
SEPTEMBER 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

I never take joy in devoting column
inches in this magazine to fixing
mistakes or clarifying issues print-
ed in a previous issue, but it’s an
unfortunate fact of life. This

month it’s particularly painful for me,
because as we were going to print with our
last issue, Brian Sharp discovered that a
portion of his article (“Moving Fluid”)
treads near a software patent held by
General Electric. (Regular readers know of
my fondness for software patents.) We’re
grateful to Brian for discovering the simi-
larity and telling us about it, and we apol-
ogize that we weren’t able to get this infor-
mation into last month’s issue.

The situation is this: the marching cubes
algorithm that Brian presented in his article
is similar to G.E.’s patent titled “System and
method for the display of surface structures
contained within the interior region of a
solid body” (U.S. patent #4,710,876). It’s
not clear whether G.E. would pursue a
game developer who used the marching
cubes algorithm, but we at the magazine felt
that we should alert you lest you adapt this
algorithm for your game without knowing
the extent of the patent. For more details
about it, go to www.patents.ibm.com/
details?&pn=US04710876__.

While I’m on the subject of software
patents, editor-at-large Chris Hecker just
alerted me to another patent that we
should watch out for. In May, John Nagle
of Menlo Park, Calif., was issued a patent
titled “Method and system for generating
realistic collisions in graphical simula-
tions” (U.S. patent #6,067,096). This one
is scary in that (a) it has broad-reaching
consequences for most game developers,
and (b) Mr. Nagle indicated that he will be
pursuing game development companies
who violate it. More about this patent can
be found at www.patents.ibm.com/
details?&pn=US06067096__.

New Patterns Column. This month marks
the beginning of a new column for the
magazine, written by Chris Hecker and
Zack Simpson. Each month, “Game Pro-
gramming Patterns” will present and dis-
cuss an important pattern relevant to game
programmers. What, you may be asking, is

a pattern? As the column explains this
month, a pattern is a named pairing of a
problem and its solution. By exploring
problem and solution sets within the game
programming domain, we hope to help
standardize some of the terminology while
presenting solutions to common game pro-
gramming problems. The patterns that
Chris and Zack publish, and many more,
will be indexed and available on our sister
site, Gamasutra.com (www.gamasutra.com/
patterns), and we invite you to submit your
own patterns to us via a form at that URL.
If your pattern is chosen for publication in
the magazine, you’ll get $100 and the
recognition you deserve in print. Check out
the new column on page 12.

Join the Discussion on Gamasutra.com.
Speaking of Gamasutra, we’ve had many
requests to integrate our magazine content
more tightly with our online counterpart.
As a result, over the past year we’ve repub-
lished many articles from Game Developer
on the site, and we take another step this
month. At the end of articles throughout
this issue, you’ll see a little box pointing
you to www.gamasutra.com/discuss/
gdmag. This is our new online discussion
forum, which will hook you up with the
magazine’s editors, writers, and most
importantly, other readers like yourself. We
invite you to come to the site to discuss
our articles, ask questions, and provide
your own insights.

Welcome, Maarten! Finally, to wrap up
this month’s exercise in three-dot journal-
ism, let me welcome aboard our new
Artist’s View columnist, Maarten Kraaij-
vanger. Maarten’s day job is at Nihilistic
Software, where he serves as lead artist.
Now that Nihilistic has shipped VAMPIRE,
Maarten’s going to share some of the artis-
tic techniques he used during the develop-
ment of that game, and others to come.

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

w w w . g d m a g . c o m

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Senior Editor
Jennifer Olsen jolsen@sirius.com

News & Reviews Editor
Daniel Huebner dan@gamasutra.com

Art Director
Laura Pool lpool@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Maarten Kraaijvanger maarten@nihilistic.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.905.2615

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.905.2156

Account Executive, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.356.3486

Account Executive, Northern California
Susan Kirby e: skirby@cmp.com t: 415.356.3406

Account Executive, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.905.2323

Sales Representative, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President, Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING

Marketing Manager Susan McDonald

Product Marketing Manager Darrielle Sadle

Field Marketing Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Yumi Sato

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION
Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Corporate President & COO John Russell
CFO John Day
Group President, Business Technology Group Adam Marder
Group President, Specialized Technology Group Regina Ridley
Group President, Channel Group Pam Watkins
Group President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M

Patents, Patterns
And Other Patter

6

C Y O U R A N T , W E L I S T E N

Keep Cameras Out
Of Players’ Hands

J eff Lander’s Graphic Content column in
the April 2000 issue (“Lights...

Camera... Let’s Have Some Action
Already!”) was a good introduction to
Hollywood camera techniques and I defi-
nitely agree that better camera usage
could add more emotion to games.
However, it seemed like he was skirting
the major issue with camera AI: interactiv-
ity. The primary reason that most games
don’t do dramatic camera cuts at emotion-
al moments isn’t ignorance of Hollywood
techniques or lack of AI, it’s the utter con-
fusion and disorientation that any camera
cut can cause when the player is control-
ling the movement of a character.
Consistent game controls require a rela-
tively consistent camera angle.

Look at one of the classic 3D move-
ment games: SUPER MARIO 64. The most
annoying part of the whole game is when
the camera decides to move around while
the player is trying to walk across a nar-
row path. “Up” suddenly becomes
“right,” and the little Italian plumber falls
down the hole. Everybody hates it when
little Italian plumbers fall down holes, but
this is the absolute worst way to die in the
game; not due to any deficiency in skills
or timing, but simply because the game
decided to shift your viewpoint (and thus
controls) without warning. Direct cuts
would be worse.

So overall, good article, but there are
only a handful of games that can use these
camera techniques during gameplay with-
out hopelessly confusing and annoying the
player. If someone finds a way around this,
great, but until then I’m going to stick
with my unemotional (but controllable)
fixed camera angles.

Tom Smith

High Voltage Software

via e-mail

AUTHOR JEFF LANDER RESPONDS: I agree
with you that loss of camera control can
be confusing for the player. We had a real
big problem with that in a PSX game I
worked on. It was particularly a problem
when the camera crossed “the line” I
talked about in the article. It was so bad
at times we were forced to put a big

arrow over the character so the player
could find him on the screen. It was a
design flaw in some of the game levels
that was really impossible to fix in post.
However, when done correctly, a well-
placed camera can really help the player. I
saw RAYMAN 2 at the Game Developers
Conference this past March and its devel-
opers had done an effective job of select-
ing good camera controls.

That said, I believe that there are ways
to add cinematic elements to game cam-
era models. In my current project, I’m
looking at interactive cinematography
with those exact problems you mentioned
in mind. One approach that we are get-
ting some good results from is using a
traditional tethered camera while the
player navigates the environment. When
the player stops to look around, however,
the camera “drifts” to preset camera posi-
tions in the local area which the choreog-
rapher has chosen to best show the envi-
ronment. When the player encounters
another character, the dialogue engine
engages. This shows the dialogue in the
dramatic manner I discussed in the arti-
cle. If at any time the player moves the
character away from the conversation,
this triggers an end sequence to the dia-
logue like, “See you later.” The player
then regains a tethered camera. This same
kind of thing happens if the player
approaches an interesting object. We are
calling this system “intention-driven cho-
reography.” Of course, I have no idea yet
whether players will like it. I do hope to
find out soon.

My goal for the article was to get people
to think about new ways of approaching
camera modeling. Whether it works for
your game or not is definitely something
you should decide.

More Money Doesn’t
Equal Better Games

I hate to disagree with you, Mr. Moly-
neux, but I do not look at the Japanese

development houses with awe and dread
as I realize the eyebrows on our main

characters don’t comprise individual hairs
(“Next-Generation Gaming,” Soapbox,
June 2000). I understand what you’re say-
ing, I just don’t agree with it. There is
absolutely no doubt that gaming and other
media such as film are merging closer and
closer, but is this a good thing? In film-
making the first rule of thumb is, “Effects
are used to accent, not to be the core of
the movie.” If companies stopped putting
so much emphasis on flashy add-ons like
FMV and other disproportionately expen-
sive areas of game development that con-
tribute so little to the game, costs could be
severely lowered.

As developers learned a few years ago,
more than a few gamers couldn’t care less
about FMV. If it’s in there, great, they’ll
look at it. If not, no one seems to miss it
very much. Some big companies use
insane amounts of FMV to cover up the
fact that their games lack content. They
spend so much time and money on effects
that their gameplay suffers. I’m not trying
to take pot shots at anyone, but clearly
there are companies out there that have
lost their focus on creating games.
They’re quite happy simply milking their
golden cows.

But where do you come up with this
$4–10 million figure to produce a game?
My company is a very small and stream-
lined development house. We have a rock-
solid team and we all work very hard and
very well together. We’re not a public
company and we have no VCs funding us.
We developed our own tools and our
main engine is easily customizable to han-
dle the onslaught of technology. For our
largest project, we estimated a year and a
half for development at a total develop-
ment cost of $600,000. Our other two
projects can be produced in under a year
with a tag of $350,000 or below. People
who think that making a good game man-
dates a $4–10 million budget need to take
a good look at their company and consid-
er streamlining.

If the game development community is
going to continue following the movie
industry format, bloated budgets and all,
we ought to keep in mind two movies:
Waterworld and The Blair Witch Project.

Jag Jaeger

JV Games

via e-mail

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

S A Y S Y O U

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

T he creators of Project: Messiah
have announced their first full

CD release of their Lightwave ani-
mation plug-in. Version 1.5.5 adds
Lightwave 6 compatibility as well
a new effect called Motion Blender.
Motion Blender allows animators
to point and click to assign numer-
ous poses, including facial expres-
sions and phonemes, to on-screen
sliders which are then moved or
controlled procedurally to animate.
Another new feature is “Use Com-
puted Values,” which allow users
to create a keyframe based on the

position of an object that has expressions or effects acting upon it. Also new for version
1.5.5 is the ability to save OpenGL previews as .AVI files, enabling users to see previews in
real time even on slower graphics cards, as well as allowing them to save different versions
of motion tests without having to render them. Project: Messiah 1.5.5 has a retail price of
$695 but is a free upgrade for current users.

Project: Messiah 1.5.5 | Project: Messiah | www.projectmessiah.com

Z
F R O N T L I N E T O O L S

CODE PLAY LAUNCHES VECTOR C

C ode Play’s new Vector C is a compiler for Windows
that, as its name suggests, boasts the ability to speed

up code by automatically vectorizing standard C code
to take advantage of individual microprocessor fea-

tures. Currently, Vector C supports 3D MMX, 3D
Now!, and SIMD extensions, and also integrates

into Microsoft Visual Studio. Support for C++ is also
planned for the future. Code Play is offering a full-featured

Professional Edition for $750 and slightly limited student Special
Edition for $80. Both versions are available for download on Code
Play’s web site.

Code Play | Vector C | www.codeplay.com

DWBMP, a WAP (wireless application protocol) graphics sys-
tem from Morpheme, is a Java-based system for rendering

dynamic wireless bitmaps (WBMPs). Originally designed to
form part of its tool architecture for generating WAP and wire-
less-based games, Morpheme has decided to make the tool gen-
erally available. DWBMP contains a textual creation module
that dynamically renders text strings using a series of custom-
designed fonts and can be used to add a more interesting look to
WAP pages, which are currently dominated by plain text con-
tent. The commercial, licensed version of the library offers more
features, such as customization of fonts, offline image creation,

cropping, clipping, and basic
image compositing (displaying
text over another image).
DWBMP, written entirely in
Java, requires version 1.1 or
greater of Sun’s Java Runtime

Environment. Rendering dynamic content online also requires a
web server and servlet engine implementing version 2.0 or
greater of the Java Servlet API.

DWBMP | Morpheme | www.morpheme.co.uk

GEFORCE COMING TO MACINTOSH

N vidia is creating a Macintosh counterpart of its GeForce 2
GTS, the GeForce 2 MX, which is designed to bring some of

the high-end features and functionality of Nvidia’s flagship
products to the Mac, and is the first in Nvidia’s line to
provide native support for Mac color computation.
The unit features support for hardware transform,
clipping, and lighting, and also supports Nvidia’s
Natural Shading Rasterizer, which provides
enhanced performance for the display of realistic
surface textures, shadowing, and lighting. The new chipset
will be available both in AGP- and PCI-based configurations.

GeForce 2 MX for Macintosh | Nvidia | www.nvidia.com

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

NEW WINDOWS CE

M icrosoft has released Windows CE
3.0, its operating system for appli-

ances and portable devices, and has
slashed the price of real-time licenses by
up to 50 percent. The new version of
Windows CE has been enhanced to pro-
vide better real-time capabilities,
improved multimedia functionality, and
additional language support. In trying to
develop a more flexible system, Micro-
soft has also increased “componentiza-
tion,” which means the operating system
can be broken up into pieces and used
by developers for specific needs. Win-
dows CE 3.0 also addresses instability
concerns and the lack of true real-time
capabilities that slowed adoption of pre-
vious versions. While Microsoft did not
disclose licensing fees, it said it would be
offering a free upgrade for users of its

Platform Builder 2.12 development
tools.

Windows CE 3.0 | Microsoft
www.microsoft.comWAP BITMAPS FROM MORPHEME

PROJECT: MESSIAH CD RELEASE

w w w . g d m a g . c o m 9

10 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Microsoft Buys Bungie. Rumors have
been flying since the Xbox announcement
last March that Microsoft was looking to
make acquisitions in the game industry.
While Square and Eidos were the names
being passed around at first, Microsoft’s
first buy is Bungie. Bungie will become an
independent studio within the Microsoft
Games Division, though the company’s
Chicago offices will be relocated to Red-
mond, Wash. Microsoft will get Bungie’s
HALO, currently under development, but the
all rights and technologies for ONI and the
MYTH series will
go to former
Bungie distributor
Take-Two Inter-
active as part of a
deal enabling
Microsoft to
obtain Take-Two’s
19.9 percent stake
in Bungie.
Though Bungie
will continue to
make its own
decisions in
regard to development platforms, including
whether or not to continue the company’s
longtime Macintosh support, the company
is expected to play a key role in developing
and defining the Xbox platform.

The Bungie buy isn’t Microsoft’s only
deal with Take-Two. Microsoft is choosing
Take-Two subsidiary Broadband Studios to
provide online distribution of selected
Microsoft game titles. Under the deal,
Microsoft titles will be broadcast over
Broadband Studios’ Power Play network,
and the two companies are also looking
into creating an online game channel built
around Microsoft properties.

Disney Broadband. Disney is also enter-
ing the broadband fray. Disney Interactive
and Into Networks are teaming to create
the Disney Interactive Channel on Into’s
Play Now network. The channel will deliv-
er entertainment products from Disney
Interactive over Into’s broadband content
platform, enabling users to try titles before
buying, rent titles, or pay for monthly
channel subscriptions. Disney Interactive
will launch its broadband channel with a
selection of titles, including its A BUG’S
LIFE ACTION GAME.

Other Acquisitions. The spirit of acqui-
sition and consolidation is burning bright-
ly in the game industry. Despite persistent
reports that they are in the middle of an
effort to purchase struggling Eidos in a $1
billion deal, Infogrames found enough
spare change to snap up Texas-based
Nintendo 64 development studio Para-
digm Entertainment in an effort to shore
up Infogrames’ next-generation console
offerings.

Tool companies are also consolidating
in order to expand their product lines.

Dublin-based physics
SDK maker Havok is
buying out German rival
Ipion, intending to
merge the strengths of
the two existing physics
simulation kits into a
single segment-leading
product. A similar strat-
egy is behind Avid’s pur-
chase of The Motion
Factory. The goal of the
purchase is to unite the
interactive 3D animation

technologies of The Motion Factory with
Avid subsidiary Softimage’s top-of-the-line
XSI tools. Former Motion Factory presi-
dent and CEO David Pritchard will over-
see the integration from the post of gener-
al manager of Softimage.

THQ Rights Plan. While some companies
are buying, others are looking to avoid
being bought. THQ is following Activi-
sion and Acclaim in adopting a share-
holder protection plan. Like the other
plans, THQ’s shareholder rights initiative
is designed to ward off any unsolicited
takeover attempts by triggering a share-
holder stock payout if any outsider pur-
chases 15 percent or more of the compa-
ny’s outstanding shares. The plan, which
the company says is not in response to
any specific buyout effort, went into effect
July 3.

We All Live in a Pokemon World. Nin-
tendo reports that Pokemon sales continue
to soar. Sales of Nintendo’s Pokemon
videogames for the first five months of the
year are up 220 percent from the same
period last year. For the year, Nintendo
expects total revenues to top $3 billion in

North America alone. Besides the new ani-
mated feature film that hit theaters in July,
Nintendo plans to fuel the flames by releas-
ing four new Pokemon games before year’s
end, plus hundreds of licensed products.

GT Becomes Infogrames Inc. While
Infogrames SA continues its acquisitive
ways, last year’s buyout of GT Interactive
has yet to bear fruit. GT Interactive, now
known as Infogrames Inc., is reporting a
sharp decline in fourth-quarter revenues for
the period ending June 30. The company
brought in $61.1 million for the quarter,
compared to $93.5 million in the same
period last year. The net loss for the quar-
ter, due in part to charges for restructuring
and reorganizing (including layoffs and the
closure of GT’s international offices),
stretched to $140.6 million from last year’s
$54.8 million. Excluding charges, however,
Infogrames Inc.’s fourth-quarter loss
totaled just $6.6 million.

Infogrames Inc. wrapped up its finan-
cial quarter by instituting 1-for-5 reverse
stock split. Infogrames identified the stock
consolidation (which the company had
announced prior to releasing its fourth-
quarter financials) as the cause of the
stock price distortion that caused its NAS-
DAQ delisting. The companies are contin-
uing to consider ways to align Infogrames
Inc. with parent company Infogrames SA,
including the likely possibility of combin-
ing operations. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

D I G I TA L V I D E O E X P O &
W E B V I D E O E X P O

LONG BEACH CONVENTION CENTER

Long Beach, Calif.
October 2–6, 2000
Cost: $40–$1,495
www.dvexpo.com

P R O J E C T B A R - B - Q
GUADALUPE RIVER RANCH

Bourne, Tex.
October 19–22, 2000
Cost: $2,100
www.fatman.com/bbq.htm

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Bungie’s HALO: Will it be for Xbox only?

E very game programmer has
his or her bag of tricks and
techniques. Almost every
programmer agrees that
sharing these combinations

of problems and solutions is an important
part of learning and growing profession-
ally. Unfortunately, the lack of a common
vocabulary makes sharing information
much less efficient and more difficult than
it needs to be. An “overlay” at one com-
pany is a “gump” at another. (“Gump” is
the actual name of a windowing system at
a game company that shall remain name-
less. We ignore the fact that one of your
humble editors is at fault for the name.)
Likewise, one developer’s “clipping” may
be another’s “collision detection.”

This lack of vocabulary is a sign of our
youth as an industry and a profession. Do
you think that civil engineers bicker over
the meaning of an aqueduct or an over-
pass? How much unnecessary mental ener-
gy do we spend arguing with our peers
over what turns out to be a simple differ-
ence in definitions?

Vocabulary is more than mere communi-
cation — it is knowledge. When something
has an accepted name, it also tends to have
associated theory and lore. If you know the
name of something, you will hear rumors
about it, you can search the Internet for it,
and you can read books about it.

How can we as game programmers
develop a vocabulary to accelerate the
process of sharing information and com-
municating about problems and solutions,
making our games better and creating them
more efficiently in the process? This col-
umn aims to help, with you, the reader,
playing an important part. Every month
we’ll print a “pattern” that captures and
discusses an important problem in game

programming. These patterns will be sub-
mitted by game developers (again, that
means you). They will be catalogued in a
database on Gamasutra.com, where devel-
opers can search for patterns solving their
problem, and add and annotate the pat-
terns based on their experience. If this
works, it’ll be a great resource to help both
new and experienced game programmers
ply their craft.

Patterns?

P atterns have gotten a lot of hype late-
ly, but underlying the hype is the fun-

damental concept of a vocabulary. A pat-
tern is nothing more than a problem and
solution pair which have been given a
name we can use to discuss it. For exam-
ple: “An overpass is a structure which
allows cars to pass over one another thus
avoiding time wasted at stop lights or stop
signs.” A good pattern avoids questions of
implementation. It doesn’t say, “An over-
pass must be built of prestressed concrete
beams, last 150 years, and be weather-
proof.” It might talk about common prob-
lems: “Overpasses tend to take up a lot of
space and be costly.” A pattern is just a
formalized description of a problem that
has been frequently solved but under dif-
ferent names.

There are numerous existing software
pattern collections currently available and
much has been written about patterns in
software and other industries. (See For
More Information for links.) Some of these
collections are extremely formal, some-
times to the point where the formalism
gets in the way of the underlying idea. We
feel formalizing patterns to the point
where they start to read like a program-
ming language is a mistake. In this col-

umn, we plan to keep things casual and,
we hope, intuitive.

However, the most important character-
istic of this column is that the patterns will
be submitted by readers. The entire point
of the column and database is to share
information about common idioms and
techniques among all developers, and that
means all developers have to participate
and contribute the patterns. Take a look at
our format on the facing page, and submit
your patterns in this format to the e-mail
address provided. Keeping the length down
will help us fit the pattern on a single page
and help you focus on what’s important.
We’ll publish one pattern a month in the
column and even more to the searchable
database, and we’ll begin developing the
vocabulary we need to advance the state of
our art at a much faster pace.

One final note: don’t be surprised if
your first reaction to some of the patterns
is, “Duh, everybody knows that one.”
That’s O.K., since we’re trying to develop
a shared vocabulary for discussing com-
mon game programming problems. Not
every pattern will be new to you, but
hopefully every pattern will encourage you
to think about its problem. Maybe you
know another name for the pattern that
we can add to the database. Maybe you
have a better example. Or, maybe know
an even better solution. Submit your
knowledge and we’ll all learn!

12

P A T T E R N S

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

C H R I S H E C K E R | Chris Hecker (checker@d6.com) is editor-at-large of Game Developer.
Z A C H A R Y B O O T H S I M P S O N | Zack is the former director of technology at Origin and Titanic. He currently wanders the countryside
crushing cars and terrorizing suburban dwellers.

FOR MORE INFORMATION

The Patterns Home Page
http://hillside.net/patterns

Zack’s Patterns Pages
www.totempole.net/gamepatterns.html
www.totempole.net/gameprocess.html

Game Programming
Patterns & Idioms

Problem

A lmost all games have a database of
world objects, even if it is as simple as

a static array or a linked list. Sometimes the
world itself is part of this database. Queries
into the database are often based on a spa-
tial key, like a position or a region in the
world. Often these queries must be very fast
because they are made many thousands of
times per second. Examples: finding all the
objects near an explosion and deducting hit
points; finding all surfaces visible in a view
frustum for rendering; finding the item that
intersects the last mouse click. One correct
but slow way to implement spatial queries
is to iterate through every object in the
database, checking it against the spatial key.

Solution

A Spatial Index accelerates spatial
queries. Given a spatial key, the

Spatial Index allows quick access to the
database’s associated values. The Spatial
Index may cache information from the
database to speed queries. It may refer
directly into the database’s values, or it
may return a key which can be used to
attain the value from the database. There
are many implementations of a Spatial
Index, but most spatially subdivide the
world to reduce the search space, sort the
objects spatially, or use time- or space-
coherency between lookups to speed spa-
tial queries — or some combination of all
these techniques.

Examples

T he Spatial Index is among the most
studied and discussed patterns in

game development. A very abbreviated list
of implementations includes: binary space
partition trees, room/portal systems, X/Y
hash with chained collision resolution,
and octrees.

Issues

C onceptual confusion. A database index
is not a database and vice versa. A

single database may have multiple indices
or no indices at all. An index is conceptu-
ally distinct from the database itself, and is
an additional datastructure used to speed
up queries on the database. For example, a
book may have a keyword index, a table
of contents, and an index of figures, or it
may have none of these. In each of those
examples, the text of the book is the data-
base. We use a different index depending
on what type of key you want to use to
look up a page in the book. For the table
of contents, the key is a concept. For the
keyword index, it’s a word, and for the fig-
ure index, well, it’s a figure. You get the
idea. A game may have an object database
with an associated Spatial Index for the
renderer, a different Spatial Index for the
collision detector, and a “type index” so
AIs can query based on the different types
of bad guys.

Coupling. Spatial Indices have a tendency
to become too tightly coupled with their
associated database, which can reduce
flexibility and reusability. The index can be
overly optimized for a particular subsys-
tem leaving it less useful for another sub-
system. For example, if the Spatial Index is
highly optimized for and coupled to the
renderer, the AI subsystem might have
trouble using it to find the nearest enemy
units efficiently.

Synchronization and duplication. The
keys in an index must remain synchronized
with the values in the database. This can
be difficult if the index is cached to
improve performance. If a unit moves in
the database, the cached data in the Spatial
Index must either be updated or invalidat-
ed. Uncoupling an index from a database
can create synchronization problems. Data
is often duplicated from the database to
the index, which consumes resources (both

memory and overhead keeping the data
synchronized).

Related Patterns

I n the future, this section will point to
other related patterns in the database,

but since this is the first one, there’s noth-
ing here! See the box below on how you
can contribute to help out this poor and
lonely section.

Uses, Credits, and
References

T his pattern is widely used throughout
the industry. See The Design and

Analysis of Spatial Data Structures by
Hanan Samet (Addison-Wesley, 1990).
Also, Mike Abrash describes QUAKE’s
Spatial Index, called the Potentially
Visible Set, on Blue’s News at
www.bluesnews.com/abrash. The PVS is
actually a Spatial Index that references a
BSP, another Spatial Index. q

w w w . g d m a g . c o m 13

zG A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

Spatial Index
a.k.a. Spatial Partition, Spatial Datastructure,

Geometric Datastructure

w w w. g a m a s u t r a . c o m / p a t t e r n s

Now It’s
Up To You!

This column depends on your

contributions! Send your pat-

terns and idioms to us at

patterns@d6.com. Also, check

out the Game Programming Pat-

terns Database, located at

www.gamasutra.com/patterns.

If we publish your pattern in the

column, we’ll give you recogni-

tion in print and $100!

Physics Engines
Part One: The Stress Tests

b y j e f f l a n d e r & c h r i s h e c k e r

A s devoted readers of Game
Developer, you are all
aware of our belief (or
hope!) that realistic physics
can greatly improve the

gameplay in interactive entertainment. You
also know that creating a robust and flexi-
ble physical simulator is difficult work.
Simulators are hard to design, challenging
to code, and even more difficult to debug.
These challenges cause many programmers
and producers to look for external help for
their physics development problems.

Lately we have seen the emergence of
licensable “physics engines” from compa-
nies wishing to fill this need. We feel the
market has matured to the point where it
is time for us to take a hard look at these
products to see how well they work.

We will be looking at three products that
offer roughly the same level of technology
and features: MathEngine’s Dynamics
Toolkit 2.0 and Collision Toolkit 1.0, the
Havok GDK from Havok, and Ipion’s
Virtual Physics SDK. Our focus is on rigid
body dynamics. We will not review cloth,
particle, water, or other kinds of simula-
tion, even though these packages support
some of those features.

This month, in the first of two parts,
we have created a series of tests that stress
the capabilities of the simulations in diffi-
cult-to-solve situations where physical
simulations typically break down. These
tests give us a general feel for each
engine’s implementation of important core
features such as contact, constraints, and
integration, as well as a working knowl-
edge of each API. Next month, we will
take an in-depth look at each package
with specific attention paid to how these
packages will integrate into a large-scale
game project.

Ground Rules &
Disclaimers

F irst, it’s important to point out that the
stress tests are not exhaustive, nor

directly representative of in-game situa-
tions. They are simulations of physical con-
figurations specifically chosen to stress the
engines in difficult numerical situations.

Our goal with these tests was to break
the simulators. We are not necessarily
expecting perfection (although it would be
nice!). We chose this approach because
users and artists have an annoying tenden-
cy to create physical configurations that
break physics simulators, so it’s better to
find weaknesses before licensing than dur-
ing final play-test.

Though the tests are difficult, they are
not unrealistically complex. Artists could
create configurations that correspond to
these tests without knowing the configura-
tions might be problematic. We did not tune
the tests to exacerbate a discovered bug.
Rather, we made a good-faith programming
effort to help each engine simulate the tests
successfully, tuning parameters and request-
ing technical support in some cases.

When creating the score for each test,
we evaluated a specific set of factors:

• How physically plausible and consis-
tent with our expectations were the results?

• How stable were the results? Did the
simulation come to rest in a stable state or
did the system continually jitter or explode?

• Were the results accurate given the
design of the situation?

• How easy were the scenarios to design
and adjust in each SDK?

The grading for each test ranges
between 0.0 and 1.0, with 1.0 being per-
fect in all areas. The grades for each
engine are absolute compared to a theoret-
ical ideal, not relative to the other engines.
A score of 0.5 is the minimum “accept-
able” score given our expectations.

We designed the scenarios to be the same
scale and with the same units (where possi-
ble) in each package. Scale is very impor-
tant in a simulation, so we used standard
units for measurement and chose a world
scale that worked well in all three systems.

The final scores are not presented in an
easy-to-compare table. This is a conscious
decision, as we believe simple numbers are
meaningless without a full understanding
of the context. Choosing a physical simu-
lator is not as simple as setting up a race
between systems and see who wins. There
are many other tests that might be more
representative of your problem domain,
and we encourage you to run them your-
self before deciding.

The Tests

T est 1: A large cube is dropped on a small
cube. This challenge was designed to

test the collision detection and response of
each system. Masses and sizes that vary by
an order of magnitude can cause trouble
for contact solvers and collision detectors.

The cubes were axially aligned and cen-
tered at the origin and translated up along

w w w . g d m a g . c o m 15

T H E A U T H O R S | Jeff Lander (jeffl@darwin3d.com) is the Graphic Content columnist for
Game Developer. Chris Hecker (checker@d6.com) is Game Developer’s editor-at-large.

P R O D U C T R E V I E W
T H E S K I N N Y O N N E W T O O L S

The Havok GDK undergoes Test 1, in which a
large cube is dropped on a small cube.

XP R O D U C T R E V I E W

16 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

the Y-axis. Both cubes were initially off
the ground and dropped at the same time.
The large cube was 10m×10m×10m with a
mass of 5,000kg and the small cube was
1m×1m×1m with a mass of 5kg. The coef-
ficient of restitution between all objects
and the ground plane was set to 0. We
expected the two cubes to drop straight on
top of each other without bouncing and
come to an immediate rest.

MATHENGINE 0.7 | Even though we tried
everything to ensure the coefficients of
restitution were 0.0, we could not get rid
of the bounce when the boxes hit. In this
test, the boxes bounced, then the smaller
box shot out from beneath the large box.

IPION 0.75 | The boxes dropped directly
on each other without bouncing. However,
the top box tipped over then jittered a bit
before stabilizing.

HAVOK 0.6 | On contact, the top box slid
back and forth in a very unrealistic man-
ner before finally tipping over. Setting the
friction even higher didn’t help. The
objects also went to sleep too fast, freezing
as they were visibly moving.

Test 2: A slightly larger cube is dropped on
a smaller cube. This was a variation on the
first test in that the difference between the
cubes’ sizes was much smaller. This test
was meant to be a “gimme” and should
just work.

The cubes were set at the origin and
translated up along the Y-axis. Both cubes
were initially off the ground and dropped
at the same time. The large cube was
5m×5m×5m with a mass of 625kg and the
small cube was 4m×4m×4m with a mass
of 320kg. The coefficient of restitution
between all objects and the ground plane
was set to 0. We expected the two cubes to
drop straight on top of each other without
bouncing and come to an immediate rest.

MATHENGINE 0.7 | Again, the initial
bounce between the objects caused the top
box to tip over.

IPION 0.9 | The boxes dropped and
stayed stacked. The system slept early
while still jittering slightly.

HAVOK 0.9 | On contact, there was slight
sliding between boxes. They stayed stacked
and there was no jitter between them.

Test 3: A large cube is constrained to a
small cube and both are dropped. This chal-
lenge was designed to test the constraint
system as well as the collision detection

and response of the systems. Again, orders
of magnitude uncover numerical problems
in constraint solvers and constrained colli-
sion and contact resolvers.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with a
three-degree-of-freedom spherical con-
straint positioned exactly midway between
the two cubes. Both cubes were initially
off the ground and dropped at the same
time. The large cube was 10m×10m×10m
with a mass of 5,000kg and the small cube
is 1m×1m×1m with a mass of 5kg. Again,
we set the coefficient of restitution
between all objects and the ground plane
to 0. We expected the two cubes to drop
straight on top of each other without
bouncing and come to an immediate rest,
with the top box balancing on the con-
straint. The joint should have stayed rigid,
always maintaining the separation between
the two boxes.

MATHENGINE 0.4 | Again, the two boxes
bounced on the drop. The constraint held
the boxes apart. However, the box tipped
over and the system continued to jitter
without coming to a rest.

IPION 0.5 | The joint collapsed on drop.
The top box fell over and there was some
jitter before the system stabilized to sleep.

HAVOK 0.4 | The joint collapsed on drop.
The top box fell over and there was some
jitter before the system stabilized to sleep.
Applying a mouse force allowed the con-
straint to be completely violated, adding
unrealistic energy to the system.

Test 4: A slightly larger cube is constrained
to a smaller cube and both are dropped. This
is a variation on Test 3 in that the differ-
ence between the cubes is much smaller.
Like Test 2, this was another “gimme” with
very similar sizes and masses, making for
an easy-to-solve configuration.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with a
spherical joint positioned exactly midway
between the two cubes. Both cubes were
initially off the ground and dropped at the
same time. The large cube was 5m×5m×5m
with a mass of 625kg and the small cube
was 4m×4m×4m with a mass of 320kg.
The coefficient of restitution between all
objects and the ground plane was set to 0.
We expected the two cubes to drop straight

on top of each other without bouncing and
come to an immediate, balanced rest. The
constraint joint should have stayed rigid
maintaining the separation between the
two boxes.

MATHENGINE 0.7 | The boxes bounced,
but otherwise perfect.

IPION 0.8 | There was a slight bounce.
The top box finally fell over in a plausible
manner.

HAVOK 0.75 | There was a slight bounce.
The top box finally fell over and the system
went to sleep a bit too early. We had to
adjust default parameters to get this result.

Test 5: A large cube is constrained to a
world anchor. A small cube is constrained to
the large cube. This challenge was designed
to test the constraint system with objects
having a great difference in mass, including
the infinite mass of the world constraint.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with
spherical joint positioned exactly midway
between the two cubes. The top large
cube was constrained to a world anchor
above it by another spherical joint. The
large cube was 10m×10m×10m with a
mass of 5,000kg and the small cube was
1m×1m×1m with a mass of 5kg. We
expected the objects not to move, as the
constraints would hold everything exactly
in place.

MATHENGINE 0.95 | Behaved as expected.
IPION 0.95 | Behaved as expected. Due

to the interface, we couldn’t exert a strong
mouse force on the small object to test
stability.

HAVOK 0.9 | Behaved as expected. How-
ever, forces applied to the small box made
the system slightly unstable.

Test 6: A small cube is constrained to a
world anchor. A large cube is constrained to
the small cube. This challenge was the
same as the previous test with the two
boxes reversed. It was designed to test the
constraint system with objects having a
great difference in mass, with the small
mass between the large and infinite mass.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with a
spherical joint positioned exactly midway
between the two cubes. The top small
cube was constrained to a world anchor
above it by another spherical joint. The

XP R O D U C T R E V I E W

18 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

large cube was 10m×10m×10m with a
mass of 5,000kg and the small cube was
1m×1m×1m with a mass of 5kg. We
expected the objects not to move, as the
constraints would hold everything exactly
in place.

MATHENGINE 0.9 | There was a slight
energy addition, but it was very solid.

IPION 0.45 | The constraint was violated
in a springlike stretching manner. The sys-
tem didn’t blow up.

HAVOK 0.4 | With the default constraint
stiffness parameter, tau, the constraint was
stretched in a springlike manner and the
system even went to sleep with the con-
straint violated. When we increased the
tau, there was only a slight jitter. However,
applying any force to the big cube caused
the system to gain energy and explode.

Test 7: A small cube and large cube are
dropped into a gap between two planes that
narrows gradually. This challenge tested the
collision detection system and the contact
resolution system. The gradual slope of the
planes caused the contact and collision
system to exert large normal forces to stop
the cubes from falling.

Two large and narrow boxes used as
planes were positioned so they formed a
vertical chute that narrowed to a point at
the bottom at a 5.625-degree slope, and
the two cubes were dropped into the gap.
The large cube was 10m×10m×10m with a
mass of 5,000kg and the small cube was
1m×1m×1m with a mass of 5kg. We
expected the objects to fall into the gap,
become wedged between the planes, and
not move.

MATHENGINE 0.8 | There was an initial
bounce, but otherwise it performed well.
When the small box was moved with a
force, energy was occasionally added. The
lack of some basic math functions in the
SDK made the test difficult to create.

IPION 0.0 | This was a complete failure.
Contacts were missed or incorrect impuls-
es were applied and the boxes fell through
the chute.

HAVOK 0.9 | Almost perfect. There was a
small amount of bounce.

Test 8: One cube is dropped so that it will
collide with another cube on collinear edges.
This challenge tested the collision detec-
tion system. Degenerate collision mani-
folds can be problematic.

A slightly smaller cube was dropped onto

a larger one so that they struck edge to
edge. The small cube was 4m×4m×4m with
a mass of 320kg and the large cube was
5m×5m×5m with a mass of 625kg. We
expected the objects to fall and make con-
tact at the edges without bouncing and then
come to an immediate rest. Due to numeri-
cal inaccuracies with rotating the cubes to
set up the test, we couldn’t be totally sure
the boxes hit exactly edge to edge.

MATHENGINE 0.7 | The dropped box slid
off to the side in an unrealistic, slippery
manner.

IPION 0.95 | Almost perfect, but it went
to sleep in dynamically unstable situation.
A small epsilon gap was visible between
the two cubes.

HAVOK 0.9 | Almost perfect, however
there was a small amount of bounce. An
epsilon gap was visible between the objects.

Test 9: One cube is dropped on another
cube of the same size, so that they will col-
lide exactly point-to-point. This challenge
tested the collision detection system as
another degenerate collision manifold test.

Two identical cubes were dropped so
that they struck point-to-point. The cubes
were each 4m×4m×4m with a mass of

320kg. We expected the objects to fall and
contact at the point without bouncing and
then come to an immediate rest. As in the
previous test, due to numerical inaccura-
cies with rotating the cubes to set up the
test, we couldn’t be completely sure the
boxes hit exactly point-to-point.

MATHENGINE 0.7 | The dropped box slid
off in an unrealistic manner, exactly like in
the previous test.

IPION 0.85 | There was a little bounce
and they went to sleep in dynamically
unstable situation.

HAVOK 0.9 | Almost perfect. The boxes
sat there stably, eventually tipping over.
However, the default epsilon gap between
objects was visible.

Test 10: Boxes are dropped to form an
uneven stack. This challenge tested the col-
lision detection system with massive num-
bers of contacts and collisions.

A series of boxes of various sizes were
dropped onto each other with the initial
rotations around the Y-axis, and slightly
offset from the center. The goal was to try
stacks of up to 40 boxes. We expected the
objects to fall into a stable stack of blocks
that behaved in a believable manner.

MATHENGINE 0.2 | When more then 10 to
12 boxes were dropped, the system
crashed. Otherwise the boxes bounced
badly, even adding energy. The system was
very unstable, though no boxes appeared
to interpenetrate.

IPION 0.6 | Stable, but really started
slowing as boxes were added to the sys-
tem. Some boxes eventually fell through
each other and the boxes at the bottom
jiggled a bit. Parts of the stack slept while
others jittered and interpenetrated.

HAVOK 0.75 | Perfectly stable for a while,
but with the maximum stack, the boxes
started falling through each other and the
floor.

Test 11: A hinge joint with similar bodies.
This test should have been easy to solve. A
one-degree-of-freedom hinge constrained
two similarly sized bodies.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with a
hinge joint positioned exactly midway
between the two cubes. Both cubes were
initially off the ground and dropped at the
same time. The large cube was 5m×5m×5m
with a mass of 625kg and the small cube

Cubes drop into a chute in Ipion (top) and Havok
(bottom) in Test 7.

XP R O D U C T R E V I E W

20 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

was 4m×4m×4m with a mass of 320kg.
The coefficient of restitution between all
objects and the ground plane was set to 0.
We expected the two cubes to drop straight
on top of each other without bouncing and
come to an immediate, balanced rest. The
constraint joint should have stayed rigid,
maintaining the separation between the
two boxes. We should have been able to
move the bodies and the hinge should have
only rotated around its axis.

MATHENGINE 0.7 | The boxes bounced,
but otherwise ran perfectly. The lack of
mouse forces in the demo made it slightly
hard to test the hinge.

IPION 0.8 | There was a slight bounce.
The top box finally fell over in a plausible
manner. It was very stable.

HAVOK 0.7 | There was a nonstraight
bounce. The top box finally fell over and
system went to sleep a bit too early. Havok
doesn’t support hinges except through lin-
early dependent spherical joints.

Test 12: A hinge joint with differing mass-
es. This was the “hard” version of the pre-
vious test. The order of magnitude differ-
ences between the bodies can cause numer-
ical trouble.

The cubes were set at the origin and
translated up along the Y-axis. The two
boxes were constrained together with a
one-degree-of-freedom hinge constraint
positioned exactly midway between the
two cubes. Both cubes were initially off
the ground and dropped at the same time.
The large cube was 10m×10m×10m with a
mass of 5,000kg and the small cube was
1m×1m×1m with a mass of 5kg. The coef-
ficient of restitution between all objects
and the ground plane was set to 0. We
expected the two cubes to drop straight on
top of each other without bouncing and
come to an immediate rest, with the top
box balancing on the constraint. The joint
should have stayed rigid, always maintain-
ing the separation between the two boxes.

MATHENGINE 0.45 | The two boxes
bounced on the drop. The constraint held
the boxes apart. However, the box tipped
over and the system continued to jitter
without coming to a rest.

IPION 0.45 | The joint collapsed on drop.
The top box fell over and jittered.

HAVOK 0.4 | The joint collapsed on drop
and the top box fell over. Applying a
mouse force allowed the constraint to be

completely violated and the system could
blow up.

Things We Didn’t Test

S pace and time limitations prevented us
from testing more potential problems.

Other things we could have tested include:
• Other joint types; two-degree-of-free-

dom rotational joints are often problemat-
ic, prismatic joints with different moments
of inertia, and so on.

• Stiff springs and user-defined forces;
jerking the constraints around was not
really tested.

• Concave collision detection, union of
convex collision detection.

• Sliding bodies over one another look-
ing for inconsistent normals, especially as
contact manifold collapses from a 2D
patch to a 1D line segment and then to a
0D point.

• Tunneling of fast-moving objects or
objects strongly pulled into the ground
(preliminary tests in this area indicated
problems with some of the engines).

Conclusions

A fter conducting all of these tests on
each system, we were impressed with

the general engine stability across the
board. With the exception of the box-
stacking test on MathEngine, which was
likely a memory problem, the simulators
were able to handle every test without
crashing. We had some difficulties with the
access functions in some cases, which we
will cover in depth in next month’s conclu-
sion. Nevertheless, we were able to get
every test running fairly rapidly.

MathEngine is very capable at handling
hard constraints. The bouncing problem on
collisions hurt its score on most tests. After
talking with MathEngine technical support
about it, we adjusted the gamma and
epsilon values and were able to improve
several of the tests. However, this required
case-by-case experimentation and never
completely eliminated the bounce. The col-
lision detection and resolution worked
well; we never saw objects interpenetrating.

The Ipion engine was a solid performer
as well, with the exception of Test 7, the
narrowing chute. The rigid constraints
were not exactly rigid but they were pretty
stable. The collision detection and han-
dling were reasonable, excepting the chute
and box-stacking tests. The system also
slowed down to unacceptable levels as the
number of interacting objects increased.

The Havok engine posted generally
strong scores. They clearly need to work
on their rigid constraint system. The
default constraint tau value (which is not
well documented) resulted in springlike
constraints that didn’t perform well in our
tests. Increasing tau caused the constraint
to become more rigid, however the system
then became unstable. We were also able to
see object interpenetration problems when
the system was really stressed. That said,
the collision system was very robust and
fast, handling even fairly large block stacks
without slowing much.

So, which package is right for you?
These stress tests are only the first part of
an answer to that question. Next month
we will have an in-depth review of each
simulator, covering the complete feature
sets, documentation, and API issues. q

MathEngine (top) and Havok (bottom) handle
stacking blocks (Test 10) with varying success.

NOTE: As we were running these tests, Havok
announced that they had purchased Ipion in a
consolidation of this newly formed market. They
will continue supporting both packages until
they can consolidate them into one system.

w w w . g d m a g . c o m 23

C reating high-quality 3D
graphics and animation
requires a great deal of
artistic expertise. This
expertise comes not only

from the artists who will create the pieces
that will produce the final picture but also
the programmers who create the technolo-
gy behind the images. Many people don’t
think of game programmers as artists per
se, however, there is definitely an art to the
technology. That is not to say that you can
necessarily program good art. We have all
used the Adobe Photoshop filters that can
make a photo look like it was drawn with
a crayon or painted with watercolor. Such
effects are accomplished with an algorithm
that mimics the characteristics of these nat-
ural media. While the processed images
can resemble the look created by an artist,
few would argue that these image manipu-
lation tricks are actually creating art.

Lately, I have been considering some-
thing Pablo Picasso said: “There are
painters who transform the sun into a yel-
low spot, but there are others who, with
the help of their art and their intelligence,
transform a yellow spot into the sun.”

The technology behind a Photoshop fil-
ter clearly takes the former approach of
changing the sun into a nice yellow spot.
Many of the “artistic” tools created for
use in production adopt this approach.
While they are capable of creating nice
images, it makes me wonder if they are
really creating “art.”

In my work, I have always believed that
my job as a programmer of 3D technology
was to create tools that enabled the cre-
ation of new, compelling art. I never want
to be in the business of simulating the artis-
tic process, but I want to support and nur-
ture it. I want to enable people to achieve
their visions more easily and so I try to
develop technology to support this goal.

Painting the
Vision

O ne area where I see
quite a large break-

down in the creative
process is in the creation
of 3D models. Creating a
3D model is largely done
as a multi-step process.
First, an object or charac-
ter is designed. This can
be a sketch on paper, a
sculpture, or an idea in an
artist’s head. Next, an
artist turns the design into a 3D object in a
modeling package. To give the object
detail, an artist creates a texture map
either by painting a texture or manipulat-
ing digitized images in a tool such as
Photoshop.

The artist then applies these textures to
the object by projecting them onto the
object algorithmically and painstakingly
adjusting the map to make a good fit. The
process of painting and mapping is then
iterated to make sure everything is in the
right place and looks correct. This can

obviously take a great deal of time in
many cases.

To speed up this process, some compa-
nies have tried reversing the last two steps.
The texture map is applied before it has
been created. Once the texture is applied
and then unwrapped with wireframe
guidelines, the result is a template that
shows the relationship between the texture
and the object. You can see an example of
this in Figure 2. An artist can then paint
the texture within the guidelines, hopefully
limiting the number of iterations required.

While often effective, this method seems
to me to be very backwards artistically. We
have constrained the artist to work with a
flattened and skewed vision of what the

“Art and Intelligence”:
3D Painting

j e f f l a n d e r G R A P H I C C O N T E N T

J E F F L A N D E R | When not trying to draw a sun with the broken yellow crayon from his
Crayola Growing Kid’s Washable 8-Pack, Jeff can be found napping on his towel at Darwin
3D. You can poke him at jeffl@darwin3d.com.

FIGURE 1 (top). A robo-painting of the author and his wife.
FIGURE 2 (bottom). A model unwrapped as a texture guideline.

w w w . g d m a g . c o m 25

final object will look like. It’s obvi-
ously quite possible to create great-
looking 3D objects with this
method. Just look at all the great
art in many of the games out there.
Clearly artists have learned to
work within the constraints
imposed by technology.

Graphics hardware is now capa-
ble of rendering multiple simultane-
ous textures, as well as special
effects such as real-time bump and
environment mapping. As this tech-
nology becomes a standard part of
game development, the process of
creating textures to support the
hardware will become more impor-
tant then ever. Obviously it’s possi-
ble to create all these textures using the tra-
ditional production pipelines. However, we
should continue to ask if there could be a
better way.

These problems have been obvious ones
for some time now. In 1990, Pat Hanrahan
and Paul Haeberli observed that it would
be better if it were possible to paint direct-
ly on a 3D model. At Siggraph that year,
they described a method for direct
WYSIWYG (what you see is what you get)
painting and texturing on 3D shapes. Soft-
ware developers immediately saw this as a
potentially important evolution in graphics
production and many 3D paint packages
were born.

With a 3D paint system, users are able
to manipulate objects in 3D much as they
would in a modeling program. When the
user paints color directly on the object in
the 3D view, this paint information is con-
verted internally to a 2D texture map. The
more advanced 3D paint packages out
there allow you to create multiple layers of
textures and paint them with a variety of
brushes and stroke styles. It’s even possible
to paint a bump map directly and see the
results change interactively. You can see an
example of a character head being painted
in Metacreations’ Painter 3D (recently sold
to Corel) in Figure 3.

You’d assume this technology would go
a long way toward speeding up the cre-
ation of a 3D model. However, it seems as
if these 3D paint packages have yet to
prove themselves. I haven’t seen them
widely used by many artists and I’m not
sure why.

One reason may be the cost. Good 3D
paint packages are not cheap. In game
companies it can be difficult for an artist
to get a copy of a good animation system
and getting the company to shell out an
extra $500 or more for a paint system
may be asking too much. It’s also yet
another tool to learn which may or may
not integrate well with the existing pro-
duction process. Many artists may simply
not want to bother and stick with whatev-
er has worked for them in the past.

How Does It Work?

T he idea of 3D painting is certainly
interesting enough to investigate fur-

ther. It would be very handy, for example,
to be able to touch up a texture map from
within my model viewer. In the simplest
case, I might have a 3D model with a tex-
ture already applied and I want to touch it
up by adding a mole or wrinkle lines.

In order to paint on the 3D surface I
have to know what point on the model is
directly under my mouse when I press the
button. It was only a few years ago that I
was still writing my own software renderer
(remember those days?). In this renderer, I
had a routine that actually drew the pixels
for each polygon. If I moved the mouse
across the screen, I could just figure out
what was drawn under it since my little
software routine drew every pixel. Thus,
3D painting was pretty easy to implement,
it just wasn’t very fast.

Now we have these really fast 3D
graphics cards in the computers on our

desks and it would be a shame not
to use them. But since the graphics
hardware now is drawing all the
pixels, I have no easy way of
knowing what was drawn at any
individual screen location.

The point below the mouse on
the screen can really be thought of
as a line extending from the
mouse into the screen. To find out
where it hits, I could cast a ray
along that line and see where it
hits on the surface of the model.
This problem is very well studied.
It’s exactly like what is done in a
raytracing renderer. However, that
would mean I would need the
coordinates of the transformed

model in the screen. On a system that
handles hardware transformation, such as
Nvidia’s GeForce 256, I would need to
transform everything myself in software or
use something like the feedback mecha-
nism in OpenGL, which is notoriously
slow. Another problem is that polygons
can overlap on a model. The graphics card
uses the Z-buffer to sort this out but I
would need to use another sorting mecha-
nism to determine which polygon was
closest under the mouse.

In order to use the graphics hardware
more effectively, I am going to use a tech-
nique known as the selection buffer (or
item buffer). The idea is to use a rendered
image to tell me what each pixel in my
scene represents. Let me start with the sim-
ple case of a single object rendered with a
256×256-pixel texture applied. At every
vertex there is a UV texture coordinate
that describes how the texture maps to
that vertex. If I render the object out, I get
the image in Figure 4.

To get this image, I have submitted the
texture coordinates and vertex positions to
the hardware in a pretty standard manner,
shown in OpenGL in Listing 1. Of course,
I could optimize this by using more effi-
cient graphics calls such as vertex arrays
and triangle strips, but you get the idea.

For the 3D paint system, the triangle
that is under the mouse is not actually
important. The information I really want
to know is the texture coordinates that are
under the mouse. So, suppose I change the
rendering loop to what I have in Listing 2.

You can see that I have only made a

FIGURE 3. A character in Painter 3D.

26

very minor modification. Instead of using
the texture coordinates in the normal way,
I have put the texture coordinates into a
glColor3f command so that the U coordi-
nate is in the red position and the V coor-
dinate is in the green position. I set blue to
be 1.0 but that really doesn’t matter. When
I render with this routine, I get the image
you see in Figure 5.

As you can see, the colors blend
smoothly across the object in a nice pastel
manner. What’s important, though, is that
each pixel of the image stores the texture
coordinates that would be drawn there.
The vertex color interpolator has interpo-
lated the UV coordinates for me. So now,
in order to know what part of the texture
map is drawn on a certain part of the
screen, I just look at the color at that
point. For example, in the sample image, I
can pick a point in the center of the object

and I get the color (144,165,255). That
corresponds to the texture coordinate
(144,165). If I change the color at that
position on the texture map, it will look
like I painted on the object. That is pretty
easy and the visibility calculations are han-
dled by the hardware. The hardware
Z-buffer will determine for me which poly-
gon is in front.

Implementation

T o make this work for 3D painting, I
will need to render both the UV selec-

tion render and the actual image render. If
I had to switch back and forth between

those two render modes, it would be pretty
distracting for the user. However, if I use a
double-buffered display where one is a dis-
play frame buffer and the other one I can
draw on, this won’t be a problem. The
double-buffered display works by waiting
until the hardware has finished rendering a
frame. Then you can swap the buffers to
show the results. This leads to smooth ani-
mation without flickering. To use this for
my selection buffer, I can render the selec-
tion data to the back buffer and not dis-
play it.

I don’t even need to render the selection
buffer all the time. I only really need to
render it whenever the object or camera

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

G R A P H I C C O N T E N T

LISTING 1. My original method for submitting texture coordinates and vertex positions to the
hardware for the image in Figure 4.

lEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D,visual->glTex);

glBegin(GL_TRIANGLES);

face = visual->index;

for (loop = 0; loop < visual->faceCnt; loop++,face++)

{

glTexCoord2f(visual->texture[face->t[0]].u,visual->texture[face->t[0]].v);

glVertex3fv(&visual->vertex[face->v[0]].x);

glTexCoord2f(visual->texture[face->t[1]].u,visual->texture[face->t[1]].v);

glVertex3fv(&visual->vertex[face->v[1]].x);

glTexCoord2f(visual->texture[face->t[2]].u,visual->texture[face->t[2]].v);

glVertex3fv(&visual->vertex[face->v[2]].x);

}

glEnd();

glDisable(GL_TEXTURE_2D);

LISTING 2. Changing the rendering routine to find texture coordinates with glColor3f, which
produces the image in Figure 5.

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D,visual->glTex);

glBegin(GL_TRIANGLES);

face = visual->index;

for (loop = 0; loop < visual->faceCnt; loop++,face++)

{

glColor3f(visual->texture[face->t[0]].u,visual->texture[face->t[0]].v,1.0f);

glVertex3fv(&visual->vertex[face->v[0]].x);

glColor3f(visual->texture[face->t[1]].u,visual->texture[face->t[1]].v,1.0f);

glVertex3fv(&visual->vertex[face->v[1]].x);

glColor3f(visual->texture[face->t[2]].u,visual->texture[face->t[2]].v,1.0f);

glVertex3fv(&visual->vertex[face->v[2]].x);

}

glEnd();

glDisable(GL_TEXTURE_2D);

FIGURE 4 (top). A face mapped to a character
model, rendered in the routine given in Listing 1.
FIGURE 5 (bottom). Image with UV coordinates
in the vertex colors, rendered in the routine
given in Listing 2.

moves, showing another part of the object.
I can then grab the back buffer and store it
for all my paint operations. I use two easy
OpenGL functions to get this done:

glReadBuffer(GL_BACK);

glReadPixels(0,0, m_ScreenWidth,

m_ScreenHeight, GL_RGB,

GL_UNSIGNED_BYTE, buffer);

This tells the system that I want to read
from the back buffer and then grabs the
data and puts it in a storage buffer that I
allocate to hold this information. That’s all
there is to it.

It’s important to know that the selection
buffer needs to be rendered with antialias-
ing and all other blending and smoothing
effects turned off. Otherwise, there will be
strange UV values in the selection buffer
when the hardware blends it with the back-
ground.

This method is also limited to texture
maps that are 256×256. That is because I
only used 8 bits to store the U and V coor-
dinates. If I want to support textures larger
than this, I could use 12 bits for each coor-
dinate with some extra manipulation,
which would allow textures up to
4096×4096. That should be plenty for
most applications.

What Can I Do?

N ow that the system is in place, I can
start painting the models in my game

engine. The simplest thing I can do is
replace the pixel in the texture map with a
new color. However, now we are in 2D
space and all kinds of 2D tricks like those
in Photoshop can be used. This is where it

would be nice to create all sorts of brushes
of various sizes that would color the pixels
surrounding the click point.

There are several ways to do this. I
could assume that surrounding pixels were
also surrounding on the texture map. That
is clearly the easiest thing to do and is in
fact what I have done in my sample appli-
cation. However, that may not be the right
thing to do in some cases. For example,
the texture coordinates can be mapped in a
nonlinear manner all over the texture map.
If I choose a big brush and just start draw-
ing around, I may overdraw the borders
and bleed into another part of the object.

The other method would be to sample
around on the selection buffer and draw
on those points in the texture. However,
depending on the object, this may cause
you to miss pixels due to perspective and
scaling effects. Perhaps interpolating
between sample points would help this
problem. The method that works the best
will probably depend on the application.

I could also assign a blending value or
opacity to the paint color that would
decide how it blends with what is already
in the texture map. Implementing some-
thing like Photoshop’s airbrush tool
shouldn’t be too big a challenge.

At this point, I still haven’t addressed
quite a few issues. So far, I have assumed
that the model already has a texture map
assigned to it and texture coordinates are
set. To make the tool more useful, I will
need to add in standard mapping algo-
rithms like planar, cylindrical, and spheri-
cal. I also want to be able to support
multi-texture rendering as well as special
effects such as bump maps.

This program is the first step toward
creating a tool that will enable artists to
use 3D technology in more interactive
ways. My goal is to help artists bring their
art and intelligence to the technology
instead of using technology to simulate
artistic methods. I am also very interested
in using these techniques to modify the
geometry directly. I could use displacement
maps to change the model or implicit mod-
eling techniques to add to them. I have
also been intrigued with the idea of attach-
ing painted “geometry” to an object. This
technique was used with great success in
the Deep Canvas system that Disney
Feature Animation created for the movie
Tarzan. But all that will have to wait until
next month.

Until then, play around with my
mini–3D paint program and see what
kinds of effects you can create. You can
download the source and application
from the Game Developer web site at
www.gdmag.com. q

w w w . g d m a g . c o m 27

FOR MORE INFORMATION

WYSIWYG 3D PAINTING
Hanrahan, Pat, and Paul Haeberli. “Direct

WYSIWYG Painting and Texturing on 3D

Shapes.” Proceedings of Siggraph 1990. pp.

215–223.

PAINTER 3D
For information go to www.corel.com.

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

T he interaction of actors in a
movie is so common, you
might not give it a second
thought when you see comput-
er-generated characters inter-

act in a similar way. From a passionate
kiss to a clawed hand grabbing a shoulder,
physical interactions that establish a rela-
tionship between characters are also able
to convey emotions. For the viewer they
can evoke a wide range of emotional
responses, from instilling feelings of
warmth to frightening him out his chair.
When such interactions are performed well
in a movie they can increase the immer-
siveness and draw viewers into the story.
The same rule applies in games. Players
enjoy a more immersive experience since
they can see and feel what characters go
through.

What may be easy to accomplish in
movies can be extremely time-consuming
and difficult to pull off in a virtual world.
For example, in Nihilistic Software’s first

game, VAMPIRE: THE MASQUERADE —
REDEMPTION, we obviously needed vam-
pires to suck blood. The vampires had to
be able to grab an unwary passer-by or
enemy, close their mouth on the victim’s
neck, and suck until they were interrupted
or released their victim. When performing
this action, the movement needed to con-
vey the strength and quickness that one
would expect from a vampire. The move-
ments also needed to convey intimacy
when the victim and vampire embraced.
Besides incorporating these characteristics
into the motion of the characters, they also
needed to actually touch each other and
react to each other. For example, when the
vampire reaches to grab the shoulder of his
victim, she lowers her shoulder under the
weight of the vampire. Her body reacts to
being pulled backward under the pressure
of the arm against her waist. She shows
fear until the fangs close on her neck. All
these elements combine in a believable
manner to help immerse the player in the

scenario. Since everybody is inherently
familiar with the typical dynamics of
human interaction, the player might only
notice what looks wrong rather than what
looks natural.

The First Bite

M y first attempt at a character-inter-
action animation was for Christof,

VAMPIRE’s main character, to feed on one
of the civilians walking around the town,
which you can see in Figure 1. Christof
had to grab her, hold her and suck blood
from her neck, and then release her.
Before starting to work in my 3D anima-
tion program, first I had to figure out the
exact dynamics of this interaction. Where
do you grab someone from behind? How
do you bring the victim close to you and
how do you get to the neck as quickly as
possible? (A vampire has presumably
done this many times before so he should
be efficient.) I enlisted a colleague to help
me construct such an event and after act-
ing out the scene (without drinking any of
my test subject’s blood), I had an idea of

Touched by a Vampire:
Animating Physical

Interactions

M A A R T E N K R A A I J V A N G E R | Maarten is the lead artist at Nihilistic Software, which just completed its first game, VAMPIRE THE MAS-
QUERADE — REDEMPTION. He is currently busy adding more talent to the art team and taking karate classes so he can animate them for his next
project. Contact him him at maarten@nihilistic.com.

m a a r t e n k r a a i j v a n g e r A R T I S T ’ S V I E W

w w w . g d m a g . c o m 29

FIGURE 1. An animation sequence showing the carefully orchestrated interaction of Christof and a
helpless milkmaid.

the basic movements and interactions
between the characters I wanted. I then
brought both characters into the anima-
tion program and started framing out the
motion. Rather than just starting to ani-
mate from frame one forward, it’s a good
idea to work out some of the key posi-
tions first.

Since the interaction is important, you
need to worry how about both characters
should look during the animation. I like to
pose the key action positions: first, the
lunge where Christof has his arms extend-
ed and the milkmaid reacts with fright and
starts to run away; second, the pull as he
reins her in and prepares her for the final
position where he has her draped helpless-
ly in his arms.

Once the main keyframes are posed, I
like to work out the timing, determining
just how quick should the motions be.
Going through the rough keyframes gives
you a good idea of whether the timing is

right. Only when you have the correct
timing down do you want to

start working out
the details.

The first

attempt I made at a feeding was very
straightforward. I moved the victim for-
ward on the Y plane and then imported
Christof to the origin. (All our characters
were positioned facing +Y with +X on the
model’s right side and +Z being up. Don’t
forget to make sure you are on the same
page as the programmers and the 3D
world they are creating, or it could get
really painful for either the artist or the
programmer — usually the artist loses.)

With both characters on screen I started
animating Christof grabbing the helpless
milkmaid and performing the embrace. I
used IK chains to anchor the feet on the
ground and hand-animated the interaction.
With the animations complete, I exported
the Christof animation as-is, and exported
the milkmaid animation to the game after
moving her back to the origin. Once both
models were doing the animations in the
game, we re-created the offset I had creat-
ed while animating the action. The units of
measurement differed between the game-
world space and the 3D program space, so
we played with the offset to get the proper
interaction. The first part of the feeding
sequence worked, but we then faced a new
set of problems.

Size Matters

W hile the feeding sequence between
Christof and the milkmaid was

working perfectly, the rest of Christof’s
party was not accounted for. Throughout
the game, Christof meets various vampires
of all shapes and sizes to join him in his
adventures. The problem is that each of

the different-sized characters had to be
able to feed on civilians as well as on one
another. In all we had four radically differ-
ent human skeleton types in the game that
all needed to feed on each other, examples
of which you can see in Figure 2. The
Christof skeleton had an average build of
around six feet tall. There was also an Erik
skeleton, a thick seven-footer with bulging
muscles, the petite Serena skeleton at
about five-feet-four, and finally the Samuel
skeleton which was also about seven feet
tall but lanky. So even though the feeding
animation worked for Christof and the
small-framed milkmaid, it became obvious
that the large skeleton of Erik would have
to crunch down too much to work with
the milkmaid animations and his head was
too big for Christof’s mouth to close on
his neck.

So instead of squeezing big Erik down
to the size of the milkmaid, I decided to
redo the Christof animation feeding on
another Christof skeleton. Once I com-
pleted the average-sized skeletons feeding
on one another, it became much easier to
animate the other skeletons in the same
positions. The big Erik skeleton still had
to be crunched down to fit within the
grasp of the attacker, but not as much as
if his neck had to be at the same height as
the female skeleton. The small female
skeleton had to be animated in a very
upright position, but she fit perfectly with-
in Christof’s grasp. After completing all
eight animations — a feeding and a victim
animation for all four skeletons — I was
on to the next problem.

It was very painful to figure out the

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

FIGURE 2. Despite differences in size between the four skeleton types, there were situations where all would need to interact with one another inter-
changeably in the animations. From left, Samuel, Erik, Christof, and Serena.

proper offsets once the animations were in
the game and had to be played back. In
my animation program I was moving the
various skeletons in random +Y to do the
animations, rather than moving each the
same amount. I came up with an easy
work-around by grouping the root node
and moving it by a set amount. Then, after
I completed animating the skeleton (the
root and the joints below), I would move
the model back to the origin by adjusting
the node above the root. Once it was back
to the origin I ungrouped the root from
the extra translation node. When this tech-
nique was standardized, we no longer had
any problems setting the distance for each
character. Each character had the same off-
set and the feeding interaction worked per-
fectly in the game. Taking what we learned
during the evolution of the interaction ani-
mations, we were then able to tackle even
more complex interactions.

Awkward Match-ups

W ith the basic feeding animations
complete, there was another set of

animations we needed to tackle, as we
also needed the characters to feed from
each other’s wrists. Wrist feeding in the
game allowed the vampires under the
player’s control to share blood with each
other and keep the player’s entire party
healthy. Unlike the animation described
earlier, the characters had to face each
other in order to wrist-feed.

Since we wanted to portray our vam-
pires as always on the verge of los-
ing control when feeding,
the wrist feeding ani-
mation required the
vampires to show
distrust
between
each other
during this
vulnerable
interaction.
The feeder
makes eye
contact with
his victim,
then quickly
looks at the
other victim’s
wrist (like you
might at a pepper-

oni pizza when you’re really hungry), and
kneels before him. The feeder grasps the
victim’s wrists and sinks his teeth into the
vein. The victim’s natural reaction is to
pull his arm away, but the feeder quickly
grabs hold and keeps feeding. This suck-
ing cycle continues until disrupted by the
player or automatically broken off by the
party member. (They look out for them-
selves if you don’t.) When the animation
is broken, the victim jerks his arm away
and gently rubs the puncture mark, but to
convey his distrust he never he keeps his
eye on the feeder. The feeder, on the other
hand, wipes his mouth after the messy
affair, and climbs back to his feet. Hope-
fully the player can sense both that the
victim did not enjoy the experience and
that the feeder just had a nice meal —
hence the player’s emotions are drawn
into the dramatic episode.

To make these wrist-feeding animations
work, I had to come up with a way for all
the animations to work for all the differ-
ent-sized characters. Based on what I
learned from the first feeding animations,
I knew I needed to start by animating the
two average-sized Christof skeletons, and
then animate the other three skeletons in
their place. It was a bit tricky to find a
good height for the wrist, since the small
female skeleton became very short once
she was on her knees. Since we actually
had two back joints, we could bend burly
Erik over enough to feed on wrists. With
the constant contact, it was a tricky ani-
mation — the feeder and victim where
almost playing tug-of-war with the arm.
In addition, the vampires’ clothing and
hair had to react with secondary ani-
mations and move correctly with every
pull and push.

For the wrist feed-
ing animation I

grouped the root node
as before, but this

time I added a
rotation as well as a

translation to the newly
created node. After the ani-
mation was complete, I
again removed the rotation

and translation from the
extra node so the player
ends up back at the ori-
gin. When the pro-

grammers added sup-

port for 180-degree rotation in the game’s
animations, presto — the characters were
wrist feeding on each other.

Enter the Bad Guys

A t this point we were pretty confident
we could animate just about any

interaction between characters. So to add
more intensity to the game, we started
showing contact between the party charac-
ters and the bad guys. In the game it was
hard to show the relative strength of the
vampires and enemies, since we only had
one damage animation and it didn’t reflect
the strength of the enemy when someone
was hit. Only by using interaction anima-
tions could we show off the strength of
one enemy compared with another. The
first monster for which we made an inter-
action animation was the Vozhd. It’s a
massive creature about 20 feet tall that is
sculpted out of the flesh of 15 to 20
humans. It stands about three times as tall
as the player model and should handle a
vampire like a rag doll.

I framed out the basic animation for
the scene, where the Vozhd picks up a
party member, lifts him up high in the air,
puts him into his mouth and takes a big
bite, and then finishes him off by slam-
ming him to the ground. It was a lot of
fun to play around with this animation
since the Vozhd is just an unstoppable
brute and the party characters are utterly
helpless. In the animation (shown in
Figure 3 with Christof as an example) I
had the party members’ arms drop by
their sides like they were in awe of what
was in front of them. Then, as a clawed
hand comes down to grab them, they
react to it by turning their head in the
direction of the movement. Once the
character’s head focuses on the claws,
they react by trying to step out of their
path. Of course they are just a little too
slow, and the Vozhd’s claws engulf their
torso. The party members initially get
crushed inside the grip of the claws and
then as the Vozhd raises the victim to his
big open jaws, they try to kick their way
out. They all look in terror at the big
mouth in front of them. (Erik, always the
fighter, punches the Vozhd in the head
right before getting his head and arms
stuffed in the creature’s mouth.) Right
after the party character has been

A R T I S T ’ S V I E W

32 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

34

chewed, they go limp. Their arms and
legs dangle lifelessly from the claw of the
Vozhd as he winds up his arm and slams
them down to the ground. Depending on
the health of the characters, they then
either stay down for the count or get
back up, ready for more.

Once More, with Feeling

S ince we animated everything in
VAMPIRE by hand, we had a lot of

flexibility to change the animations once
they were completed. Rather than have the
plethora of keyframes that come with
motion capture, our animations were easy
to adjust since we kept our keyframe data
clean. Once the main interaction anima-
tion was completed, creating the anima-

tions for the different-sized party charac-
ters went very quickly. We had so much
success with it we added as many interac-
tion animations as we could to enhance
the gameplay. We created both staking and
un-staking animations for all the vampires.
We animated a powerful werewolf attack
in which the party characters get flipped
up in the air. For the final boss encounter
we animated the Zulo (a giant bat-dragon
monster) attack where the character is
grabbed, bitten in the head, and tossed
around before getting plunked back down
on the ground. All of these animations
enhanced the gaming experience by pro-
viding more vivid gameplay.

Immersiveness is what all games shoot
for, and the relative success with which it’s
pulled off is what in part separates memo-

rable games from the also-rans. The more
players are drawn in, the more they will
enjoy their experience. How characters
interact can make a game feel more believ-
able and provides a better player experi-
ence. Our first attempt at animating these
interactions made us realize how much
more is possible. Soon, interaction anima-
tions will be able to convey many more
subtle emotions than what is seen in most
games today. The characters in games will
interact and behave increasingly like real-
life actors, and this will help raise the
immersiveness of the gaming experience to
the next level. q

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

FIGURE 3. A dramatic encounter with a Vozhd creates an opportunity for subtle emotional responses from Christof.

A R T I S T ’ S V I E W

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r36

F U L L - M O T I O N V I D E O t o d d m e y n i n k

T O D D M E Y N I N K | When there’s no surf to be found, Todd’s busy pretending to be a soft-
ware engineer at Angel Studios. Drop him a line at todd@angelstudios.com.

Mission: Compressible
Achieving Full-Motion Video

on the Nintendo 64

w w w . g d m a g . c o m 37

R ESIDENT EVIL 2 for the Nintendo 64 was the first game on a cartridge-based console system to
deliver full-motion video. Angel Studios’ team brought this two-CD game, comprising 1.2GB
of data, to a single 64MB cartridge. A significant portion of this data was more than 15 min-
utes of cutscene video. Achieving this level of compression, meeting the stringent requirement
of 30Hz playback, and delivering the best video quality possible was a considerable challenge.

To look at this challenge another way, let’s put it into numerical perspective. The original rendered frames of
the video sequences were 320×160 pixels at 24-bit color = 153,600 bytes/frame. On the Nintendo 64 RESIDENT

EVIL 2’s approximately 15 minutes of 30Hz video make a grand total of 15•60•30•153,600 = 4,147,200,000
bytes of uncompressed data. Our budget on the cartridge was 25,165,824 bytes, so I had to achieve a compres-
sion ratio of 165:1. Worse still, I had to share this modicum of cartridge real estate with the movie audio.

The Playstation version of RESIDENT EVIL 2 displays its video with the assistance of a proprietary MDEC chip
but because the N64 has no dedicated decompression hardware, our challenge was compounded further. To
better understand the magnitude of the implementation hurdles, consider that it is analogous to performing
full-screen MPEG decompression at 30Hz, in software, on a CPU roughly equivalent in power to an Intel 486.
Fortunately, the N64 has a programmable signal processor called an RSP that has the ability to run in parallel
with the CPU.

38

A Brief JPEG Primer

I n order to simplify the timing and synchronization issues, I
chose an MPEG-1-style (henceforth referred to as MPEG) com-

pression scheme for the video content only. (Audio was handled
separately, which I’ll discuss later in this article.)

As an introduction to the relatively complex issues of applying
MPEG compression to the video sequences of the game, let me
present a brief primer on JPEG compression.

First, the image is converted from RGB into YCbCr. This
process converts the RGB information into luminance informa-
tion (Y) and chromaticity (Cb and Cr):

Inverting the coefficient matrix and applying it to YCbCr finds the
inverse transformation. This color model exploits properties of our
visual system. Since the human eye is more sensitive to changes in
luminance than color, I could devote more of the bandwidth to
represent Y than Cb and Cr. In fact, I can halve the size of the
image with no perceptible loss in image quality by storing only the
nonweighted average of each 2×2-pixel block of chromaticity
information. This way the Cb and Cr information is reduced to 25
percent of its original size. If each of the three components (Y, Cb,
Cr) represented 1/3 of the original picture information, the sub-
sampled version now adds up to 1/3 + 1/12 + 1/12 = 1/2 the origi-
nal size.

Second, each component is broken up into blocks of 8×8 pixels.
Each 8×8 block can be represented by 64-point values denoted by
this set:

where x and y are the two spatial dimensions. The discrete cosine
transform (DCT) transforms these values to the frequency domain
as c = g(Fu,Fv), where c is the coefficient and Fu and Fv are the

respective spatial frequencies for each direction:

The output of this equation gives another set of 64 values known
as the DCT coefficients, which is the value of a particular frequen-
cy — no longer the amplitude of the signal at the sampled position
(x,y). The coefficient corresponding to vector (0,0) is the DC coef-
ficient (the DCT coefficient for which the frequency is zero in both
dimensions) and the rest are the AC coefficients (DCT coefficients
for which the frequency is nonzero in one or both dimensions).
Because sample values typically vary gradually from point to point
across an image, the DCT processing compresses data by concen-
trating most of the signal in the lower values of the (u,v) space.

1
4

2 1
16

2 1
16

1

2
0

0

7

0

7

⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

⋅ + ⋅ ⋅

= = =

==
∑∑C u C v f x y

x u y v

C u C v u v

yx

() () (,) cos
()

cos
()

() () ,

π π

where for and 1 otherwise

f x y x y, ,() ∈ ≤ ≤ ≤ ≤{ }0 7 0 7

Y

Cb

Cr

R

G

B

= −

− −

⋅

0 2989 0 5866 0 1145

0 1687 0 3312 0 5

0 5 0 4183 0 0816

. . .

. . .

. . .

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

F U L L - M O T I O N V I D E O

Cr

Cb

Y

B

G

R

Cr

Cb

8×8 block of image data

122 254 109 006 213 152 165 241

134 238 112 134 227 143 167 239

150 134 214 253 098 100 188 201

162 134 156 234 127 213 008 159

111 132 198 204 178 200 176 123

089 092 245 177 190 204 102 131

132 100 236 034 155 215 098 145

090 097 065 089 124 067 102 153

Discrete Cosine Transform (DCT)

subsample
chromaticity

Y

USED AS TYPE OF
TYPE REFERENCE? PREDICTION COMMENTS

Intrapictures Yes N/A Typically encoded
(I-frames) with a JPEG-like

algorithm. They start
and end each GOP.

Predicted- Yes P-frames
pictures support forward
(P-frames) prediction

from a previous
I-frame.

Bidirectional No A B-frame is a
(interpolated) forward, backward
pictures or bidirectional
(B-frames) picture created by,

and relative to, other
I and P frames.

FIGURE 1 (top). A summary of the encoding process.
FIGURE 2 (bottom). GOP encoding methods.

The motion-
compensated
prediction
errors are
DCT coded.

For a typical 8×8 sample block, many — if not all — of the (u,v)
pairs have zero or near-zero coefficients and therefore need not be
encoded. This fact is exploited with run-length encoding.

Next, the 64 outputted values from the DCT are quantized on
a per-element basis with an 8×8 quantization matrix. The quanti-
zation compresses the data even further by representing DCT
coefficients with precision no greater than is necessary to achieve
the desired image quality. This tunable level of precision is what
you modify when you move the JPEG compression slider up and
down in Photoshop when you save an image.

In the third step (ignoring the detail that the DC components are
difference-encoded), all of the quantified coefficients are ordered
into a “zigzag” sequence. Since most of the information in a typi-
cal 8×8 block is stored in the top-left corner, this approach maxi-
mizes the effectiveness of the subsequent run-length encoding step.
Then the data from all blocks is encoded with a Huffman or arith-
metic scheme. Figure 1 summarizes this encoding process.

Both JPEG and MPEG are “lossy” compression schemes, mean-
ing that the original image can never be reproduced exactly after
being compressed. Information is lost during JPEG compression at
several points: chromaticity subsampling, quantization, and float-
ing-point inaccuracy during the DCT.

Motion Picture Compression

J PEG compression attempts to reduce the spatial redundancy in
a single still image. In contrast to a single frame, video consists

of a stream of images (frames) arriving at a constant rate (typical-
ly 30Hz). If you examine consecutive frames in a movie, you’ll
generally find that not much changes from one frame to the next.
MPEG exploits this temporal redundancy across frames, as well
as spatial redundancy within a frame.

To deal with temporal redundancy, MPEG divides the frames
up into groups, each referred to as a “group of pictures,” or GOP.
The size of the GOP has a direct effect on the quality of the com-
pressed images and the degree of compression. A GOP’s size rep-
resents one of the many trade-offs inherent to this process. If the
GOP is too small, not all the temporal redundancy will be elimi-
nated. On the other hand, if it is too large, images at the start of

the GOP will look substantially different from images toward the
end (imagine a scene change partway through), which will
adversely affect the quality of reconstructed images.

To improve compression, frames are often represented by com-
posing chunks of nearby “reference” frames. The frames within a
GOP are generally encoded via one of three methods, as shown in
Figure 2.

Figure 3 shows the different frames and their roles and relation-
ships. This example introduces an intracoded picture (I-frame)
every eight frames. The sequence of intrapictures (I), predicted pic-
tures (P), and bidirectional pictures (B) is IBBBPBBBI. When GOP
size is varied, only the number of B-frames on either side of the
P-frame ever changes. Note that this sequence represents the play-
back sequence and is not necessarily the order in which frames are
stored. Storing frames 1,2,3,4,5,6,7,8 as 1,5,2,3,4,9,6,7,8 would
make sense since the I- and P-frames are read first, facilitating con-
struction of B-frames as soon as possible and reducing the number
of frames that need to be kept around in order to decode the
stream successfully.

Prediction and interpolation are employed in a technique

w w w . g d m a g . c o m 39

Quantization Matrix

=

Quantized DCT Coefficient Matrix
194 39 11 9 20 8 3 2
5 2 0 0 3 2 1 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Zigzag
Encoding

Compressed
Data

Run Length Encoding
& Entropy Encoding

190 053 009 003 003 001 001 001

043 029 005 002 001 001 001 001

011 004 003 001 001 001 001 001

004 003 002 005 001 001 001 001

003 006 004 003 002 001 001 001

002 004 002 001 003 001 001 000

001 001 003 001 002 001 001 000

001 001 002 001 002 001 000 000

DCT Coefficient Matrix

001 001 001 001 002 004 008 016

001 001 001 001 004 004 008 016

001 001 001 001 004 008 008 016

002 004 008 008 016 016 016 016

004 008 008 016 016 016 016 032

004 008 008 016 016 016 032 032

004 008 008 016 016 032 032 032

008 008 008 016 032 032 032 064

194 039 008 003 001 000 000 000

011 020 002 002 001 000 000 000

009 005 003 001 000 000 000 000

002 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000

_:

1

I-FRAME

2

B-FRAME

3

B-FRAME

4

B-FRAME

5

P-FRAME

6

B-FRAME

7

B-FRAME

8 9

I-FRAME

B-FRAME

GOP

forward prediction

backward prediction

FIGURE 3. Relationships between the I-, B-, and P-frames.

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r40

F U L L - M O T I O N V I D E O

called “motion compensation.” Prediction
assumes that the current picture can be
modeled as a transformation of the pic-
ture at some previous time. Interpolated
pictures work similarly with past and
future references, combined with a correc-
tion term.

It makes no sense to use an entire image
to model motion within a frame, so mod-
eling motion must be done with smaller
blocks. MPEG uses a macro-block consist-
ing of 16×16 pixels (think of a macro-
block as four of our 8×8 DCT blocks).
This approach illustrates another trade-off
between the quality of the image and the
amount of information needed to represent
the image. An estimate of per-pixel motion
would look best, but would be way too
big, while a quarter-image block would
look pretty ordinary but take up very little
space. In a bidirectionally coded picture,
each 16×16 macro-block can be of type
intra, forward predicted, backward pre-
dicted, or average. Note that the 16×16
block used for compensation need not lie
on a 16×16-pixel boundary.

A cost function typically evaluates
which macro block(s) from which image
represents the current block in the current

image. This cost function measures the
mismatch between a block and each pre-
dictor candidate. Clearly an exhaustive
search, in which all possible motion vec-
tors are considered, would give the best
result, but that would be extremely expen-
sive computationally. Figure 4 shows the
relative sizes of the different frame types.

Implementation

M y first step to implement the full-
motion video for the N64 version of

RESIDENT EVIL 2 was to develop a PC-
based compression/decompression plat-
form that could be debugged and tuned
easily. This let me experiment with differ-
ent GOP sizes, bit rates, and other vari-
ables. It quickly became apparent that this
optimization challenge would be a war
between image size, image quality, and
decoding complexity.

There were severe memory constraints.
As you probably know, without an expan-
sion pack, the N64 has only 4MB of RAM.
This memory is divided up among program
code, heap, stack, textures, frame buffers,
the Z-buffer, and so on. For a large game,
it’s likely that there will be room for only
two frame buffers at any reasonable resolu-
tion and color depth. Keep in mind also
that you need space to hold the necessary
reference frames (I-frames and P-frames) in
memory to compute the predicted frames.
This requirement came down to three
frames (I,P,I) of YCbCr data at 24-bit
color. Obviously the resolution of the video
dictates exactly how much RAM this
requires.

I tested many different parameter set-
tings, the most fundamental of which was
bit rate. A higher bit rate naturally led to
higher quality. Unfortunately, simply rais-
ing the bit rate to a point where accept-
able quality was exhibited across the
board required too much storage space.
In our case, a quick calculation gives us
our target mean compressed frame size:
25,165,824 bytes / 27,000 frames = 932
bytes per frame.

Higher resolution improved the image
quality up to a point, but it quickly fell off
after that. The reason for the falloff is that
only a limited number of bits are available
to describe all the pixels in a frame. While
a high-resolution movie may look good

when little in the scene is changing, rapid
motion or a scene change may not be ade-
quately described at the same bit rate. This
artifact becomes extremely noticeable
when the boundaries of motion blocks are
discontinuous, which gives the movie a
“blocky” look. Additionally, increasing the
resolution means more macro-blocks,
more inverse DCTs, more motion compen-
sation, more color space conversion, and
generally more decoding time. It quickly
became apparent to us that displaying
movies encoded at the source resolution
would not be possible at 30Hz.

Since movies would be displayed at a
lower resolution than the source, we need-
ed a mechanism for scaling the decoded
frames back up to full-screen resolution.
We tried pixel doubling, but the results
were unsatisfactory even on an NTSC
screen (which hides a lot of the larger
“pixel” definition). Next I tried using the
N64’s rectcopy routine (part of the N64’s
software library) with bilinear interpola-
tion. This approach gave better results and
remained in place until I tried a custom
microcode routine — which in turn gave
way to a reduced screen resolution, which
the RDP scaled up automatically for free.
Reduced resolution also gave the added
bonus of reducing memory requirements
for the frame buffers.

I tried decoding the movies to both 16-
bit RGB and 32-bit RGBA frame buffers.
The 32-bit image gave superior results,
especially across gradations of color,
though at the time the performance hit
didn’t justify the extra memory and process-
ing requirements. The target color depth
had several implications. Foremost were
the increased memory requirements of the
frame buffers. At the time I was evaluating
this approach, running at source resolution
and color depth would not have been pos-

I-frame

P-frame

B-frame

Storage size (linear scale)

JPEG Compression
1. Preparation of data blocks

(RGB➝ YCbCr)
2. Source encoding

• Discrete cosine transform (DCT)
• Quantization

3. Entropy encoding
• Run-length encoding
• Huffman or arithmetic coding

JPEG Decompression
1. Entropy decoding

• Huffman or arithmetic coding
• Run-length coding

2. Source decoding
• Dequantization
• Inverse discrete cosine transform

(IDCT)
3. Preparation for display

(YCbCr➝ RGB)

JPEG Compression/
Decompression Steps

FIGURE 4. Relative sizes between I-, B-, and
P-frames.

w w w . g d m a g . c o m 41

sible given the memory constraints. A sec-
ondary implication was the increase in
computing time required to process the
larger frames, further hampered by the
N64’s less-than-stellar memory perform-
ance. At this point, I had movies running at
low resolution at 30Hz and roughly within
the size requirements, but the image quality
left a lot to be desired and this problem
needed to be addressed. I began to think
about optimization.

Rewriting the Algorithm
in Microcode

M y decompression algorithm was writ-
ten in C, and its computation time

was spread over a large portion of the
source. I was not going to reap large bene-
fits from optimizing code with MIPS
Assembly without a Herculean effort and
far more time than I had. While I had
never dealt with the N64’s signal processor
(the RSP) before, I knew that its vector
nature and potential to run in parallel held
the keys to improved performance. (For a

walk-through of the process of calling
microcode programs, DMA-ing data in
and out of micro-memory, passing argu-
ments, and more, refer to Mark DeLoura’s
article, “Putting Curved Surfaces to Work
on the Nintendo 64,” November 1999.)

After getting a simple “add 2 to this
number” function to work, I began to port
portions of the C-based decoding code
over to microcode. This task was by no
means simple. The only avenue for debug-
ging the microcode was to crash the RSP
at various places and read the data cache
to verify that things up to that particular
point were working correctly. This process
was very laborious.

A direct result of the difficulties of devel-
oping microcode was that I would only
have time to rewrite a finite number of rou-
tines. A fixed-point rewrite of the inverse
discrete cosine transform seemed like an
obvious choice. After several painstaking
days of coding and verifying this routine, it
was ready for prime time. Unfortunately,
the rewrite actually caused the routine to
perform more slowly. My investigation

revealed that a cache issue was causing this
problem. As each block of pixel data is read
and prepped for decode, it becomes resident
in the CPU’s data cache. For the RSP to
process it, the data must be DMA’d from
main memory to the RSP’s DMEM. After
processing, it must then be DMA’d back
into main memory. The CPU’s cache doesn’t
know that this potentially asynchronous
process has modified the data, so those
cache lines must be “invalidated” and
reread to ensure that the CPU is operating
on up-to-date data. The bottom line was
that all this extra memory thrashing was
swamping any benefit gained by the effi-
ciency of the RSP’s SIMD instructions.

My next stop was the motion compen-
sation code. Unfortunately, the amount of
code required to handle all the different
kinds of motion compensation was prohib-
itive. The RSP’s lack of a shift instruction
didn’t promise a clean implementation.
Clearly, the code which finally brought the
decompressed image to the screen (without
further CPU intervention) stood to gain
the most benefit.

Rewriting the color-space conversion
(CSC) routines to take advantage of the
RSP’s vector architecture proved to be
quite successful. The RSP was uniquely
suited to this sort of task. Once the RSP
had performed the conversion, the RGB
data could be DMA’d from DMEM direct-
ly to the frame buffer, avoiding the earlier
caching problems. This bought a notice-
able performance increase and provided a
corresponding increase in image quality,
but I was still a long way from the quality
of the original FMV.

The Epiphany

A t this point, my implementation was
getting closer to my goal, but prob-

lems remained. First, the image quality was
still not as good as I had hoped. Second, the
data files required to support this inade-
quate quality were already substantially
over their size budget. And finally, the
decoding still took too long and I couldn’t
see an easy way to improve it — especially
since I was trying to also reduce the bit rate.

Then the idea struck me: what if I
skipped every other frame and interpolated
at run time? I knew if I could get this
approach to work, it would simultaneously

Full-motion video stills from RESIDENT EVIL 2 for N64.

halve the bit rate and double the decoding
time. I was banking on the hope that it
would be difficult to differentiate data
decoded at 30Hz from data decoded at
15Hz with interpolation.

At first I considered using triple buffer-
ing to decode two frames, and then inter-
polating between the two to generate the
intermediate frame. But memory restric-
tions quickly ruled out this approach and
any of its variants.

I eventually found the solution. In it, the
RSP average routine effectively swaps in a
new frame without a page flip by beating
the retrace gun down to the bottom of the
screen thanks to some fast microcode.
From a conceptual standpoint, this tricky
timing allowed me to achieve triple buffer-
ing with only two buffers. (See Figure 5, a
processing time line, and Figure 6, a UML
state machine that runs the CPU thread in
parallel with the RSP.)

With this approach, each frame had
almost 1/15th of a second to decode. Skip-
ping every other frame halved the memory
footprint. This made the inclusion of all
the clips possible, and also allowed us to
improve the quality with the space left
over. And we still had extra decoding time
to burn, which we put to good use by
increasing the movie resolution to further
improve image quality.

It wouldn’t have been possible to imple-
ment this solution without a scheduler.
The scheduler used was part of a sophisti-
cated operating system written by fellow
team members Chris Fodor and Jamie
Briant. In addition to supporting multi-
processing and multi-threading, it provided
detailed information about and manage-
ment of the N64’s hardware. This was piv-
otal to taking full advantage of the
machine. Once I fleshed out the algorithm,
implementation with the OS’s scheduler
was straightforward.

Continuous
Improvement

S hortly after we implemented this sys-
tem, we created a demo for E3 1999.

It was very gratifying to walk past Cap-
com’s booth and hear people arguing over
whether they were playing the game on an
N64 or a Playstation. Unfortunately, the
video quality on the N64 was still notice-
ably below that of the original Playstation
game.

One of the reasons for this was that
smooth color gradients were not reproduc-
ing well. I experimented with a cheap form
of dithering as a postprocessing step.
(Credit goes to Alex Ehrath, my fellow
RE2-N64 programmer, for this idea.) As
YCbCr data was converted to 16-bit RGB,

I kept track of the lower-order bits that
were being masked off, added these lower-
order bits to the following pixel before it
was masked off, and so on. The red, green,
and blue channels were processed inde-
pendently. While this technique provided a
noticeable improvement when the frames
were considered in isolation, differences
from frame to frame made it look as if
there were some sort of static interference
when they were played as a movie. The
modulation of the interpolated frames only
amplified this problem.

The bad reproduction of gradients was
especially noticeable in dark areas. To com-
pensate for this, I experimented with
gamma correction as a preprocessing step
prior to encoding. My goal was to even out
the perceived difference in intensity between
dark colors and lighter colors. Unfortunate-
ly, this approach just gave the movies a
washed-out look.

Next, I tackled the age-old challenge of
trying to make the image on the NTSC dis-
play resemble those shown on an RGB
monitor. We drew ten vertical bars across
the screen, moving from black to gray to
white as an intensity reference image. On an
NTSC screen, the middle bar looked more
red than gray, even on expensive reference
monitors. After several iterations, we moved
to Photoshop and applied a combination of
color boosting, contrast/brightness adjust-

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r42

frame 0 frame 0.5 frame 1 frame 1.5 frame 2 frame 2 .5

YUV into
FBB

AVG
into FBA

init page flip
on next retrace

YUV into
FBB

AVG
into FBA

init page flip
on next retrace

YUV into
FBB

AVG
into FBA

init page flip
on next retraceEvents

Time
(60Hz

 intervals)

RSP

CPU
decode frame 1 decode frame 2 decode frame 3 decode frame 4

Display

FBA FBB FBA

CPU blocks on
RSP task completion
to sync

Runs in parallel

FIGURE 5. A processing time line.

F U L L - M O T I O N V I D E O

w w w . g d m a g . c o m

ments and level altering images prior to
encoding until we felt we had a combina-
tion that improved the final image quality
substantially.

Finally, in another attempt to improve
color gradient reproduction, I retried a pre-
viously rejected technique. In earlier tests,
the full 24-bit color output had looked
marginally better, but extra computation
and memory requirements had ruled it out.
Now that the color space conversion had
been moved to microcode, and a multi-pro-
cessing approach had bought us much
longer decoding times, I could get 24-bit
color with little extra cost. A single day’s
coding brought startling results, and when
combined with the improved color from
the Photoshop preprocessing, the true-color
output improved the display quality dra-
matically. Colors were reproduced even
more vibrantly and patchy blotches became
smoothly transitioning gradients. At last, I
had achieved what I was after. To down-
load an archive containing the final CSC
microcode, go to the Game Developer web
site at www.gdmag.com.

Scripting and
Synchronization
with Audio

F ortunately, both Leon and Claire’s (the
two main player-characters in RE2)

games shared many sections of video, which
I factored out into shared “video clips.”
This substantial task resulted in hundreds of
clips ranging in length from a minute to a
second. Movie playback was then achieved
by replaying a sequence of clips. The ability
to “hold” on a particular frame while the
frame counter ticked by provided some
additional compression. These sequences of
movie clips and holds were played back
through scripts that bestowed a substantial
amount of flexibility.

Audio compression and playback was
handled separately from the video. Audio
clips were triggered on particular frames.

Dividing movies into clips gave us the
ability to vary the bit rate according to con-
tent. Fast action meant larger changes from
frame to frame, which led to more compres-
sion artifacts requiring higher bit rates to
compensate. Conversely, relatively calm
scenes could be encoded at a much lower
bit rate.

Changes in scenes at low bit rates were
problematic when they occurred between
I-frames. Until the next I-frame swung by,
the sudden change caused the remainder of
the GOP to display with highly noticeable
compression artifacts. Quality could be pre-
served across changes in scene at low bit
rates by making new clips with cuts on the
scene change boundaries.

An Industry First

I f we were to do another similar N64
project, we would definitely implement

the same technology and tricks I’ve
described here to any video sequences
used. However, many of these techniques
can be applied on any platform where file
size is a major concern. For instance, fac-
toring out all common “film” sequences
and replaying individual clips back to back
via a script to re-create the original can
afford a large space savings. Ensuring the
clips are built on scene-change boundaries
allows you to lower the bit rate and still
maintain quality. Also, compensating for
loss of color saturation and levels due to
compression prior to encoding can yield a
result closer to the original.

Bringing full-motion video to the N64 is
challenging both in terms of achieving the
necessary compression to support video on
a cartridge system and the software
required to play the compressed data back
in real time. Relentlessly trying and retry-
ing everything brought us a great result
and an industry first: high-quality video on
a cartridge-based console. q

43

FOR MORE INFORMATION

[frame 0 is sitting in FBA,
frame 1 has been decoded]

MSTATE_FINISH_DECODE

MSTATE_AVERAGE

MSTATE_DISPLAY_AVERAGE

MSTATE_DISPLAY_AHEAD

[movie cancel or movie done]

do / RSP : YUV -> FBB

do / RSP : avg -> FBA

do / schedule page flip for
 next retrace
 FBA <-> FBB

[r
et

ra
ce

]

MSTATE_INIT

[retrace and decode complete]

[retrace]

[retrace]

FIGURE 6. A UML state machine that runs the
CPU thread in parallel with the RSP.

BOOKS
Raghavan, S. V. and S. K. Tripathi.
Networked Multimedia Systems. Upper
Saddle River, N.J.: Prentice Hall, 1998.

Foley, J. D., and others. Computer Graphics:
Principles and Practice, 2nd ed. Reading,
Mass.: Addison-Wesley, 1996.

WEB RESOURCES
www.mpeg.org

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

“E very medium has been
used to tell stories,”
says Eric Goldberg,
one of my oldest
friends and president

of Unplugged Games. “That’s true of
books and theater and radio drama and
movies. It’s true of games as well.”

I have this argument all the time, and I
think Goldberg’s statement is balderdash.
It’s not true of music; music is pleasing
sound, that’s all. Yes, you can tell a story
with music; ballads do that. So do many
pop songs. Certainly some types of music
— opera, ballet, musicals — are “story-
telling musical forms,” but music itself is
not a storytelling medium. The pleasure
people derive from music is not dependent

on its ability to tell stories — tell me the
story of the Brandenburg Concertos.

Nor is gaming a storytelling medium.
The pleasure people derive from games is
not dependent on their ability to tell sto-
ries. The idea that games have something
to do with stories has such a hold on
designers’ and game players’ imaginations
that it probably can’t be expunged, but it
deserves at least to be challenged. Game
designers need to understand that gaming
is not inherently a storytelling medium any
more than is music — and that this is not
a flaw, that our field is not intrinsically
inferior to, say, film, merely because
movies are better at storytelling.

Nevertheless, there are games that tell
stories — role-playing games and graphic

adventures among others — and the inter-
section of game and story, the places where
the two (often awkwardly) meet has bred a
wide variety of interesting game styles.
Examining them is useful, because doing
so illuminates the differences between
game and story — and the ways in which
stories can be used to strengthen (and
sometimes hinder) games.

Linearity in Games

A story is linear. The events of a story
occur in the same order and in the

same way each time you read (or watch
or listen to) it. A story is a controlled
experience; the author consciously crafts
it, choosing certain events precisely, in a

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r44

G A M E D E S I G N g r e g c o s t i k y a n

G R E G C O S T I K Y A N | Greg has designed 27 commercially published board, role-playing, computer, and online games. He writes frequently
about games, game design, and game industry business issues for the New York Times, Wall Street Journal Interactive, Salon, and other publica-
tions. He is co-founder and chief design officer of Unplugged Games (www.ungames.com), a venture capital startup to develop and deploy
games for Internet-enabled cell phones and other wireless devices. His fourth novel, First Contract, was recently published by Tor Books.

Where Stories End
and Games Begin

certain order, to create a story with maxi-
mum impact. If the events occurred in
some other fashion, the impact of the
story would be diminished (if that isn’t
the case, then the author isn’t doing a
good job).

A game is nonlinear. Games must pro-
vide players with at least the illusion of free
will; players must feel that they have free-
dom of action within the structure of the
game. The structure constrains what they
can do, to be sure, but they must feel they
have options; if not, they are not actively
engaged. Rather, they are mere passive
recipients of the experience, and they’re not
playing anymore. They must not be con-
strained to a linear path of events,
unchangeable in order, or they’ll feel
they’re being railroaded through the game,
that nothing they do has any impact.

In other words, there’s a direct, immedi-
ate conflict between the demands of story
and the demands of a game. Divergence
from a story’s path is likely to make for a
less satisfying story; restricting a player’s
freedom of action is likely to make for a
less satisfying game. To the degree that you
make a game more like a story — a con-
trolled, predetermined experience with
events occurring as the author wishes —
you make it a less effective game. To the
degree that you make a story more like a
game — with alternative paths and out-
comes — you make it a less effective story.
It’s not merely that games aren’t stories
and vice versa; rather they are, in a sense,
opposites.

Nonlinear Fiction

M aybe I’m being too restrictive by say-
ing that stories are inherently linear.

Perhaps stories have been linear to date
because that’s all you can do with existing
media; text is read sequentially and movies
are displayed as linear sequences of frames.
Theater has a little more potential for inter-
activity but conventional theater, at least,
deviates from the script only in error.

There are nonlinear forms of fiction,
like Julio Cortazar’s Hopscotch. You can
read Hopscotch like a conventional novel,
from front to back, the chapters in sequen-
tial order; or you can read the chapters in
an alternative order proposed by Cortazar.
Reading the book in that alternative order

is a somewhat different experience.
Because you encounter events and charac-
ters in a different order, the meanings of
their actions are different; you see the
story in a different light. Indeed, to under-
stand the novel fully, you need to read it in
both ways.

That’s great, but it’s far from unique.
Modern writers frequently play with the
nature of narrative and time. Proust’s
Remembrance of Things Past is nonlinear
in time, a sequence of remembrances as
they occur to the protagonist. Joyce’s
Finnegan’s Wake is filled with stream-of-
consciousness nonsense words that, some-
how, make sense in context. Vonnegut’s
Slaughterhouse-Five darts seemingly ran-
domly between the decades. Hopscotch is
creative and interesting in the way it plays
with the nature of narrative, but so are
many other novels.

But all of these narrative experiments
are tricks. Hopscotch’s method of present-
ing a narrative in two ways is interesting
once, but we won’t see a whole subgenre
of Hopscotch-like novels because it’s not
that interesting. Still, Hopscotch gives you

two paths through the same story space.
The experience of each path is different
and Cortazar has been clever enough to
use that difference to impart somewhat
different experiences. But it’s only two
paths. Hopscotch is more gamelike than a
typical story but it’s still a long way from
a game.

Hypertext Fiction

F rom Hopscotch we move to hypertext
fiction of the type promoted by

Robert Coover of Brown University (see
http://landow.stg.brown.edu/HTatBrown/
CooverOV.html). Hypertext fiction works
something like a web site; you begin by
reading a bit of text, which can vary in
length from a sentence to several para-
graphs. Certain words or phrases are links
to other bits of text. The texts of the work
are linked together in a spider’s web of
paths. Sometimes art, video files, music,
or sound is used to accompany the text,
but since most of the creators of hypertext
fiction come out of literary academia the
focus is on words. In other words, it’s not
all that different from HTML, although
hypertext fiction is usually implemented in
a stand-alone application such as Story-
space (see www.eastgate.com). And unlike
Hopscotch, hypertext fiction has multiple
paths.

Some hypertext fictions have multiple
endings, others don’t have any explicit end-
ing at all. The basic idea is that you
explore the story — moving from one
branch to another, gradually gaining an
understanding of what’s happening. The
analogy to a traditional story’s ending is an
epiphany, which can happen whenever
you’ve explored enough of the text — a
sudden insight or “Aha!” that draws what
you’ve read together into a coherent whole.

To the proponents of hypertext fiction,
this is a completely new art form. Certain-
ly, it is a different method of storytelling.
But it is, at most times and under most
circumstances, an inferior method of sto-
rytelling. Precisely because authors have
less control over how the reader encoun-
ters their story, they cannot structure the
story for maximum effectiveness.
Unquestionably it is still possible to tell a
story this way — but other than the nov-
elty of storytelling in this alternative

w w w . g d m a g . c o m 45

ABOVE. Julio Cortazar’s Hopscotch, a notable
example of nonlinear fiction.
OPPOSITE PAGE. MYST captivated audiences due
in part to its engaging story.

mode, there seems little reason to want to
do so.

Moreover, hypertext fiction lacks one of
the key ingredients that makes games com-
pelling; there is no real goal for the reader
other than getting to a point where he or
she “gets” the story. You’re faced with a
series of decisions — follow this path or
that one — but there is no context for
your decision. There is no reason other
than the desire to explore to choose one
path over another. Reading hypertext fic-
tion, unlike playing a game, is purposeless
exploration and does not produce the
same sense of desire, of compulsion, to
“play.” In other words, hypertext fiction is
an unhappy compromise between tradi-
tional stories and games. It’s gamelike in
that the player has a variety of options,
but not surprisingly, since it’s created by
people who by and large have little interest
in games, it has few of the other attributes
that make games appealing. Works of
hypertext fiction are lousy games.

Game Books

H ypertext fiction — a highbrow, liter-
ary academic form — is closest in

nature to the which-way book, a more
mainstream book format, published prima-
rily for young adults. Which-way books,
also called “game books” or “choose-your-
own-ending” books, had their heyday in
the mid-1980s when Bantam published
dozens of Choose Your Own Adventure
books in the U.S. and the Fighting Fantasy
game books by Steve Jackson and Ian
Livingston were worldwide bestsellers
(mostly outside the U.S.).

In a game book, you begin by reading
the first page or two. At the end of the
page, you’re faced with a decision.
Depending on what you decide, you turn
to one page or another — if you choose
option A, you might go to page 16, while
option B might send you to page 86. The
idea is that you’re taking the role of a
character, and you’re trying to solve his
narrative problem, whatever that may be.
Some paths through the game book lead to
failure, others to success. Often, “failure”
means “you die, start over.” This is, obvi-
ously, rather dull. Yet a work of this type
has to allow players to make decisions that
lead to dull stories; players of a game, of

whatever type, need to have the freedom
to make decisions within the structure of
the game, even if those decisions make for
lousy stories.

The best of these books contain some
rudimentary game system to handle the
resolution of, say, combat. At times,
instead of simply turning the page, the
book will tell you to use the game systems
described elsewhere in the book to, for
instance, resolve combat with a dragon
whose game stats are such-and-such. This
is superior to simply turning the page,
because there are a range of possible out-
comes, rather than single, discrete options
— you go into the next combat situation
with more or fewer hit points, greater or
lesser skills, and so on.

Is this really all that similar to hypertext
fiction? In fact, it’s virtually identical; fol-
low a link to a new bit of text. One genre
is a milieu for “intellectuals,” the other
presumably for degraded hacks, but the
essential forms are the same.

Solitaire Adventures
and Paragraph-System
Board Games

G ame books have direct analogues in
paper role-playing games and board

games. The RPG analogue is the “solitaire
adventure.” As in a game book, the player
of a solitaire adventure begins by reading a
numbered paragraph or set of paragraphs,
and often then turns to a different para-

graph, depending on his or her decision.
However, the player is also expected to be
familiar with the rules of the role-playing
game for which the adventure is written
(Dungeons & Dragons, perhaps). Thus an
external game system already exists and is
used to resolve many occurrences during the
course of the adventure. As a result, solo
adventures are generally richer and more
interesting than game books, although sub-
ject to the same basic problems.

The board game analogue is the para-
graph-system board game. Eric Goldberg’s
Tales of the Arabian Nights is the best
example of this genre to date. (It is, unfor-
tunately, long out of print.) In a para-
graph-system board game, you have a
piece (or pieces) on the board, and an
external game system to manage its move-
ment and other facets of the game. At var-
ious times, the game directs you to read a
numbered paragraph in an accompanying
booklet. That paragraph generally has you
make a decision and turn to a different
numbered paragraph, perhaps using
aspects of the game system first. In other
words, you’re playing a board game
which sometimes requires you to play
through a mini–game book, then returns
you to the overarching board game until
the next mini-adventure begins. Arabian

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r46

G A M E D E S I G N

LEFT. Dungeons & Dragons, a role-playing envi-
ronment familiar to many.
BELOW. Tales of the Arabian Nights, a para-
graph-system board game.

Nights is exceptional because the system
repurposes paragraphs, using the same
text with different outcomes and in differ-
ent ways. This provides a greater variety
and more replayability than game books
or solo-play adventures.

Game books also have an arcade game
analogue in Don Bluth’s DRAGON’S LAIR.
DRAGON’S LAIR was quite popular when it
was first released in 1984 because it was
the first time anyone had seen cinematic-
quality character animation in a video-
game. Recall that in the game you play a
fantasy hero who is penetrating a dragon’s
lair. You view a short animated sequence
and then you must make a decision — you
move the joystick one way or another to
determine which way you want to go. At
each point, there is only one “correct”
path; all others end in death. To win, you
have to keep on feeding quarters to the
machine, dying over and over, until you
can make the right decisions at each point,
pretty much on autopilot.

Fundamentally, this stinks as a gameplay
concept. It is frustrating and tedious to
have to start over and over and maneuver
through the same decisions, and subse-
quent games of the same style failed miser-
ably. DRAGON’S LAIR’s success was due
simply to its novelty.

Text and Graphic
Adventures

T ext adventures are somewhat more
sophisticated versions of the branch-

ing-story concept. At various locations,
there are items you can pick up or interact
with. Using items in certain locations and
combinations opens up paths to new loca-
tions, and winning the game requires two
things: solving puzzles (meaning figuring
out when and where to use items to get the
effects you want) and guessing what words
the parser will understand (so you can get
the system to do what you want).

Text adventures feel far more free-form
than game books, but the same basic prin-
ciple is at work here: you make decisions
as to where to go and what to do. The
main difference — and it is a real strength
— is that the game world can respond
interactively to your decisions and past
actions. New paths can open up, new
items become available. It’s as if the text

on page 86 could change in response to
choices elsewhere in the game book.

Text adventures evolved into graphic
adventures, which often boasted charac-
ters with whom you could talk. But again,
these conversations are a matter of mak-
ing discrete choices. An NPC says some-
thing, and you can respond from a menu
of three or four conversational gambits.
Depending on what you say, the character
responds in some way, perhaps giving you
another menu of things to say. Conversa-
tion is a matter of working down a con-
versational decision tree, and even though
players may listen to voice-overs and look
at screen animations, they’re still working
their way down a decision tree much the
way game books and works of hypertext
fiction operate.

Animations or video are often used in
graphic adventures to provide story con-
text; in extreme cases, as in TEX MURPHY:
OVERSEER, these sequences overwhelm the
game itself, making the whole seem less
like a game and more like a story with
minor and not terribly interesting opportu-
nities for gameplay. When well done (as in
GRIM FANDANGO), graphic adventures pro-

vide a happy combination of storytelling
and puzzle-solving gameplay that holds a
player’s interest for hours at a time.

And yet even at their best, graphic
adventures have flaws. They try to provide
an illusion of player free will, but ultimate-
ly they are linear stories. A player may
have freedom to move about a constrained
space and solve the puzzles there in a vari-
ety of ways, but the designers control
access to the next story node. Graphic
adventures try to avoid branching struc-
tures that require them to create media
assets that many players won’t see, for the
obvious reason that time and budgets are
limited; if something is on the disk, you
want players to encounter it. And because
graphic adventures are instantial (meaning
everything the player can encounter is pre-

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r48

RIGHT. Animated scene from DRAGON’S LAIR.
BELOW. GRIM FANDANGO offers players both
engaging storytelling and puzzle solving.

G A M E D E S I G N

rendered, there on the disc, and nothing is
generated on the fly), they can only
respond to players in ways anticipated by
the designer. If the designer doesn’t figure
out that some players will want option X,
the designer won’t include that option.

All games are structures; but graphic
adventures are particularly constraining
structures. They’re so structured precisely
because they are story-dependent; they
must tell good stories, and must constrain
player’s options and paths through the
story in order to ensure that a good story
is told.

Given the inherent challenges facing
graphic adventures, what’s amazing is the
number of good games that have come out
of the genre. Indeed, the best-selling com-
puter game of all time, Rand and Robyn
Miller’s MYST, is a graphic adventure.

PC and Console RPGs

F rom graphic adventures, we move to
computer and console role-playing

games such as ULTIMA and FINAL FANTASY.
I don’t have to explain the details of this
genre to readers of Game Developer, so it
suffices to say that these games are inti-
mately tied to a story, but are more free-
form experiences for the player. Unlike
graphic adventures, the obstacles you must
overcome are rarely in puzzle form; elec-
tronic RPGs aren’t games of picking up
things and using them to change the game
state. Often obstacles are overcome by
killing them, sneaking through defenses,
overcoming computer security, casting
magic spells, and so on.

Because player characters can vary
widely in their skill sets, RPGs must be
more flexible than adventure games. They
must be designed so that any reasonable
character can overcome the game’s obsta-
cles with a little cleverness, whatever the
character’s abilities. There are generally
multiple solutions to problems and as a
result, players feel like they have more
freedom. They can approach problems in
several different ways with the freedom to
choose whether they’ll play as a hack-
and-slash, combat-oriented character, or
one who prefers to be sneaky, or one who
specializes in magic. Often, the player has
some choice about which “space” to enter
next, such whether to go into the dun-

geon or to the town. As in a paper RPG,
character growth is important as charac-
ters gain new skills, spells, abilities, and
equipment as the game progresses. Even-
tually, the player overcomes the final and
ultimate obstacle, and fulfills his or her
quest.

In other words, story is still fundamen-
tal to the electronic RPG, but the game
structure allows far more freedom of
action to the player than the adventure
game. And the “story of the game” can
differ greatly from one player to another,
because the characters controlled by the
players can be very different. Electronic
RPGs have limited replayability, however,
because the player is presented with
essentially the same obstacles from game
to game, and many (such as the FINAL

FANTASY series) are extremely linear in
nature.

Paper RPGs are similar in some ways
to electronic ones but are far more free-
form. The rules of the game provide a
structure for resolving player actions:
there are rules for combat, magic spells,
advanced technology, the use of skills,
and so on. Unlike electronic RPGs, there
is no pre-established story line, although
most paper RPG rule books contain one
or several stories for new game masters to
use. The expectation is that a game mas-
ter will invent his or her own stories for
the other players, using the rules system
as needed. Alternatively, game masters

can go out and buy adventure supple-
ments, each containing a story arc which
game masters can either use as written or
adapt to their campaigns. Interestingly,
VAMPIRE: THE MASQUERADE — REDEMP-
TION and the forthcoming NEVERWINTER

NIGHTS both allow a player to serve as
game master and craft an experience for
other players. The same basic paradigm
in paper RPGs is (finally) being adopted
in electronic media.

Paper RPGs, unlike electronic ones, are
truly social affairs. Players get together
periodically to play, and spend at least as
much time “role playing” — acting out —
for their friends as they do trying to maxi-
mize their character’s effectiveness in a
purely structural context. It’s common for
a group of friends to get together for years
on end, playing the same characters in the
same game world with the same game
master. In the process, they establish long
character histories, flesh out the world
background, and so on. For long-term role
players, the stories they create through
play can be as emotionally powerful and
personally meaningful as anything you find
in a novel or movie, and perhaps more so,
because they are personally involved in
their creation.

These “stories” are meaningful to play-
ers precisely because they are intimately
involved. Players frequently write up
“expedition reports,” in which they retell
the story of a particular session of play, or

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r50

MYST: a graphic adventure and the best-selling computer game of all time.

G A M E D E S I G N

w w w . g d m a g . c o m

several sessions. Expedition reports almost invariably make dull
reading for those who are not involved in the campaign, because
they do not have the same intimate familiarity with the setting
and the same long history with the players and their characters.
Moreover, the rhythm of a role-playing game is not the rhythm of
a short story. There are peaks of excitement and periods of bore-
dom and things happening here and there. Instead of a long build-
up leading to catharsis, there is gradual character evolution. The
closest noninteractive analogue is perhaps a series comic book, a
comic with a small cast of characters who have adventures togeth-
er, some of them short, one-issue stories, while others have story
arcs that are told over several issues.

But as for the stories themselves that arise from role-playing
gaming, many players never give the story a second thought. They
get their kicks from solving problems and playing roles, they don’t
terribly mind whether the things they encounter knit together into
some kind of coherent story. For them, that isn’t their main inter-
est in the game.

The Continuum Between
Stories and Games

T his laundry list of fiction and game genres, starting from
Hopscotch with its single branch and leading to paper RPGs,

comprises a continuum. We’ve moved from things people call
“stories” to things that people call “games,” but we’ve done so
by moving along a spectrum of possible “game-story” genres,
from ones that are close to pure story with a minimal game
appendage, to ones that are close to pure game, with a residual
connection to story.

The difficult decision, then, is where to place the dividing line
between stories and games. Clearly, this choice is a matter of cul-
ture or taste. Because we’ve moved along a continuum, drawing
a line somewhere would be arbitrary. As I’ve argued, game books
and hypertext fiction are structurally identical, differing only in
their implementation (print books or electronic application). Yet
the culture views game books as “games” and hypertext fiction
as “stories.”

Hopscotch is clearly a good story; Dungeons & Dragons is
clearly a good game. But even the best “stories” along our contin-
uum — some hypertext fictions certainly qualify — have to com-
promise the nature of “story” in order to work. And even the best
games have to compromise the nature of “game” in order to work
as storytelling environments. Designing or writing here, at the
intersection of story and game, is an interesting exercise, but
fraught with peril and unhappy compromises.

That is true because story is the antithesis of game. The best
way to tell a story is in linear form. The best way to create a
game is to provide a structure within which the player has free-
dom of action. Creating a “storytelling game” (or a story with
game elements) is attempting to square the circle, trying to invent
a synthesis between the antitheses of game and story. Precisely
because the two stand in opposition, the space that lies between
them has produced a ferment of interesting game-story hybrids.
And yet the fact remains: game and story are in opposition, and
any compromise between the two must struggle to be successful.

So should designers eschew attempts to
inject story into the games they design? By
no means; past efforts to do so have been
fruitful, and have led to interesting and
successful games. What designers must do,
however, is understand that they are not
involved in the creation of stories. Gaming
is not inherently a storytelling medium any
more than music — just as games are not
simulations (though some games are) and
games are not competitions (though some
games are).

To think of games as “a storytelling
medium” leads to futile attempts to strait-
jacket games, to make them more effective
stories at the expense of gameplay.
Instead, designers should use story ele-
ments to strengthen their games when
appropriate but not be afraid to shy away
from story entirely at times. Because ulti-
mately, what a player takes away from a
game is not the story it tells (if it tells one
at all), but modes of thought and ways of
attacking problems, and a sense of satis-
faction at mastery.

Let’s look at it another way. Storytelling
is fundamental to what it is to be human.
Since hominids evolved the ability to
speak, we’ve been telling each other sto-
ries. Every one of us tells stories every day;
storytelling is not something that only
“real” authors or “real” screenwriters can
do. Every day we craft stories about the
things that happen to us, and tell them to
our family and friends.

A couple of days ago, I went to see my
dad in the hospital. He was off the respira-
tor, thank God, talking and awake, but
still quite weak and a bit confused. He was
under the misapprehension that we were
all in London and going to the theater that
night — he kept on asking me to make
sure that I picked up the tickets. Mind
you, it’s probably more cheerful to think
that you’re going to the theater in London
than to realize that you’re a heart patient
in an intensive care unit.

That’s a story. It’s a true story, but a
story nonetheless. I’ve already told it to
several people. The experience is shaped
into the form of a story, to allow us to tell
it, in a coherent and understandable fash-
ion, to others.

Play is equally fundamental to what it is
to be human. Infants play before they can
speak and most adults play, too — with

their children, with their pets, in a softball
league, on poker nights. Play behavior
continues to be important for learning
later on in life, though most people don’t
think of what they’re doing as “play”
when they do it. When you start up a new
software application, you experiment with
it, try different things, see what different
menu items do. That’s playing. When you
design a new marketing campaign, you
come up with several ideas, run them past
your colleagues, chat about them —
you’re playing with the ideas. You’re
experimenting with different behaviors,
you’re seeing what works, you’re explor-
ing the structure of the system. None of
this is a game; a game is a particular,
structured form of play, just as a novel is
a particular, structured form of story-
telling. Play is fundamental to being
human, as storytelling is also, but in quite
a different way.

What happens after you play? Frequent-
ly, you make up a story about what hap-
pened. When you go home to your spouse
after a softball game, he or she asks how
the game went, and you tell a story about
the game. When your boss asks you how
the plan for the marketing campaign is
going, you tell him or her a story about
the ideas you’ve experimented with so far
and what your plans are for the near
future. First you play; then you tell a story
about it.

Play is how we learn; stories are how we
integrate what we’ve learned, and how we
teach others the things we’ve learned our-
selves through play. But play comes first.

Evoking Emotion
from Games

C hris Crawford, an important figure in
the history of computer gaming and

an articulate thinker about game design as
an art, has said that games will never
come of age until they can induce in play-
ers the same depth of emotion as a well-
told story. Indeed, Crawford left computer
game design to create Erasmatron
(www.erasmatazz.com), an engine for cre-
ating interactive stories. He left the game
industry because he believes that industry
pressures have made it virtually impossible
to develop worthwhile and meaningful
games. Crawford now seemingly doubts

the possibility that gaming can ever
become a true art form.

Is Crawford right? Is it true that games
will never amount to squat until they are
as emotionally powerful as stories? And is
“story” therefore inherently superior to
“game”?

It is a mistake to assume that the value
of a work of art lies solely in the emotions
it engenders. Music can move us, but is
emotion per se truly what we find appeal-
ing about music? Personally, I’d argue that
emotion in music is tantamount to
schmaltz. The classical work I prize most
highly has instead a clean, almost mathe-
matical inevitability about it. Paintings
can move us, but are the canvases we
regard most highly necessarily those that
produce the strongest emotional response?
If so, why are subdued portraits often val-
ued more highly than monumental and
busy paintings depicting momentous
events? So the underlying assumption that
value depends on evoking emotion is
questionable.

Second, the assumption that games
evoke second-rate emotional response
takes into account only the emotions an
artist intends to elicit from his or her audi-
ence; the sadness of the tragedy, the laugh-
ter of the comedy, the quiet serenity of a
blissful piece of music. This considers only
a work’s inherent emotion, the emotion the
creator stuffs into it. But games do engen-
der strong emotions, such as glee, despair,
frustration, satisfaction at accomplishment,
and friendliness (or rage) toward other
players. No game designer says, “I wish to
a design a game that engenders glee in its
players,” but a game designer is very satis-
fied if he sees players of his game becom-
ing gleeful. Precisely because games are
interactive, because the player actively par-
ticipates in creating the experience, the
emotions evoked by a game are more
organic, emerging from the interaction
between game and player. Emotions can-
not be drawn from game players the way
they can from a theatrical audience, they
cannot be stuffed into the work by the
artist in the same way. Yet emotion still
unquestionably exists in and is elicited by
the game. Because the player’s experience
is at least as much his product as that of
the game designer, the emotions he feels
can affect him much more deeply than the

52 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

G A M E D E S I G N

kinds of empathetic response you feel
when passively viewing or reading about
characters in a story.

Even if we accept the assumption that
an artwork’s merit lies in the emotions it
produces, we must reject the notion that
games do not produce emotions as strong-
ly as stories. Games do produce emotion;
they simply produce different emotions in
different ways.

Crawford is far from alone in abandon-
ing games for more “important” forms,
though he has chosen a different path
from others who have done likewise.
Chris Roberts, creator of the WING COM-
MANDER series (among the most successful
computer games published), left games to
direct a movie. Robyn Miller, codesigner
along with his brother Rand of MYST and
RIVEN, departed game design, also for a
career in the movies. In general, many
game developers fantasize about careers
in film, the way that some screenwriters
fantasize about careers as novelists. Why
is that?

On one level, it’s a status thing. Game
designers view movies as more legitimate,
more important than games, just as screen-
writers view novels are more legitimate,
more important than movie scripts. But it
also has to do with the fact that movies
and novels are our fundamental storytelling
art forms, whereas games are the art form
we created based on the fundamental
human activity of play. Neither is superior
to the other in any meaningful sense. To
think that stories are somehow more legiti-
mate than games is like thinking that music
is somehow more legitimate than poetry, or
poetry more legitimate than painting. It’s
comparing apples to oranges. It’s the merit
of the individual product within the form
that matters — whether the poem is good
or bad, the music soaring or trite, the game
well or ill designed.

If the outside world views what we game
developers do as lacking merit, the correct
response is not to abandon games in an
attempt at greater recognition through
other media, but instead to strive to create

games so well crafted, so imaginative, and
so fine that their merit shines forth brightly
enough that anyone can recognize their
worth. The solution, in other words, is to
create legitimacy for the form in which we
work by creating games of enduring merit.

Gaming is the most vital art form of
the age, a field that has burgeoned from
virtually nothing to one of the world’s
most popular forms in no time flat, a
field that has seen and continues to see an
enormous ferment of creativity, a field
that may well become the predominant
art form of the 21st century, as film was
of the 20th, as the novel was of the 19th.
By God, we’re privileged to be here at the
birth of this great form, of the creation of
a democratic art form for a democratic
age, the creation of structures of desire,
of ways to enable people to create their
own entertainment through play. q

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r54

P O S T M O R T E M e r i c b i e s s m a n & r i c k j o h n s o n

w w w . g d m a g . c o m 55

T he development of SOLDIER OF FORTUNE was rife with questions
and uncertainties right from the very beginning. Fresh from fin-
ishing up PORTAL OF PRAEVUS, the HEXEN 2 mission pack, Raven
was ready to dig in to a full-fledged stand-alone product. Un-
fortunately, no one at Raven had a solid idea for our next proj-

ect and we found ourselves floating in a sea of ideas without a solid direc-
tion. With a full team ready and willing to go, we needed a project and we
needed one fast. It was then that Activision handed us the Soldier of Fortune
license.

In the beginning, what was to become the SOF team was focusing on several
different story lines and game ideas. One of these was a somewhat real-world,
military-style shooter based in a World War II setting. When we decided not to
pursue that game, we began looking for new game ideas. We knew that we
still wanted to do a real-world military game, but beyond that we didn’t have
much of an idea. As soon as we got the Soldier of Fortune license, though, the
groundwork for the game immediately began to fall into place.

While the license name itself was met with mixed reactions from the SOF
team, at its core was everything that we wanted from the game. Action,
intrigue, political turmoil, and firepower were key elements of the design from
the very beginning. Now we needed to find a story that would complement the
license and turn it into a great game.

The name SOLDIER OF FORTUNE evokes different images for different people.
One thing that we could all agree on was that the title reflected the mercenary
life; making money at the risk of death. This was something that we wanted to
highlight and focus on dramatically throughout the game. However, focusing
on this one aspect tended to blind us to the bigger picture of what we were
trying to accomplish, and our first few story attempts failed miserably. We
focused too much of the gameplay on making money and not enough on find-
ing something that would truly compel the player throughout the game.
Nevertheless, even without a story set in stone we began the production of the
game. This was a decision that we would come to regret many times through-
out the rest of the development cycle.

The bright side to spending a large portion of development time working on
a game without a solid story was that most of it was spent on technology cre-
ation. The bad part was that many of the levels that were originally planned
and created had to be reworked or removed from the game entirely. On top of
that, Activision was getting a little nervous that they had not seen any solid
gameplay from us yet after almost a year of development. This uneasiness

GAME DATA

PUBLISHER: Activision
FULL-TIME DEVELOPERS: 20 (on average)

CONTRACTORS: 2
BUDGET: Multi-million-dollar budget
LENGTH OF DEVELOPMENT: 23 months

RELEASE DATE: March 2000
PLATFORMS: Windows 95/98/NT/2000, Linux

HARDWARE USED: Dell Pentium 550 with
128MB RAM, 18GB hard drive, and a TNT2

SOFTWARE USED: Microsoft Visual C++ 6.0,
Microsoft Visual SourceSafe 6.0, 3D

Studio Max 2.x, Softimage 3D, Photoshop
NOTABLE TECHNOLOGIES: Licensed the QUAKE

2 engine from id Software (using
OpenGL), motion-capture data from

House of Moves, force feedback, A3D/EAX
3D sound, World Opponent Network

(WON) matchmaking services
PROJECT SIZE:406,044 lines of code,602 files

E R I C B I E S S M A N | Eric is a senior designer at Raven Software and was the project coordinator for SOLDIER OF FORTUNE.
Previous credits include CYCLONES, HERETIC: SHADOW OF THE SERPENT RIDERS, HEXEN, HEXEN: DEATH KINGS OF THE DARK

CITADEL, HEXEN 2, and HEXEN 2: PORTAL OF PRAEVUS. Contact him at ebiessman@ravensoft.com.
R I C K J O H N S O N | Rick is a senior programmer at Raven Software and was the programming director for SOLDIER OF FOR-
TUNE. He has been at Raven since the beginning, including the programming on Raven’s first game, BLACK CRYPT. He can be con-
tacted at rjohnson@ravensoft.com.

Raven
Software’s

SOLDIER OF FORTUNE

itself caused major turmoil in the
development and it took a while for us
to settle into the game that we would
eventually create.

Luckily, during this time, all of the core
technology was implemented and function-
ing smoothly. Because of this, once we
nailed the story down, we were able to
jump head-first into the production and
quickly create a solid product. In order to
achieve a strong sense of realism, we
decided to talk to a published author
about the script and also to a real-life
“military consultant” about how a soldier
of fortune truly lives his life. This was one
of the major turning points in the develop-
ment and we were finally able to focus the
game into its final product.

As we settled on an action-movie feel,
SOF finally began to take form. We were
able to tie together an appealing story line
quickly with several twists to keep the
player enthralled. Combining this with the
extensive amount of information that our
military consultant provided us, everyone
on the team was excited about the project
again and the true development of the
game got underway. In less than ten
months, the core of SOF was assembled
into a fun, viable product. After the game
was released this past March, the rest, as
they say, is history.

What Went Right

1. Familiarity with technology
plus powerful tools and

enhancements. One of the most impor-
tant pluses for SOF was the team’s experi-
ence and familiarity with the QUAKE tech-
nology. Raven has been using id Software’s

technology since its
early days of HERETIC

and HEXEN. This famil-
iarity allowed us to exper-
iment, create, and use
tools that vastly sped up
the game’s development.

QuakeHelper. One of the
first tools that we developed
was QuakeHelper. As SOF’s
development progressed, we
realized that all of the options
associated with the individual
textures for the world were
becoming too complex to
encode into a parsing file.
QuakeHelper was created
to allow a visual way to
assign all of these proper-
ties. This included texture
scaling, detail texturing,
damage texture (next tex-
ture to be shown, and the
amount of damage it
should take), material
properties (sound and
visual effects for user
interactions), and alternate
textures (more detailed and unique tex-
tures would be replaced by common tex-
tures on video cards with lower texture
memory). In the end, SOF had more than
5,000 unique world textures. Quake-
Helper saved the artists a tremendous
amount of time in preparing the textures
for the game and in adjusting and tweak-
ing their properties.

ArghRad. One of the benefits of work-
ing in the QUAKE community is that the
public has access to most of the source
code to the tools. In the beginning of the

project, we used QRAD,
which was the original tool id
developed to calculate the light-

ing information on the
world. Our designers
learned of an enhanced

version of QRAD that
had been developed by
Tim Wright. He called
the new modified ver-
sion ArghRad!, which

added a Phong-type
shading model to
the light map cal-
culation, a global
sunlight casting
point, and several
bug fixes. Raven
contacted him to
arrange to get the
source code. In the
end, this helped us
create better-look-
ing levels by uti-
lizing the won-
derful QUAKE

community.
DS. DS, or

Designer Script,
was developed
jointly for both
HERETIC 2 and
SOF. The goal
was to provide a
simple language
for designers to

help create
more complex
scenes and

puzzles in the game. Those
who designed this language rightfully kept
in mind whom the language was for. In
other words, it was a language created by
programmers for designers. While this
may seem like a straightforward concept,
often this idea gets lost during the devel-
opment phase of tools or other items that
are supposed to assist the desired recipient.
Even though this language did have certain
limitations (described under “What Went
Wrong”), it did help meet our goals for
both projects. The following two tools
helped extend the scripting language in
simple yet powerful ways.

ROFF. While one of SOF’s designers was
playing around with Lightwave to create a

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r56

ABOVE. Early sketch of the gang members’ lair.
RIGHT. An early terrorist sketch.

P O S T M O R T E MP O S T M O R T E M

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r58

complex motion path for an entity, he
ended up writing an exporter that created
a DS script. The script consisted of a series
of move and rotate commands to simulate
the complex movement animated in Light-
wave. While this accomplished the ulti-
mate goal of importing the entity’s anima-
tion into the game, it was not very effi-
cient. Exporting the movement into a file
and adding a command to the scripting
language to play that movement file cor-
rected this. This format was known as
ROFF (Rotation Object File Format). SOF
used about 500 of these movement files,
from the simulation of helicopter move-
ment and exploding crates, to even creat-
ing a flying bird (although you’ll have to
look really hard to see that one).

Chimaera. Because of the large amount
of animation needed for SOF and the fact
that we were going to be using a mix of
traditional hand-animated sequences and
motion capture sequences, we needed
something that would work well with
both. All of our motion capture data was
taken by House of Moves, a wonderful
motion capture house, and sent to our
animators. From there, we used Chimaera,
a control rig within Softimage that
allowed us to tweak both types of anima-
tion easily. It also allowed the animators
to utilize both inverse and forward kine-
matics simultaneously, accomplishing this
ordinarily complex task with relative ease.
One of Chimaera’s most important fea-
tures was that it allowed the animators to

apply every animation to any humanoid
model, including models not local to SOF.
This tool has also been put to good use on
our next release, STAR TREK — VOYAGER:
ELITE FORCE.

SoFPath. We originally developed
SoFPath to create a pathfinding system
based on the BSP of a map. During the
development of this tool, however, we dis-
covered that the world was broken up too
much to provide an effective means of
pathfinding. Our early use of .ROFF files
also showed that animating entity move-
ment or rotation in a commercial package
was difficult without a good representation
of the world. Since the SoFPath utility had
a good “understanding” of the BSP world,
we changed it to export .IFF Lightwave
object files. The designers would basically
BSP their map (either the full map or a
partial region), create the Lightwave file,
and import it into Lightwave. They then
had a representation of the world, a rough
outline of all entities, and could then ani-
mate things accurately. Later in the proj-
ect, we also added the ability to edit these
files in 3D Studio Max.

Audio tools. Both dynamic music and
ambient sound systems were designed
internally to create immersive environ-
ments in SOF, but they also allowed the
sound designer to add sound assets into
the game more easily. Instead of hard-cod-
ing the names of the sound files, the tools
provided a quick and flexible method of

LEFT. Raven developed QuakeHelper to manage more than 5,000 unique
world textures with a visual means to assign properties to them.
BELOW. John Mullins, a man for all seasons.

P O S T M O R T E M

LEFT. Every cinematic sequence was conceptu-
alized with storyboards first.

60

tweaking sonic properties in levels. This
process not only took the weight of sound
placements off the programmers’ shoul-
ders, but also empowered the sound
designer with a powerful and creative tool
to create unique soundscapes.

2.Taking time to address vio-
lence concerns. From its incep-

tion, we knew that SOF was going to be a
game for adults. Due to its large amount
of simulated violence, we wanted to make
sure that adults had every opportunity to
keep SOF out of the hands of
minors while still being able
to play the game on their
home computers. In order to
do this, we implemented sev-
eral different protective meas-
ures for consumers.

First and foremost was cre-
ating the SOLDIER OF FORTUNE:
TACTICAL NON-VIOLENT VER-
SION. A totally separate SKU
from the regular version of the
game, the low-violence option
removed all of the gore, limit-
ed the number of death anima-
tions, and seriously toned
down the game in general.
This version used the same
box as the regular version, but
colored red instead of green
and stamped with a large advi-
sory that stated that it was different from
the regular version.

For the regular version, we added a
violence-lock feature to allow users to
password-protect the game and change
various options to their liking. The con-
sumer could lock out dismemberments,
blood, death animations, adult textures,
and other adult content, essentially turn-
ing the regular version into the low-vio-
lence version. To further inform con-
sumers of the violent subject matter, a
large warning was placed on the front of
the box and the ESRB rating was
enlarged for greater visibility. A “mature
audiences” warning was also added to
the game’s bumper and implemented into
the menu system so that no one would be
surprised by the game’s content.

All of these features and functions
helped extensively in the end. We widened
our sales platform as stores realized they
could order the tactical version if they
wanted to, and we showed consumers

that we listened to their needs and con-
cerns, giving them a broader choice in
their purchase.

3.Outside help. Although your
team will most likely not be using

real-life mercenary John Mullins to help
design your game, outside individuals can
be an incredible help in product develop-
ment. Talking and working with a person
who has an exhaustive knowledge of your
game’s subject matter will help refine your
project and add a truly cohesive feel to the

final product. As a consultant helping us
with the military aspect of the game,
Mullins gave instant feedback in areas
where our knowledge was lacking and
helped round out the areas that needed it.
He described how trained soldiers would
react to attacks. He discussed what sounds
you would expect to hear in battle. He
advised us on how the weapons in the
game should “feel” to the player. In short,
he helped us to create the correct atmos-
phere in which to immerse players. By
drawing on the insights and knowledge of
someone with first-hand experience of the
action we were looking for, we were able
to focus the design of the game.

4.“Commando” marketing and
buzz words. We knew that in

order to keep the QUAKE 2 engine competi-
tive in the FPS realm, we had to add sig-
nificant technology. Many of the technolo-
gy improvements we made were centered
on new modeling technology, which fea-

tured, among other things, a completely
new modeling system, compression of ani-
mation data, attachment of models (bolt-
ons), multiple skin pages per model, and
advanced networking.

Our lead technology programmer
dubbed this new modeling system Ghoul
(in keeping with an earlier in-house tech-
nology proposal called Specter). In the
public’s eye, we associated all of these
major changes with the Ghoul name.
Without Ghoul, SOF would have been a
mere shadow of the final product. It

allowed us to throw in all the
bells and whistles, including
the vast array of enemies and
the high degree of gore. As
SOF’s development progressed,
our continued references to
Ghoul caused the public to
monitor the changes and build
up their expectations. Ghoul
became an important market-
ing word for SOF.

Besides normal marketing
channels such as magazines
and print ads, we decided to
try our hand at “commando”
marketing. By using our .plan
files, giving web interviews,
supporting the wonderful fan
sites that were popping up,
and making ourselves available
through e-mail and online

chats, we established a strong presence in
the Internet community. This proved
invaluable for consumer feedback. With
the release of the demo and the early
OEMs, players gave us instant feedback
on what they liked and disliked and we
were able to change the game according-
ly. One example where this feedback
came in handy was with limited saves.
Originally, players were limited in the
number of saves that they could make
based on their present difficulty level.
Many people who played the demo dis-
liked this feature, so we added the ability
to customize the number of saves that
players could make, thus adapting the
game directly to consumers’ preferences.

5. Good planning and schedul-
ing. One of SOF’s saving graces

was that it was planned and scheduled
well. The sheer volume of animation, art,
programming, and levels forced us to
update our schedules on a frequent basis.

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

Off the coast of Russia lies a terrorist chemical weapons plant.

P O S T M O R T E M

62

With a concrete animation naming system,
an incredibly large and detailed database
for animations, storyboards for every cine-
matic sequence, and a well-designed QA
system, SOF did not suffer much ineffi-
ciency. The only area that endured some
wasted time was the design due to the var-
ious story and game changes.

Once the story was finalized and had the
green light, establishing and maintaining
good planning and scheduling for the design
process helped finish the game in a timely
manner. We created total level walk-
throughs, with each room and encounter
written out. Flowcharts were used to draw
the preliminary levels, and concept art was
used for key location elements. Perhaps the
most important lesson we learned from SOF
was that preplanning is the most important
aspect of game creation.

What Went Wrong

1.Unfocused design. The single
most damaging problem during

SOF’s early development was that the orig-
inal game lacked a truly focused design.
We knew what the fundamentals of the

game would be,
but we did not
have the
specifics that we
needed to create
a solid, cohesive
product. The
game’s overall
story changed
five times before
it was finalized
— at one point
we had even changed
the basic game concept to a team-based
tactical shooter, similar to RAINBOW SIX.

One reason for this indecisiveness was
that, at the time, our original marketing
team was wondering what the “hook”
would be for the game. This was a major
roadblock in creating the game because we
knew that if marketing wasn’t behind the
idea, SOF wouldn’t get the marketing
money that it deserved. On top of that,
without the backing of the marketing divi-
sion, the senior management at Activision
wouldn’t get behind the title, either. We
had to constantly sell and resell the idea
that a high-octane, action-movie-like, real-

world combat game would
be enough of a hook. At
times, it went so far that we
were making design deci-
sions not for the fun or bet-
terment of the game, but to
find the hook that we felt we
were missing. The
last straw came
when we found
ourselves working
on a tactical team-
based shooter, a complete 180-degree
shift from our original design. We then
decided to return to the game’s roots

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

ABOVE. Color, mood, and scale were all considered in concept art, not just
the architecture. RIGHT. Breaking out the big guns. FAR RIGHT. Enemies
were created to reflect the locations in which they would be found.

P O S T M O R T E MP O S T M O R T E M

and started banging out a
new story.

Eventually, a new marketing
team came on board that recog-

nized exactly what we had been
saying all along. SOF had more than

enough to stand on its own, and they
worked with us to find the right angle for

marketing the product. This new team fit
right in with the development team and
things started to roll. On top of that, since

we urgently needed to nail a story down in
a short amount of time, they recommend-
ed that we meet with a hot-selling writer
(Gonzalo Lira, author of the spy novel
Counterparts) and John Mullins. Although
the full story that Gonzalo Lira wrote for
us was never used, some elements of it
were, and the process made us realize
exactly what we wanted from this game
and how to get it. John Mullins con-
tributed an element of realism to the game
that we were missing at that time.

In short, working on everything at once
was not the way to go. For the projects
that we currently have lined up we are
designing the entire game from start to
finish before we begin physically develop-
ing it. The SOF team learned the hard way
that a day of preplanning saves a week of
rework. Also, getting a green light for
everything before starting development
saves having to back-pedal later on. Both
of these lessons will be applied to our
future projects.

2. Technology creation took
longer than expected to visu-

alize gameplay. A sure way to sell your
product is to have a working prototype at
an early stage in its development. Since we
had decided to give the QUAKE 2 engine an
entire overhaul, we realized that we would
really have to come together and work as
a team to make sure things were complet-
ed on time.

One of the major enhancements for SOF

was the Ghoul modeling system, which
replaced the entire QUAKE 2 modeling sys-
tem, and turned out to be quite the under-
taking. Throughout the entire life of the
project, tweaks and changes were made to
Ghoul to make it more flexible and power-
ful. Unfortunately, this also meant that for
a substantial part of the early develop-
ment, we had no game to look at — only
individual components. It’s one thing to be
able to look at a model in a model viewer,
or at a level with nothing in it, but it’s
essential to be able to see the model in the
world and interact with it.

Another problem was the huge number
of animations planned for SOF. Since we
had so many animations (more than 600
sequences) we had to limit which anima-
tions would appear on a specific level due
to memory constraints. Limiting the ani-
mations on a per-level basis was a night-
mare in itself, not only for the animators
but also for the AI programmer (who had
to make the AI work within the animation
constraints) and the designers, who had to
create scripted and cinematic sequences
using only the animations available for
each level. As the game drew nearer and
nearer to completion it became increasing-
ly difficult to bring new animations into
the game without ruining someone else’s
work by removing an animation that was
already in use.

The final problematic technology was
the AI. Developed throughout the entire
course of the project, the AI went through
many different incarnations. We decided
early on that the pace of the game should

w w w . g d m a g . c o m 63

BELOW LEFT In-game cinematic sequences helped establish the action-movie feel for the game.
BELOW RIGHT. Cleaning up the New York subway system.

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r64

P O S T M O R T E M

be fast and furious with a large number of
enemies attacking at once. Enemies were
to be reactive, but not too intelligent.
There were three major areas that caused
AI problems: developing the models, devel-
oping the intelligence, and working with
the scripting language.

The main enemy model for the
game was very complex. Incorpo-
rating all of the animation sequences
and consisting of nearly 4,000 poly-
gons, the model contained every piece
for various body builds, coats,
and other items that differen-
tiated the enemies. Because
of this complexity, we
were forced to pre-
process enemy sets for
each level. These
individual enemy
sets looked at
what enemy pieces
and animation
frames were needed
for the level because we
did not have a skeletal sys-
tem in place. This directly
impacted the AI because not
every move was now available
on every level. In turn, the AI
could only call animations
that were generic across the
levels.

The second area that
caused AI problems was the
addition of multiple skin
pages, bolt-on accessories,
gore, and death animations.
Although not directly seen
by most people as AI, all
of these were important
features for SOF. One of
our main goals from the
beginning of the project
was to have lots of
unique-looking enemies.
This meant that our
model was composed of
many different skin
pages into which we
could swap different
faces or outfits. We
also implemented
what we
termed “bolt-
ons”: any item

or feature that
was not origi-
nally part of
the model.
These includ-

ed Mohawks,
canteens, brief-

cases, and side
arms, which helped
distinguish different
characters.

Implementing the
gore was also very

time consuming.
We implemented

gore zones that
required skin

page overlays,
bolt-on models

of viscera, the abili-
ty to remove limbs,
and all of the blood
pools and spatters
that litter the
game.

Finally, imple-
menting the
various death
sequences also
hampered the AI.
In addition to all
of the gore that
we created, we
also had to play
one of several
animations
when an
enemy died.

Animations had to be called based on cer-
tain circumstances, such as where on the
body the enemy was shot and what he was
shot with. On top of all of that, adding the
violence-lock system that would allow play-
ers to lock out the game violence meant
that all of the gore and animations had to
be able to be shut off if the player wanted.

The third area that caused problems for
the AI was its actual development. Along
with the problems created by the per-level
animation system, the AI also had to work
with the game’s scripting language. If the AI
was tweaked in certain ways, it caused the
scripting to break. Many times in the game,
enemies had to be “frozen” in place while
their script waited to be activated. If a play-
er happened to see one of these suspended
enemies before they were triggered, it obvi-
ously made the AI appear less intelligent.
We had to come up with ways around these
problems, and expended considerable time
and energy to fix them. To make matters
worse, the AI had a slight unpredictability
built into it that caused scripted events to
occur differently each time. Although
unpredictability is good for gameplay, it had
to be removed from the scripting element.
Finally, a large amount of time was spent
with the designers to build in hints for the
areas (such as reactions of the enemies) and
to specify which areas the enemies could
traverse. At the beginning of the develop-
ment we had “duck,” “hide,” “flee,” and
other commands that eventually were
removed and taken over totally by the AI.
The AI was in development until nearly the
end of the project.

Two views of Sergei
Dekker, the quintessen-
tial bad guy.

3.Too many OEMs and demos.
Something that seemed like a great

idea at the time but turned out to hurt us
in the end was the decision to make spe-
cific OEM releases before the game was
truly finished. The main reason for this
was that we looked at the revenue that
would help the bottom line instead of
considering how much it would set back
the game.

Because there were both regular and
low-violence versions of the game, we
needed to make several different builds
for the different violence levels and test
each build accordingly. In the end, we had
roughly 75 QA submissions. While each
OEM and demo iteration helped bring
more of the game together, it also diverted
our attention from the final product. As
we were tweaking and fixing the OEM
versions, full production would come to a
standstill as we focused on getting the
smaller versions out the door.

4.No fixed deadlines. Originally,
SOF was scheduled to ship in July

1999. Activision wanted to avoid releas-
ing SOF in the “blast zone” of competing
FPS titles that were shipping that year, so
they extended the deadlines on the game.
As our competitors’ titles were pushed
back, so was SOF. Although within these
deadlines we had schedules set up and
planned out, this caused a never-ending
uncertainty of how much time we had left
in the project and how much technology
we could add or change within that time.

In March 1999, we realized that with
our complex models and the amount of
animation we wanted, we needed to
address memory concerns. Because we
thought that we only had three or four
months left of core development at that
stage, we concluded that switching to a
skeletal system would be too risky for the
project. Instead, we created a vertex com-
pression system that mimicked the bene-
fits of skeletal compression in a few ways.
Unfortunately, this meant that we were
not able to provide all of the animations
at once, as we would still be over memory
budgets. If we had known that our dead-
lines would be pushed back another six
months, we would have added the skeletal
system, saving everyone a large amount of
headaches and work.

5.Miscommunication about some
technologies. Confusion over

project scheduling aside, additional tech-
nologies were developed during the course
of the project that were never truly planned
out appropriately, such as the terrain
engine, the in-game effects editor, and the
scripting system that we used. All of these
technologies served to improve the game
substantially, yet they could have worked
better if they had been properly discussed
between the team members.

The terrain engine, while flexible enough
to do various types of visual effects, was
never properly coded into the gaming logic.
The basic premise of the terrain engine was
that the designers would create architecture
that represented the portions of the world
that the player could interact with. For
example, on the train level, the train was
created by the designers. The terrain engine
would then be responsible for the scrolling
polygons, in this case the train tracks and
surrounding landscape. When we put this
level in, we soon realized that we needed a
bunch of special code to handle the various
effects, such as when a person falls off a
train. We wanted to add more unique
kinds of levels like this but we didn’t have
time to develop a generic physics system
for handling other types of terrain, such as
water where bodies might float or sink.

The effects editor was created by one of
the programmers to help him create visuals
for the weapons. The interface, while func-
tional, was crude. Other people wanted to
create visuals, including designers, but were
hampered by the editor’s interface design
since it was never intended to go beyond
the programmer who created it. Although
the in-game editor allowed someone who
knew the tool to create a special effect
quickly and efficiently, it had a long learn-
ing curve for those not familiar with it.
This reduced the amount of control that
the artists had over the effects.

SOF shared the same scripting language
that HERETIC 2 had used. It was originally
developed to give designers more control
over their levels, but we soon learned that
we would need to add more and more
power to the scripting system. SOF’s com-
plex scripting soon overwhelmed the script-
ing language and too much time was spent
trying to tweak out sequences. With the
addition of in-game cinematics (an

unplanned feature not included in the
design document), we realized that the way
we were using the powerful scripting lan-
guage was wrong. If we had planned better
from the beginning, the scripting would
have gone much easier. Unfortunately, since
the story was planned so late, we didn’t
know at the time what would be needed.

A Direct Hit

O riginally slated for an 18-month
development cycle, SOLDIER OF FOR-

TUNE ended up taking nearly two years, a
considerable undertaking that in the end
allowed a talented group of developers to
really shine. As with all projects, SOF had
its problems, but for the most part things
went well thanks to the efforts of an
incredible team of people, and SOLDIER OF

FORTUNE has quickly become one of Raven
Software’s best-accepted titles. With strong
sales to date and a solid Internet communi-
ty, SOF has exceeded many people’s expec-
tations, including our own. We’ve been
very happy for the large number of good
reviews, both in print magazines and on
the Internet, and we are helping to support
the online community as much as we can.
From a development viewpoint, SOF
allowed the Raven team to grow and
mature, and many lessons that we learned
are now being put to use in our next set of
products. Of course, no project ever runs
smoothly, but with each new game we gain
more understanding of what it takes to
make the next one better. q

s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r66

P O S T M O R T E M

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

This character appears unperturbed by deadline
uncertainties.

S O A P B O X a n d r e w b o y d

Pay No Attention to the
Orchestra Behind the Curtain!

S o, the debate about interac-
tive music rages on... oh,
wait — there’s no debate!
Instead every audio depart-
ment in games is scrambling

to use or develop new tools for interactive
music, the great panacea. Developers are
thrilled with the idea that by implementing
a soundtrack that changes over time
according to the behavior of the user we’ll
be able to provide the ideal (yet ever-elu-
sive) immersive experience. We’ve finally
got the solution to our musical problems
in our sights: at last, the music can be as
interactive as the rest of the game. While
this is all very exciting, before we throw
away everything we know about music
and invent a new musical language (and it
would take nothing less to make this
work), let’s remember what we’re really
trying to accomplish.

How interactive is “interactive music,”
anyway? Frankly, not much. Let’s address
some semantic issues first. What we’re
after is not actually “interactive” music,
but “adaptive” music. Interactive music is

music that one interacts with in order to
change it. The result is the music itself. In
our case, the player interacts with the
game, and the result is the game. All other
results — graphical, auditory, textual, or
otherwise — are ancillary. The gameplay
is what matters. So what we are looking
for is music that can adapt itself to always
be appropriate and compelling based on
the current state of the game, with the
goal of enhancing the real product, game-
play. In fact, the last thing we want is for
the player to interact with the music —
God forbid we put in a trigger to intensify
the music and the player finds it and plays
with it, walking back and forth turning
the sustained strings or the pounding tim-
pani on and off instead of playing the
game. No, we definitely do not want
interactive music.

But adaptive music in a game environ-
ment has its own set of difficulties. A good
soundtrack pushes and pulls the listener
along, hinting at things to come, building
to false climaxes just before real ones,
sometimes adding depth by (briefly but

intentionally) sounding inappropriate, and
so on. These are hard tricks to perform in
a game environment. Mechanisms have to
be built that manipulate the music in a
manner that feels totally natural, yet are
not so obvious as to be readily apparent to
the player (or we’re back to the “interac-
tive” problem I just described). Since an
interactive environment lacks the pre-
science of a linear story, we can’t hint at
what’s about to happen. So we must either
dispense with this technique and just have
the music react to the game, or allow the
music to foreshadow generically in order
to cover all possibilities (leading, potential-
ly, to great banality in our music). What
we end up with is music that is called
“interactive,” but is actually trying to be
“adaptive,” and only really manages to be
“reactive” — and is boring to boot.

Is “reactive” music better than linear
music? It depends on the context; it cer-
tainly could be. But in a quest to surmount
all these obstacles to implementing adap-
tive music, how much are we willing to

continued on page 71

72 s e p t e m b e r 2 0 0 0 | g a m e d e v e l o p e r

illustration by Dominic Bugatto

w w w . g d m a g . c o m 71

S O A P B O X

sacrifice of what we already know about
making good music — about music’s inter-
nal logic and flow, its affective power, its
mysterious ability to communicate without
concrete symbols? Is a truly adaptive
soundtrack of bland and uninteresting
music a reasonable goal? And even if we
achieved an adaptive soundtrack that didn’t
consist of bland music, would we be con-
tributing to or detracting from gameplay?
Imagine the following scene in a movie:
after passing through a series of rooms
strewn with items in various states of disar-
ray, our hero walks down a darkened hall,
toward a mysterious door. As he approach-
es it the music swells discordantly and the
audience leans forward tensely, now certain
that horrible evil awaits him on the other
side of the door. Done right, this kind of
scene can be very effective. And we can
finally do it in games, too!

But if we examine why this scene so
musically effective, it doesn’t seem to map
onto the game playing experience. In the
movie, if the audience identifies with or is
at all invested in the character, they don’t
want anything bad to happen to him. And
the music is communicating that some-
thing very bad is about to happen — thus
the tension. But here’s the crucial differ-
ence: the music is communicating this to

the audience and not to the character. The
moment is scary and tense because we (as
the audience) know something that the
character does not. “Please don’t keep
walking down the hall, can’t you hear the
scary music? Go back to the previous
room and pick up that fire poker you saw
lying there!” we want to shout at the
screen. Except in certain instances of so-
called diegetic music (someone clicks on a
radio, tickles a piano’s keys, a band plays
in the background), it is always the case in
movies that the soundtrack is for the audi-
ence exclusively and not for the characters.
But this can’t be true for games — if the
player is controlling the character and
driving the action, then the player is both
audience and character.

So the fact that in a game the character
“hears” the music (in a sense) changes the
music’s function. In the scene I just
described, imagine if we were to believe
that the character could hear the music —
the scene would unfold as comedy or we
would lose all faith and interest in the
character. The same is true of a game. If
I’m playing a game and I’m about to have
my character open a strange door and the
music suddenly gets ominous and porten-
tous, why would I then open the door?
Instead I think, “Hmm, it seems like some-
thing bad is going to happen, maybe I

should go back and get that fire poker
lying in the previous room.” This is proba-
bly not the intended effect — instead of
creating a more immersive environment,
the music has just pulled me out the fiction
entirely. Might as well have had a voice-
over say, “Don’t open the door yet — go
get the fire poker.” Of course, it could very
well be that this is indeed the gameplay
sequence the designer sought, in which
case the music has become more “inter-
face” than “soundtrack.” Instead of mak-
ing me (the player as audience) feel scared,
it gave me (the player as character) a clue
about how to play the game — and a clue
not intrinsic to the game world. Is that the
best use of a soundtrack?

As usual, we’re faced with the old
problem of the technology cart leading the
horse of good craft. Our goal is, or should
be, just to make better soundtracks, not
more interactive soundtracks. Certainly
the concept of adaptive music is a power-
ful tool that we’d be foolish to ignore. But
we also must keep our eyes on our true
goal, and make sure that we keep moving
in that direction. q

Apple Computer 2

Ascension Technology 59

Compaq Professional 31

Conitec 27

Criterion Software 7, 51

Cyan Inc. 68

Daily Radar.com 61

Dice.com 68

Havok.com 5

HotGen Studios 69

Improv Technologies 22

Inoiz.com 47

Macrovision C3

Metrowerks 28

Microsoft Developer Network 11

Morgan Kaufmann 8

Motek 19

Newtek 21

Numerical Design Ltd. 14

NxN Software AG C2

Pulse Entertainment 33

RAD Game Tools C4

Rainbow Studios 68

S3 Inc. 17

Savannah College of Art 70

Seneca College 70

Sony Computer 67

Staccato Systems 35

Vancouver Film School 70

A D V E R T I S E R I N D E X

A N D R E W B O Y D | Andrew is sound
design manager at Stormfront Studios. Con-
tact him at aboyd@stormfront.com. He’s not
really this curmudgeonly. Honest.

continued from page 72

C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E

	01sept cover
	02gameplan
	06saysyou
	09frontlin
	10indwatch
	12patterns
	15prodrev
	23graphic
	29artview
	36f-meynin
	44f-costik
	54postmort
	72soapbox

	return:

