGURE 9 (lower left). A
unique texture that can be utilized (sparingly) to
break up the patterns of the flood fill. FIGURE 10
(lower right). An example of the basic set of tex-
ture types and transitions used to blend
between two terrains.

m o n t h 2 0 0 1 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r30

V E H I C L E P H Y S I C S todd growney, morgan roarty & laurent benes

T O D D G R O W N E Y | Todd is an engineer
at Electronic Arts. He has a degree in physics

with a minor in mathematics. Todd specializes
in physics and visual effects. While at EA,

Todd has also worked on NASCAR RUMBLE,
SUPERCROSS, and FUTURECOP: LAPD. Todd

can be reached at tgrowney@pacbell.net.

M O R G A N R O A R T Y | Morgan is a four-
year veteran at Electronic Arts. Prior to

RUMBLE, he has also worked on the
EA Sports NASCAR and ANDRETTI RACING

franchises. Morgan can be reached at
mroarty@ea.com.

L A U R E N T B E N E S | Laurent published
his first game in France at the age of 17. For

the last eight years he has worked at
Electronic Arts as a lead programmer for proj-
ects on 3DO, PSX, and Playstation 2. He has

worked on several games, including
SHOCKWAVE 1 & 2, FUTURECOP: LAPD, and

RUMBLE RACING.

Designing
Arcade-Style

Vehicle Physics

Designing
Arcade-Style

Vehicle Physics

S
imulation or arcade? This is the looming question that all

developers of racing games face. A pure simulation

model attempts to reproduce exactly what happens if

you are driving a real vehicle. An arcade model is a fic-

tional simulation of the driving experience. A pure simu-

lation is desirable, because it tends to feel very realistic and gives the player

a solid connection to the vehicle and the environment. But being realistic, it

is also very difficult to control. Not many people can drive a car 100 mph

around a tight corner and live to see the next turn. A pure simulation tends to

control the game design. An arcade-style simulation is relatively easy to

control but bears little resemblance to reality and is in danger of disconnect-

ing the player from the action. Being that there are no constraints for an

arcade simulation, most racing games use this model. The arcade model can

be shaped to fit any game design. The best solution lies somewhere between

pure simulation and arcade. In this article, we will identify the components of

the vehicle simulation that should be real and those that should be arcade,

based on our experience working on RUMBLE RACING for Playstation 2.

S
imulation or arcade? This is the looming question that all

developers of racing games face. A pure simulation

model attempts to reproduce exactly what happens if

you are driving a real vehicle. An arcade model is a fic-

tional simulation of the driving experience. A pure simu-

lation is desirable, because it tends to feel very realistic and gives the player

a solid connection to the vehicle and the environment. But being realistic, it

is also very difficult to control. Not many people can drive a car 100 mph

around a tight corner and live to see the next turn. A pure simulation tends to

control the game design. An arcade-style simulation is relatively easy to

control but bears little resemblance to reality and is in danger of disconnect-

ing the player from the action. Being that there are no constraints for an

arcade simulation, most racing games use this model. The arcade model can

be shaped to fit any game design. The best solution lies somewhere between

pure simulation and arcade. In this article, we will identify the components of

the vehicle simulation that should be real and those that should be arcade,

based on our experience working on RUMBLE RACING for Playstation 2.

31w w w . g d m a g . c o m

Control CollisionEngineSuspension
Wheels

Gas

Steer Power

Physics

Body

Update (Position, Orientation)

(F, �) (F, �) (F, �) (F, �)

for Playstation 2
RUMBLE RACING

for Playstation 2
RUMBLE RACING

FIGURE 1. The major components of vehicle simulation and their interaction.

Classification

T he solution begins as it does for all software design, with
classification. What are the major components of our vehicle

simulation and how do they interact? A vehicle simulation can be
broken up into five major modules: physics, collision, suspension,
engine, and control (see Figure 1).

Physics. This module collects the forces applied at various points
for a single frame of simulation and from these forces updates the
vehicle’s linear and angular velocities. These velocities are then
used to update the position and orientation of the vehicle.

Collision. This module detects collisions of the vehicle body
with the ground, walls, and objects. Once a collision is detected,
the proper impulse force is applied to the physics module. These
impulse forces are critical to both how real the simulation feels
and how fun it is to play.

Suspension/wheels. The suspension module computes all forces
generated by the suspension and the interaction of the tires with
the ground. This is the trickiest module to write because the
sources of force are numerous and complex.

Engine. The engine module simulates engine RPM, the gearbox,
and power delivered to the wheels. This module also needs to sim-
ulate the feedback from the tires.

Control. This module turns the wheels and creates forces to be
applied to the physics module in order to control the vehicle. In its
most basic form this module has one simple task: Connect the play-
er with the game. This module can single-handedly make or break
your game.

Physics

T he physics module should be as close to reality as possible,
regardless of whether you are writing a simulation or arcade-

style game. The types of forces applied to the physics module will
determine the style of the game and how the player perceives the
action. How the module changes the internal states of the body
according to these forces should use real-world physics calcula-
tions. In other words, a force F applied at a position P on the
body produces a change in velocity dV and angular velocity d .

This is the only task the physics module has, but as we will see, it
is not a simple one.

A force F applied at a point P on a body of mass M and moment
of inertia I will cause the velocity V and angular velocity to
change (see Figure 2). But how much does each change? Like most
physics problems, it is easier to grasp if you think of it in terms of
energy. Applying a force F over a distance d to a body increases the
kinetic energy of the body by an amount equal to E = Fd. This
energy will be split between rotational and translational energy such
that their sum is equal to E. Translational energy can be stated as:

And rotational energy can be stated as:

The trick now lies in determining how the energy is split between
the two. This problem does have an exact solution, but an
approximation can be used that will yield a result that is very
real. First, there are two laws you need to know. The law of linear
motion states:

where F = force, M = mass, V = velocity, and t = time.
And the law of angular motion states:

where T= torque, I = moment of inertia (tensor), and = angular
velocity.

What is the inertia tensor? In our simplified universe, it is a
3�3 matrix describing the distribution of mass in the object
being torqued. It is important to note that for a box of even mass
distribution, I is a diagonal matrix:

I

I

I

x

y

z

0 0

0 0

0 0

ω

T I
d
dt

=

ω

F M
dV
dt

=

E It = 1
2

2ω

E MVt = 1
2

2

ω

ω

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r34

V E H I C L E P H Y S I C S

CM CM
V�

F

P

E
Collision (t0 t1)

E = Et0 + Er0 E = Et1 + Er1

Collision (t0 t1)

Ea0 = Eat0 + Ear0 Ea1 = Eat1 + Ear1

Eb1 = Ebt1+ Ebr1

E = Ea0 + Eb0 = Ea1 + Eb1

Eb0 = Ebt0 + Ebr0

FIGURE 2 (top left). Force at a point P acting on a body changes V and �.
FIGURE 3 (bottom left). Conservation of energy for single body colliding with
ground. FIGURE 4 (above). Conservation of energy for two bodies colliding.

This gives three simple independent equations we can use to
solve the angular velocity change about each axis. Note that for
this to be true, T must be in the reference frame of the box.

or

or

or

At this point it’s important for us to keep in mind the law of
conservation of energy, which states that the total energy of our
system is maintained over time. From this we know that the sum
of translational and rotational energy is equivalent before and
after a collision (from timestep 0 to timestep 1).

Et0 + Er0 = Et1 + Er1

where Et = translation energy, M = mass, and V = velocity.

where Er = rotation energy, I = moment of inertia, and = angu-
lar velocity.

Before a collision the total energy is known:

where V0 = initial velocity and 0 = initial angular velocity.
After the collision, E is distributed between Et1 and Er1.

where V1 = final velocity and 1 = final angular velocity.
If you know V1, you can calculate 1 and vice versa. In order

to solve for these two exactly, one needs the particulars of the col-
lision. If you can approximate one variable, you can find the
other such that energy is conserved (see Figure 3).

In the real world, energy is lost in the collision in the form of heat
or damage (to both the ground and the object). This would change
the equation to E = Et1 + Er1 + Ek where Ek is the lost energy.

The problem is the same when two moving objects collide;
however, the energy can now spread itself out between four desti-
nations Eat0, Ear0, Ebt0, and Ebr0 (see Figure 4). Now you need
three variables in order to find the fourth. Also, to find the exact
solution you need three more independent equations describing
the collision. A very long and potentially unpleasant road begins
here, unless you’re into that sort of thing.

Just as before, if energy was lost to heat or damage, the equa-
tion would become E = Ea0 + Eb0 + Ea1 + Eb1 + Ek where Ek is the
lost energy.

The behavior of a box colliding with the ground or two boxes
colliding with each other does not have an exact solution (like all

physics problems based in the real world). All you can do is make
a best guess at the solution using basic laws such as the conserva-
tion of energy to help guide you. For example: A box collides with
the ground rotating at some linear and angular velocity. After the
collision, it will have a new linear and angular velocity. We can
calculate the energy (E0) before the collision. Let’s assume 20 per-
cent of the energy was lost, or Ek = 0.2 * E0. This leaves us with:

or

If we estimate we can determine exactly what V should be
(and vice versa). Note that this equation is a scalar equation, so it
only tells us about the magnitudes and not the directions.

Collision

T his module has the fairly straightforward task of detecting
collisions with the ground, walls, and other objects. In RUM-

BLE RACING, the cars were physically seen as boxes as far as the
collision was concerned. The world borders (or fences), for sim-
plicity, were seen as vertical fences. Cylinders, spheres, and lists of
bounding boxes were also used to represent other objects.

Collision detection was handled in two ways: object to object,
and object to world. For the object-to-object collision detection,
every object was top-down positioned in a circular array (position
along the track gives the position in the array). The caveat with
this approach is that one object on the main route and one on a
shortcut could be positioned in the same cell. Each object in a cell
was tested against other objects in the same cell or adjacent cells.
Each object could be an active collider or regular collider. For a
pair of objects to be tested for collision, at least one object had to
be an active collider. This cuts down on the pairs of colliders quite
a bit; who cares if two pieces of an exploding chair collide with
each other? Note that this circular array was later also used as a
proximity array for the car AI, to determine quickly which objects
in their surroundings they might want to pick up or avoid. When
you are dealing with hundreds of objects and want 60 frames per
second, every saved cycle is a good cycle.

For a given pair of objects being tested for collision, the colli-
sion system conducts a quick bounding-sphere test. If positive, a
more complex box-box test is done. For object-to-world colli-
sions, a custom box-lozenge test is performed.

Once a collision is detected, the position, direction, and magni-
tude of the impulse force resulting from the collision must be
determined. In short, we must compute the F and P from Figure 2
to be sent to the physics module. This impulse force is central to a
realistic collision model. Consider the following simple example.
Suppose a bar were to fall onto a flat surface. At impact its veloci-
ty is V and it is not rotating (zero angular velocity). Its mass is M
and moment of inertia is I. After the impact, what will its velocity
and angular velocity be? If the physics module is accurate, all we
need is the position of impact and the force created there. It

ω

0 8
1
2

1
20

2 2. ∗ =

+

E MV Iω

E MV I E0
2 2

0

1
2

1
2

0 2=

+

+ ∗ω .

ω
ω

E E E MV It r= + =

+

1 1 1

2
1
21

2
1
2

ω

ω

E E E MV It r= + =

+

0 0 0

2
0
21

2
1
2

ω

ω

E Ir = 1
2

2ω

E MVt = 1
2

2

d
T
I

dtz
z

z

ω =

∗T I

d
dtz z

z=

ω

d
T

I
dty

y

y

ω =

 ∗T I

d

dty y
y=

ω

d
T
I

dtx
x

x

ω =

∗T I
d
dtx x

x=

ω

w w w . g d m a g . c o m 35

quickly becomes clear that the calculation of this force and what
the physics module does with this force are interconnected.

An alternative approach that is much more conventional and
straightforward is to update the linear and angular velocities direct-
ly (making sure you conserve energy). Once you have done this you
can estimate the impulse force that would have been required to
cause this change. If your simulation is simple enough, you may not
even care about this force and therefore not compute it.

To detect collisions with the ground, we maintained the corner
positions of the object’s bounding box for each frame. If the alti-
tude (Y-component) of a corner is smaller than the altitude of the
ground at that point, then the corner collided with the ground. If
the system finds that one or more corners have collided, it averages
those points together to get a close approximation of the point of
collision. Then the entire object is displaced out of the ground by
the depth of the corner with the deepest penetration. After that we
compute new linear and angular velocities, or we can compute the
impulse force and apply it to the approximated intersection point.
Choose your poison. We’re still not sure which method is better.

One of the key demands of our collision system was to have
very fast access to world data so that elevation and normal vec-
tors at a given point could be retrieved. Given the Playstation 2’s
small cache and slow random-access memory, we spent quite a bit
of time ensuring that we wouldn’t have to traverse a huge data-
base each time a query was to be done.

Suspension/Wheels

T he suspension module should be as realistic as possible but
modified slightly from reality to suit the game design. This is

perhaps the most complex module of them all.
Suspension. As a result of vehicle momentum (both linear and

angular) and changes in ground elevation, the suspension will
become compressed (see Figure 5). This compression of the sus-
pension results in forces being applied at the positions where the
suspension is attached to the vehicle. In each simulation frame we
first update the orientation and position of the vehicle body.
Given the new position and orientation (including tire radius and
any other geometric definitions), we then calculate how long each
wheel’s spring would have to be to place the tires on the ground.
Of course, if a spring reaches its maximum length, the tire leaves

the ground and does not influence the vehicle. With these new
spring lengths we can now calculate the force of each spring on
the vehicle as Fs = k * L, where k represents the strength of the
spring and L is the length. The force created by the shocks (damp-
eners) is:

where dL is the change in length for this frame, dt is the time
since the previous frame, and c is the shock strength.

Spring force:

Fs = k * L1

Dampening force:

There is an extremely important force that is easily over-
looked and that this model completely ignores. What happens
when the shocks completely collapse? At this point the shocks
do nothing, and the vehicle is bouncing off the tires and big rub-
ber stoppers in the shocks. The forces generated from this colli-
sion are unbound and can get very large very quickly. We like to
call this the bottom-out force. It is calculated much like a colli-
sion of the vehicle body with the ground. An accurate response
to this force will cause violent rotations of the vehicle as the
vehicle lands at an angle or as the front end bottoms out when
the vehicle hits a steep jump.

Wheels (tire/ground interaction). The tires are ultimately what
steer and accelerate the vehicle. When you apply gas to the
engine, the engine applies torque to the tires. This torque results
in a force applied to the vehicle in the direction the tires are accel-
erating (longitudinal). When you steer, the vehicle’s tires are
turned away from the direction the vehicle is traveling. The angle
between these two directions is called the slip angle and results in
a force applied to the vehicle perpendicular (lateral) to each tire. If

F c
dL
dt

c
L L

t td = ∗

= ∗ ()
()

1 0

1 0

–

–

F c
dL
dtd = ∗

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r36

200

180

160

140

120

100

 80

 60

 40

 20

0
1 2 3 4 5 6 7 8 9 10

RPM (in thousands)
To

rq
ue

 (N
/m

)

V E H I C L E P H Y S I C S

t1 t0

CM
v

CM
vL=max L=max

L1
L0

FIGURE 5 (above). Suspension compressed as a result of vehicle motion.
FIGURE 6 (right). Example torque curve.

w w w . g d m a g . c o m 37

O ur top goal for the cars in RUMBLE RACING was to
make sure that each car felt and drove differ-

ently. Secondarily what was essential was to make
sure that the handling matched the appearance,
that every car was capable of winning, and that the
disparity of feel was wide enough so that everyone
could find a car that they liked to race with.

It is important to note that the top speed for
each car class (Rookie, Pro, and Elite) was the same
for each car in the class. In other words, the Rookie
Thor’s (the rocket car’s) top speed of 140 mph is the
exact same as for our smallest-engine car, the
Banger. This was done deliberately in order to keep
the game interesting no matter what car you were
driving so that you would drive them all. However,
this provided a unique challenge to the tuning.

Method. We had a special version of the game
that exposed all the tuning parameters via easily
modifiable in-game menus and commands (see
Figure). All the parameters were available for modi-
fication on the fly, giving us an immediate feedback
loop. This was especially important because we could
run a lap, make a tweak, and get immediate feed-
back on the change.

The modifications were then written out to text
files for later recovery. These text files were handed
off to our physics engineer, who incorporated them
into the game. We maintained a spreadsheet con-
taining all the cars and individual settings for cross-
referencing, which became invaluable for examining
the relative differences between values across the
range of cars.

In addition to the car’s parameters, additional
in-game tuning panels allowed us to test and define
the various terrain characteristics, such as rough-
ness, resistance, and grip. RUMBLE RACING had around
20 different terrain types (pavements, dirt, mud,
grass, and so on). These were fine-tuned continually
as the tracks came together.

A quick example of how this benefited us is in the
initial Sand settings. For the sand tracks like “Surf
and Turf” and “Sun Burn” the resistance was set too
high and the grip a little low, causing cars to get
stuck in some spots. This also made the course too

slow to race through. We firmed up the sand a bit in
order to bring the gameplay up to where we wanted,
and to make sure cars wouldn’t get stuck.

Car tuning approach. Our initial approach
was to get one car tuned and then vary all of them
off this baseline. We tried to be very reasoned and
analytical about the tuning, but in some cases the
final settings came down to particular combina-
tions among many different variables. It was a
highly iterative process that took a lot of balancing
and recalibration as we went along, but in the end
it all worked.

We started with the most generic cars (such as
the Cobalt and Serpent) first, and then moved onto
the smaller compact cars, the heavier American
cars, trucks and vans, and finally the exotic and
special cars. We nailed the first generic car, the
Cobalt, very quickly, which then became the initial
baseline off which everything else was varied.

When working on a new car, the main areas we
started with were the suspension, side-slip friction,
steering angles, and steering rates. We usually drove
a lot of laps trying many different values for these
settings before we felt like we had something that
worked well. Then we moved on to the engine power
and car weight. After getting these values close we
did a lot of fine tuning and tweaking, comparing all
the variables before finalizing a setup.

Car class modifications. Initially the goal for
the compact cars (such as Tiberius and Maelstrom)
was to have a quick, well-handling feel. The notable
changes that made this happen were modifying the
suspension settings, improving the tire quality, and
decreasing side-slip friction. To keep these cars in

balance with the rest of the game, the engine
power was reduced by 25 percent from the
generic cars.

It took a while, but once these cars felt
good we locked in those settings. These set-
tings were so well received and popular that we
resisted changing them much after we locked
them in. We really became hesitant, and
almost fearful, about any modification to
these cars. In some sense the baseline shifted
to this set of cars.

The heavy American-style cars were the most
challenging to tune. The goal was to have them
heavy-feeling and not as precise to control, but

with a very powerful engine. We really struggled
with these settings but discovered through a combi-
nation of lowering the angle and rate of steering we
could greatly affect the feel of these cars. It was the
key to their tuning and also an important feel modi-
fier we used later on some of the unique cars.

On the trucks, one afternoon we started experi-
menting with their ride height (suspensionDispFac-
tor). At the time the trucks were all 4x4 off-road
style with a bouncy suspension. During the process
of experimenting with the ride height we tried lower-
ing some of the trucks down to look like a low rider,
which turned out well. We kept the physics the same
on the 4x4 versions, but the dropped truck versions
had to have their physics tweaked to match the han-
dling to the new appearance. It quickly provided
some variety.

Lay the groundwork. Tuning the cars for
RUMBLE RACING was an interesting process that hap-
pened over a three-month period. The physics
engine was basically locked at two months before
alpha, but the individual car tweaking and tuning
lasted well into beta. It was extremely helpful that
we had a good sampling of representative tracks in
place early so we could get an early determination
of the state of the physics. We eventually picked
out three of our most varied tracks and used them
as the test bed for any physics engine changes and
tuning confirmations.

Overall, tuning the cars was a production dream.
The physics was done early and was extremely
adaptable to all the varied cars and types of tracks.
Car tuning is a lot of hard work and long hours, try-
ing out many different variations of the settings and
doing laps over and over again.

we project these longitudinal and lateral directions into the plane
of the ground and use the normal of the ground, we form an
orthogonal reference frame called a patch.

We project all forces including weight and spring force into each
patch. It’s important to note that the springs apply the same force
to the tires as they do to the vehicle. Next, we project a fictitious
force generated by cornering. We also add the force delivered by
the engine to the wheels (in the longitudinal axis). This force is sim-
ply the delivered torque divided by the tire radius (F = T/R). After

summing all these forces in the patch referential, it’s time to see
how much the ground is willing to push back. This is where static
and kinetic friction play their parts. If we multiply the portion of
the patch force that is normal to the ground by the static friction
coefficient, we get the maximum force that the ground is willing to
push back. If the patch force in the plane of the ground is less than
this force, the ground pushes back with equal force. However, if
this patch force exceeds the static force, the tire slips and now the
ground only pushes back with a force equal to the kinetic force.

In-game tuning control panel.

Tuning the
Vehicle Physics

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r38

V E H I C L E P H Y S I C S

Engine

T he engine is supplied with gas which in turn accelerates it,
increasing its RPM. As a result, the engine produces a torque

which is dependent on the current RPM. This RPM-to-torque rela-
tionship is known as the torque curve (see Figure 6). It is important
to note that the engine creates a torque, which is then multiplied
through the gearbox. This allows a different torque to be delivered
to the wheels depending on which gear the vehicle is in. This deliv-
ered torque pushes the vehicle forward (see Figures 7 and 8).

It is also important to note that to get a decent simulation you
also must consider the reverse effect. We call this effect the feed-
back loop. Imagine the vehicle is in gear but you are giving it no
gas. If the vehicle is on a hill, the force of gravity will accelerate
the vehicle. In this case the ground is delivering a torque to the
wheels which is then divided back through the gearbox and
applied to the engine, thus accelerating it. This effect is also evi-
dent when you are moving too fast for a given gear. The engine
revs way up and the vehicle rolls forward on its suspension
because of the resultant torque on the tires produced by Fg at R.

Control

T his is the module that mostly defines the style of game; it is
the cornerstone of the style, if you will. Obviously its main

purpose is to steer, accelerate, and brake the vehicle. You can
think of the other modules as the control system’s toolbox. If the
tools are crap then the result will be crap, no matter how hard
you hack. Let’s consider a laundry list of responsibilities for the
control system.

Steering. By interpreting the user inputs, we turn the wheels. By
turning the wheels, we change the slip angle of the tires and thus
affect the cornering of the vehicle. In a pure simulation you’d be
done and the suspension module would take over from here. But
what if we don’t like the result of the simulation? It is now my
pleasure to introduce the most powerful equation in all racing
games, the steering equation:

In its simplest form it states how fast to rotate a vehicle y

depending on its speed Vz, wheel base D, and steer angle S. This
equation assumes much about the conditions of the simulation and
thus becomes restrictive if used as the sole source of steering. How-
ever, by scaling between the pure simulation and the steering equa-

tion, you can dynamically control where you lie on that line
between control and chaos. So how do we scale between these two
extremes? It’s quite simple. First, we calculate the angular velocity
the steering equation thinks the vehicle should have. If we take the
difference between the steering equation and the actual result based
on the suspension module, we can determine the torque that would
have to be applied in order to conform to the steering equation’s
result. This gives us our scale. If we want to behave exactly as the
steering equation suggests, then we apply all of this “balance”
torque. On the other extreme, if we want to challenge the player or
do nasty things to the vehicle, we can just ignore the balance torque
and let the chips (or chunks) fall where they may. At low speeds
you want to let the natural physics do their thing, thus allowing
crazy burnouts. As you progress to higher speeds you want to scale
back the real simulation and increase the more predictable steering
equation. This gives the player more arcade control in the realm of
the insane. Let’s face it, 220 mph on a back country road is crazy!

How the vehicle responds to the player steering the vehicle is a
very delicate problem. At low speeds you want to be able to turn
sharp and fast. At high speeds you want to turn smaller angles
and with a slower response. By scaling the maximum steer angle
according to speed, with the largest at rest and smallest at maxi-
mum speed, you gradually narrow the maximum steer angle as
you go faster. Remember that the resulting turn is the product of
vehicle speed and steer angle, so this won’t restrict your ability to
turn at high speeds.

The steer speed, however, is not an absolute — it should be
dependent on the current steer angle, slowest at wheel center, and
fastest at the maximum steer angle. Also, if the player is steering
opposite the current steer angle, you want to double or even use
the maximum steer speed. The maximum steer angle, steer speeds,
and all other controls should be tuned so that the vehicle glides
through the average turn at the average speed.

Analog steering requires some additional modifications. First, the
actual analog steer amount should be made nonlinear so that there
is little change in the center of the control and more at the
extremes. This desired nonlinear behavior can be achieved by
squaring or cubing the analog value received from the controls
(assuming the analog values range between –1 and 1, and you
maintain the sign). For steer speed control, imagine the analog steer
angle being tied to the actual steer angle by a spring. How tight the
spring is determines how responsive the steering is. The same maxi-
mum steer angles that apply to analog also apply to digital controls.

Acceleration/braking. Let’s say after tuning the simulation and
tire quality and achieving a decent balance you want to increase

ω

ω y
zV S

D
=

∗()

FIGURE 7 (left). Engine pushes on ground. FIGURE 8 (right). Ground pushes on engine.

Ground

Tire
Gear BoxEngineGas

R

n + Te = Ta
TaTe

Fa

RPM
n = gear ratio

Ground

Tire
Gear BoxEngine

R

Te =

TaTe

Fg

RPM
n = gear ratio

Ta
n

w w w . g d m a g . c o m 39

acceleration and reduce braking time. If you simply increase tire
quality out of the natural realm, you will begin to flip the vehicle
when accelerating, braking, and cornering. Our solution is to leave
the tires alone and apply a fictitious force to the center of mass to
get the desired acceleration. You can do the same thing for braking.

Burnout. Everybody loves a good burnout. So if the vehicle is
going relatively slowly and the player punches the gas, you can
start a burnout timer. This timer continues to reset as long as the
player holds the gas and cranks the wheel. The value of this timer
is used to reduce the rear tire quality to such an extent that wild,
smoky burnouts can go on for days. But as soon as the player
shows the slightest indication of wanting to get the hell out of
Dodge you allow the burnout timer to expire, quickly ramping up
the rear tire quality to normal. This sudden ramping of friction
causes the front end to torque up slightly — joy!

Slide control. In a real simulation, if you try to turn a tight cor-
ner at 200 mph you will most certainly go straight into a wall or
roll the vehicle. To avoid this, we introduce two handy controls we
like to call extra side-slip friction and roll control.

The first control, extra side-slip friction, works as follows. If we
project the vehicle’s sideways velocity onto the ground and apply a
friction to that velocity we have a fictitious force we can apply to
the vehicle:

Fs = –ssc * Vs

where Vs is the projected side velocity and ssc is the side-slip
coefficient. The greater ssc is, the less the vehicle slides out
around corners.

One of the best sources of feedback in a racing game is the
rolling and pitching of the vehicle on its suspension as it corners
and accelerates. This rolling can quickly become rollover if nothing
is done. By isolating the lateral forces produced by the tires we can
control the rollover. Again, a force at a point on the vehicle can be
split into a force on the center of mass and a torque. If we apply the
force at the center of mass and scale the torque, we can control the
rollover without affecting the general momentum of the vehicle.
Pick some maximum rollover angle and scale the torque between
0.0 at or above the maximum angle and 1.0 at the zero angle. This
in effect smoothly cuts off the rollover torque as you near the maxi-
mum angle while allowing a wild ride in the center.

Balancing control and chaos. Chaos is fun to watch but is a form
of punishment for the player. A delicate balance must be main-
tained so as not to frustrate the player. For example:
• If you drive a vehicle straight off a cliff, the rear suspension push-

es up on the rear of the vehicle when the front tires go off the
cliff and are hanging in midair. This unbalanced force from the
rear suspension just as you go over will roll the car forward. If
you are airborne long enough, the vehicle will flip over.

• If you turn a corner too sharply and your center of mass is too
high, you could very easily roll the vehicle.

• If your trunk explodes (for example, your last shipment of
moonshine ignites), your vehicle would be tossed into the air and
you could land on your side or upside down.

If the player did nothing wrong, you don’t want to allow this kind
of chaos to take over. At the same time, if it’s time to punish the
player you need to get him or her back in the game quickly after

doing so. If you make the punishment look good enough, players
will tolerate it for a short time, especially if they are hurtling in
the general direction of their goal.

This is where the cat reflex comes in. The cat reflex has one pur-
pose, to eliminate player frustration due to chaos (flipping, rolling,
and other dramatic effects). But beware, if the cat reflex does its
job too well, it can mask or completely overwhelm the pure simu-
lation and the game will look stale (which is what we are trying to
avoid). To maintain stability while not seeming rigid, we define a
maximum angle of rotation that the vehicle can have. If the vehicle
rolls or pitches more than this angle, we dampen the angular veloc-
ity to halt its rotation out of this “stable” region. By doing so we
allow natural rotation within this region, clamping it at an
extreme. This maintains stability while allowing the vehicle to land
in an infinite number of ways. There is nothing more boring than a
vehicle that always lands flat on all four tires. If, however, we
choose to punish the player because he or she ran over a bomb or
got hit really hard, we disable the cat reflex. At this time we can
toss players like an old shoe and wait until they begin sliding on
the ground. When they’re back on the ground we turn on a special
version of the cat reflex which attempts to roll the vehicle onto its
tires in the direction it is already rolling so it appears natural.

Closing Remarks

T he player is much more sensitive to rotational motion than to
translational motion. By affecting motion with only forces

and torques you can have hundreds of seemingly complex influ-
ences which sum into just two vectors (force and torque). At the
end of each frame, this net influence is used to update the linear
and angular velocity, which is in turn used to update position and
rotation. This technique is clean, simple, and powerful.

All physics equations in any book on the planet use MKS units
(meters, kilograms, seconds). After updating the vehicle position
in each frame, you have to convert into game units if you use
meters in your computations. This is why we prefer to use GUKS
(game units, kilograms, seconds). This requires no conversion, and
distance (as well as velocity) is always available in the native game
format. All this requires is that you write a set of macros to con-
vert distance, speed, acceleration, force, and so on. These macros
are then used to initialize your data. By spending time setting up
this system and building a nice set of macros (and testing them
carefully) you can avoid a lot of confusion.

Unpredictability is a good thing. By simulating multiple sources
of opposing influences you can get unpredictable results. This feel-
ing of unpredictability adds excitement and reduces any feeling of
repetition. All you need to do is tune these results back to that
fine line between control and chaos.

If something doesn’t seem right in the simulation, nine out of
ten times it’s a simple bug in the code and not in the theory. All
too often we have agonized over the correctness of a theory only
to find out that we forgot a sign while typing in the equations.
Check your code first, and then check the theory.

Simulation or not, it’s a game. If it isn’t fun, figure out why and
fix it. There is a very fine line between fun and boring. One small
modification can change everything instantly. q

W hether it’s MEL, MaxScript, Perl, Python, or even JavaScript, most
modern 3D applications give users access to an internal scripting
language which enables them to accomplish myriad tasks. You
may wonder why, as an artist, you should invest the time to learn
some obscure collection of ifs, fors, and thens. The answer is sim-

ple: Scripting makes your life easier. Whether it’s automating a repetitious task, doing
something the computer is better at than a human (such as creating anything random), or
adding new functionality that your program lacks, a clever artist can accomplish all this,
and more, with scripting. While scripting has limits to what it can achieve, long gone are
the days when adding functionality required a tools programmer to create a custom plug-
in. In this article, I will take you through the basics of scripting and why it’s useful, illus-
trating this through the construction of three projects that highlight reasons you may
want to explore scripting.

First, let’s start with some basics. One important thing to remember is that while I’m
going to use the Maya Embedded Language (MEL), the scripting language for
Alias|Wavefront’s Maya, almost all the concepts are similar between art packages.
Generally, each 3D art package supports its own scripting language and perhaps a few
standard languages (see sidebars).

At its most basic level, a script is a bunch of commands. Instead of pressing buttons or
moving objects manually, the computer does it for you. Most programs have a window
that will echo every command you perform. For example, when you simply press the
shelf button to create a polygonal cube, Maya’s Script Editor (its way of inputting and
echoing commands) shows something like this:

polyCube -sx 1 -sy 1 -sz 1 -h 10 -w 10 -d 10 -ch 1;

This translates to: “Create a 10�10�10 polygonal cube that has one subdivision in
each axis and has construction history.” Because Maya allows for shorthand notation in
its command structure, reading the scripts it produces can often be confusing. The pre-
ceding command could just as easily have been written as follows:

polyCube -subdivisionsX 1 -subdivisionsY 1 -subdivisionsZ 1 -height 10 -width 10 -depth 10

-constructionHistory true;

As you can see, this is considerably easier to read, but actually writing it out can take a
while. Sure, that one command doesn’t seem like much, but multiply it by 300 or 400
lines, and you can spend all morning writing what could have been accomplished in 20
minutes. Many of the flags (the “options”) are similar across commands, so the short-
hand can be learned quickly, and you will soon be able to read the abbreviated versions
as easily as the long versions.

Well, big deal. So you can make a cube. The important thing to realize here is that it
wasn’t really pressing the button that created the cube, but rather the button issued a
MEL command that did it. Keep the Script Editor open as you work, and you will see
that everything you do issues a MEL command. Our first project uses the simplicity of
these echoed commands to build your script for you.

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r40

S C R I P T I N G d a v i d s t r i p i n i s

D A V I D S T R I P I N I S | David is current-
ly director of animation for Factor 5. He

would like to thank all the people who held
his hand while he learned to script. And if a

programmer comes after you with a blunt
object, he advises you to chase them with a

pointy one. He can be reached at
david@factor5.com.

The (Not So)
Dark Art

of Scripting
for Artists

41w w w . g d m a g . c o m

Ill
us

tr
at

io
n

by
 B

or
is

 K
ul

ik
ov

Project 1: Repetition, Repetition,
Repetition

T he life of a game artist is often filled with repetitive tasks.
Who hasn’t groaned in frustration when a programmer

comes to you asking if you can change something about an art
asset? To the programmer, it could be a simple request such as
renaming a few objects because the new engine revision can’t han-
dle underscores in the names of objects. To you, it’s a wasted
morning, as you change the 145 files that include the object and
re-export them. Your time could be much better spent tweaking a
cutscene, or better yet standing around the snack machine dis-
cussing the intricacies of COUNTER-STRIKE tactics with your
coworkers. Sure, you can go into each file, find the appropriate
objects, rename them, save the fixes, and export the new scene.
But this is both a colossal waste of time and also prone to error. If
you make a typo, that programmer will come back, possibly with
a large, blunt object, looking for you to do the whole thing over
again. Wouldn’t a way of doing this automatically make your life
much easier? If, after doing the process once, you take a look at
the Script Editor, you’ll see something like this:

select -r engine_detail_01;

rename “engine_detail_01” “engineDetail01”;

// Result: engineDetail01 //

select -r engine_detail_02;

rename “engine_detail_02” “engineDetail02”;

// Result: engineDetail02 //

select -r engine_detail_03;

rename “engine_detail_03” “engineDetail03”;

// Result: engineDetail03 //

If you look at what you’ve done, it’s just to select and rename
three objects. Those lines prefaced with “//” are called comments.
Comments are a very special and useful part of scripting. They are
lines of the script which the computer ignores, and which provide
someone reading the script with an idea of what the script does.
Maya also issues feedback in the Script Editor via comments, so
you can cut and paste sections of the echoed text without causing
errors. If you now save the scene, you will see Maya echo:

file -save;

Now we need to export the scene, but we need a “generic”
export feature; otherwise, we will always export to the same file.
Luckily, it’s given to us by Maya. By pressing Control and Shift
and clicking on Export Scene, we can create a button that exe-
cutes the command “ExportScene.” We can see this simply by drag-
ging the new shelf button to the Script Editor. If we investigate
further, we find the generic “OpenScene” command as well. Let’s
put our script together with just a little copying and pasting:

rename “engine_detail_01” “engineDetail01”;

rename “engine_detail_02” “engineDetail02”;

rename “engine_detail_03” “engineDetail03”;

file -save;

ExportAll;

OpenScene;

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r42

S C R I P T I N G

M axScript is the interpreted scripting language used to control
Discreet’s 3DS Max. Code written in MaxScript can be entered and
executed using the interactive Listener console. The Listener pro-

vides a traditional command-line interface (CLI) which allows access to the bow-
els of Max without using the GUI. To experiment with MaxScript, launch Max and
then press F11 to open up the Listener console. The Listener interface is divided
into two parts: an upper “MacroRecorder” section and a lower “Console” sec-
tion. When the MacroRecorder feature of the Listener is enabled, commands that
are received from the standard UI will have their MaxScript equivalent echoed to
the MacroRecorder. While the MacroRecorder can be a useful tool for discovering
how Max itself accomplishes tasks, we will stick to the basics and try entering a
few simple commands of our own directly into the Listener’s Console section.

Once the Listener is active, enter the following command into the console:

box pos:[0,0,0]

Keep your cursor located on the line you have just typed and press the Enter
key on the numeric keypad to execute the line. If you have everything entered
correctly, a new box will be created at the center of the scene, and the
Listener will reply:

$Box:Box01 @ [0.000000,0.000000,0.000000]

Whenever you press the Enter key with the Listener active, it causes Max to
interpret the content of the line that the cursor is currently located on as a script
command. The entire content of the Listener console can be edited and then re-
evaluated using standard text-editing commands. Use the cursor keys to move
back up to the box command and edit it in place to show:

box pos:[0,0,100]

Press Enter again to cause the Listener to reinterpret the changed line. This will
create another box located 100 units away from the first (along the Z-axis). The
Listener will respond with:

$Box:Box02 @ [0.000000,0.000000,100.000000]

Testing different variations on commands is just that quick. There is no
need to exit Max, edit your source, compile the changes, relink, restart Max,
and finally test the revised executable. The immediacy of the Listener inter-
face makes it easy to experiment.

Each of the following one-line commands is a simple variation of the for
loop control. They use the random function to generate values between two range
parameters. To add 100 boxes, scattered randomly:

for obj in 1 to 100 do box pos:(random [-100,-100,-100] [100,100,100])

Select some of the boxes that you have just created, and you can move them
randomly using:

for obj in selection do move obj (random [-100,-100,-100][100,100,100])

Finally, this command will rotate all selected objects around their local Z-axis:

for obj in selection do rotate obj (random (eulerangles 0 0 0)

(eulerangles 0 0 360))

Another useful capability of MaxScript is the ability to bind code to menu
buttons. Instead of pressing Enter after code to execute it, select your code in
the Listener with the mouse and then drag and drop it onto the Max tool bar. This
will create a custom button that you can press to execute code automatically.
Read the online help on MacroScripts for more information on this feature.

If you are interested in exploring MaxScript in more depth, the book
Mastering MaxScript and the SDK for 3D Studio Max, by Alexander Bicalho and
Simon Feltman (Sybex, 2000), is an excellent resource.

— Mike Biddlecombe, Gas Powered Games

MaxScript Magic

We removed the feedback comments, which are unnecessary,
as well as the commands that selected the objects, because you
don’t need to select an object to rename it (it’s simply a by-prod-
uct of working by hand). When executed, the script renames the
three objects, saves the scene, and opens a file requestor for you
to export the scene. As soon as that is completed, it opens a
requestor for the next file to open. While a more complex script
could automatically export and open the next file, we are trying
to keep it simple right now. In Maya, we can drag and drop this
script to the shelf. So in order to make our script perform the
modifications, we simply have to press a button. Now we can
do all those modifications and exports in a minimal amount of
time and without error. You have also written your first script.

Now, you may feel rather unfulfilled at this being called a
script. You probably think of scripts as things that produce dras-
tic effects, have immense custom windows, and so on. While
those types of scripts can be created, the power of scripting for
the artist is in accomplishing mundane tasks. Keep in mind that
with many scripts, simplicity is the key to success.

Project 2: Starting to Get Fancy

Our next step is to create a command of our own, similar to
the ExportScene from the previous example. The reason for

doing this is simple: You don’t want to rewrite a script every
time you need to perform some common function you need. So
let’s create a command that we can execute from either a button
or the Script Editor. In Maya, there is a concept called a proce-
dure. A procedure is a collection of MEL commands to be exe-
cuted in order. For our second project, we will create a proce-
dure that will use the unique functionality of the computer to
our advantage. Computers do a few things really well, such as
math. Humans are very good at picking out randomness but
very bad at creating it. The computer, however, is very, very
good at creating randomness. As such, most languages have a
function for creating random numbers, and Maya is no excep-
tion. Let’s create a procedure to move all selected objects around
randomly. First, you’ll need to understand the concepts of vari-
ables and arrays.

Variables. A variable is simply a placeholder. It can be a num-
ber, a word, a whole phrase, or even something esoteric, such as
a vector. A variable allows you to create a generic command
that can have certain parts of it replaced, or to do math func-
tions based on conditions that were unknown when the script
was written. I know that for many artists math is a scary thing,
but it shouldn’t be. The mathematics involved in scripting is
usually very simple, and anyone who can understand a Cartesian
coordinate space should have no problem. Variables in MEL are
signified with a leading $. So if you create a floating-point vari-
able called $myNumber, it can hold any number imaginable, includ-
ing fractional numbers. In programming there are four basic
variable types: integers, which are whole numbers; floating-point
values, which can hold numbers with fractions; vectors, which
contain three floating-point components; and strings, which con-
tain text.

Arrays. An array is simply a collection of variables of the same

type. Say you want to store the names of all the objects you
have in the scene. Rather than having a series of string variables
called $myObject01, $myObject02, and so on, it is much more effi-
cient and useful to create one variable called $myObjects, which
can hold all of them. In Maya, this is done by appending “[]” to
the variable declaration at the beginning of the script. While this
may seem bizarre, these weird annotations and symbols actually
come in handy.

So let’s get back to writing the procedure. First, create a file
called randomMove.mel. We want to put a comment header at
the top of our script, indicating what the script does and how to
use it. Other useful things to put in the header are your name, the
date of creation, and what version of software the script was cre-
ated for. Make sure you put the comment marker “//” at the
beginning of every line. We don’t want Maya trying to execute
your e-mail address.

// randomMove.mel

// Randomly moves selected objects up to 100 units in each direction.

// Author: David Stripinis E-mail: david@factor5.com

// For Maya 3.0

Next, we begin the actual script:

global proc randomMove ()

{

These lines indicate to Maya that we’re creating a command
called randomMove. From now on, whenever we type “randomMove” at
the command line, it will execute the procedure between the curly
brackets. Bracketing is a very important aspect of scripting, as
with all programming. It tells the computer, “These parts stay
together.” Within a script, you may have subsections that need to
be completed before moving on, and bracketing is also used there.
Let’s continue to the variable declarations:

w w w . g d m a g . c o m 43

Scripting in Softimage

T he latest version of Avid’s Softimage XSI, version 1.5, supports a
variety of scripting languages. For simple scripts, XSI is very
similar to Maya or 3DS Max: if you open up the script editor win-

dow, you can see all the commands that are being executed as you create
and modify objects. You can also type new commands into the script editor
window to execute them, or drag commands out of the window and tie them
to new menu items in the interface.

If you’re creating more complicated scripts, you can take advantage of
XSI’s support for ActiveScripting, which enables the use of many different
scripting languages. Using VBScript, JavaScript, Perl, or Python, you can
execute any action that generates a command in the log window (generally
user interface actions, importing, and exporting). In addition, XSI can also
communicate with other programs that support ActiveScripting. For example,
you could write a script that launches your e-mail program and sends you a
message at home when a batch process has completed.

The Softimage tutorials on scripting are very thorough, and the online com-
mand reference details the actions you can perform via the script interface.

— Mark DeLoura

// declaration of variables

string $selectedObjects[];

float $randomX, $randomY, $randomZ;

These variables will allow us to hold things that may change
each time we run the script. They need to be declared so that
Maya knows what type of value each variable holds.

Next we need to tell our script the values of some of these vari-
ables. Our first task is to get the list of all currently selected objects;
we will use the command ls, which stands for list. Unfortunately,
“list” is not a command, so this isn’t as intuitive as you might like.
The way ls works is simple: You ask for a list of items, using flags
to filter the list so that you only get a list of exactly what you need.
In our case, we want to get all of the objects that are selected. For
this, we use the -selection flag, which can be abbreviated to -sl.

// build selection list

$selectedObjects = `ls -sl`;

The backward single quotes are similar to brackets, in that they
indicate to the computer that it should execute the command in
the quotes before doing anything else on that line. In this case, we
assign the list of all selected objects in the scene to our previously
declared string array.

Now we need to put in a little error checking. It’s always good
practice to put error checking into your scripts so that if there is
a problem with the way the user is running your script, you can
let them know exactly what is wrong. For example, receiving an
error indicating that you can only select polygonal objects is a
lot clearer than “Illegal operation in script myScript.mel line
82.7” The way we error-check is with what are known as condi-
tional statements. Conditional statements require a criterion to
be satisfied. Think of it as the computer’s own little bouncer. Just
like when you go out to a bar and they check your ID to make
sure you are old enough, the program wants to make sure you
satisfy its own rules before allowing you to continue through the
procedure.

// check to make sure they did select something

if (`size $selectedObjects` == 0)

error “Please select at least one object.”;

This command makes sure that whoever is using the script has
selected an object; otherwise, the procedure does nothing. The
user might have thought it would automatically move all the
objects in the scene. The “size” command counts the number of
objects in our $selectedObjects array, and an error is printed if that
number is exactly 0.

The final part of our script requires a loop. A loop is a series of
commands that repeats a number of times until a given condition
is met. Loops are good for doing repetitive tasks in one script. In
our case, we want to move some objects. The loop statement we
will use is the “for” loop. Imagine that you have a jar with 20
jelly beans. Your boss comes over and says, “I want you to draw
a circle on this piece of paper. Every time you do, eat a jelly bean.
When you have eaten the last jelly bean, stop drawing circles.”
So, in a few minutes you have a piece of paper with 20 circles on
it and a tremendous sugar rush. You also have grasped the funda-
mental concept of a for loop.

// move the objects a random amount

for ($n = 0 ; $n < `size $selectedObjects` ; $n = ($n + 1))

{

$randomX = `rand -100 100`;

$randomY = `rand -100 100`;

$randomZ = `rand -100 100`;

move -relative $randomX $randomY $randomZ $selectedObjects[$n];

}

}

We initialized the loop at 0, implicitly defining a variable named
$n, which merely increments by one each time the loop executes.
The loop runs until $n is no longer smaller than the number of
objects in our array $selectedObjects. We do this because in MEL,
the first object in an array is indexed with the number 0, the second
with 1, and so on. This is a little confusing, but as with all things in
programming, you quickly become accustomed to it.

Each time the loop runs, we calculate a random number
between –100 and 100 for each of our three axes, and we then
move the object by that distance, relative to its current position.

That’s the end of our script, and we end the procedure with the
closing bracket. Save out your script, select a bunch of objects and
then type “randomMove” at the Maya command line. Because Maya
has no clue what randomMove is, it will look for a file called
randomMove.mel. Once Maya finds it, it executes the procedure
randomMove, where your objects are randomly spread around.
Congratulations, you are now a scripter.

Project 3: Custom Tools

N ow that you see that scripting isn’t such a big deal, you want
to take on something bigger, I’m sure. Why not create a cus-

tom tool? Tools are useful things to know how to write, because
they allow you to extend the functionality of your art package, and

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r44

S C R I P T I N G

Leveraging Lightwave 1.5

N ewtek’s Lightwave 1.5 supports a C-like scripting language known
as LScript. Similar to the other packages, Lightwave has a log win-
dow (the LSCommander) which can be revealed to show what com-

mands are being executed as you work. You can take commands from this win-
dow and quickly and easily tie them to buttons in the interface. LSCommander
is part of the Layout portion of Lightwave.

Lightwave ships with a suite of tools that simplify the task of designing
and debugging scripts. A fully context-sensitive text editor and interface
designer are part of this environment (the LSIDE). Scripts can be written in
LSIDE, or exported from the LSCommander window, which automatically con-
verts the commands to LScript form. After creating a script, you can compile
it down to a platform-independent format which enables you to distribute
your script without worrying about someone tweaking the source.

The LScript core engine can link directly to Windows DLLs or Unix shared
libraries, so you can use external routines which have been written in C or C++.
This allows you to arbitrarily expand the functionality of your interface
through a combination of LScript and traditional compiled code. Newtek is in
the process of creating an LScript guide to ease script construction for artists.

— Mark DeLoura

do so in a way that works exactly how you need. We will create an
array tool, something that will automatically create a radial array of
objects from a selected object, and give it some dynamic properties.

First, our header:

// radialArray.mel

// Creates a dynamic radial array node.

// Author: David Stripinis E-mail: david@factor5.com

// For Maya 3.0

Next, we need to declare the procedure, but this time we want
the user to pass some options to the script. In Maya, we do this
by including variable declarations in the parentheses after the pro-
cedure name. Here, we declare an integer that will define the
number of duplicates to create in the radial array.

global proc radialArray (int $numberOfDuplicates)

{

Next we declare a variable and define it, all in one statement.
This is a good practice that usually makes the script easier to
read. Notice that although I only want one object name, I still
have to declare a string array as the variable type. It doesn’t mat-
ter if your list has thousands of items or just one, it is still a list.
Let’s also perform an error check to make sure the user has select-
ed only one object. Rather than conducting the test “If the size is
one, perform some actions,” we will use “If the size is not only
one object, then stop!”

string $selectedObject[] = `ls -sl`;

if (`size $selectedObject` != 1)

error “Please select just one object.”;

Now that we have the selected object, we need to be able to con-
trol its transforms, so we should group it. While this may seem
excessive, it guarantees we will have complete control over our
object’s relative position, without messing up its current transforma-
tions. We also retrieve the new selected group and store it in the
$arrayGroups variable.

group;

xform -os -piv 0 0 0;

string $arrayGroups[] = `ls -sl`;

string $temp[];

Now that we have a clean transform node and know what it’s
called, we can begin to work. We also declared a temporary vari-
able that we’ll use to hold data in our upcoming loop. This loop
will repeatedly duplicate the object until we have the number
entered by the user with the radialArray command. For instance, if
we entered radialArray 5, we need to create four duplicates. In this
loop we’ll use a shorthand notation for incrementing a variable.
Rather than typing $n = ($n + 1), you can just type $n++.

for ($n = 1 ; $n < $numberOfDuplicates ; $n++)

{

duplicate -rr;

$temp = `ls -sl`;

$arrayGroups[$n] = $temp[0];

}

Now we have a string
array, $arrayGroups, which
contains the names of all
of our objects, including the
original selected object. Next we’ll
select all of the objects and group them
once again, so that we have one node that
controls the entire array. We’ll name that node “array_group_mas-
ter.” As you can see, scripts frequently perform the same actions
over and over:

select -r $arrayGroups;

group;

rename `ls -sl` “array_group_master”;

string $masterControl[] = `ls -sl`;

We will now use a feature unique to Maya, dynamic attributes,
to create some controls. In other packages, you may have to cre-
ate auxiliary objects to set up similar controls. We add the attrib-
ute Sweep, which allows us to control how many degrees of a circle
the array should cover.

addAttr -ln Sweep -at double -min 0 -max 360 $masterControl[0];

setAttr -e -keyable true ($masterControl[0] + “.Sweep”);

setAttr ($masterControl[0] + “.Sweep”) 360;

We now simply set the Y-axis rotation for each duplicated
object to an expression that represents its angle. What we will do
is build a string that contains our expression and then apply that
expression to each object. We do it this way simply for clarity.

string $raExpression;

for ($n = 0 ; $n < `size $arrayGroups` ; $n++)

{

$raExpression = ($arrayGroups[$n] + “.ry = ((“ +

$masterControl[0] + “.Sweep/” +

$numberOfDuplicates + “) * “ + $n + “)”);

expression -s $raExpression -o $arrayGroups[$n] -ae 1 -uc all ;

}

}

Now we’re done. Admittedly, this tool could be expanded quite
a bit, but at the beginning, it is better simply to get the tool to a
working stage and add new features from there.

Get to It

W ell there you have it, the basics of scripting. Hopefully,
this article has taken some of the mystery and confusion

out of the process. Scripting really isn’t a black art or any kind
of trade secret. Like everything else, it is simply one more tool in
your arsenal as an artist. Happy scripting! q

w w w . g d m a g . c o m 45

NOTE: As we went to press, Maya 4 was shipping (see Product Reviews, page

8). While the great majority of the time the new version will make no difference for

scripting, some commands may have been slightly altered. If problems arise,

check your documentation.

Poptop Software’s
TROPICO

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r46

G A M E D A T A
PUBLISHER: Gathering of Developers

NUMBER OF FULL-TIME DEVELOPERS: 10 (7 artists,

3 programmers)

NUMBER OF CONTRACTORS: 1 musician

ESTIMATED BUDGET: $1.5 million

LENGTH OF DEVELOPMENT: 2 years

RELEASE DATE: April 2001

PLATFORMS: Windows 95/98/ME/2000/NT 4,

Macintosh

DEVELOPMENT HARDWARE (AVERAGE): 550MHz

Pentium IIIs with 512MB RAM, 40GB hard

drives, and a variety of 3D cards running

Windows ME or 2000 (programmers) or

Windows NT (artists)

DEVELOPMENT SOFTWARE: Visual C++ 6.0,

Visual SourceSafe 6.0, 3DS Max 3.1,

Character Studio 2.2, Photoshop 5.5,

Tree Factory plug-in for 3DS Max

NOTABLE TECHNOLOGIES: Bink Video,

Miles Sound System

PROJECT SIZE: Approx. 150,000 lines of code

(plus 20,000 for tools)

P O S T M O R T E M b r e n t s m i t h

BRENT SMITH | Brent started working on games in 1992 at Capstone (THE DARK HALF, WAYNE’S
WORLD). After a couple of years in the “real” world, he went to Interactive Magic, where he
worked on BRUCE JENNER’S WORLD CHAMPIONSHIP DECATHLON, HARPOON CLASSIC 97, and
MALKARI. He joined Poptop in early 1999 and has spent the last two years working on TROPICO.

In the spring of 1999, Poptop had just wrapped up develop-
ment on the successful RAILROAD TYCOON II (RT2) and its
expansion, THE SECOND CENTURY. At the time, Poptop was
staffed by the overwhelming count of four artists and two
programmers. Being that small, we had had no time to think

about anything other than the current project, and suddenly we
found ourselves sitting around a table, eyes still slightly glazed
from the inevitable project-end rush we had just gone through,
looking for new ideas.

These were uncharted waters for Poptop. RT2 had been based
very closely on Sid Meier’s classic RAILROAD TYCOON. The original
RAILROAD TYCOON had been an inspiration, a design manual, a blue-
print for making a good game, and a launching point for new ideas.
The upside was that a good part of the design work had been done
for us. The downside, as we were to find out on our next project,
was that it left us a bit naïve about the effort it would take to cre-
ate a new game from an original idea.

As we sat around our company card table, brainstorming ideas,
one idea quickly jumped to the forefront. The idea of taking a
building game and putting a political game on top of it had cap-
tured everyone’s imagination. With our creative energies renewed
by a fresh idea and the thrill of starting a new project in our hearts,
we rushed off to create TROPICO — each of us in our own way.

Actually, it wasn’t that bad. We did discuss major elements of the
game. We knew that it would have buildings and people that the
player would not control directly. We knew it would use the RT2
engine but would be more ambitious than RT2 had been. As we
rushed off to begin development, that was about all we knew — and,
as we were to discover later, each person on the team didn’t even
share the same vision about the things we thought we did know.

During the project, Poptop grew to the bloated size of 10 employ-
ees — seven artists and three programmers. It is a testament to
the talent and hard work of this team that we ended up with a
strong, fun product in spite of the pitfalls that we encountered
along the way.

w w w . g d m a g . c o m 47

What Went Right

1. Created “deep” characters.
It was obvious from the beginning

that the most important aspect of TROPICO

would be the people. If we intended to
have a game in which the player didn’t
have direct control of the units on the
map, then we had better make sure that
the people acted in a reasonable and some-
what predictable fashion.

This was no trivial task. Each unit on
the map (in the later stages of the game
there can easily be more than 500 units)
has more than 70 characteristics, which
determine its actions and reactions to the
player. This includes items as simple as
name, age, and what part of the island the
unit was “born” on, to things as complex
as the unit’s satisfaction with various
aspects of the environment (religion,
national pride, pay compared to others in
the same situation, and so on). Additional-
ly, as units live their sim lives — they are
born, prance about as children, enter the
workforce at a certain age, and eventually
retire and die — we keep track of their
families. Each unit potentially has a moth-
er, father, spouse, and multiple children.
Units also know about their grandparents,

cousins,
aunts, and uncles.
What this means to the
player is that the repercussions
for treating one unit badly filter through
their family tree much like you would
expect in real life. Send Juan Pablo
Ramirez to jail, and not only are his par-
ents, wife, and children upset, so are his
five siblings, their 18 children, and so on
down the line. This added a lot to the
political atmosphere of TROPICO.

Our second goal with this system was
hiding its complexity from the player. Part
of the fun of TROPICO is trying to see and
understand what response your actions will
evoke from the population of your island.
Although we kept detailed information
about each unit in the game, there was a
balancing act in taking advantage of it
without flooding the player with informa-
tion. I think we succeeded here. Our inter-
face provides the player with in-depth
information about the people in the game

— making them
come alive —

without over-
whelming the player

with having to know trivial
details about them.

Unit development was not easy, but
because we identified this as a critical area
up front and spent a lot of time and man-
power addressing it, it turned into one of
the strengths of TROPICO.

2. Small, streamlined, and tal-
ented team. Being as small as

we are certainly has a downside, the most
serious being that we are limited in the
things we can do in a given amount of
time by sheer lack of manpower. However,
the advantages to a team this small, at
least in terms of developing a project such
as TROPICO, outweighed the disadvantages.

Everybody at Poptop knows everyone
else. Not just knows them, but knows what
they are working on, what their strengths
and weaknesses are, the name of their sig-
nificant other, and so on. There’s no hiding
here. If you screw up, people know it was
you. If you do something brilliant, everyone
knows that too.

This kind of intimacy makes us very

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r48

P O S T M O R T E M

streamlined. Everybody knows where he
stands and what his job is. There is no
middleman; if you need to talk to someone,
you talk directly to him. There is no dis-
traction of having team members pulled off
to work on a different, behind-schedule
project or promotional material. We did
one thing, TROPICO, and that’s all we did.

Of course, this kind of team only works
if every member is talented, and that is,
without a doubt, the case at Poptop. I see
it every day, and I think the players of
RT2 and now TROPICO have seen the
result as well.

3.Homegrown tools. Upon the com-
pletion of RT2, we had accumulated

a nice suite of tools for preprocessing and
manipulating art assets and interface ele-
ments. With TROPICO, we continued this
work, both improving the existing tools
and developing new ones.

Our most-used tool was a program writ-
ten to preprocess art assets into our custom
format. It also had the ability to clip and
scale the art, and also reduce animations to
a keyframe and delta information for effi-
cient storage. When TROPICO began, we fur-
ther modified this tool to allow it do work
with 24- and 32-bit TIFF files. A palette

reducer/optimizer was added
to create 8-bit palettes from
one or more higher color-depth
images. We also included the ability to
add parameters to the instruction set
that the program used to process the files,
allowing such things as tinting (which
allowed us to construct placeholder art rap-
idly by simply taking an existing image and
tinting it to another color), and lightening
or darkening of the image. Finally, we
added support that allowed us to read
image-depth information stored in RLA
files and store it with the image. This infor-
mation could then be used to tell us the Z-
order information of the various parts of
the image, which allowed us, for example,
to handle units walking behind parts of a
building while walking in front of others.

Another tool that we inherited from RT2
and improved upon during the development
of TROPICO allowed us to create, size, and
position interface elements outside of the
code. Using a simple scripting language,
interfaces could be built and then compiled
by this tool into a format that could be
used by the TROPICO code.

A new type of tool that we developed
and began using with TROPICO, and which
turned out to be a real time-saver, was used

for game data manipulation.
Using MFC (which I’d never rec-
ommend for any software intend-
ed for release, but which is

tremendous for quick development
of tools such as these), we quickly built a
very robust unit editor and building editor.
These editors allowed us to manage all the
data associated with a particular type of
building or unit outside of the program.
This capability was invaluable for balancing
and tweaking the data, as it allowed us to
change information in a relatively safe way
while the game was running and see its
effects immediately upon the game world.

4. Fun topic. Without a doubt, one
of the key factors in the success of

TROPICO was the topic. During our brain-
storming sessions, a number of ideas were
thrown on the table, but the idea that
became TROPICO was the one that had
everybody excited. While a lot of the ele-
ments of TROPICO can be found in other
games, the mixture of those elements and
the setting itself had everyone eager to see
what we could make. This enthusiasm
translated outside of the company, too.
Nearly everyone to whom we showed the
game voiced their enthusiasm about the

w w w . g d m a g . c o m 49

ABOVE. An overview of the town. LEFT. Wireframe and model of the hotel. RIGHT. A tourist.

50

freshness of the idea. Something about the
idea of ruling an island full of sun-drenched
beaches and tropical beauties strikes a
chord in most people’s hearts.

One of the most promising indicators
late in the project that we had something
special on our hands was that we were
still eager to play the game, and were still
throwing out new ideas, even after spend-
ing two long years developing it.

5. Localization. Having been
involved in the translation of RT2

into a variety of different languages,
including double-byte handling for Asian
languages, we knew up front that this was
something that we needed to be concerned
with in TROPICO.

Fortunately, a lot of the groundwork
had been established during RT2’s devel-
opment. The code contained home-grown
string manipulation functions, which
allowed us to maintain tight control of
many of the issues associated with local-
ization. We also had a tool that allowed us
to pull strings out of the code base for
insertion into a string table near the end of
the project. The tool was very useful in
that it not only recognized strings within
the code, but it was smart enough to disre-

gard strings within comments and strings
on lines which we tagged with a special
comment telling the tool that it was O.K.
for this string to remain in the code (for-
mat strings, for example).

This meant that for much of the project
we didn’t have to concern ourselves with
trying to keep a string table up to date,
but when the time came, we were
able to do it quickly and effi-
ciently. Overall, localization
was a breeze. Having seen
what a nightmare this step
can be on other projects, we
were dreading the work we
thought we would have to
do in this area, but the final
tally was less than a man-week
of work spent getting the
game ready for foreign lan-
guage translation.

What Went
Wrong

1.Lack of up-front
design work.

Coming off the success of
RAILROAD TYCOON II, we
were excited to get the chance

to work on something new and unique. A
few company brainstorming sessions and
a game or two of Junta, and we knew that
we wanted to do a tongue-in-cheek politi-
cal game. We couldn’t jump into the proj-
ect fast enough. Ideas were flying hot and
heavy. Everyone was excited.

Unfortunately, we failed to realize at the
time that everybody was carrying a
slightly different picture in his head of
what the final game would be. Some

were envisioning the stab-your-neigh-
bor, laugh-a-second antics of the

Junta board game. Others were
seeing the close-up, detailed view
of people in action that ROLLER-
COASTER TYCOON had done so
successfully. Most of us were
somewhere in between.

Having come from RT2, we
really found ourselves unpre-

pared for this problem. With
RT2, Poptop had the original as a
blueprint and design document.
Design was only an issue so far as
how the original game could be
improved upon and how current
technology could be utilized to
improve the game. The game
could practically write itself, with

P O S T M O R T E M

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

TOP LEFT. The dictator’s office. BOTTOM LEFT. View from the dictator’s patio at sunset. RIGHT. The dictator’s mansion.

Dictator.

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r52

Poptop’s main concern being to re-create
the magic of the original game while
adding a few minor twists of our own.

Now we found ourselves with a blank
slate, an original idea where every game-
play detail had to be created from scratch.
Unfortunately, we approached this in much
the same way as we had approached RT2.
Rather than settling on a unified design, or
even trying to create one, each of us ran
back to his workstation and began to cre-
ate what we thought the game would be.

It quickly became apparent that we
were not all moving in the same direction.
People had very different views of where
the game should go. Decisions had to be
made on the fly. Some people’s visions
were cut out entirely, while others had
theirs altered to the point that it became
something entirely different.

This process was a very difficult grow-
ing pain for Poptop. People’s feelings were
hurt when they realized the idea that they
were so excited about was not the idea
that we were creating. The game lost
“buy-in” from people in the company as it
became something that they were less
interested in, or someone else’s idea that
they didn’t really understand.

During this time we struggled onward,

trying to create this game that
wasn’t really what anyone had
originally intended. Amazingly, we
stubbornly refused to stop and
consolidate our ideas in
meetings or on paper
so that the team
could be unified in the
idea and to rekindle the orig-
inal excitement for the game.
Eventually, working on TROPICO

stopped being a passion and became just
a job for many on the team, leading to low
morale and loss of productivity.

Hopefully, we’ve learned from this mis-
take, and on our next idea (original or
not) we will figure out what it is we are
creating before we start to create it and try
to keep everyone excited about the direc-
tion in which we are moving.

2.Modifying the existing code
base. One of the givens, decided

before any work was even begun on TROP-
ICO, was that we would use the 3D engine
from RT2. This would allow us to have
working maps with many of the features
we would need in TROPICO almost immedi-
ately, thereby giving us a huge jump start
on development.

The idea was a great one
and paid huge dividends in
getting us working almost

immediately on the game itself
rather than the engine. Unfortu-
nately, in conjunction with this
decision, we started from the

existing RT2 code base — not
only the engine, but all the game
code from RT2 as well. We were
trying to “morph” RT2 into

TROPICO, which led to all kinds of
problems and slow-downs.

First of all, a single programmer had
developed almost the entire RT2 code
base. With TROPICO, the staff of Poptop
had nearly doubled in size. Each new pro-
grammer immediately faced the daunting
task of getting a grasp of the RT2 code
before he could even begin to make the
modifications necessary to create TROPICO.

Second, there were huge chunks of the
code base that became dead once TROPICO

was started, such as the multiplayer code.
(We had decided pretty early in TROPICO’s
development to scrap multiplayer and
concentrate on the single-player experi-
ence.) Of course, multiplayer code was
integrated very tightly into many areas of
the RT2 code, and at first we tried to

P O S T M O R T E M

LEFT. An in-game overview of the island. TOP RIGHT. Players create their in-game identity. BOTTOM RIGHT. The almanac.

Pit boss.

54

P O S T M O R T E M

work around it. Eventually we tore it out,
once we became frustrated trying to deter-
mine which areas of the code were dead
and which were important.

Finally, the process of working off the
original RT2 code base was inherently
dangerous at best. We automatically inher-
ited any bug that had managed to survive
in RT2 and created quite a few more just
going through the process of weeding out
what code was unnecessary for TROPICO.

We would have been much better off
starting with a clean slate and then pulling
over those sections of the RT2 code base
that we could use. The RT2 code was not
cleanly delineated between engine code
and game code. However, the process of
untangling the usable engine code and
importing it into a clean code base would
have been inherently more bug-free and
more comprehensible to those unfamiliar
with the RT2 code, and would have saved
us time in the long run.

3. Fun factor versus gee-whiz
factor. Because we started with

an existing engine, one of the errors that we
made during development was to see how
far we could push the envelope with the
engine, working on “gee whiz” enhance-
ments that would improve the look and the
technology of the game instead of features
that would enhance gameplay.

The biggest example of this was what we
dubbed “Zoom 0.” As the graphics in
TROPICO were much more detailed than
RT2’s, we looked for ways to show off
these gorgeous images in the game. Allow-
ing the engine to zoom in one level closer
than it had previously been able to (Zoom
1) was one of the ways that we did this. In
TROPICO, players can zoom in very close
and get very detailed views of the people
and the buildings.

Unfortunately, Zoom 0 is not very use-
ful for gameplay, as it is almost impossible
to see enough of the map at that zoom
level to get a feeling for how you should
play. The majority of players tend to stay
zoomed out about two levels, occasionally
zooming in or out one level as the situa-
tion warrants.

O.K., so we added a feature that allowed
us to show off the graphics even if it didn’t
help gameplay. What’s the big deal? The
deal is that we pre-scaled all of the images

for the various zooms
beforehand and stored them
in the data file, so these
high-resolution close-up
graphics ate up as much
space as all the other zoom
levels’ graphics combined.
We spent a full 50 percent of
our graphics budget on this
one feature. As we got deep
into the project, it became
apparent that memory and
CD file space budgets were
going to be tight, but we had
invested too much into this
feature to be comfortable
with cutting it. Ultimately,
we had to cut other features
to create space, features which would have
improved the game. Rotatable buildings,
more unit animations, and repeating anima-
tions on the buildings (such as blinking
lights and moving machinery) all had to be
cut to make room.

Looking back, it is apparent that tossing
out Zoom 0 and putting in more gameplay-
friendly features would have been a big net
improvement to the overall game.

4.Waited too long for scenarios.
After the scenario-intense RT2 and

its add-ons, we were more than happy to
try creating a game in which the strengths
lay in randomly generated maps and sand-
box-style open-ended play. From day one
we worked on TROPICO with this goal in
mind. A lot of effort went into creating a
map generator that would create pleasing,
logical, and most importantly playable
maps. We modeled rainfall on what we
knew and could find out about meteorolo-
gy. We researched vegetation, not only to
find flora indigenous to a Caribbean setting
but also to find out under what conditions
a particular plant would thrive and how to
represent that in the game. A significant
amount of time went into creating realistic
mountains and series, even ranges, of
mountains. We even went so far as to
model the terrain under the water, so that
shallow beach areas and deeper waters
would be accurately created.

As we neared the end of the project, we
had no doubt that our map generator could
create some fabulous-looking maps, and,
given the number of factors we allowed the

player to tweak during map generation, an
endless supply of playable maps. However,
the game was missing clearly defined goals.
Using the map generator, there was no way
to create a map that had a specific situation
to solve, and only a very limited way to cre-
ate maps with unique obstacles to over-
come. In other words, the game and the
maps were great for an open-ended, sand-
box style of game, but were lacking in goal-
oriented, problem-solving gameplay. While
the sandbox mode allows players to create
a wide range of different maps, much more
depth and many hours of play could have
been added to the game if we had included
a rich set of scenarios and the tools for the
players to create even more.

As we realized this late in the project, we
scrambled to create scenarios to include.
Unfortunately, our tools in this area were
underdeveloped, and time had to be
squeezed out of people’s schedules even to
produce what we did. The result was that
TROPICO included a very limited number of
scenarios (eight with the game and two oth-
ers included in some promotional CDs) that
weren’t nearly as involved as they could
have been, and certainly weren’t up to the
standard that we had created in RT2.

Another by-product of this oversight was
that we never spent time polishing the map
editor tools that we used in development.
The original game design was oriented
toward random-map play, so we never saw
the need for a more sophisticated editor
until late in the project. These tools ended
up being disabled in the release version, dis-
appointing many fans who were hoping to

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

Tourists relax and sunbathe on the beach.

s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

create their own maps. Fortunately for our
fans, a map editor should be available in an
upcoming patch.

5. Lack of unified artistic vision.
As I mentioned, one of the effects

of essentially bypassing the design
phase of this project was that there was
a lack of consistent vision among
team members. One of the places
that this became most apparent
was in the game art.

Almost all of the artists
at one time or another
during the project
worked on creating
buildings for the game.
They were given only
a vague notion of
what type of building
they were to create —
a paper sketch or a very
crude 3D mockup — and left on
their own to move forward from
there. Halfway through the proj-

ect, the problems with this
became apparent. Scale varied
wildly from artist to artist, as did
level of detail.

The same problems were occur-
ring with the character animations,
as the two artists working on those
had taken different approaches. One

artist was striving toward very
lifelike figures with complex anima-

tions, while the other created
more cartoonish parodies of
TROPICO’s inhabitants with
more outlandish but less

complex animations. Both
artists had a clear idea of what

they were trying to do, and
both accomplished their respec-

tive goals brilliantly, but the dif-
ference in their approaches can
still be seen in the release version
of the game if you compare, for
example, the banker to the female
luxury tourist.
At this point we appointed a

person to take on the role of art pro-
ducer. His job was to try to coordi-
nate the artists’ efforts and make
sure they shared more or less the
same vision. But the damage had

been done. Team members had
to spend valuable time sifting
through and reworking art.

Frustrations mounted as artists
who previously had been able to work
toward their personal vision now found
themselves having to compromise to a
shared vision of the whole team.

This problem could have been signifi-
cantly reduced with more up-front plan-
ning and more ongoing feedback to the
artists as they completed each task. We
definitely learned from this process and
will improve upon it in our next game.

In Hindsight

I t’s pretty much the experience with any
game project, whether the developers

will admit to it or not, that you look back
and see mistakes that you made and
bemoan the ways that the game could have
been better if only those mistakes had been
avoided. TROPICO is certainly no different
in that regard.

Every member of the TROPICO team felt
the sting of loss at some point or another
when a feature that they were particularly
fond of was cut. Each of us can look back
and think of a hundred ways that we could
improve TROPICO. That, in itself, is a good
sign. At the end of two years of develop-
ment, we still cared about the game and
wanted to make it better. Everyone was
happy with what we had created, but no
one was satisfied with the details. Art is
never done.

We learned a lot individually and as a
team about how to approach a project and
how to manage it once it is underway. This
was our first attempt at a completely origi-
nal idea, and although we encountered a
lot of pitfalls along the way and stumbled
more than a few times, I think the end
result is pretty amazing — something that
we are proud of and that the game’s fans
will enjoy. Considering that TROPICO was
done with a team of only 10 people — tiny
by today’s standards — the game’s success
is a testament to the Poptop team’s talent,
creativity, and hard work. q

Luxury tourist.

Banker.

56

64 s e p t e m b e r 2 0 0 1 | g a m e d e v e l o p e r

S O A P B O X c h u c k m c f a d d e n

I n game development, no job title
is limited to a single role. Design-
ers don’t simply design games and
a producer’s influence isn’t limited
to management of the game’s

budget. No one expects those who fill
these roles to be strictly confined to them,
nor should they be. The game creation
process takes a lot more work than the
sum of every individual’s
defined parts.

Among game developers,
and even among testers, it’s
a common misconception
that QA’s main purpose is
simply to test the game
that the development team
has created. In a perfect
world, breaking the game
would be the beginning and
end of QA’s job. In the real
world, however, QA’s ulti-
mate function can’t and
shouldn’t stop there.

The tester’s primary role
is to continually assess the
game’s state so that the
development team’s priori-
ties can be focused appro-
priately. Of course, as a
result of this assessment,
the tester will uncover and
report all sorts of bugs,
but that’s only a means to
an end. If a story element
doesn’t make sense, if a
mission objective is con-
trived, or when a level or
enemy is too hard to beat, it’s
the tester’s responsibility to
communicate that issue to the
development team.

Game developers have a natural
tendency to allow their hopes and
dreams to influence their opinion of
the game. For example, level design-

ers who really want their levels to be a
perfect juxtaposition of art, gameplay,
and bug-free geometric design may devel-
op that belief over time with little regard
for the feedback they receive. The same
thing can be said of most other members
of the development team, who build so
many figurative trees for a project as to
lose sight of the forest. For the developer,

there’s nothing wrong with
having a natural biased opin-
ion of the game. It serves as a

motivating force

to getting the game finished and for that
reason alone should be encouraged. For
the testers, though, injecting some reality
into the developer’s assumptions is their
primary job.

Communicating that perspective is diffi-
cult for testers. When the developer is
immersed in a dream world where the
game is actually coming along well, it’s
hard to tell him or her otherwise. Some-
times, all developers want to hear from

testers is how many bugs
are in the game, not nec-
essarily where the overall
look, feel, and fun factor
of the game might be
lacking. Of course,
developers can never
assume a game is bug-
free, but they often
assume that the funda-
mental aspects of the
game are solid and
therefore immune to
criticism.

Testers also run
the risk of losing an
unbiased perspec-
tive. Too often,
testers begin to

think that they
should not only point

out problem areas,
but also have some

part in fixing them as
well. That trap must be

avoided at all costs. It is not
QA’s job to fix the problems

they report, nor should it be.
Getting too involved in fixing the

game’s problems (as opposed to merely
pointing them out) leads to an emotion-
al connection with the game, invariably

resulting in the same loss of objectivity
that the rest of the development team

Beyond
Bug Hunting

continued on page 63
Illu

stra
tion by P

eter F
erguson

w w w . g d m a g . c o m 63

S O A P B O X

may naturally suffer from and which the
tester was meant to counterbalance. This
situation ultimately ends in a game that
doesn’t live up to its potential.

Some of you readers are testers, and
many more of you were at one time. So
why do you need to hear all this? In my
experience, even testers don’t understand
the true scope of their job, and the impor-
tance that naturally goes along with it. In
fact, understandably, most people in the
game industry wouldn’t want to be in this
position (or ever want to be in it again if
they’ve since moved on from testing).
After all, constantly pointing out someone

else’s mistakes is, if nothing else, a
depressing endeavor.

Game development is from beginning to
end an exhaustingly collaborative process.
Working with the QA team is no excep-
tion, because the QA process really does
extend beyond merely “testing” the game.
A tester is the person developers must rely
on to dive in, dig deep, and come up (hope-
fully) with the marrow of the game.
Testers, in turn, must try to understand the
game the developers envision and be able
to compare it objectively with the game
they’re actually creating. For that reason
alone, an open-minded design team would
do well to listen to the testing group’s opin-

ions and, if appropriate, refocus the team’s
priorities. The next time you submit a
game to QA, consider sitting down next to
the tester as he or she plays part of the
game. By seeing the game through the
tester’s eyes, you’ll learn more about your
game than by just reading through the bug
database. In the end, I promise your game
will be better for it. q

CHUCK MCFADDEN | Chuck has worked in the
LucasArts QA department for three years. In
that time, he has worked on games such as
RACER, JEDI POWER BATTLES, and BATTLE FOR

NABOO. He is currently lead-testing STAR WARS

ROGUE LEADER for the Nintendo Gamecube.

continued from page 64

	04gameplan
	06indwatch
	08prodrev
	16profile
	19graphic
	25artview
	30f-growne
	40f-stripi
	46postmort
	64soapbox

	return:
	cover:

