
September 1994

G A M E D E V E L O P E R M A G A Z I N E

A
re you scared of the proposed
video game rating system? Do
you want to win the ratings
game? Do you want to ignore
the dictatorial commandments
coming down from on high and
put whatever you want in your
game? Do you want your game

to be available anywhere without censor-
ship and still put in that disgusting scene
that makes everybody wince? Here’s what
you have to do.

No legal shenanigans. No secret code
words. No writing two versions. It’s really
simple—all you have to include are choices!
Options are the whole key. If your players
aren’t forced to do violence, there
shouldn’t be a need to rate it in the game.

The Power of Money
One of the best examples of this tactic was
put forth during one of the roundtable dis-
cussions at the most recent Computer
Game Developer’s Conference. The game
in question was, as always, Doom. The
idea was that if Id added another choice to
the weapons category, any rating for vio-
lence the game received could be debated.

The weapon, or more correctly tool,
to be added would be a wallet. Using the
wallet, any creatures encountered could be
bought off so they would not bother the
player. While this might not make the
game the most fun to play, it does remove
the element of necessary violence.

Clearly this is a somewhat ridiculous
solution and one I don’t think Id should
seriously consider, but the implications are
clear. If players are offered a choice as to
whether or not to commit the violent
actions the ratings committees find so
offensive, they will have to work twice as
hard to justify whatever actions they are
going to take. Committees and the public
at large need to realize that rating interac-
tive entertainment is not the same as rat-
ing a movie.

No Easy Answers
Obviously, this solution won’t work for
everyone. No amount of options is going
to turn Mortal Kombat into My Dinner
with André, but for some developers this
approach should be considered. For the
large project developer who has to sink a
considerable amount of capital into a pro-
ject, whose shape won’t be determined
until the later half of the development
process, this approach makes sense.

And, while I’m not in favor of video
game ratings, forcing creative minds to
work out nonviolent alternatives is not the
end of the world, nor the end of this
industry.

The idea that video games should be
rated by content has been around since the
infamous Custer’s Revenge on the Atari
2600, but developers today are still more
or less free to do whatever they want. The
backlash brought about by the latest round
of violent video games won’t last long, but
could cause problems for all developers in
the near future.

Ultimately it will be the channel,
both retail and on-line, that will determine
what games are made and sold in the
future. And as sure as you can see naked
butts on NYPD Blue, whatever restrictions
are placed on video games today won’t last
over the long haul. ■

Alexander Antoniades
Associate Editor

Deflating
the Ratings

G A M E P L A N

2 GAME DEVELOPER • SEPTEMBER 1994

Editor Larry O’Brien
76702.705@compuserve.com

Associate Editor Alexander Antoniades
sander@mfi.com

Production Editors Barbara Hanscome
73611.633@compuserve.com

Nicole Claro
76702.1141@compuserve.com

Editorial Assistant Diane Anderson
diane_anderson@mfi.com

Editorial Intern Alison Long
406along@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Constanza
Project Coordinator Nicole Freeman

76702.706@compuserve.com

Group Director Regina Starr Ridley

Advertising Sales Staff

New England/Midwest

Angela Barnett (415) 905-4983
abarnett@mfi.com

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

Marketing Manager Susan McDonald
Art Director/Marketing Christopher H. Clarke
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Circulation Manager Philip Payton ppayton@mfi.com

Newsstand Manager Pam Santoro
Reprints Krista Hiser (415) 905-2783

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice Presidents H. Vern Packer, Donald A.
Pazour, Wini D. Ragus
Vice President/CFO Warren (Andy) Ambrose
Vice President/Administration Charles H. Benz
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

MillerFreeman
A MEMBER OF THE UNITED NEWSPAPERS GROUP

Game Over!
We need your feedback! Send your cards,

letters, and article suggestions to:

Game Developer
600 Harrison St., 4th Floor
San Francisco, CA 94107

Atten: Larry O’Brien
E-mail is even better:

A Mixed Bag

B I T B L A S T S

Videogame U.
Five years ago, I graduated from a small
East Coast college known less for its
form and structure than its lack thereof.
If one more person asks if I majored in
underwater basket weaving....Due to
recent developments, I was lately mus-
ing over the fate of my alma mater
when I learned of DigiPen Computer
Graphics’ newest foray into education.
Lucky me! I can start all over at the
DigiPen Applied Computer Graphics
School, in Vancouver, B.C., Canada.

This fledgling institution offers a
two-year program focused on the tech-
nological and engineering process of
creating interactive multimedia pro-
grams. Of course, you must have some
questions about their curriculum. And I
just may have some answers.
• Is there a phys. ed. requirement?

Not that I know of. But there is a
Foundation Year, during which stu-
dents study algebra, algorithms, two-
and three-dimensional transformations
and volumes, and the basics of comput-
er graphics.
• Is there ivy on the walls?

Well, I don’t think so. But in the
second year (called the Production
Year), every student gets to develop his
or her own game using Nintendo’s
Super NES Development System,
which the company has generously sup-
plied. The machines are attached to a
regular Super NES and hooked into a
PC, allowing students to program video
games compatible for Nintendo’s 16-bit
cartridge system. During the Produc-
tion Year, students also learn about sto-

ryboard presentation and final algo-
rithms.
• What about SATs?

Here’s what you need:
You must be a high school gradu-

ate and 18 or older. Consideration for
acceptance is based on an entrance
exam and evaluation by a screening
committee, which reviews transcripts,
letters of reference, and any applicable
work experience.
• Do they offer a major in underwater

basket weaving?
See my previous comments....
DigiPen Applied Computer

Graphics School is registered with the
Private Post-Secondary Education
Commission of British Columbia and is
considered an institute in the Canadian
Educational System. In other words, it’s
legit. And I think it’s the academic
wave of the future.

For more information contact:
Jason Chu
DigiPen Applied
Computer Graphics School
530 Hornby St., 5th Fl.
Vancouver, B.C.
Canada V6C 2E7
Tel: (604) 682-0300

The Song is No Longer the Same
Here’s my idea for a new conceptual
art-rock band: tone-deaf singers, a
rhythmically-challenged percussion sec-
tion, and a guitarist who can’t tell the
difference between a major chord and a
mike cord. Not only do none of them
know much about music, everything
they compose will be created in a matter
of minutes. It does sound impossible.

4 GAME DEVELOPER • SEPTEMBER 1994

How about the latest

in computer graphics

education, sound, and

video drivers? And

Alex Dunne updates

the industry news

with a look at the

controversial idea of

ratings for video

games.

Nicole Claro
and Alex Dunne

PRODUCTS

But they’ll all make beautiful music
together—if one of them is an adventur-
ous programmer. All you need is Arpeg-
gio with TuneBuilder, the newest prod-
uct from AirWorks Media. If you have
a CD-ROM drive and a sound card,
you’re ready.

TuneBuilder is the main compo-
nent of AirWorks’ Arpeggio Self-Edit-
ing Music Library, which consists of 12
CDs that contain 335 selections in 25
different musical styles. But AirWorks’
newest music editor will soon be available
with many other major music libraries,
including Killer Tracks and BMG.

You can apply Arpeggio to many
different applications, ranging from
business presentations to complex soft-
ware projects. Just choose your music
from Arpeggio, tell TuneBuilder how
long it should be, click your mouse, and
several edited versions will be created to
your specifications. Using TuneBuilder,
Arpeggio can create up to 200 different
possiblities for every length chosen. If
you want a more hands-on approach,
you can still use TuneBuilder’s high-
speed cut editor capabilities.

Arpeggio with TuneBuilder fea-
tures automatic self-editing; an intuti-
tive mouse-driven graphic interface with
powerful cut, paste, and play features;
direct play CD-ROM functions; and
Redbook Audio for processing music.
Powerful search capabilities help find
user-editable text descriptions, musical
fee, tempo marking, beats per minute,
and style. It runs on DOS, Macintosh,
Windows, and Amiga, and supports
.AFC, .AIF, .AU, .RAW, .SMP,
.SND, .VOC, and .WAV file formats.

The Arpeggio Library is divided

into four categories—Jingles and
Themes, Upbeat and Contemporary,
Moods and Background, and Business
and Presentations. You can purchase
Arpeggio as a full library, one or more
categories, or one or more single vol-
umes. Two license options are available,
one for broadcast or commercial use and
one for in-house corporate use. Price
varies according to version and license.

Of course, my art-rock band will
only become a reality if it exists within
the confines of a computer applica-
tion...but what could be more conceptu-
al than that?

For more information contact:
AirWorks Media Ltd.
1100 Woodward Ave., Ste. 120
Bloomfield Hills, Mich. 48304
Tel: (800) 525-5962 or

(810) 645-5730

Render It in 3D
Let’s say I have an idea for a game I
want to develop. Maybe I’ve just gotten
my degree from, oh, I don’t know, a
video game programming institution in
Vancouver, B.C. Now, let’s say I don’t
have the money for top-of-the-line roy-
alties. In fact, all I really want to do is
write a program that can run on any PC.
What’s the three-dimensional API for
me?

The search is over! Criterion Soft-
ware Ltd.’s RenderWare is the first
interactive three-dimensional graphics
API for Windows. RenderWare is
designed to run on low-cost PCs and
provides impressive graphics without
the need for special three-dimensional
graphics accelerators. But RenderWare

isn’t just for the hobbyist. High on
functionality, RenderWare is a device-
independent three-dimensional graphics
API consisting of a minimum number
of object types coupled with a full set of
associated functions, including advanced
shading and texturing. The API is total-
ly software based, and its performance
increases as processor performance
increases.

You can apply RenderWare to
almost any project including multime-
dia, visual simulation, scientific visual-
ization, CAD, virtual reality, presenta-
tion graphics, entertainment and games,
and education and training. Priced from
$10,000, the RenderWare software
development kit includes development
library, debugging library, documenta-
tion, examples, and demos. Render-
Ware requires Windows 3.1 running on
a 386/SX or better with 4MB of RAM.

For more information contact:
Criterion Software Ltd.
17-20 Frederick Sanger Rd.
Guildford, Surrey
GU2 5YD, U.K.
Tel: 011 44 483 448800
Fax: 011 44 483 574360

Video Drivers in DOS
Tenberry Systems Inc., formerly Ratio-
nal Systems, now provides DOS support
for Intel’s Indeo video compression and
decompression software. Indeo video is a
software technology that enables soft-
ware-only video playback whether you
develop games, graphic animation, or
multimedia applications. As long as
you’re working with any i486 or Pen-
tium processor systems, no additional

GAME DEVELOPER • SEPTEMBER 1994 5

hardware is needed. This new system lets
developers decompress Indeo video com-
pressed data under DOS using Intel’s
Indeo video driver for Windows. The
concept is based on Tenberry’s DOS/4G,
a 32-bit DOS extender for systems and
application programming.

For more information contact:
Tenberry Systems Inc.
220 N. Main St., 2nd Fl.
Natick, Mass. 01760
Tel: (508) 653-6006

Nicole Claro is departments editor for
Software Development magazine.

The Ratings Game
An issue that traces its roots to the

movie and music industries has finally
appeared in software entertainment: rat-
ings. I’m not talking about a Siskel and
Ebert “thumbs up” for enjoyment value.
Groups are pushing for cautionary
notices on game packages—the same
type of warning that Tipper Gore backed
for music packaging.

Spurred by the increasing amount
of blood, sex, and profanity in games,
lawmakers and industry organizations
are starting to question this material in
video and computer games. “We rate
movies and restrict their viewing to
adults,” the line of thinking goes, “so
why allow scenes of carnage, nudity, and
profanity to go unchecked in software
entertainment?” The issue has led to the
creation of two factions, each with plans
to inform consumers about the content
of games prior to purchase. Interestingly,
in the game rating issue (unlike the
brouhaha stirred up by music warning
labels), both sides of the rating debate
are publishing their own rating specs:
nobody appears to be taking a stand
against game ratings.

Shot Heard ’Round The
World: The Lantos Bill
The first volley in the ratings dispute was
fired by U.S. Congressman Tom Lantos
(D-California), who introduced a bill to

Congress on February 3rd of this year
called the Video Game Rating Act of
1994. The purpose of this bill is to “pro-
vide parents with information about the
nature of video games which are used in
homes or public areas, including arcades
or family entertainment centers.” The
bill would establish a five-member com-
mission, appointed by the President, to
draw together a plan for a voluntary rat-
ings system. In a section entitled “Regu-
latory Authority,” the bill contains lan-
guage that indicates the possibility of
further mandatory steps: “...the Com-
mission may promulgate regulations
requiring manufacturers and sellers of
video games to provide adequate infor-
mation relating to violence or sexually
explicit content of such video games to
purchasers and users.”

In response, video game manufac-
turers, feeling the sting of public and
legislative criticism about game content,
have banded together to form the Inter-
active Digital Software Association
(IDSA). The group is made up of a
dozen or so manufacturers, including
cartridge behemoths like Sega, Ninten-
do, Electronic Arts, Atari, and Acclaim.
The IDSA has proposed its own com-
mission to assign game ratings to video
games and computer games. The IDSA
plan, however, would require a fee to
cover the costs (estimates range from
$300 to $500) of the rating process.
Most likely, that fee would be passed
along to the game publishers.

Although the IDSA’s plan has been
hailed by Lantos, it has been derided by
others as a poor solution that could
affect the viability of small game pub-
lishers unable to afford this fee. To fight
the IDSA’s concept, another coalition
comprising the Software Publisher’s
Association (SPA), the Shareware Trade
Association and Resources (STAR), the
Educational Software Cooperative
(ESC), and the Association of Share-
ware Authors and Distributors (ASAD)
has formed. This alliance, taken as a
whole, represents over 3,000 software
publishers.

STAR, in a response to the IDSA
plan, states that the plan “...places a bur-

densome and unnecessary expense on
small authors and publishers.” This rais-
es a question: In the event many startups
couldn’t afford the fee, would the IDSA
be willing to subsidize their fee (which,
taken together, could amount to millions
of dollars)? The SPA/STAR/ESC/
ASAD alliance also expresses the fear of
centralizing so much power over ratings
in a single body, as IDSA’s plan would.
The alliance backs a “content disclosure
system” that puts the burden of labeling
game packaging in the domain of the
developer or publisher, “...who would
have a much greater understanding of
the presentation and content of a game
than a reviewer could get from a video or
storyboards.” The system would be self-
policing, on the assumption that devel-
opers and publishers would not want to
mis-rate a game and risk a fallout with
either the public or their distributor.

At the heart of this issue—and
what I find most fascinating—is the
concept of ratings. The goal of game rat-
ings, regardless of the group proposing
the system, has been to target three cate-
gories of offensive material within
games: nudity, profanity, and violence.

Of these three evils, violence
appears to be the most difficult to define,
probably due to the fact that established
guidelines are already in place for nudity
and profanity in other forms of media.
The debates within the industry
attempting to identify and categorize it
have fallen somewhere between an
undergraduate philosophy discussion and
a Saturday Night Live skit. Is a Tom &
Jerry cartoon considered violent? If so, to
what degree?

Six Levels of Brutality
In response to this dilemma, several peo-
ple have suggested criteria with which to
rate game violence—criteria that would
leave as little to a reviewer’s interpreta-
tion as possible. Using these rules, game
censors could establish to what degree
any game is violent, without their own
values clouding the game’s rating. One
interesting classification scheme (a “vio-
lence-meter” I suppose) proposed by
someone on CompuServe divided vio-

B I T B L A S T S

INDUSTRY NEWS

6 GAME DEVELOPER • SEPTEMBER 1994

lence into the following six categories:
1. Shooting objects
2. Killing unreal life forms, without

blood and guts spraying out
3. Killing unreal life forms, with blood

and guts spraying out
4. Killing humans, without blood and

guts spraying out
5. Killing humans, with blood and guts

spraying out
6. Player rewarded for killing, torturing,

or goring innocent humans.
I know of quite a few Bugs Bunny

episodes that would fall into category six.
On the other hand, so would Mortal
Kombat, which has some finishing
moves that would turn a trauma nurse
green. A case can be made for the “Oh,
it’s only fun and games” faction and the
“This is damaging the values of our
youth” faction.

Unfortunately, Mortal Kombat is
an easy target (as are Doom and
Wolfenstein), because it practically
flaunts its violence, and the killings are
so...ahem...unique that they have raised

it to a class unto itself. But other games
may not be so easily classified. Battle
Chess has some graphic death scenes,
and in Populous you’re trying to annihi-
late an entire tribe of people. I don’t
find either harmful or particularly
offensive, yet each would receive a rat-
ing of 4 or higher in the suggested rat-
ing scheme I’ve detailed. An astute per-
son raised the question of how many
human-like qualities qualifies a charac-
ter as human? Is killing a hobbit (which
is somewhat human in appearance)
enough to garner a 4 rating? How about
an elf, dwarf, a cyborg with a human-
like exterior, Frankenstein...you proba-
bly get the picture. Even the most non-
partisan reviewer in the world would
have a difficult time grappling with a
gnome’s anatomy to try to classify it as
a human or not.

A sidelight to the ratings contro-
versy is that all of the proposed schemes
(with the possible exception of Lantos’
bill) would be implemented on a volun-
tary basis. Developers and publishers

wouldn’t be mandated to have their
games rated...as long as they didn’t
want to sell unrated games through
some of the largest consumer retail
chains. Already, rumors are spreading
that Toys R Us and K-Mart would not
carry unrated games. Didn’t that almost
happen to Spinal Tap’s album, Smell
The Glove?

The subject of ratings, like many
questions of what is morally acceptable,
draws people into its vortex. Whether it’s
book burnings or warning labels on
compact discs, there are plenty of fervent
people who will argue their side of the
case. Unlike book burnings and music
warnings, though, the fate of games
appears to be sealed, as no champion
against game ratings has stepped forth.
Perhaps in our “politically correct” world
today, we are no longer willing to fight
the trend toward having someone else
taste-test everything for us. ■

Alex Dunne is product review editor
for Software Development magazine.

8 GAME DEVELOPER • SEPTEMBER 1994

B I T B L A S T S

A Whirlwind
Tour of WinG

T O U R O F W I N G

I
f you’re like me, the first time you
saw Microsoft Windows 3.0 and its
program manager, you went straight
for the Games program group. Like
me, you probably expected to find a
game as different from DOS games
as Windows is different from DOS
itself. Instead, you found Solitaire.

Not a bad version of Solitaire, but Soli-
taire nonetheless. If you waited until 3.1
to check out Windows, you also found
Minesweeper—a bit more exciting, but
you wouldn’t call it “high-performance.”

Expectations for Windows games
have been very low. When Microsoft
released a set of games called Arcade last

year, reviewers were shocked. They
couldn’t believe games of Arcade’s quality
could be done on Windows. Arcade is a
great set of games, but we are talking
about 1970s technology on 1990s com-
puters! Their enthusiasm was unfounded:
Arcade is nothing compared to the games
you find on DOS. A Pentium probably
has more on-chip cache than the original
Asteroids game had main memory.

Sure, operating systems of today do
more than they did back then (did they
even have operating systems back then?),
and I can play Asteroids while simultane-
ously running other applications on the
same desktop, but is this all we can expect
from our brand new machines running
Windows? On the same hardware, DOS
games have consistently pushed the per-
formance envelope with the current crop
doing full-screen texture-mapped worlds
at 30 frames per second. What’s the cru-
cial difference between DOS games and
Windows games? Graphics performance.

Finally there’s help: WinG. WinG is
a library that eliminates the performance
difference between DOS and Windows
graphics, giving Windows games graphics
performance at or above their DOS coun-
terparts on the same hardware.

Current Windows
Graphics—Slow?
We’re interested in raw blt (bit level trans-
fer) performance: transferring pixels to the
screen in blocks. Most high-performance
games try to achieve smooth animation by
hiding the rendering and only allow the
player to see the resulting frame. These
games compose images into buffers, then
quickly update the display. While the
composition phase is usually application-

When WinDoom was ported, the rendering vs. stretching issue was left to the user by pro-
viding a menu of choices. Now you can set it to render to the current window size or preset
the size and stretch to the current window size.

14 GAME DEVELOPER • SEPTEMBER 1994

specific (each game renders using its own
special algorithms), only a few popular
techniques for updating the display exist.

Update techniques fall into two
groups: blting and page flipping. The
trade-offs between the two techniques on
current PC hardware are far too complex
to cover here, but suffice it to say that
high-performance DOS games use both
techniques (for example, System Shock
and Ultima Underworld I and II blt,
while Doom page flips). It is fairly easy to
move a game from blting to page flipping
or vice versa.

Windows does not currently allow
page flipping, so we will deal with blt per-
formance. Although we’ve said graphics
speed (or lack thereof) is the major
impediment to high-performance Win-
dows games, if you time the BitBlt func-
tion, you will find the bandwidth compa-
rable to what you find under DOS for the
same resolutions. The catch is BitBlt
transfers pixels from objects called
HBITMAPs, not from memory the applica-
tion owns.

Applications are not allowed to
touch the bits of an HBITMAP directly, they
must use Windows Graphics Device
Interface (GDI) functions, like LineTo,
SetPixel, and Rectangle. GDI provides a
rich set of two-dimensional graphics func-
tions that are perfect for applications like
spreadsheets and word processors, but you
will not find a TextureMapPolygon function
anywhere in the Windows API documen-
tation. For this reason, games need to
render directly to memory, and GDI does
not allow them this luxury with HBITMAPs.

Windows does provide objects called
Device Independent Bitmaps (DIBs),
which applications can access directly, but

the APIs for transferring DIBs to the
screen (StretchDIBits and SetDIBitsToDe-
vice) are typically three to 20 times slower
than BitBlt and therefore not competitive
with DOS blt bandwidth.

WinGBitmaps—a Hybrid
WinG introduces a new kind of object:
the WinGBitmap. WinGBitmaps are both DIBs
and HBITMAPs. Applications get a pointer to
the bits like a DIB, and like an HBITMAP,
WinG will transfer them to the screen
quickly. How quickly? At the 1994 Game
Developer’s Conference, we demonstrated
a Windows version of Doom, WinDoom,
running at about the same speed under
Windows as the DOS version on the
same hardware. Better yet, it only took a
weekend to do the port.

Porting a DOS
Game to WinG
I don’t have space in this article to develop
a DOS game and then port it to Win-
dows and WinG, but I will describe a typ-
ical DOS game’s architecture and discuss
how to move it to WinG. Let’s assume
our game has five major parts:
• Setup
• Get input events
• Run the simulation
• Render into a buffer
• Blt the buffer to the screen.

During Setup, the program allocates
the off-screen buffer, creates the palette,
and initializes the simulator. Next, it gets
any user input and uses that information
to run the simulator for a single time slice.
The results of the simulation are rendered
into a buffer, and the buffer is blted to the
screen. We’re ignoring synchronization,
sound, networking, user interface, and

Does graphics per-

formance set DOS and

Windows a world

apart? Think again.

Because of WinG,

Window‘s graphics

are flying high, giving

performance at or

above their DOS

counterparts.

by Chris Hecker

GAME DEVELOPER • SEPTEMBER 1994 15

whatnot, but you get the idea.
Under Windows, the setup phase

needs to initialize Windows-specific ele-
ments, like the application window, but
most of the setup code stays the same.
One interesting difference is that, unlike
the DOS version where your application
allocates the buffer memory, you must call
WinGCreateBitmap with BITMAPINFO (a struc-
ture describing the size and format of the
WinGBitmap) to allocate the buffer, and
WinG will return the memory pointer.
The application uses this pointer to draw
on the WinGBitmap surface directly.

The application will also need to use
GDI palette APIs to create and realize the
game’s palette. GDI realizes a palette
when it copies the description of the
palette colors into the video hardware.
Because multiple applications can share
the hardware palette, this can get a bit
tricky, but there is plenty of palette sample
code in the WinG development kit to
illuminate matters.

User input is slightly more difficult.
Well-behaved Windows applications
must yield control to the system fairly
often in case the user wants to switch
away to another application. Normal
applications like word processors call the
GetMessage API to process their user input
messages. If there are no messages for the
application, GetMessage doesn’t return until
one comes in.

A game can’t use GetMessage because
even if the player isn’t providing input to

the application, the simulation must still
run. You don’t want the whole game to
stop when the user stops pushing keys or
moving the mouse, so Windows provides
an API called PeekMessage. This API
returns immediately even if there are no
messages so the game can continue the
simulation. The subtleties of PeekMessage
in particular and event-driven architec-
tures in general are beyond the scope of
this article, but I will provide you with an
appropriate reference.

The game simulation code should
work unchanged on Windows. Once the
user input is translated from Windows
messages to the application-specific for-
mat, the simulation should run normally.

Your game’s rendering code should
also work unchanged. The only caveat is
that WinGBitmap scanlines are dword aligned,
so if for some reason you need a 201-wide
bitmap, you’ll need to know the start of
the next scanline is actually 204 bytes
from the current scanline, not 201 bytes.

Once composition is complete, you
blt the buffer to the screen with WinGBitBlt
or WinGStretchBlt. As its name implies,
WinGStretchBlt will stretch or compress the
WinGBitmap as it blts, where WinGBitBlt sim-
ply transfers the WinGBitmap to the screen.

Once you have your game running
on Windows, it’s time to make it run fast.
You’ll also want to take advantage of the
benefits of running in a windowed envi-
ronment, so we’ll talk about some of those
issues as well.

Setup
Our naive port called WinGCreateBitmap
with the description of the WinGBitmap we
wanted. To achieve maximum blt perfor-
mance during the screen update phase,
we’ll ask WinG for a little help during our
optimized setup. Although WinG is fast
under almost any circumstances, there will
always be a particular WinGBitmap format
that is the absolute fastest to blt on the
current display, and the WinGRecommendDIB-
Format API will tell us what that format is
at run time.

The most important difference
between the DIB formats that we’ll get
back from WinGRecommendDIBFormat is the
DIB orientation. There are two DIB ori-
entations: bottom-up and top-down,
illustrated in Figure 1. Both kinds of
DIBs consist of a BITMAPINFO structure and
a pointer to the bits. The BITMAPINFO con-
tains information such as the width,
height, number of bits per pixel, and the
color table of the DIB. For bottom-up
DIBs, the bits pointer points to the bot-
tom-most scanline in the DIB.

Increasing memory addresses means
going up the DIB image, hence the term
bottom-up. This is probably the exact
opposite of the memory bitmaps you’ve
dealt with before and is the opposite of
most video displays (notably mode 13h
VGA, for example). Top-down DIBs are
more familiar: the bits pointer points to
the top-most scanline, and increasing
memory addresses go down the image.
Life gets interesting because WinG might
recommend either DIB format at run-
time, and high-performance games should
be able to deal with both. This isn’t as
hard as it sounds. I’ll go over the details in
the section on rendering.

Once we have the recommended
DIB format, we pass the information to
WinGCreateBitmap and go on to our palette
setup. For optimal performance, a WinG
application should have an “identity
palette mapping.” An identity palette
mapping means the color table in the
WinGBitmap and the palette in the display
hardware match exactly. In this case,
WinG can block-transfer the pixels in the
WinGBitmap to the screen without translat-
ing them. If the palette mapping is not
identity, WinG needs to translate each

T O U R O F W I N G

16 GAME DEVELOPER • SEPTEMBER 1994

Figure 1. DIB Orientations

pBits

Bottom-up DIB Top-down DIB

In
cr

ea
si

ng
 M

em
or

y

pBits

pixel as it is blted, which is slow. We’ll
cover this briefly, and if you still don’t get
it, there is plenty of excruciatingly detailed
documentation and sample code in the
WinG development kit.

Windows runs multiple applications
at the same time. There is only one hard-
ware palette—something has to give. The
compromise is that each application
requests the hardware palette (called the
system palette) by calling RealizePalette.
Windows may or may not let the applica-
tion have the entire system palette
depending on a number of factors, like
whether the application is in the fore-
ground, whether there are other palette
applications around, and so on.

Even if Windows does give the
application the system palette, the system
tries to minimize the palette entries used
by each application by collapsing any
duplicate colors into the first instance of
that color. In addition, each WinGBitmap
has an application-defined color table
associated with it, and the color table
must match the system palette for the

mapping to be identity. If all this sounds
complicated, it is, but once you under-
stand it, you’ll be able to charge out-
landish consulting fees to other game
developers, so it’s worth your time to
learn. Besides, your blts will go from
mediocre to blazing once you get an iden-
tity palette mapping.

WinG can help in your quest for an
identity mapping by spitting out debug-
ging information. You can set two flags in
the win.ini configuration file to direct
WinG to tell you what is going on. The
Debug flag makes WinG tell you if you
have an identity palette mapping, and the
DebugPalette flag makes it tell you how
each color table index in your WinGBitmap
maps to the current system palette if that
mapping is not identity. So, if you can’t
figure out why you don’t have an identity
palette, you can turn on DebugPalette and
see messages like:

WinG: Palette mapping is not identity.

WinG: Color table index 123 maps to

system palette entry 5.

You can take this information and see
exactly why you aren’t getting an identity
mapping.

As soon as you’ve figured out the
intricacies of identity palettes, you’ll need
to make a user interface decision:
SYSPAL_STATIC mode or SYSPAL_NOSTATIC
mode. Windows normally reserves 20 col-
ors in the system palette and does not let
applications overwrite them. This keeps a
single palette application from making all
other applications look horrible—other
applications always have at least those 20
colors, called the static colors, to map to,
even if an application realizes an all-black
palette. As with most things in Windows,
there’s a way around the static colors: Set-
SystemPaletteUse. If you call SetSystem-
PaletteUse with SYSPAL_NOSTATIC, Windows
will let you overwrite 18 of the 20 static
colors, leaving only black at entry 0 and
white at entry 255.

SYSPAL_NOSTATIC applications make
the Windows desktop look gross, while
SYSPAL_STATIC applications only get 236
colors out of a possible 256. You’ll need to

GAME DEVELOPER • SEPTEMBER 1994 17

choose which mode to use as you develop
your game. It is possible to use SYSPAL_NOS-
TATIC when you have a maximized window
(users won’t be able to see the off-colored
desktop anyway) and SYSPAL_STATIC when
you’re windowed (and users can see the
program manager and other applications),
but your game must do the extra work.

Rendering
High-performance games have optimized
rendering algorithms, and most of this
code can be left alone, although your ren-
dering code will need to deal with top-
down and bottom-up DIBs for best per-
formance. The impact this has on most
rendering code is minimal. When you
step from scanline to scanline, you need to
use a signed number. For example, let’s
say this is your rendering loop for a 320
byte wide buffer:

; edi points to destination scanline

mov edi,pBits

loop_top:

; draw some pixels

mov [edi],ThisValue

mov [edi+4],ThatValue

mov [edi+8],TheOtherValue

add edi,320 ; point to ext

scanline

dec ScansLeft ; if we’re not done,

jnz loop_top ; do it again

Although simple, this type of loop is the
core of most scanline renderers. After
changing two lines, this code can handle
both DIB orientations at run time:

mov edi,pBits

becomes:

mov edi,pTopScanline

where pTopScanline is the first scanline
(pBits) on top-down DIBs and the last
scanline (pBits + WidthInBytes * (Height -
1)) on bottom-up DIBs. The second
change is:

add edi, 320

to:

add edi,DeltaScan

where DeltaScan is 320 for top-down
DIBs and -320 for bottom-up DIBs. This
change causes the renderer to always move
down the image, increasing edi for top-
down and decreasing it for bottom-up.

A second issue affecting the renderer
is variable-sized viewports. Because Win-
dows runs at whatever resolution the user
chooses, games should be able to handle
different window sizes. There are two
ways to do this: the game can render at
different resolutions, or the game can use
WinGStretchBlt to stretch a constant-sized
buffer to the variable-sized window. The
former is a rendering issue, the latter
affects the blt/update code as well.

Blting
There are tradeoffs between rendering at
the viewport resolution and calling WinG-
BitBlt to blt the buffer and rendering at a
lower resolution and calling WinGStretch-
Blt to expand the buffer to the viewport
resolution. If your renderer can handle
high-resolution buffers, you’ll get the best
looking results by rendering at the resolu-
tion of the viewport, but you might find
the performance is too slow. If your game
is pixel-bound, like Doom (in other

words, it spends more time rendering a
pixel than WinG spends blting or stretch-
ing that pixel), you may want to take
advantage of the high-performance
stretch code in WinGStretchBlt, render to a
low resolution buffer, and stretch it to fill
the viewport.

When we ported WinDoom, we left
the rendering vs. stretching issue to the
user by providing a menu of choices. You
can set it to render to the current window
size (which really slowed down as the
window got larger), or it could render at a
preset size and stretch to the current win-
dow size. WinGStretchBlt is extremely fast,
so the stretching option usually resulted in
the best frame rate, but it didn’t look as
nice as the full rendered version. Most
DOS games have level-of-detail settings,
so users can choose stretching versus ren-
dering as they like.

Other Issues
It’s been said that the best and worst thing
about Windows is that it runs on an
incredible variety of hardware. To make
the most of this variety, your game will
need to configure itself to the run-time
platform, like WinG does at startup with
the display performance test. Is it faster to
stretch or render? The answer will change
depending on the user’s hardware and
software configuration, so be prepared. Is
it faster to update dirty rectangles or blt
the whole buffer? Again, this can change
from machine to machine. Time it and
you’ll never go wrong.

This has been a whirlwind tour of
WinG game development, but we’ve
touched on the major issues. Once you are
seriously into Windows programming, get
the WinG development kit for yourself
and play with the sample applications to
get first-hand experience, then port your
game to Windows in no time flat. ■

Chris Hecker works for a large software
company in the Pacific Northwest. He can’t
mention the name because then he’ll need all
sorts of disclaimers. It’s just a coincidence that
he can be reached at checker@microsoft.com. or
through Game Developer magazine.

T O U R O F W I N G

18 GAME DEVELOPER • SEPTEMBER 1994

I
s it time you port your own game
to Windows? Then it’s time to
start using WinG. For the satisfac-
tion of porting your own game in
no time flat, consult these

resources. Don’t sit around while
someone does it for you—WinG it!

FOR BEGINNERS:
Programming Windows 3.1 by Charles
Petzold (Microsoft Press, 1992)

FOR EXPERIENCED DEVELOPERS:
The Microsoft Developer’s Network CD-
ROM (Microsoft Developer Network,
(800) 759-5474).

FOR EVERYONE:
Microsoft’s WinG Development Kit is
available from the winmm forum on
CompuServe or on ftp.microsoft.com

W I N G I N G I T

Industry
Profile:
Cyclone Studios

C Y C L O N E S T U D I O S

I
t all started in late 1993 when, after
months of casually talking about it,
a close friend and I decided to leave
our well-paying, perfectly secure and
respectable jobs and take the plunge
into independent video game devel-
opment. We—that is, myself and
Ron Little, a talented programmer I

had known since college—decided to call
ourselves Cyclone Studios and made it
our mission to build original, top-notch
games for next-generation systems like
the 3DO Interactive Multiplayer. We
wanted Cyclone to become synonymous
with high-energy, fun, quality entertain-
ment—the equivalent of Steven Spiel-
berg’s Amblin Entertainment in the
video game world.

Of course, there were a couple of
minor obstacles in our way. First, neither
Ron nor I had ever built a video game
company before. Second, we had virtually
no money to do it. We started with a very
simple, straightforward plan: We would
begin developing an original game for the
3DO system and, as soon as possible,
present a prototype to either game pub-
lishers or other investors who would give
us the money needed to finish the pro-
ject.

Since we didn’t have a lot of money
between us, we’d work out of our homes
and push as hard as we could for the next
six months, which is when our savings
accounts—that is, life support systems—
would run dry. Fortunately, by the end of
that period, we had completed our game
engine, a preliminary script, and polished
up a presentation for publishers. As it
happened, our game, which we’d based
on a proven, profitable genre and fea-
tured a strong, marketable character
property, was picked up almost immedi-
ately by 3DO’s own publishing arm, Stu-
dio 3DO.

And what a relief that was, since,
with 3DO’s cash advances, we could
finally afford to grow Cyclone into a gen-
uine company. First, we could hire our
first employee, Greg, a top-notch artist
who’d do much of the artwork for our
first game. We could finally move out of
our bedrooms and into some office space.
Most importantly, with a deal from a
publisher like 3DO, we were able to con-
vince a private investor to initially fund
two other games we’d wanted to try.
That meant hiring Heli and Subha, two
more capable game programmers who
brought Cyclone’s staffing up to five peo-

From rags to riches, this startup company went from a two-person bedroom operation to a
six-person team, complete with office space, cool logo, and (hopefully) great games. The
Cyclone Studios team is (standing) Heli, Maarten, Subha, (kneeling) Helmut, Ron, and Greg.

34 GAME DEVELOPER • SEPTEMBER 1994

ple, with one title in full production and
another two in the early stages.

Birth of a Whirlwind
All of a sudden, Cyclone grew from
being a couple of people working out of
their bedrooms to a small but definitely
real game development shop. That’s what
this article is about. The game industry is
a dynamic place; there are lots of talented
people out there, and I suspect that many
are already involved in small, young game
development shops like Cyclone or at
least harbor secret fantasies of breaking
off from the established companies they
work for and striking out on their own.

I wanted to write an article about
Cyclone’s own experiences in hopes of
giving aspiring game makers out there
some sort of useful perspective on going
into independent game development—for
instance, how to pick a hardware platform
to focus your efforts on; how you can hire
great people into your company even
though you may not be able to pay top
dollar just yet; and how to fund your ini-
tial growth without giving away too much
equity in your fledgling company.

I’m by no means suggesting that
Cyclone Studios’ own approach and solu-
tions to these issues are the only ones or
even the right ones (time will tell that).
Right or wrong, though, I think our
experiences will give you greater insight
into the challenges of getting a game
start-up off the ground. So enjoy!

Structuring the Company
One of the most important and funda-
mental decisions a new game developer
has to make is whether to stick to just
making games or to also take on market-

ing and distribution, too—in other
words, become a full-fledged publisher.
When we started Cyclone Studios, we
thought self-publishing our first game
would be best, instead of looking for an
existing publisher to pick it up. It’s the
publisher, after all, that makes most of
the profits from a popular title. Publish-
ers are also free to strike deals with tal-
ented development shops, so they can
pick up hot games they didn’t actually
have to create from scratch.

We certainly liked those benefits,
but after a few months, we also came to
the conclusion that simply developing
our game was a full-blown undertaking,
and financing just the production
process—all the animation, program-
ming, and other art, the cinematic
sequences, the musical scores, the voice
actors, the script writers, and so on—was
definitely beyond our means. Trying to
add the burdens of manufacturing, mar-
keting, and distribution would have been
totally insane. (If we’d been writing
games for computers, rather than game
consoles, self-publishing might have
been more workable; for instance, in the
PC world, we could have released our
game as shareware and taken a grassroots
approach to marketing and distribution.)

Shareware or not, though, doing a
really competent job of publishing a
video game these days is way beyond the
means of most game shops around. It’s
all a question of money. To do decent
advertising, you need lots of money. To
keep your shelf space secure, you need
lots of money. To woo the all-important
press, you need more money. And to
stage the world-wide event marketing
campaigns that publishers like Acclaim

Started on a shoe-

string, Cyclone Stu-

dios is taking its mar-

ket by storm. By

concentrating its

efforts on one plat-

form–3DO–this

amazing startup is on

its way to becoming a

major industry player.

by Helmut Kobler

GAME DEVELOPER • SEPTEMBER 1994 35

have become so good at—the TV ad
blitz, the movie trailers, the merchandis-
ing tie-ins—you practically need a mint.

If you’ve got a venture capitalist or
some other corporate sponsor who’s
offering you millions of dollars, then
okay, you’ve probably got the money to
compete at this kind of level. If not,
though, trying to publish your own
games in such a competitive atmosphere
seems like an incredibly heavy and risky
burden to bear. In fact, even some of
today’s small- and medium-sized pub-
lishers may face rough days ahead
because, as with all industries that begin
to mature, I think video games will come
to be dominated by a handful of giant
studios. And those publishers that don’t
grow into big league proportions may
end up getting squashed.

Should small, independent game
developers be worried about their fate? I
don’t think so. No matter how strong
and dominant the industry’s existing
publishers become, they’re still always
going to need great games, and great
games aren’t something a publisher can
simply churn out of its internal produc-
tion department. Like movie studios,
good game publishers draw on lots of
outside production talent to get the best
possible product.

All a small developer like Cyclone
has to do is focus on coming up with
some of the most exciting and engaging
ideas possible and maintain a lean, com-
petent staff that’s great with execution.
If a developer can do this, it’s possible
for even a tiny company to ally itself
with top-tier publishers and dip into
some of the deepest, richest pockets in
the industry.

The Platform
When we decided to start Cyclone Stu-
dios, one of the first and most important
issues we had to consider was the hard-
ware platform—Macintosh, PC, Sega,
Nintendo, or 3DO—that we’d develop
our games for. For many established
developers, this isn’t even an issue, since
they have the money and people power to
develop for a range of formats. But for
smaller companies like Cyclone, we
thought it better to pick a platform we

could develop real expertise for and con-
tinually build on as we started future
games.

Of course, there were plenty of fac-
tors to weigh before choosing a preferred
platform. For instance, if we were going
to develop for video game consoles rather
than PCs, we’d have to purchase expen-
sive development systems from Sega,
Nintendo, 3DO, or whoever else. And
there was always the question of whether
a platform would have the mature tools
to make life livable during development.

The most important question we
asked ourselves was whether or not to
develop for new, untested platforms like
the 3DO, Sega Saturn, Sony PSX, or
Atari Jaguar. New systems like these
never have the huge installed bases that
make developers’ mouths water, but they
offer less competition for first-generation
developers and a chance for a small
development shop to make an early name
for itself on an up-and-coming system.

It was this “new world” factor that
pushed us toward 3DO, since the system
represented such a new and untapped
market for developers. When we made
our decision, existing platforms like the
Sega, Nintendo, and the PC, were
already well established, and had more
than their fair share of experienced,
entrenched developers.

In this kind of environment, we felt
we’d have a tough time convincing a
game publisher to back the projects of a
totally unknown, untried company, when
there was already a whole stable of tried-
and-true developers to choose from.
3DO, on the other hand, was virgin ter-
ritory, with many of the industry’s estab-
lished developers waiting by the sidelines
until 3DO became a clear success.

Being small and entrepreneurial,
however, we didn’t mind diving right in
with the idea that 3DO and other pub-
lishers backing the system would be eager
to buy any quality games in-progress
once the installed base began to grow.
The fact that the industry’s bigger, richer
developers were not giving 3DO their
full attention meant we’d have a better
chance of selling our games.

You should understand that I’m not
trying to sell 3DO specifically as the land

of opportunity for small game developers.
I’m only using Cyclone Studios’ own
experience to show the advantages of
picking a new platform—3DO, Jaguar,
Sony PSX, or whatever—where it’s easier
for a small developer to make a difference
and where you’ll be well positioned if
that platform begins to take off. Of
course, if the platform you bet on doesn’t
do so well, your company will have
thrown a lot of precious time and money
down the tubes. On the other hand, if a
small, hungry company can’t stand taking
a few risks, then who can?

Other than being virgin territory,
there was a final factor that made betting
on a new platform like 3DO worthwhile
to us: ease of development. 3DO—and I
suspect other next-generation systems
like the Saturn and Sony—is a pleasure
to develop for. In 3DO’s specific case,
there’s a lot of custom hardware and
internal libraries that make doing effi-
cient animation, sound effects, back-
ground music, and full-motion video
fairly easy on our programmers.

Since the overall hardware is fairly
robust, most of our development is done
in C or C++, with patches of RISC
assembly language for strategic kicks.
The result is that we can have a game
engine up and running in just a few
months (depending on the genre, of
course), which means we spend less
money getting a game’s fundamentals to
the point where we can present it to a
publisher. Had we chosen a PC or a 16-
bit Nintendo or Sega as Cyclone’s target
platform, our development cycles would
certainly be slower and more expensive.

The Funding
After the euphoria of starting our own
game company wore off, our next imme-
diate concern was how to pay the initial
development costs for the first game we’d
be working on. Had we had a long, dis-
tinguished track record as game develop-
ers, I think we could have spent a couple
of weeks writing up an initial game idea
and stood a reasonable chance of finding
a publisher to advance us all the produc-
tion money we’d need.

Since Cyclone’s founders didn’t
have specific, previously published games

C Y C L O N E S T U D I O S

36 GAME DEVELOPER • SEPTEMBER 1994

to point to, however, that option seemed
less likely. Even if we had a worthy track
record, there was still the chance that we
wouldn’t find a publisher willing to back
a totally undeveloped idea. We’d have to
shoulder the initial development costs
ourselves, dedicating a few months to
preparing our game to the point where
we could interest a publisher.

I suspect that lots of aspiring game
developers will have to do the same thing
for a while. If so, your success comes
down largely to a question of financial
capacity—in other words, will you have
the savings, loans from friends or family,
or whatever other financial means to sup-
port yourself and your team through a
game’s initial development. If you can’t
be reasonably sure of this ability, I
wouldn’t even go forward, since it’s really
counterproductive to develop a game in
fits and starts because you keep running
out of money.

Fortunately for Cyclone Studios
(and its founders’ respective bank
accounts) those lean days of living on

Campbell’s Soup selections and
working out of our bedrooms came
to an end after about five months
of development, when we struck a
publishing deal for our first game
and the advance checks began com-
ing in. Unfortunately, our welcomed
advance money only covered work on our
first game, while we were ready to start
two other games we’d recently come up
with.

Small, growing companies face this
issue all the time; as soon as one source
of money kicks in, new sources are need-
ed to fuel your growth even further. But
in Cyclone’s case, we couldn’t use the
same bootstrapping tactics that had
worked for us the first time around. First,
having already blown our savings, we had
no other cash reserves to dip into. And
the chances of finding programmers and
artists who would work—if only for a few
months—on new games for free didn’t
seem too promising. That meant we’d
have to look for outside investors who’d
ante up the needed cash.

Finding reli-
able investors
can be a long

and grueling
process, and there

are many approaches you
can take to round them up. If your

company is just getting started and needs
to raise cash to fund a quick spurt of
growth, a great way to do it is to sell a
percentage of the profits from the games
your investors are putting money into. In
other words, someone gives you money
to fund a game and in exchange you give
them a percentage of the profits that the
game generates. (Cyclone uses a variant
of this strategy: We borrow a chunk of
cash but agree to pay back the original
loan when we’ve struck a publishing deal
for the game that the money is funding.
In addition, we give our investor a small
percentage of the game’s future profits as
an interest rate.)

From a developer’s perspective,
there are a lot of advantages to this kind
of arrangement: Offering investors equity

GAME DEVELOPER • SEPTEMBER 1994 37

pieces in individual games allows them to
get a much quicker return on their
investments than had they bought equity
in your entire company. It’s Cyclone’s
intention to use our investor’s money to
fund a title for no more than five
months—by that time, we think we can
find a publisher that will pick up the rest
of the game’s development and will also
let us pay back our original loan a short
while later.

The investor’s money is at risk for
only about six months and he or she
in turn gains a
piece of

profits that can be cashed in about a year
and a half down the road, when royalties
for the game’s sales begin to flow in. On
the other hand, if the investor had bought
equity in Cyclone as a company, rather

than a single game, at what
point would he or

she recoup the
i n v e s t -

ment? When we go public? When we’re
bought out by a larger company? If either
of these pleasant scenarios ever come to be
(and statistically speaking they won’t),
then they’re almost certainly many years
away and represent a very long-term
return to our investors. And putting

money at risk for such a long time can
scare potential investors away.

But the biggest reason
we try to sell equity in

Cyclone’s games and
not the company itself

is that we see our
company’s equity as
being its lifeblood,
and we hate the
idea of giving away
pieces of the com-
pany when it’s still

so young just to get
a game or two started.

It might be tempting to
give someone a significant piece

of the pie when they’re offering you
cold cash, but if you give up equity just
getting yourself off the ground, what will
be left to offer investors (and for yourself)
when your company is more established
but still needs more funding to grow even
further? That’s why we think equity
investments should be reserved for strate-
gic cash infusions that allow your compa-
ny to compete on an entirely new level
and not just fund one of what will be
many games you end up making.

Recruiting Great People
When you’re a small company, and
you’re not sure how you’re going to grow
and what kind of staff you’re going to
need, it’s convenient to draw from the
large talent pool of freelancers and con-
tractors working in the industry today.
For instance, a large part of the character
animation and cinematic sequences called
for in our first game is being done by a
small shop in Portland whose principals
formerly worked on TV’s California
Raisins and Domino’s Pizza Noid.

We would never be able to hire
these talented people on staff because
they would be too expensive as perma-
nent employees, and they like being in
business for themselves anyway. Also,

C Y C L O N E S T U D I O S

38 GAME DEVELOPER • SEPTEMBER 1994

while their skill set and interests fit our
current project well, they may not be as
well suited to other games that we’ll be
developing down the road. It works to
hire freelancers on a project-by-project
basis until we know what exact skills will
suit the company in the long run.

On the other hand, one of Cyclone’s
most important goals is to build up our
internal staff so we have a broad and
strong talent base within the company.
We want to do this for a couple of rea-
sons. First, it’s generally cheaper to hire
employees rather than pay contractors, as
long as you know that the employees’
skill sets fit the kinds of projects you’ll be
doing down the road.

Second, we want to bring talented
people into Cyclone’s permanent team
because we think it will make the compa-
ny more attractive to publishers we work
with and possibly to bigger companies
that might want to acquire us down the
road. Finally, hiring true employees
makes the company seem a lot more like
a genuine team instead of a collection of
hired guns, and that’s good for morale. In
the long run, it makes sense for us to
bring people into the company rather
than relying too much on independents.

It’s not a secret that hiring great
people—smart, creative, driven, and good
team players—is the single most impor-
tant thing that you can do for your com-
pany. But the issue that nonetheless faces
Cyclone Studios and just about any other
aspiring game developer out there is how
to attract quality people to your company
when you still haven’t grown to the point
of having the trappings of wealth, power,
and prestige.

Certainly, recruiting talent can be a
challenge when you’re small; recently, for
instance, Cyclone recruited a young pro-
grammer right out of college. We felt
good about his technical skills, saw that
he was motivated, and thought his per-
sonality would fit in well with the team
we were building. But on the day he was
supposed to start, he called to tell me he
had just interviewed and accepted a job
with Crystal Dynamics, one of the hot
game developers and publishers these
days. Apparently Crystal, which has
about $20 million in funding and has

been on a hiring spree for months, was
able to lure this programmer away with a
higher salary and the air of an established
company.

In this particular person’s case, com-
mitting to Cyclone and backing out at
the last minute was not exactly the sign
of a sterling character, so we weren’t too
disappointed by the loss. But it still leaves
you wondering how a small, struggling
developer like Cyclone can compete with
the Crystal Dynamics of the world. In
some cases, we just can’t—there will
always be people that follow the highest
possible salaries and other perks that only
bigger companies can offer.

At the same time, there’s an entirely
different class of talented, motivated peo-
ple that small developers stand a good
chance of attracting—an even better
chance, perhaps, than those bigger com-
panies that seem to have all the money in
the world. The video game industry is at
its heart an industry of fine artisans—
programmers, artists, musicians, and
game designers whose greatest satisfac-
tion is their own personal sense of contri-
bution and impact on the games.

In bigger companies, this sense of
impact diminishes more and more—work
is divided and subdivided again among big
development teams, people can be shuf-
fled around from one project to another,
games are designed and managed by com-
mittees or layers of management, seniority
often determines who works on the best
projects, politics come into play, and so on
and so on. The result is that talented,
dedicated people end up feeling like some
cog in a wheel instead of an essential and
valued part of the team.

While these headaches can be com-
monplace in bigger organizations, they’re
hardly issues for small, entrepreneurial
shops. At Cyclone, for instance, we’ve
attracted (and hope to continue attract-
ing) strong, quality people by offering
them a big degree of responsibility and
impact on the work the company does.
Everyone here knows that he or she can
make a huge contribution to the fun, per-
sonality, and ultimate success of each of
our games. That’s incredibly appealing to
the kind of people who are focused on
making world-class games and less con-

cerned with their 401K plans. It’s in this
small company atmosphere that talented
people can do some of the best, most
inspired work of their careers. Conse-
quently, it’s an environment that many
prefer to join.

While bigger companies may ini-
tially be able to pay their employees
higher salaries and assemble long lists of
fringe benefits, my bet is that Cyclone
and other small, growing game shops can
actually offer their people a better finan-
cial deal in the long-run than many could
expect from more established companies
as well. For instance, we give our team
members fairly significant royalties on
the games they produce, which can be
more lucrative than what they’d make as
just another programmer or artist at a
bigger company.

By emphasizing these two funda-
mental benefits to potential employees—
full impact on their work and the poten-
tial for significant profit sharing—we’re
betting that it’s possible for even the
smallest development shop to compete
with the industry’s giants in attracting
great people. All you have to do is con-
vince people you’re genuinely committed
to giving these opportunities once they
come on board, and then follow through.

Keep Your Eye on the Ball
There you have it—the official Cyclone
Studios guide to starting an independent
game development company. Again,
though mine is only one of potentially
many perspectives, I hope to have given
any aspiring game makers a better idea of
some of the important challenges and
solutions that go into building a small
game shop from scratch. If you’re in the
same position Cyclone is in—either build-
ing or thinking about building a company
step-by-little-step—I hope you’ll find
some useful information here. ■

Helmut Kobler joined The 3DO Com-
pany in 1992 as the second person in its
then-fledgling marketing department. He
couldn’t resist the temptation of making
games for long, though, and left 3DO to
form Cyclone Studios in late 1993. He can
be reached via e-mail at cyclone@aol.com or
through Game Developer magazine.

GAME DEVELOPER • SEPTEMBER 1994 39

The Mysterious
Mode 13h

M O D E 1 3 H

A
long time ago, there was a
planet called Earth. This
planet was inhabited by the
first humans. These were
curious creatures. They built
many machines. They were
masters of physics and the
arts, and they learned to con-

trol all aspects of their environment. In
the third epoch of their existence, they
took to the stars to colonize the galaxy.

They recorded all their technology
on magnetic and optical disks, which
we have today. However, much of the

information has been lost. One of the
greatest losses was the workings of a
special graphics mode, supported by a
popular computer of the late 20th cen-
tury called the IBM PC. This mysteri-
ous graphics mode was used by thou-
sands of software engineers to develop
video games, which were used as a
form of entertainment. Game develop-
ers used this mode because it allowed
them to draw images on the screen at
unbelievable rates and with myriad
colors.

Using our 35th century technolo-
gy, we have been able to restore the
lost data, and now for the first time, we
can read about this mysterious graphics
mode, 13h. This information is valu-
able, and great care must be taken by
those who wield it. If you choose to
read these passages, may all the games
you make be very cool.

The Lay of the Land
Mode 13h is the best overall graphics
mode that a standard VGA card sup-
ports. The mode has a resolution of
320-by-200 and supports 256 colors.
Mode 13h is attractive to game pro-
grammers for several reasons: its mem-
ory configuration makes it easy to
manipulate, it supports 256 simultane-
ous colors, each of which can take on
262,144 different hues, and it’s fast
because it lacks the planar architecture
found in the EGA modes.

Figure 1 shows Mode 13h’s 320-
by-200 matrix of pixels. Each pixel
represents a single dot on the video
screen. By turning these pixels on and
off, we create images on the video
screen. If you are familiar with any of

So, what’s so great about Mode 13h? Many game developers like it because its memory con-
figuration makes it easy to manipulate, and it supports 246 simultaneous colors and 262,144
different hues. And, best of all, because it lacks the planar architecture found in the EGA
modes, it’s fast to boot.

40 GAME DEVELOPER • SEPTEMBER 1994

the EGA video modes, you will recall
that video memory on the EGA is pla-
nar. In other words, each pixel is com-
posed of components extracted from

separate memory planes, as shown in
Figure 2. This is not the case in mode
13h. Mode 13h is one linear region of
memory that starts at memory location

Mode 13h is an

obscure graphics

mode that few game

developers have

mastered. But those

who’ve uncovered

the mystery claim it’s

the best overall

graphics mode

around.

by André LaMothe

GAME DEVELOPER • SEPTEMBER 1994 41

Figure 1. The Organization of Mode 13h

Start of
video memory
A000:0000h

(0,0) Mode 13H (0,0) +x

+y
(319,199)

(319,199)
320

200

Figure 2. The Planar Organization of the EBA Modes

(0,0)

(0,0)
(0,0)

(0,0)

Memory
Planes

Results of Combined Planes Color Table

One bit is extracted from each memory plane and combined into a
single nibble that is used as an index into the color table.

Color 0

Plane 4

0 1 1 0

Color 6

Color 15

Plane 1

Plane 2
Plane 3

A000:0000h (segment A000h, offset 0000h)
and ends at A000:F9FFh.

So, mode 13h is exactly 64,000
bytes long. But, what is the relation-
ship between the 64,000 bytes and the
320-by-200 matrix? One byte exists for
every pixel on the screen. If one byte
exists for every pixel, there should be
320-by-200 (64,000 bytes) making up
the screen memory—and, isn’t that a
coincidence, there is! Take a deep
breath, and let that sink in. In essence,
all we have to do is point a pointer to
video memory at A000:0000h and access
video memory as an array. (Finally,
something on the PC that makes
sense!)

Figure 3 shows the memory layout
of mode 13h and some of the row
addresses. As you can see, each row of
pixels is exactly 320 bytes from the pre-
vious row. So, to plot a pixel at any
(X,Y) location, you multiply the Y coor-
dinate by 320 and add the X coordinate.
Use the final index as an offset from
A000:0000h and write your single byte
representing the color you want at this
point.

If the memory configuration alone
isn’t enough to make you happy, there’s
more. Mode 13h supports 256 simulta-
neous colors on the screen from a
palette of 262,144. These colors are
implemented by a Color Lookup Table.
You can think of this table as a collec-
tion of 256 paint buckets that can have

any color paint in them you wish.
When you write a 26 into screen mem-
ory, the color you see on the screen will
be the color that is in bucket 26. This is
called color indirection, and it is a very
powerful method of representing colors
within a graphics system. We will cover
the Color Lookup Table in more detail
in a moment.

Now that you have the overall
view, let’s see how we can get into
mode 13h in the first place. Also,
before I forget, I used Microsoft’s
C/C++ 7.0 for all these examples, but
with simple changes, any compiler
should work.

Getting in the Mode
You can get into mode 13h a few dif-
ferent ways. Within Microsoft ’s
graphics library is a function called
_setvideomode(). You can use this func-
tion to change the video mode to any
mode supported by Microsoft. Bor-
land’s compiler has a similar function.
As an example, let’s write a simple
program that uses _setvideomode() to
get into mode 13h and back out. This
program is shown in Listing 1.

If you compile and execute List-
ing 1 (remember to link in the graph-
ics library), your PC will be in mode
13h. To exit the program, press any
key. Using a library function to get
into mode 13h is fine, but we need a
way that doesn’t depend so much on
the C compiler’s graphics library. A
call to the video BIOS will put us into
mode 13h. The video BIOS interrupt is
INT 10h, and it has many different
functions. We are interested in func-
tion 0, which is the set_video_mode
function. Here are the parameters you
need to execute function 0:

Sub-Function 0

AH = 0

AL = video mode number (13h)

returned values(none)

To use this function, we need a way
to call the video BIOS. We can use the

M O D E 1 3 H

42 GAME DEVELOPER • SEPTEMBER 1994

Figure 3. The Memory Configuration of Mode 13h

Mode 13 H(0,0)

(200,120)

(Hex)

Row 0 A000:0000

(319,199)
Last memory
location is
A000:F9FFh

320 x 200 256 color

= A000:0000h
+ 120 • 320 + 200

Row 1 A000:0140
Row 2 A000:0280

Row 199 A000:F8C0
= A000:96C8h

#include <stdio.h>
#include <graph.h>
#include <conio.h>

int main(void)
{
_setvideomode(_MRES256COLOR);

printf(“\nHello world from mode 13h.”);

getch();

_setvideomode(_DEFAULTMODE);

} // end main

Listing 1. Entering Mode 13h with Microsoft’s Graphics Library

inline assembler, or we can use the C
interrupt function _int86(). To cover all
bases, I will provide code for both. List-
ing 2 is a complete program that has
functions based on the inline assembler
as well as the _int86() function.

I may be getting a little obsessive
by showing you all these ways to get
into mode 13h, but I want to make
sure you can do it! Notice the defines
within Listing 2. You can use these
defines to get into mode 13h, to get
back out of it, and to get back to the
80-by-25 text mode that DOS is in.
These defines are:

#define VGA256 0x13

// 320x200x256

#define TEXT_MODE 0x03

// the default text mode

Using these defines will make the
call to the Set_Video_Mode() easier. The
Set_Video_Mode() function is a direct
connection to the video BIOS, so you can
send any parameter you want! Now that
we know how to get into mode 13h
(and hopefully back out), let’s cover the
Color Lookup Table in more depth.

Mixing Colors
with the Palette
As we discussed previously, the Color
Lookup Table comprises 256 color
registers. Each holds the RGB (red,
green, blue) values that make up each
color, as shown in Figure 4. Each
RGB component is 8 bits wide, but
you use only the first six bits to gener-
ate the color for each register. So, each
primary color can have 26 or 64 differ-
ent shades for a total of 218 or 262,144
colors on the standard VGA card.

Here’s how the Color Lookup
Table works. When you plot a pixel on
the screen by writing bytes into the
video buffer, the pixel value you write
becomes an index into the Color
Lookup Table. If you write a 55 into
the video buffer, the actual color that
you see will be the combined RGB
components that exist in color register
55. This opens up an intriguing possi-
bility. By changing the RGB values,
the pixels on the screen will change,

44 GAME DEVELOPER • SEPTEMBER 1994

M O D E 1 3 H

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define VGA256 0x13 // 320x200x256
#define TEXT_MODE 0x03 // the default text mode

void Set_Video_Mode(int mode)
{

// use the video interrupt 10h to set the video mode to the sent value

union REGS inregs,outregs;

inregs.h.ah = 0; // set video mode sub-function
inregs.h.al = (unsigned char)mode; // video mode to change to

_int86(0x10, &inregs, &outregs);

} // end Set_Video_Mode

void Set_Video_Mode_I(int mode)
{

// use the video interrupt 10h to set the video mode to the sent value

// use the inline assembler

_asm
{

mov ah, 0 ; sub - function 0 - set video mode
mov al, BYTE PTR mode ; move the video mode into al
int 10h ; do the interrupt

} // end asm

} // end Set_Video_Mode_I
/
int main(void)
{
// set video mode to 320x200 256 color mode

Set_Video_Mode(VGA256);

printf(“\nHello again!!!”);

// wait for keyboard to be hit

while(!kbhit()){}

// go back to text mode

Set_Video_Mode(TEXT_MODE);

} // end main

Listing 2. Setting the Video Mode to Mode 13h.

too. You can change the RGB values
by changing the color registers using
special ports on the VGA card.

Basically, we need to select the
color register we wish to change and
alter each RGB component of the
color. The ports we need to communi-
cate with on the VGA are:

#define PALETTE_MASK 0x3C6

// the bit mask register

#define PALETTE_REGISTER_RD 0x3C7

// set read index at this I/O

#define PALETTE_REGISTER_WR 0x3C8

// set write index at this I/O

#define PALETTE_DATA 0x3C9

// the R/W data is here

To change a palette register, we
set the palette mask to 255 to ensure
all bits in the register selection are
valid. Then we write the index of the
color register we want to modify to the
palette write register (or the palette
read register if we wish to read the

RGB values). Then the data is written
to or read from the data register at
0x3C9. We will see functions that will
both read and write to the color regis-
ters in a moment, but it might be a
good idea to create a little structure to
encapsulate the RGB components of a
color so we don’t have to pass around
three pointers, and so on. Here is a
color structure I propose to use:

// this structure holds a RGB triple

// in three bytes

typedef struct RGB_color_typ

{

unsigned char red;

// red component of color 0-63

unsigned char green;

// green component of color 0-63

unsigned char blue;

// blue component of color 0-63

} RGB_color, *RGB_color_ptr;

Having this structure will make life
much easier when we write the func-
tions that change the color registers.

Writing to a Color Register
To write to a color register we must
know two things: the color register we
wish to change and the RGB compo-
nents of the color we want to change it
to. Once we know these things, we can
write to the color register using this
function:

void Set_Palette_Register(int index,

RGB_color_ptr color)

{

// this function sets a single color

// look-up table value indexed by index

// with the value in the color structure

// tell VGA card we are going to

// update a palette register

_outp(PALETTE_MASK,0xff);

GAME DEVELOPER • SEPTEMBER 1994 45

Figure 4. Color Lookup Table Architecture

A000:0000

Video Memory

Register 0

Color Lookup Table
Red Green Blue

Red Green

To
Video
Mixer

Blue

X – Don’t care

Each color is composed of three bytes, one for red, green,
and blue.

Final color is:

15/64

9/64

Red%

Green%

Blue%38/64

X X R5 R5 R5 R5 R5 R5 X X R5 R5 R5 R5 R5 R5 X X R5 R5 R5 R5 R5 R5

Register 1
Register 2

Register 11

Register 255

15 9 38

320 x 200(160, 100)

// tell vga card which register we

// will be updating

_outp(PALETTE_REGISTER_WR, index);

// now update the RGB triple, note the

// same port is used each time

_outp(PALETTE_DATA,color->red);

_outp(PALETTE_DATA,color->green);

_outp(PALETTE_DATA,color->blue);

} // end Set_Palette_Register

To use the function we would define a
color structure like this:

RGB_color color_1;

Then, we would set the fields of the
structure and make a call to the func-
tion. For example, say we wanted to
change color register 134 to a bright
red. We might do the following:

color_1.red = 255;

color_1.green = 0;

color_1.blue = 0;

Set_Palette_Register(134,(RGB_color_pt

r)&color_1);

Reading from
a Color Register
Reading the RGB components of a
color register is just as simple. Instead
of writing data to the data port we
simply read it back in the order of
RGB. The first read of the data regis-
ter will always be the red component
of the color, the second read will
always be the green component of the
color, and the final read will always be
the blue component of the selected
color register.

Here’s a function that reads a
color register and stores the RGB val-
ues in the color parameter:

void Get_Palette_Register(int index,

RGB_color_ptr color)

{

// this function gets the data out of

// a color lookup register and places it

// into color

// set the palette mask register

_outp(PALETTE_MASK,0xff);

// tell vga card which register we

// will be reading

_outp(PALETTE_REGISTER_RD, index);

// now extract the data

color->red = _inp(PALETTE_DATA);

color->green = _inp(PALETTE_DATA);

color->blue = _inp(PALETTE_DATA);

} // end Get_Palette_Register

The interface of Get_Palette_Color()
is the same as Set_Palette_Color(), but
the results are different. When you call
the Get_Palette_Color(), the pointer to
the color structure is filled with the RGB
values of the sent index. For example, say
we wanted to extract the color compo-
nents of color register 67:

G e t _ P a l e t t e _ R e g i s t e r (6 7 ,

(RGB_color_ptr)&color_1);

After the call, color_1 would have
the RGB values of color register 67.
Later we will see a program that uses
these functions, but now let’s learn
how to plot pixels on the screen.

Blasting Pixels
As we learned, mode 13h’s video mem-
ory is one big continuous array of bytes
in which each byte represents a single
pixel. The bytes are arranged in 320

columns and 200 rows. To plot a pixel
at a position (X,Y), we must multiply
the Y coordinate by 320 and add the X
coordinate. This will give us the final
offset from video memory at which to
plot the pixel. Before we write a func-
tion to plot pixels on the screen, we
should create a global variable that
points to the video memory so we can
access it like an array. We can create
this global variable with this definition:

unsigned char far *video_buffer = (char

far *)0xA0000000L; // vram byte ptr

This statement creates a pointer
to the video memory that we can use as
a base address for functions. Now, let’s
write a function that plots a single
pixel on the screen.

Plotting Pixels
To plot a pixel we need to know the X
and Y location along with the color.
We then use this information to create
a final address to write the pixel to.
Here’s the code to do it.

void Plot_Pixel(int x,int y,unsigned

char color)

{

// plots the pixel in the desired color

// each row contains 320 bytes, there-

fore multiple Y times the row and add x

video_buffer[y*320+x] = color;

} // end Plot_Pixel

46 GAME DEVELOPER • SEPTEMBER 1994

M O D E 1 3 H

Figure 5. Demo Program Showing Mode 13h and Color Rotation

The body of the function is liter-
ally one line! We would have previous-
ly set the video mode to 13h with a
call to Set_Video_Mode(), so to use the
function, we would just call it with the
desired parameters. For example, if we
wanted to plot a pixel using color reg-
ister 1 at the location of (100,100), we
would make the following call:

Plot_Pixel(100,100,1);

And presto! A little dot appears
on the screen at (100,100).

Reading Pixels
Another important thing to be able to
do in a graphics mode is to read from
the video buffer. Reading a pixel from
the video screen is necessary for colli-
sion detection and image-processing
algorithms. Reading pixels in mode
13h is a snap—we just do things in
reverse. We can almost use the exact
same code as the plot function. We
just do a return of the data addressed
by the coordinates instead of assigning
to it.

Here is the function:

unsigned char Get_Pixel(int x,int y)

{

// gets the color value of pixel at

// (x,y) from the screen and returns

it

return video_buffer[y*320+x];

} // end Get_Pixel

If we wanted to see what pixel
value was at location (50,50) we could
write the following code.

if (Get_Pixel(50,50)==1)

{

// do something

} // end if

Faster, Faster, Faster!
Plotting pixels is so important that you
must plot them as quickly as possible.
So, we must optimize the pixel plot-
ting function as much as we can. Let’s

GAME DEVELOPER • SEPTEMBER 1994 47

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <math.h>

#define VGA256 0x13 // 320x200x256
#define TEXT_MODE 0x03 // 80x25 text mode
#define PALETTE_MASK 0x3C6 // the bit mask register
#define PALETTE_REGISTER_RD 0x3C7 // set read index at this I/O
#define PALETTE_REGISTER_WR 0x3C8 // set write index at this I/O
#define PALETTE_DATA 0x3C9 // the R/W data is here
// demo dependent defines
#define BLOCK_SIZE 6 // size of blocks
#define COLOR_BASE 16 // color base of rotation banks
#define GAME_ROWS 11 // number rows in game developer title
#define GAME_COLUMNS 45 // number of columns
#define GAME_XO 20 // origin of where to draw title
#define GAME_YO 50

// this structure holds a RGB triple in three bytes
typedef struct RGB_color_typ

{
unsigned char red; // red component of color 0-63
unsigned char green; // green component of color 0-63
unsigned char blue; // blue component of color 0-63
} RGB_color, *RGB_color_ptr;

void Set_Video_Mode(int mode);
void Set_Palette_Register(int index, RGB_color_ptr color);
void Get_Palette_Register(int index, RGB_color_ptr color);
void Plot_Pixel_Fast(int x,int y,unsigned char color);

unsigned char far *video_buffer = (char far *)0xA0000000L; // vram byte ptr

// this is the image that will be displayed, put in anything you want
// the “.”’s are for blanks and the “0”’s are for solid
char *game[GAME_ROWS]={

“0000.0000.00.00.0000.........................”,
“0....0..0.0.0.0.0............................”,
“0.00.0000.0...0.000..........................”,
“0..0.0..0.0...0.0............................”,
“0000.0..0.0...0.0000.........................”,
“...”,
“00...0000.0...0.0000.0....0000.0000.0000.000.”,
“0.0..0....0...0.0....0....0..0.0..0.0....0..0”,
“0..0.000...0.0..000..0....0..0.0000.000..000.”,
“0.0..0.....0.0..0....0....0..0.0....0....0.0.”,
“00...0000...0...0000.0000.0000.0....0000.0..0”,};

void Set_Video_Mode(int mode)
{
// use the video interrupt 10h to set the video mode to the sent value
union REGS inregs,outregs;inregs.h.ah = 0; // set video mode

sub-function

Listing 3. A Mode 13H Demo Program (Continued on p. 48)

see if we can’t squeeze some more per-
formance out of it.

When doing graphics on a PC, we
must minimize the amount of math we
do to process visual elements. If we
analyze Plot_Pixel(), we see that there
isn’t much math to optimize—but
there is one snippet. We can use shift-
ing to perform the multiplication on
this snippet instead of the scalar multi-
plication. Let me explain.

We need to multiply Y by 320.
We can do this in the following way:
320 = 256 + 64. Now, if we multiply Y
by 256 and add that to Y * 64, the
result will be Y multiplied by 320.
Hello??? Why multiply Y by two num-
bers? Because we can use binary shift-
ing to accomplish the multiplication.
Remember, shifting to the left in bina-
ry is like multiplying by 2, and we can
use this knowledge to write a fast
Plot_Pixel() function.

A Faster Pixel Plotter
Because we can achieve multiplication
by binary shifting along with addition,
we will rewrite the pixel plotter to
multiply Y by 320. Here is the code:

void Plot_Pixel_Fast(int x, int

y,unsigned char color)

{

// plots the pixel in the desired color

a little quicker using binary shifting

// to accomplish the multiplications

// use the fact that 320*y = 256*y +

// 64*y = y<<8 + y<<6

video_buffer[((y<<8) + (y<<6)) + x] =

color;

} // end Plot_Pixel_Fast

This function works the same as
the previous function except it is about
50% faster, if not more (this will
depend on your machine). We have
covered all the main points of the mys-
teries of mode 13h. Now let’s put

48 GAME DEVELOPER • SEPTEMBER 1994

M O D E 1 3 H

inregs.h.al = (unsigned char)mode; // video mode to change to
_int86(0x10, &inregs, &outregs);
} // end Set_Video_Mode
/void Set_Palette_Register(int index, RGB_color_ptr color)
{
// this function sets a single color look up table value indexed by index
// with the value in the color structure
// tell VGA card we are going to update a palette register

_outp(PALETTE_MASK,0xff);
// tell vga card which register we will be updating
_outp(PALETTE_REGISTER_WR, index);

// now update the RGB triple, note the same port is used each time
_outp(PALETTE_DATA,color->red);
_outp(PALETTE_DATA,color->green);
_outp(PALETTE_DATA,color->blue);
} // end Set_Palette_Register
void Get_Palette_Register(int index, RGB_color_ptr color)
{

// this function gets the data out of a color lookup register and places it
// into color
// set the palette mask register
_outp(PALETTE_MASK,0xff);
// tell vga card which register we will be reading
_outp(PALETTE_REGISTER_RD, index);

// now extract the data
color->red = _inp(PALETTE_DATA);
color->green = _inp(PALETTE_DATA);
color->blue = _inp(PALETTE_DATA);
} // end Get_Palette_Register
void Plot_Pixel_Fast(int x,int y,unsigned char color)
{
// plots the pixel in the desired color a little quicker using binary shifting
// to accomplish the multiplications
// use the fact that 320*y = 256*y + 64*y = y<<8 + y<<6
video_buffer[((y<<8) + (y<<6)) + x] = color;
} // end Plot_Pixel_Fast

void Draw_Game(void)
{
// this function randomly fills up the game developer title with 11
// different shades of blue that are then color rotated by means using
// the color look up table
int x,y,index,clock=0;
RGB_color color,save_color;
// create blue color palette

for (index=COLOR_BASE; index<COLOR_BASE+GAME_ROWS; index++)
{

color.red = 0;

Listing 3. (Continued on p. 49)

everything together into a demo that
does something!

Demoland in Mode 13h
This demo program plots a bunch of
random pixels in a single color. Using
the color register functions, it then
changes the color of all the pixels on
the screen. The final demo is a little
more exciting. It draws the words
“Game Developer” on the screen and
then uses a technique called “color
rotation” to make the colors look like
they are moving. Figure 5 illustrates
the output of the demo. The demo’s
source code can be found in Listing 3.

There isn’t much compiler-depen-
dent code in the demo. You may have
trouble using the _int86() and kbhit()
functions, but all compilers probably
have equivalent functions with almost
the same names.

The ancient Earth technology of
the mysterious mode 13h has been
uncovered for all to see. Few beings
have seen what your eyes have seen—
the configuration of memory, the
Color Lookup Table, and how to plot
pixels at unimaginable speeds. Use
these powers wisely and teach all that
cross you path so that they may share
in the knowledge—and create cool
games. ■

Andre LaMothe holds degrees in
math, computer science, and electrical
engineering, and worked in neural net-
works, three-dimensional graphics, virtual
reality, and robotics before becoming a
game developer. He is the author of the
book Tricks of the PC Game Program-
ming Gurus (SAMS Publishing, 1994).
He’s now writing a second book for begin-
ning game programmers. You can contact
him through Game Developer magazine.

GAME DEVELOPER • SEPTEMBER 1994 49

color.green = 0;
color.blue = (index - COLOR_BASE + 1)*5;

Set_Palette_Register(index,(RGB_color_ptr)&color);(

} // end for color

// do this until user hits a key

while(!kbhit())
{
// plot a pixel somewhere in the game developer title
x = rand()%GAME_COLUMNS;
y = rand()%GAME_ROWS;
// test if there is a block there
if (game[y][x] == ‘0’)

{
Plot_Pixel_Fast(x*BLOCK_SIZE+GAME_XO+rand()%BLOCK_SIZE,

y*BLOCK_SIZE+GAME_YO+rand()%BLOCK_SIZE,
y+COLOR_BASE);

} // end if

// rotate the colors
// this is an effect where by we shift the values of one color
// register into another, this results in a “bucket brigade”
// effect that makes the colors look like they are moving
if (++clock==200) // wait 200 cycles before each rotation

{
// save the first register in sequence
Get_Palette_Register(COLOR_BASE,(RGB_color_ptr)&save_color);
// rotate the colors
for (index=COLOR_BASE+1; index<COLOR_BASE+GAME_ROWS; index++)

{
// place the nth color register in the (n-1)th
Get_Palette_Register(index,(RGB_color_ptr)&color);
Set_Palette_Register(index-1,(RGB_color_ptr)&color);
} // end for index

// complete the circle
Set_Palette_Register(index-1,(RGB_color_ptr)&save_color);
// reset counter clock
clock=0;
} // end if clock

} // end while
} // end Draw_Game

int main(void)
{// set video mode to 320x200x256
Set_Video_Mode(VGA256);

Draw_Game();
// reset video to text mode
Set_Video_Mode(TEXT_MODE);
return(1);
} // end main

Listing 3. (Continued from p. 48)

Slice and dice

LucasArts‘

Rebel Assualt to

meet your needs.

Find out how—and

more—when we

place it on the

Chopping Block.

S
ince this is the first appear-
ance of the Chopping Block,
please indulge me while I
describe some things you will
see in this column. But first,
let’s get something out of the
way—what you will not see
in this column.

If you want general game reviews, a
description of Sim’s weapon modes, the
types of missiles you can fire, the sound
cards supported, or how well a game’s
documentation and manuals are written,
don’t look here.

If you want an overview of a game’s
internals (executables and data files), a
general commentary on how well the
graphics and sound are implemented, a
description of the game engine (and
whether or not it is based on engines in
previously released products from the
same manufacturer), or how well the
user interface is implemented, do look
here. I will also try to describe how you
can tailor a game to your liking, that is,
make flight modes easier, increase the
damage your ship can sustain, give you
more and better weapons, and so on.

Depending on how the game is
written, this is not always easy, and
sometimes it can’t be done at all. (Some
game companies encrypt their data and
executables using data compression rou-
tines and other methods to make the
internals use less disk space; it also locks
out most hackers.) I’ll try to give you all
the information I can while at the same
time not violate any copyright laws. I’ll
also assume that not every reader has
many years of C++ and assembly lan-
guage programming experience under
his or her belt.

When reviewing a game for this
column, my first step is to look at the
overall quality of the graphics, sound,
and user interface. From there, I analyze
the game’s internals. I don’t look at
every byte of code because you can miss
the big picture using that approach, and
it takes too much time.

I look at how well the internals are
written, the overall structure of the
game engine, how well the graphics and
sound are used, how well the user inter-
face works, and how usable the game
really is. The last evaluation point is
totally subjective. I feel that most games
should contain the controls for making
them playable by anyone from my two-
year-old daughter to a Ph.D. computer
engineer.

Let’s Get On With It!
The first game on the chopping block is
Rebel Assault by LucasArts Entertain-
ment Co. This game was in the making
for several years, and it shows. The
overall quality of Rebel Assault shines,
with few detractions.

On first perusal, I was very
impressed with the three-dimensional
object rendering, and the sound was
excellent. My amazement turned to irri-
tation when I discovered I couldn’t get
through the fourth training mission (the
Planet Kolaador sequence), and there
was no way to save my training up to
that point. Even worse, my joystick had
only rudimentary control sensitivity
adjustments, making me a worse pilot
than I already am!

The primary Rebel Assault exe-
cutable is ASSAULT.EXE. This file is
about 212,000 bytes in length and con-

Breaching the
Rebel Base

by Wayne Sikes

C H O P P I N G B L O C K

GAME DEVELOPER •SEPTEMBER 1994 55

The test of time has proven well for Rebel
Assualt—its overall quality still shines.

tains the game engine. A game engine is
the executable code that controls all pri-
mary game activities, such as providing
animation for the graphics display, mon-
itoring user interface devices (keyboard,
mouse, and joystick), activating and
routing information to the sound devices
(your PC speaker or a sound card), and
providing artificial intelligence for game
play.

Memory management is provided
by Tenberry’s DOS4GW.EXE. Pro-
grams such as Rebel Assault often
require a high memory overhead because
graphic data must be continuously
streamed from the CD-ROM and
stored in upper memory (memory above

the conventional 640K of RAM). This
streaming effect allows for higher display
frame rates and seamless transitions
between scenes. The DOS4GW.EXE
memory manager created problems for
LucasArts because it refused to run cor-
rectly on some computers. The result of
these problems was that Rebel Assault
would crash. LucasArts has issued revi-
sions of DOS4GW.EXE in some of the
game patches.

A general analysis of ASSAULT.EXE
reveals a cleanly written, well organized,
and well thought out game engine. The
modularity of the game shows the
designers obvious intent to port it to var-
ious platforms after release of the IBM

version (perhaps Sega CD, Macintosh,
and 3DO). The game was so cleanly
written that analysis of the internals and
location of the primary control variables
was about the easiest analysis job I’ve
done.

By the way, that’s intended as a
compliment to the LucasArts team.
Reviewing source code written by some-
one else is tough enough and reviewing
executable code is much tougher. Any
group who can write and compile exe-
cutable code like this deserves some
praise. Despite the memory management
problems previously mentioned, the
ASSAULT.EXE code appears to be sta-
ble enough to run under other operating
environments, such as OS/2.

Rebel Assault was written in C
using the Watcom C 386 run-time
development system. C and C++ are the
languages of choice for writing games in
today’s market. (I’ve seen a few commer-
cial games written in BASIC and Pascal,
but not many.) One advantage of C is
that you can easily write modular, effi-
cient code. This modularity extends to
the data structures used in the game.

Rebel Assault uses a single data
structure for controlling the primary
mission variables such as joystick sensi-
tivities, targeting accuracy, damage accu-
mulation, and point scoring increments.
Listing 1 shows an example of this data
structure. (This C struct was sourced
from a utility I wrote called RAEASY,
not the ASSAULT.EXE source code.)
Even if you are not familiar with any
type of programming language, take a
look at this code to see the various things
you can alter. Most variable names
explain their function.

The first five bytes in the structure
(mission_name variable) give the internal
name of the mission in ASCII text (null-
terminated char string for you C pro-
grammers). Twenty-one in all, some
missions have A and B parts. The mis-
sions are ordered as: 1A, 1B, 2, 3, 4A,
4B, 5A, 5B, 6, 7, 8, 9A, 9B, 10, 11, 12,
13, 14A, 14B, 15A, and 15B.

The four joystick sensitivities are
grouped together. The roll_sens and
lift_sens variables appear to control the
rotational properties of your vehicle,

C H O P P I N G B L O C K

56 GAME DEVELOPER • SEPTEMBER 1994

/* RAEASY MISSION RECORD STRUCT */
/* Setup missions[][] as a 2D struct for accessing Rebel Assault mission */
/* record data. The first array element, missions[x][], accesses the */
/* missions according to difficulty. There are 3 groups of missions - */
/* EASY, NORMAL, and HARD. The second array element, missions[][x], */
/* accesses the individual missions under the specified difficulty level. */
/* Example: missions[1][2] would access the Asteroid Field Training */
/* data structure at the NORMAL level of play. */

#define BYTE unsigned char /* 8-bit UNSIGNED value */
#define S_WORD short /* 16-bit SIGNED value */
#define EASY_LEVEL 0
#define NORMAL_LEVEL 1
#define HARD_LEVEL 2
#define NUM_DIFFICULTY_LEVELS 3 /* total number of game levels. */
#define NUM_BYTES_PER_MISSION 31 /* bytes per mission struct */
#define NUM_MISSIONS 21 /* total number of missions */

/* per level. */

struct MISSIONS
{
char mission_name[5]; /* Offset 0-4, Mission Name */
S_WORD roll_sens; /* 5-6, Joy=>Ship X-Axis ROLL sens*/
S_WORD lift_sens; /* 7-8, Joy=>Ship Y-Axis LIFT sens*/
S_WORD slide_sens; /* 9-10,Joy=>Ship X-Axis SLIDE sens*/
S_WORD drift_sens; /* 11-12,Joy=>Ship Y-Axis DRIFT sens*/
S_WORD targeting; /* 13-14, Auto Targeting Level */
S_WORD missile_damage; /* 15-16, Missile Damage Increment */
S_WORD collision_damage; /* 17-18, Collision Damage Increment */
S_WORD shot_damage; /* 19-20, Gun Fire Damage Increment */
S_WORD kill_points; /* 21-22, KILL Points */
S_WORD time_points; /* 23-24, TIME Points */
S_WORD level_points; /* 25-26, LEVEL Points */
S_WORD bonus_points; /* 27-28, BONUS Points */
BYTE flags0; /* 29, FLAGS0 */
BYTE flags1; /* 30, FLAGS1 */
} missions[NUM_DIFFICULTY_LEVELS][NUM_MISSIONS];

Listing 1. RAEASY C Language Data Structure

while slide_sens and drift_sens possibly
control the translational (forward and
backward) properties. Since these four
variables appear to work in tandem, the
specific function of each variable isn’t
easy to ascertain, so just experiment.

You can be damaged by colliding
with other objects (canyon walls), enemy
missiles, and enemy gunfire. The dam-
age increments are stored in the
collision_damage, missile_damage, and
shot_damage variables. Damage monitor-
ing is done by reading the damage incre-
ment variables each time you sustain
damage. The increments are added to
internal damage accumulators. When
the accumulators reach their maximum
damage amount, your character dies.

Targeting difficulty is monitored in
the targeting variable. This variable con-
trols how hard or easy it is to target an
enemy. You can vary the targeting diffi-
culty from very easy (essentially an auto-
targeting mode) to very hard.

All point scoring increments are
stored in the primary mission data struc-
ture. You get points for killing an
enemy, surviving for finite periods of
time, and completing a level. You can
also get bonus points for superior perfor-
mance.

The last two variables in the struc-
ture (flags0 and flags1) are bit flags. Bit
flags are individual data bits that control
game functions, such as debugging and
vehicle displays, including weapon fire,
graphics, weapon type, and so on. Be
careful when experimenting with these
bit flags; you can easily destroy a mission
or make it totally unplayable.

As a final note on the primary mis-
sion structure, I found data in
ASSAULT.EXE that indicates you can
get a debugging and developmental data
display of this structure while the game
is running. Unfortunately, I haven’t fig-
ured out how to get the display on the
screen yet.

The graphic engine and its associat-
ed graphics files worked well. I experi-
enced very few time delays on my
486DX2/50 during periods of heavy
graphic rendering. The frame rate was
good enough to avoid choppy graphic
scenery transitions.

The graphics files are very modular.
The graphics consist of two basic file
types: animation and checksum. The
animation files have a ANM or NUT
file suffix. The NUT files are com-
pressed graphic images. The first four
file bytes of ANM and NUT are ANIM
with an AHDR (animation) or NAHDR (nut
type) header description immediately
following.

The animation files contain anima-
tion frames FRME with each frame consist-
ing of one or more frame objects FOBJ. I
wasn’t able to discern the exact type of
graphics animation system (FLI, FLC, and
so on) used by the game. Checksum files

have a CHK suffix, and they were prob-
ably included to ensure the correct trans-
fer of animation file data from the CD-
ROM to RAM. Each animation file has
a corresponding checksum file.

I’ve been told that you can change
the order of the missions just by rear-
ranging the mission file names stored in
ASSAULT.EXE. The game is modular
enough that this may indeed be possible.
The problem with this technique is that,
unless you have the source code, many
internal variables you are unaware of will
probably be corrupted. If you are serious
about your scores, number of kills, and
so on, don’t try reordering game mis-
sions in this manner. Instead, check out
the RACHEA.TXT file by Andy Naef
(100270.2426@compuserve.com). This
file shows you how to access the Rebel
Assault cheat mode. Use this mode to
skip missions.

Even though the three-dimensional
animation graphics were excellent, I
can’t say the same for the video clips that
were interlaced throughout the game.

LucasArts basically took scene clips from
the Star Wars movies and inserted them
into the game. The video playback could
use some significant work. The color
palette was bad and the playback seemed
a little jerky.

The sound worked well with my
ProAudio Spectrum card, but apparently
not as well on some other machines. I
talked to many gamers who had prob-
lems such as no sound, pops or clicking
noises in place of digitized sound, or all
the sounds appeared as echoes of the real
sounds. Rerunning the REBEL.EXE
executable helped some, but I know of
several people who still had sound prob-
lems even after manually editing the
REB.BAT file and inserting data for
their particular sound card.

Battling the Asteroid Field
This section can be broken down into
two areas. The first area lists things that
I would like to see LucasArts add into
Rebel Assault. The second gives some
things that you can do to alter the per-
formance of the game.

The main problem I found with
Rebel Assault was the way the joystick
interface worked. At present, joystick
control is strictly tied to the values stored
in the game’s primary mission data
structure. LucasArts uses these values to
determine part of a mission’s difficulty.
In the future, the joystick interface
should consist of two sets of joystick sen-
sitivity variables. The first set should
contain current mission structure vari-
ables, and the second should contain a
user input set of scale factors. The scale
factors would be dependent on the user’s
joystick and how sensitive he or she
would want the vehicle to be to joystick
movement. A simpler solution would be
to force all joystick sensitivities to user
input levels. Both methods would
accomplish the same thing—better con-
trol of the vehicle. The best joystick
interface I’ve seen was in Velocity’s Jet-
Fighter II. Why can’t Rebel Assault
work the same way?

Improve the Game Yourself
Rebel Assault was cleanly written and
isn’t difficult to modify. You can use

GAME DEVELOPER • SEPTEMBER 1994 57

Even though the Star Wars’ scene clips
could use some adjustments, the three-
dimensional animation graphics in Rebel
Assualt are excellent.

either a prewritten editor, such as the
one I wrote called RAEASY, to modify
the ASSAULT.EXE code, or you can
modify it yourself using any general hex
editor. Since Rebel Assault is sold only
on CD-ROM, any modifications to the
game assume you have copied the
ASSAULT.EXE file from your CD-
ROM to your \rebel subdirectory on
your hard drive. (Make sure the read-
only bit on the hard drive copy of
ASSAULT.EXE is turned off. Use the
DOS attrib command for this function.)

You may need to modify the
REB.BAT batch file to force the game
to run your hard drive copy of
ASSAULT.EXE while still reading all
the game data from the CD-ROM.
The following code fragment gives a
general REB.BAT batch file set up,
assuming your hard drive is C: and your
CD-ROM is D:

D:

cd \

C:\rebel\assault.exe [command line args]

Before discussing code modifica-
tions, any alterations you make to the
Rebel Assault executable can cause
potentially disastrous results. Always
backup the ASSAULT.EXE file before
you modify it!

I just received a mail message from
someone who was lamenting the loss of
his modified ASSAULT.EXE file. He
worked for a couple of months tweak-
ing the file until Rebel Assault played
exactly as he wanted. He had just
installed the version 1.7 patch to the
game. The patch installation overwrote
his original, “perfected” copy of
ASSAULT.EXE. He decided he didn’t
l ike the patch and wanted his old
ASSAULT.EXE file back.

I previously discussed the game’s
primary mission data structure in List-
ing 1. This data structure can be found
in version 1.0 of ASSAULT.EXE at
file offset 192278 (hex 2ef16), version 1.4
has this data at file offset 190226 (hex
2e712), and version 1.7 has the data at
file offset 183968 (hex 2cea0). To use this
structure for modifying the
ASSAULT.EXE file, copy the data

from Listing 1 into your C program
and read the ASSAULT.EXE primary
mission data structure into the mis-
sions[][] structure, starting at the cor-
rect file offset. There are several ways
you can do this. Here’s an example from
RAEASY.C:

fseek(FilePtr, (long)FileOffset,

SEEK_SET);

if(fread(&missions[0][0],sizeof

(missions), 1, FilePtr) != 1) {

/* Error if gets here /*

}

When you are through altering the
missions[][] structure, you can save it
back to ASSAULT.EXE with an
fwrite() call.

In general, setting the joystick sen-
sitivities higher (roll_sens, lift_sens,
slide_sens, and drift_sens) results in
greater control. Lowering the value of
the damage increment variables (mis-
sile_damage, shot_damage, and colli-
sion_damage) results in little or no vehi-
cle damage because the internal damage
accumulators never get filled. Increasing
the targeting variable value to a large
number such as 10,000 gives you an
auto-targeting mode. Setting all joy-
stick sensitivities to zero, all damage
increments to zero, and targeting to
32,767 gives you a great Rebel Assault
demo. Just pull the trigger, and every-
thing else is done for you!

Now lets tweak the graphics
engine for fun. Using a standard text
editor, open the REB.BAT file. Look
for the line where the ASSAULT.EXE
file is called. On the same line follow-
ing the ASSAULT.EXE name are sev-
eral command line switches (/f, /t, /u,
and so on). Find the /f and /t switches.
Each switch has a number value imme-
diately following it. The /f switch con-
trols the graphics frame rate (frames per
second). The REBEL.EXE routine sets
a maximum value of 15 for this switch.
Try increasing this value to 30 or 40.
The /t switch sets the timing of an
internal multitasking clock. This clock
controls how often your peripherals
(joystick or mouse) are read. Increase
this value to around 500. The result of

these modifications is a version of Rebel
Assault that runs in hyper mode. The
graphics will significantly speed up so
that you’ll definitely need some help to
survive in this mode. You will need a
computer that’s capable of running
Rebel Assault in a faster-than-normal
mode. Gamers having a 486/33 or
faster system should have no trouble.

Time to Warp Outta Here
Rebel Assault gives you the best of both
worlds. It’s a great action game with
fantastic graphics and sound, plus it was
so well written that you can easily tweak
it to tailor the game play to your skill
level. I hope LucasArts continues to
provide us with games of this caliber. ■

Wayne Sikes has been a computer
hardware and software engineer for the
last 10 years. He has an extensive back-
ground in C, C++, and assembly language
programming. He also has several years
experience as a computer systems intelli-
gence analyst, where he specialized in deci-
phering and disassembling computer code
while working on classified government
projects. He has authored numerous com-
puter gaming help utilities. He can be
reached via CompuServe at 70733,1562,
or Internet at waynesikes@sandia.gov, or
through Game Developer magazine.

C H O P P I N G B L O C K

58 GAME DEVELOPER • SEPTEMBER 1994

Rebel Assault

LucasArts Entertainment Co.
P.O. Box 10307
San Rafael, Ca 94912-0307
(415) 721-3394
(415) 456-4381

Rebel Assault is made by LucasArt s
Entertainment Co. and usually sells for
$63.95. The game requires an MPC
level 1 or better computer.

T H E A L L I A N C E

W
hen I was told by someone
at Origin that Richard
Garriot was resigning as
head of the Ultima series
to become director of
product development, I
thought he was kidding.
He wasn’t. To understand

the impact of this statement, you really
have to know who Richard Garriot—
and Ultima—is.

Ultima is probably the best known
series on just about any personal com-
puter system. The series originated with
Ultima I, which appeared on the Apple
II in 1982. Garriot, or Lord British as
he’s known, is the author who created
this series from scratch. When the PC
game industry was in its infancy, he was
one of the industry’s few stars.

He’s brought a personal touch to
all the Ultima games over the years.
The regular cast of characters that made
their appearance in almost every Ultima
episode was a representation of aspects
of Garriot’s personality or characters
that were closely based on his friends.

Other personal touches include
taking inspiration from different real-
world events and translating them into
the game. For example, the storyline in
Ultima V was inspired by the saga of
the Dead Sea scrolls. Another example
is the Guardian religion in Ultima VII,
which is loosely based on the premise of
Scientology.

Is this game industry icon losing
control of his prize project? Not exactly.
From the very beginning, Garriot has
been recognized as being the sole
author of the Ultima series. While this
was true in the beginning, his role

evolved as his games did, and his
authorship changed.

The Pain Went Away
Of all the games written by Garriot
only Akalabeth, his first Apple II game,
was written from the ground up. Even
Ultima I contained one assembly lan-
guage routine that was written by a
friend of his, although he still wrote,
drew, scripted, and scored the entire
game. Ultima II and III were also solo
endeavors although the same friend
now wrote the music as well.

By the time the series reached
Ultima IV, the sheer quantity of code
was overwhelming, and Garriot needed
help. Specialists were required for vari-
ous aspects of the game, such as the
path-finding utility, which allowed
nonplayer characters to find their way
around the world. Garriot still retained
plotting and scripting chores for Ultima
IV and V, but with Ultima V, he relin-
quished the chores of being an artist to
professionals. By the time he got to
Ultima VII, he needed help with the
scripting and world creation.

Since Ultima I through III were
almost entirely solo efforts Garriot had
learned to work with total control.
With Ultima IV, he had to adjust to
working with another programmer—
this was the first time he started realiz-
ing what he was giving up. Program-
ming was the area of creating the game
he loved the most, and it was one of the
toughest parts to relinquish.

However, as he was handing off
work, he began to realize the benefits of
working with other people. For exam-
ple, in Ultima V, he commissioned art

The Once and
Future King

How Richard Garriot

became Lord British,

made a lot of money,

and went from doing it

all to running it all on

the same on-going

project. Welcome to

the world of Origin and

its highly successful

Ultima series.

by Alexander
Antoniades

B Y D E S I G N

GAME DEVELOPER • SEPTEMBER 1994 59

from real artists, and the improvements
were instantaneous. Garriot never con-
sidered himself a writer or artist, he
simply did these tasks because there was
no one else to do them. Once he saw
what professional artists could do for the
look of the game, turning over aspects of
the creation to specialists became less of
a problem.

“The transition of doing it all your-
self to doing it as a team was very
painful,” admits Garriot. “However,
once you had a team in place, and espe-
cially once you were no longer sharing
the duties of both doing it and manag-
ing it, the pain went away.”

The Interactive
Move Studio System
Roles were evolving in the Ultima cre-
ation process. The producer is the busi-
ness manager and determines the overall
direction of a project. The director is
the daily task master, guiding the team
on a direct level. Underneath him are
the technical director, who is responsi-
ble for code and manages the program-
mers, and the creative director, who is
responsible for the script and the general
flavor of the game and story details. The
art director manages the art staff and
the look of a game as a whole. Last,
there is a production assistant, who fills

various roles throughout the production
process.

Garriot’s role until Ultima VII was
that of producer, director, and creative
director. Now for Ultima VIII, he serves
only as producer. Even though he plot-
ted Ultima VII through IX, he has
become less and less involved in the
actual scripting. For Ultima IX, he will
serve as executive producer, similar to
the role Gene Roddenberry played in
the creation of the Star Trek series.

The structure is similar to the
movie industry with one major differ-
ence. The creative team, which would
be the equivalent of the screenwriter,
retains control of the scripting. The
needs of writing the game are such that
the writing is done continuously until
the end of the project.

Sandbox Games
Garriot feels that part of the appeal of
the Ultima series is that each segment
has been a significant improvement over
the last. This was a habit he got into
early when he wrote Ultima I. When he
finished Ultima I, he thought it would
be much better if he knew assembly lan-
guage. When he finished writing Ultima
II in assembly language, he knew he
could do much better now that he actu-
ally knew the language. Early on, he got

into the habit of completely starting
from scratch, and it has helped the
longevity of the series.

With this idea in mind, the design
process starts from scratch, which deter-
mines the general goals of the project.
The base level machine (that is, a
486/33 with 8MB of RAM) is decided
so that performance goals can be set.
Another part of the process is to make
certain basic assumptions about game
play. For example, if travel on steeds
(such as horses) should be possible, the
map must be designed in a certain way
from the beginning. Interface changes
are also made at this stage, and other
additions, such as weather are also
added.

A majority of the creation process
is defining of the world physics (what
will be possible with the way the game
code is written). This stage has moved
from two thirds of the total creation
time in earlier Ultimas to one half the
total time currently. Details aren’t incor-
porated into the storyline until the
implementation is determined. Garriot
refers to this style of game creation as
building “sandbox games.” Some of the
story has to be left open until “you know
what toys you have to play with.”

An example of this is the harpsi-
chord in Ultima V. In the versions
before Ultima V, there were only
enough pieces of art to make the neces-
sary objects in the world. In Ultima V,
there were enough tiles to actually craft
other objects. So Garriot added a harp-
sichord object to the world. Once the
harpsichord was there, it was simply a
matter of adding a few lines of code to
make the harpsichord sing. Once the
harpsichord can play music, just add in
some more code so when a special com-
bination of notes is played, a wall will
open up and give you a special item that
is important for the game.

The creative process is tackled this
way, making it easier to determine at
the actual time of creation how hard or
easy it will be to implement a certain
idea. “The details are done in concert
with the generation of the physics.”

The simplicity of the early Ultimas
made adding new additions easier at

B Y D E S I G N

60 GAME DEVELOPER • SEPTEMBER 1994

Ultima VIII, the last hard-disk based game in the series, broke many of the rules of tradition-
al game programming. Besides leaving out the standard cast of characters, the addition of
arcade style sequences didn’t go over well with many critics and players. While maintaining
that they have no regrets, Origin designers are heading back to basics with the next release.

almost any stage of the design process.
The city of Dawn from Ultima II was a
city that would appear when the two
moons were in alignment with each
other. This required a minimal code
adjustment to the game. All that had to
be done was change the land tile to a
city tile in the event that the two moons
in the game register a certain value. In
Ultima IX, the same effect would
require almost a total rewrite of the
world map.

This level of complexity requires
that there be much more preplanning
from the beginning. The movie-making
analogy continues as the notion of pre-
planning becomes more important in
the actual creative process of making the
game. The creativity goals have become
harder to achieve as more preplanning is
required.

The Falling Apple
Growing from the original Apple II
market, by the time Ultima V came out,
the Ultima series loomed over most PC
markets. The biggest market sections
were divided almost equally between the
Commodore Amiga, The Apple II, and
IBM PC. Garriot was a tremendous
Apple fan and thought Apple would win
the PC wars, so he kept the primary
development for the Ultima series on
the Apple II platform.

This mistake almost cost him the
company. Halfway through Ultima VI,
it occurred to him that by the time he
finished there would be no Apple mar-
ket to sell the game to. At this point,
Ultima VI was almost complete for the
Apple IIgs. He immediately stopped
development on the Apple and hired
some experienced PC programmers to
port over the unfinished game.

Overnight, Garriot went from
being an old-time Apple hacker to a PC
programming novice under pressure to
get the game out. Since the move to the
PC, he has not actively programmed in
any of the Ultima series. Garriot still
does not program in C++, the primary
programming language used in Ultima
series, but due to his hacker back-
ground, he can read and understand all
the technical aspects of the code well

GAME DEVELOPER • SEPTEMBER 1994 61

Richard Garriot started programming games in high school, writing Dungeons and Dragons
games on a 10 character-per-second teletype machine. Every time the character moved
the teletype would print out a 10-by-10 segment that would represent a room with aster-
isks for walls.

Garriot’s first real game, Akalabeth, was the result of programming in BASIC on an Apple II
while he worked nights at a computer store in Nassau Bay, where he grew up. The store
owner saw the game and told Richard he should publish it. The computer game industry
being what it was in those days, the purchase of some ziplock bags and some xeroxed
type-written manuals gave him state-of-the-art packaging. He sold the bags in the store
for $19.95.

One of those packages made it to California and fell into the hands of California Pacific, a
software distributor. It in turn sold the game for $34.95 adding a bigger ziplock bag and a
full color manual. Making a $5 royalty off every bag, Garriot ended up making $150,000
for some programming that he did to kill time for three months while he was working at a
computer store. Clearly he was on the right track.

With this in mind, Garriot created the first Ultima. Unfortunately, California Pacific was
going through financial difficulties at the time and stopped paying royalties for Ultima I.
Eventually, California Pacific went out of business, which put him in the market for a new
distributor. He found On-Line Systems (which later became Sierra On-Line). On-Line pub-
lished Ultima II, but Garriot looked for another distributor during contract negotiations.

At that time, his older brother Robert was finishing his masters degree in business and
wanted to start a company. Garriot joined his brother and a friend called Chuck Beuche
and formed Origin Systems in the Garriots’ parents’ garage.

Since Richard and Chuck didn’t have any obligations in Texas, they agreed to move up to
Massachusetts for three years. After that time, all parties agreed they would move to a
new location.

But things didn’t go according to plan. Origin was growing and more staff members were
being added. It soon became clear that the idea of leaving Massachusetts wasn’t going to
work. All the new staff members were native North Easterners, who probably didn’t share
Origin’s founder’s sense of wanderlust. Fearing that Origin would never move to some-
place warmer than New England, first Chuck and then Richard moved back to Texas leav-
ing Origin up in Massachusetts.

Chuck stopped working for Origin, but Richard continued. His plan was to continue work-
ing on Ultima in sunny Austin and leave the rest of the company up in Massachusetts. But
once again, things didn’t go according to plan.

According to Richard, it’s the location. Nestled between the large companies on the west
coast and the large companies on the east coast, Origin used to be the only game company
of note in the midwest. Game programmers for a thousand miles in all directions con-
verged on Origin looking for jobs. With this kind of influx of talent, the development team
in Austin grew. Eventually, since all the development was done in Austin, all the depart-
ments that worked with the development staff eventually trickled down to Austin, until
Robert Garriot was the sole Origin employee living on the east coast.

In 1993, Origin was sold to Electronic Arts, which brought the feud between Richard Gar-
riot and Trip Hawkins full circle. Origin had stopped using Electronic Arts as a distributor
years earlier, mainly over personal disagreements between Trip Hawkins, Electronic Arts’
president, and Richard. Richard responded by parodying Trip with the evil Ultima charac-
ter, Pirt Snikwah, and made the evil blackrock in the shape of the Electronic Arts logo.

T H E O R I G I N O F O R I G I N

enough to participate in any discussions
regarding it.

Intellectual Virtual Reality
Garriot is still very much in the loop of
the Ultima series. Even though his role
as executive producer doesn’t require
him to do as much, he’s still much closer
to this project than others that fall under
his jurisdiction at Origin.

The story content has been one of
the central areas of concentration since
Ultima IV, and the trend will continue.
Whereas Ultima I through III were the
basic hack and slash dungeon and drag-
ons type game, story development
became one of the central focuses of
Ultima IV and helped catapult it to be
the best-selling Ultima in the series.

The current storyline has been planned
as far as Ultima IX, which is currently
under development—after that, any-
thing can happen.

The mixed reviews that have
plagued Ultima VIII don’t concern Gar-
riot. When changes are made to the
Ultima series, he observed, there are
often complaints. A case in point was
the change from the numerous keyboard
commands in pervious versions of Ulti-
ma to a mouse-only interface in Ultima
VI.

As for the future, Garriot thinks of
the Ultima series as “intellectual virtual
reality” and hopes to bring the Ultima
series into true virtual reality when the
hardware is ready. Ultima VIII and IX
are close to reaching the cinematic goal

he envisioned when he started develop-
ing the series. In the future, all Ultima
versions will be CD-ROM based.

In the end, the goals that Garriot
established for himself remain the same.
He feels he has been driven, not by the
necessity to build his own game, but to
build the best game. Whether he does it
by himself or with the help of a hundred
people, that is exactly what he intends to
do. ■

Alexander Antoniades is the associate
editor of Game Developer magazine and
assistant editor of OS/2 Magazine. He
can be reached via e-mail at
sander@mfi.com or through Game Devel-
oper magazine.

B Y D E S I G N

62 GAME DEVELOPER • SEPTEMBER 1994

I
n the boffo gross-out special effects
thriller The Fly, Jeff Goldblum’s
scientist, Seth Brundle, fails—quite
messily—to teleport a living crea-
ture from one end of the room to
the other. The stumbling block is
that elusive element that separates
a living, breathing lab animal from

a gory jumble of offal: life principle.
Soul. Anima. The flesh, he discovers, is
not life.

The visual artist attempting a rep-
resentational image or animation is
faced with a similar dilemma; there’s no
easy equation to imbue artwork with life
either, though admittedly our failures
are easier to clean up than Seth’s mis-
take. The easiest clean-up of all goes to
the artist employing computer graphics
(oh, if only everything in life came with
an Undo feature). The trade-off is that
despite the enviable bag of tricks provid-
ed by rendering software—or perhaps
even because of it—the computer artist
might just be more prone than others to
stumble over this particular hurdle.

After dutifully drawing the right
number of appendages and orifices, we
are able to wrap our creation in texture-
mapping and program it to duckwalk
while humming “In the Mood” through
the PC speakers. Technology has pro-
vided the artist with a lot of neat tools to
create slick effects. But there’s no item
on the toolbar that’ll add life to your
picture.

That challenge is yours, whether
your artwork is static or animated,
whether representative of biomorphic
forms, landscape, or hardware, whether
realistic, cartoonish, or highly stylized.
There is a personality that transcends

mere likeness, and this must be searched
for in every subject, including those that
are inanimate or completely imaginary.
The artist’s real work begins in seeing,
in perceiving those nuances. The rest of
the job is just figuring out how to show
your audience what you’ve seen.

Subduing the Superhero
The chief cause of flaccid art, a visual
cliché, is the result of the artist making
an assumption rather than an observa-
tion. A common example is the depic-
tion of masculine muscularity by aspir-
ing artists who got their anatomy train-
ing from superhero comics rather than
life drawing classes. The various bodily
bulges have become codified and styl-
ized and are added like clip-on parts or
Colorforms: here’s an arm (bulge, bulge,
bulge), and it’s attached to a torso (six
little abdominal bulges, two big lumpen
pectoral bulges).

Of course, when depicted in this
fashion, the parts have little, if any, rela-
tion to one another—unlike a real mus-
culature that can be observed to function
as a unit—and the result is recognizable
but thoroughly unconvincing. Similar
visual clichés abound for virtually every
subject matter, and a good artist works
to avoid them.

What takes their place is observa-
tion; meaning, ideally, that the artist
should look at something real and
sketch it while it’s actually present. A
radical concept, I know, and not always
easy to accomplish. If you just can’t
arrange to sketch live models, try work-
ing from video or laserdisk or, failing
that, from photos. The important thing
is to work from something other than

That’s Life

Computer graphics

bring more to your

game than just a cool

logo, great sound

effects, bright colors,

and superheros with

bulging muscles,

they bring your

game to life with a

personality of its own.

by David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • SEPTEMBER 1994 63

your memory or imagination (just for
this exercise, not forever).

Try it, and don’t be afraid to
attempt a subject in motion. Work fast.
Go for the general shape of your subject.
Sketch contours. Use quick, spare lines
to capture the essence of movement, bal-

ance, mass. Watch your subject rather
than the lines you are making on the
page. Work toward suggesting character
with an economy of line. Don’t worry
that it doesn’t look like much. For that
matter, these sketches should be largely
indecipherable to anyone other than the
artist.

This sort of exercise, called gesture
drawing, is valuable for any subject mat-
ter and worthwhile whether the result is a
static or moving image. Gesture drawing
helps the artist loosen up, allowing mind
and hand to flow together. It also is cru-
cial for distilling the essence of a subject,
for capturing that convincing bit of per-
sonality that makes a piece really work.
Toward that end, your sketches serve as
invaluable notes in visual shorthand.

Colorful Background
Usually, backgrounds are executed by a
different artist or artists than are the
screen’s moving elements. Nonetheless, it
is important that a certain consistency of
style is observed between the two if a sat-
isfying result is to be obtained. A great
disparity between foreground figures and
background scenery robs a piece of what
life it has because the whole is made to
appear unconvincingly patched together.

Equally important is a carefully con-
sidered color palette, with distinct yet
harmonious colors for figures and back-
ground. Use of an identical color in fore-
ground and background can cause a con-
flict if the two areas are ever allowed to
overlap on the screen. Even if no overlap
occurs, such misuse of color will only
serve to detract from the illusion of depth
you’ve worked to create. The colors
selected for the background should
always work to make it recede, giving
precedence to foreground action. An
effective way to achieve this is with
reduced color saturation (from the mys-
terious HLS values).

It’s Alive
Compared to traditional cel animation,
the computer can make it so easy to
move an image smoothly across the
screen that it is tempting to ignore the
fact that few things really move quite that
fluidly. This is reflected in an important
principle of animation known as antici-
pation, which refers to the minute shifts
of weight that preface a movement, that
occur during its course, or that follow in
its aftermath.

As an example, watch someone
move from a standing position to a brisk
walk and come again to a stop. Better
yet, pay close attention while you per-
form these actions yourself. Notice how
the body’s weight is shifted to initiate the
movement, and the first step is not the
same as following steps where momen-
tum has been gained. Observe how and
when the swinging of the arms comes
into play. When forward motion is halt-
ed, note that all movement does not stop
abruptly. Pay attention to how the body
in coming to rest redistributes its
weight.

Of course, not all animation has to
attempt to reflect this degree of fidelity.
By being aware of such nuances of real-
life movement, however, the animator
will be able to imbue on-screen move-
ment with greater authenticity. This is
worthwhile even in less-realistic styles of
animation.

A great example of this can be seen
in Disney’s Snow White in the scene
where the seven dwarves first appear.
Go ahead, laugh. This is not just seven
stumpy figures moving their limbs back
and forth. The dwarves march in uni-
son, yet each displays a unique personal-
ity evident in his walk. Seven walks, all
different, all filled with character. The
scene is a small masterpiece of expres-
sive animation and should serve as an
inspiration to all animators, even those
using fancy software to render space
battles. Remember, in every subject
there is a personality to be discovered
and conveyed.

No Gravedigging Required
And you thought the toughest part of
mastering computer graphics was going
to be getting through the manual. Not
quite, but compared to the hardships
suffered by Goldblum’s Seth Brundle—
or a Victor Frankenstein—bringing your
game visuals to life will be as easy as
falling off a lab bench. True, you’ve got
a good deal of work and planning to do
before sitting down at the computer, but
at least the torch-brandishing villagers
leave you alone, and there are no baboon
parts to clean up.

So grab a sketchbook and go sit
outside. I’m going to the video store to
see if Disney has made Snow White
available yet. Heigh ho! ■

Despite appearances to the contrary,
David Sieks is not dangerously fixated on
Snow White (nor on the Seven Dwarves,
nor on any animated character, with the
possible exception of Charlie Tuna, for
whom he pines terribly). He writes and
makes his little artistic dabblings in Boston
or thereabouts. Sieks can be reached via e-
mail at dsieks@arnarb.harvard.edu or
through Game Developer magazine.

A R T I S T ’ S V I E W

64 GAME DEVELOPER • SEPTEMBER 1994

Being aware of

nuances of real-

life movement will

enable you to

imbue on-screen

movement with

greater authenicity.

	back:

