
T
H

E
 

L
E

A
D

I
N

G
 

G
A

M
E

 
I

N
D

U
S

T
R

Y
 

M
A

G
A

Z
I

N
E

 
v

o
L

1
8

 
N

o
9
 

o
c

T
o

b
E

R
 

2
0

1
1

 
I

N
S

I
D

E
:

 
R

E
A

c
T

I
v

E
 

G
A

M
E

 
A

R
c

H
I

T
E

c
T

U
R

E
S

 
w

I
T

H
 

R
x



http://www.seapine.com/gamedev


game developer   |   xxxxx xxxx 1

d e pa r T m e N T S

	 2		 GAME	PLAN			By Brandon  Sheffield [ E D I T O R I A L ]

Interactive History

	 4		 HEADS	UP	DISPLAY	 [ N E w S ]

New games for vintage consoles, Michael Jackson visits 
Sega, and ASCII Animator released.

27		 TOOL	BOX			By David Hellman [ R E V I E w ]

Corel Painter 12

	34		 THE	INNER	PRODUCT			By Peter Drescher	 [ P R O G R A M M I N G ]

Programming FMOD for Android

	40		 DESIGN	OF	THE	TIMES			By Soren Johnson	 [ D E S I G N ]

	 	 Taking Feedback	

42		 PIXEL	PUSHER			By Steve Theodore	 [ A R T ]

Get The Memo

44		 THE	BUSINESS			By Kim Pallister	 [ B U S I N E S S ]

Efficiency...For Whom? 

46		 GDC	jOBS		By Mathew Kumar	 [ C A R E E R ]

Recruitment at GDC Online

47		 AURAL	FIXATION		By Jesse Harlin	 [ S O U N D ]

Separation Anxiety

48		 GDC	NEwS			By Staff	 [ N E w S ]

2011 Game Developers Conference Europe Hosts More 
Than 2,100 Attendees, GDC China Honors Winners Of 
Shanghai, Beijing Game Jams

49		 GOOD	jOB			By Brandon Sheffield	 [ C A R E E R ]

Q&A with Ken Taya, Who Went Where, and New Studios 

50		 EDUCATED	PLAY			By Tom Curtis	 [ E D U C A T I O N ]

A Flipping good Time

56		 ARRESTED	DEVELOPMENT			By Matthew Wasteland	 [ H U M O R ]

Sandwich Pitches

p o S T m o r T e m

20 	 BULLETSTORM
BulleTsTorm is a colorful skillshot-fest that took 3.5 years to make. It 
didn't perform quite to expectations at retail, but the experiment was 
by all other metrics a success. This straight-shooting design-focused 
postmortem discusses everything from emergent feature discoveries 
to downloadable demo woes.   By Adrian Chmielarz 

F e aT U r e S

6   	 GAME	CHANGERS
The game industry is a dynamic and fluidly-changing one. But who 
(and what) are the companies and concepts that are shaping the 
game industry today? Our answer to this question is 20 companies, 
processes, and concepts that are changing the game.   By Brandon 
Sheffield

13 	 REACTIVE	GAME	ARCHITECTURES
Reactive programming represents a different way of thinking about 
code, moving toward a model that focuses more on expressively 
describing when things happen in games. Gary Dahl illustrates these 
ideas in Microsoft's Rx.   By Gary Dahl

30 	 THE	IRON	FIST
Tekken is a venerable 3D fighting game series, dating back to 1994. 
As the Tekken team looks to complete its mashup with the sTreeT 
FighTer series, we spoke with game director Katsuhiro Harada about 
the first game's origins.     By Brandon Sheffield

CoNTeNTS.1011
volUme 18 NUmBer 09

www.gdmag.Com 1

http://www.gdmag.Com


GAME PLAN //  BRANDON SHEFFIELD

GAME DEvELOPER   |   OctOBER 20112

InteractIve hIstory
On the impOrtance Of preserving games’ rich past

I thInk hIstory Is Important. as 
George Santayana famously wrote 
in The Life of Reason, “Those who 
cannot remember the past are 
condemned to repeat it.” If you look 
around you, it’s clear that we are 
actually doing a lot of repeating 
nowadays. As the game industry 
prepares for 3D in the browsers, and 
we watch the increase in quality 
of games on smartphones, and 
even as one looks at the increasing 
complexity of indie games, we can 
also see a lot of people making 
mistakes that were solved during 
the 32 bit console era, or earlier.

While we can’t stop everyone 
from re-learning all these lessons—
there are tons of pitfalls in game 
development, after all—helping 
more people to understand 
the origins of games and game 
development is a worthwhile 
endeavor. Postmortems go a long 
way, but aside from those on 
Game Developer and Gamasutra, 
not that many are public. There 
are technical manuals and theory 
books, but when you come down 
to it, most of the game industry’s 
collective knowledge is stored up 
in the thoughts and discussions of 
those who lived it.

Ever since my first GDC I have 
been privy to panels, discussions, 
and proposals suggesting how to 
preserve games. Should we keep 
the physical media? Do we try to 
find all the source code? Should we 
emulate everything? What do we 
do for game consoles that no longer 
exist in the world, or of which there 
are very few? How do we present 
this content? There are more 
questions than answers, to be sure.

Many preservation efforts are 
happening on the hobbyist level, 
scattered according to the interests 
of the person undertaking them. 
The folks at www.visual6502.org 
are a great example. They’ve taken 
the venerable 6502 chip, which was 
used in the Apple IIe, the Atari 2600, 
the Commodore 64, and many 
others, and burned down each layer 
of the chip with acid, mapped the 
silicon die and its substrate, then 

created polygon vector models of 
the chip’s physical components. 
This allows chip-level accuracy in 
emulation, and at the very least 
enables the chip to be recreated 
if necessary. And this is fantastic, 
but this is just one chip! The group 
is working to save more chips, 
especially the rarer ones, but they 
can only do so much.

the lIvIng canvas
As the preservation movement picks 
up speed, so too does the desire 
to show off these collections, or at 
least make them available to the 
right people. This, of course, leads to 
museums. One of the largest is the 
International Center for the History 
of Electronic Games (ICHEG) at the 
Strong Museum of Play, which has a 
huge library of games, but also has 
a trove of documents and artifacts 
from persons like Ralph Baer, Dani 
Bunten Berry, Don Daglow, Ken and 
Roberta Williams, and Will Wright. 
These documents are priceless 
windows into the thought processes 
of the time, and it’s fantastic that 
they’re being preserved. 

Then there’s the Video Game 
History Museum, put together by a 
few collectors from the DigitalPress 
forums. Their collection includes 
full runs for multiple consoles, 
collections that truly could not exist 
again without the help of extreme 
investments. There are several 
other minor museums cropping 
up here and there, and even the 
Smithsonian has an upcoming 
exhibition on the art of video games.

These collections are all laudable, 
but once they're established, a new 
problem emerges. How do people 
get to see this stuff? The ICHEG is 
off in Rochester, NY, and the Video 
Game History Museum is setting up 
in Silicon Valley, which is convenient 
for Californians, but not rest of the 
world. And even if these objects are 
on display, how do people interact 
with them? You don’t want someone 
touching that sealed copy of Stadium 
EvEntS for NES (one recently sold for 
$41,300), or rifling through Ralph 
Baer’s papers with their taco hands. 

And just looking at these things from 
afar is not very engaging. To that end, 
they really need what amounts to a 
community manager. Preservation 
is only half the battle. What good is a 
gorgeous collection that nobody can 
play with? 

Face the masses
Museums can often be static and 
sterile, but games are vibrant and 
interactive. There needs to be some 
care put into their presentation. In 
the case of game collections, rare 
artifacts can be presented with 
videos, screenshots, and most 
importantly context. There’s no easy 
solution that would allow people to 
play them, but putting a game in 
the context of its time period (i.e. 
it influenced this, popularized this 
graphical technique, broke this 
unspoken rule) would help preserve 
its legacy, or perhaps introduce it to 
those who didn’t know the game in 
the first place. 

In the case of documentation, it 
can be scanned and retyped, but to 
really make it resonate with people, 
the important elements need to be 
highlighted. The Nth assembly code 
revision is likely going to be less 
exciting than a breakthrough design 
revelation or critical algorithm. Key 
creator interviews would be an added 
bonus to any of these scenarios.

Without context, these 
collections are just anonymous 
piles of stuff. We don’t have scads 
of critics and curators out there to 
illuminate why such and such a 
work is important, like we have in the 
art world. So in order to popularize 
and continue the momentum of the 
preservation, these organizations 
need spokespersons; arbiters of 
quality and content for the rest of 
the world. 

If that person does their 
job well, more collections will 
be donated, there will be more 
awareness of preservation efforts 
in general, and more people will be 
able to experience our deep and 
important history.  

—Brandon Sheffield
twitter: @necrosofty

UBM LLC.
303 Second Street, Suite 900, South Tower  
San Francisco, CA 94107  
t: 415.947.6000  f: 415.947.6090 

W W W . U B m . c o m

sUBscrIptIon servIces

For InFormatIon, orDer QUestIons, anD 
aDDress changes
t: 800.250.2429  f: 847.763.9606
e: gamedeveloper@halldata.com

For DIgItal sUBscrIptIon InFormatIon
www.gdmag.com/digital
 
eDItorIal

pUBlIsher 
Simon Carless  l  scarless@gdmag.com
eDItor-In-chIeF 
Brandon Sheffield  l  bsheffield@gdmag.com
proDUctIon eDItor 
Jade Kraus  l  jkraus@gdmag.com
art DIrector 
Joseph Mitch  l  jmitch@gdmag.com
DesIgner 
Jessica Chan
contrIBUtIng WrIters 

Tom Curtis
Jesse Harlin
Mathew Kumar
David Hellman
Peter Drescher
Steve Theodore 
Kim Pallister
Soren Johnson
Matthew Wasteland
aDvIsory BoarD
Hal Barwood   Designer-at-Large
Mick West   independent
Brad Bulkley   microsoft
Clinton Keith   independent
Brenda Brathwaite   Lolapps
Bijan Forutanpour   sony Online entertainment
Mark DeLoura   thQ
Carey Chico   independent
Mike Acton   insomniac
 
aDvertIsIng sales

gloBal sales DIrector  
Aaron Murawski  e: amurawski@think-services.com  
t: 415.947.6227 
meDIa accoUnt manager 
John Malik Watson  e: jmwatson@think-services.com  
t: 415.947.6224
gloBal accoUnt manager, recrUItment
Gina Gross  e: ggross@think-services.com 
t: 415.947.6241
gloBal accoUnt manager, eDUcatIon
Rafael Vallin  e: rvallin@think-services.com 
t: 415.947.6223

aDvertIsIng proDUctIon

proDUctIon manager  
Pete C. Scibilia  e: peter.scibilia@ubm.com
t: 516-562-5134
 
reprInts

WRIGHT'S MEDIA  
Jason Pampell  e: jpampell@wrightsmedia.com
t: 877-652-5295  

aUDIence Development

tyson assocIates  Elaine Tyson 
e: Elaine@Tysonassociates.com
lIst rental  Merit Direct LLC  
t: 914.368.1000

GAME DEvELOPER
MAGAzINE
www.GDMAG.cOM

http://www.GDMAG.cOM
http://www.visual6502.org
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBm.com


IRVINE, CALIFORNIA     I     AUSTIN, TEXAS     I     VELIZY, FRANCE     I     CORK, IRELAND
SINGAPORE     I     SHANGHAI, CHINA     I     TAIPEI, TAIWAN     I     SEOUL, SOUTH KOREA

SAO PAULO, BRAZIL     I     BUENOS AIRES, ARGENTINA     I     MEXICO CITY, MEXICO

jobs.blizzard.com

©2011 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting across all disciplines for the following locations:

® ® ®

BLIZZ_HR_GDC_AD_2011_m01_NoBooth.indd   1 1/25/11   4:22:20 PM

http://jobs.blizzard.com


HEADS-UP DISPLAY

GAME DEVELOPER   |   OCTOBER 20114

\\\ While some independent developers have found success making “boutique” titles for smaller markets like Xbox Live Indie 
Games, WiiWare, or self-distributed computer games, some go even further; making games for the few people still playing 
vintage consoles! These folks actually manufacture and release their games on discs or cartridges that are playable on the 
original systems, and the games tend to be labors of love, with the words “profit margin” never crossing their makers’ lips. New 
“homebrew” games are coming out all the time, but here are five notables that we’ve had our eyes on.

rise from your grave!
H O B B Y I S T S  C R E A T E  N E W  G A M E S  F O R  V I N T A G E 
H A R D W A R E

BATTLE KID 2: MOUNTAIN OF TORMENT
( S I V A K  G A M E S ,  N I N T E N D O  E N T E R T A I N M E N T  S Y S T E M )

\\\ 2008’s notoriously difficult BATTLE KID: 
FORTRESS OF PERIL was the first significant 
platformer released for the NES since it 
was on shelves, and is still arguably the 
best homebrew game on the system. 
Developer Sivak is following up the 
inventive original (which is part MEGA MAN, 

part METROID, and part independent Flash game I WANT TO BE THE GUY) with 
a sequel that adds more huge bosses, a larger map (638 rooms at press 
time, versus 550 in the original) and a bunch of new gameplay features 
and abilities like wall gripping, conveyor belts, and slippery ice. Like the 
original, the entire game is a solo effort, with Sivak using all his self-
taught Assembly language chops to code the game, as well as composing 
a robust thirty-track soundtrack and drawing all of the graphics. Like the 
original, this one will be available to buy on an actual cartridge at 
RetroUSB.com.

STAR ODYSSEY 
( S U P E R  F I G H T E R  T E A M ,  S E G A  G E N E S I S )

\\\ STAR ODYSSEY isn’t a new game so much 
as it is a new localization. This is the third 
RPG to be officially translated and 
released on cartridge by Super Fighter 
Team for the Sega Genesis. The original 
game, a turn-based space opera RPG 
called BLUE ALMANAC ,  was released 

exclusively in Japan in 1991 by long-defunct publisher Hot-B. The game 
was planned for release in the United States at the time—and was even 
advertised in magazines—but was ultimately scrapped. In 2007, Super 
Fighter Team acquired an incomplete (and we’re told quite buggy) build 
of that English translation and, through a licensing partnership with its 
current rights holder and a lot of long nights of disassembling the ROM, 
was able to polish the game into a commercial state. Interestingly, this 
marks the first time in recent years that a Japanese rights holder has 
been involved with a  re-release for defunct hardware.

DIGGER CHAN 
( A Y P O K  A N D  P L A Y G E N E R A T I O N ,  S E G A  M A S T E R  S Y S T E M )

\\\ DIGGER CHAN is one of the first games to 
be released for Sega’s 8-bit Master System 
since about 1998—yes, the system was 
long dead in most of the world by that point, 
but it found a niche appeal and cultlike 
following in Brazil despite alternatives that 
included Sony’s PlayStation! DIGGER CHAN

brings to mind Namco’s action-puzzler MR. DRILLER. Our hero, DIGGER CHAN

himself, must dig down through colorful underground tiles (preferably 
several matching tiles in a row) and find hidden bottles to fulfill his 
constant need to drink milk (he’s a milk tap repairman, you see), being 
sure to avoid nasty traps set by rival dairy companies. A prototype of the 
game was initially put together as part of a 2006 coding competition at 
Master System preservation web site SMS Power!, but was polished 
casually over the last five years into a commercial product, complete with 
original packaging and clamshell case.

CALM, MUTE, MOVING 
( S O N N Y  R A E  T E M P E S T ,  A T A R I  2 6 0 0 )

\\\ This isn’t really a game: As author Sonny Rae 
Tempest describes it, CALM, MUTE, MOVING is 
actually a “game poem”; a brief interactive work 
of art. The premise sees “players” taking on the 
role of a blue-collar worker driving during his 
morning commute, trying to deal with morning 
traffic while maintaining his cool. Our easily 
irate driver can steel his nerves by smoking a 
cigarette. You can do that with Player 2’s fire 
button just fine, but the game is actually meant 

to be played with a special cigarette-like controller that accepts input via 
the player taking a drag off of a plastic tube. Unlike the other games on 
this list, CALM, MUTE, MOVING isn’t for sale: Those interested should head 
over to SonnyRae.com and download the plans to build their own 
cartridges and cigarette controllers. While you’re there, check out his 
interactive postmortem, in the form of a text adventure game!

STURMWIND 
( D U R A N I K  A N D  R E D S P O T G A M E S ,  S E G A  D R E A M C A S T )

\\\ STURMWIND is actually the fourth 
posthumous Sega Dreamcast release 
from German publisher redspotgames, a 
company founded in 2005 by diehard 
Dreamcast champion Max Scharl. Past 
titles include 2009’s RUSH RUSH RALLY 
RACING, 2007’s puzzle game WIND AND 

WATER: PUZZLE BATTLES, and 2005’s Neo Geo port LAST HOPE. STURMWIND is a 
horizontal shoot 'em-up using a hybrid of pre-rendered 2D and 3D 
graphics. The game actually started life about six years ago as a demo for 
another obsolete console, Atari’s 64-bit Jaguar (developer Duranik has 
also made games for Atari’s Lynx portable and Falcon030 computers), 
but has since shifted to the more popular Dreamcast. Like any good 
shooter, the game has a ton of huge boss enemies, a robust power-up 
system and a rock and roll soundtrack. Initially planned to be released 
around now, STURMWIND was delayed to a new release date of November 
11, 2011—look out, SKYRIM!                —Frank Cifaldi

http://RetroUSB.com
http://www.sonnyrae.com/


WWW.GDMAG.COM 5

\\\ ASCII art has been a staple of the internet for years now, mostly 
used to illustrate amusing snarky forum posts. But in the early days of 
computing, ASCII was one of the only ways to get graphics moving on a 
screen, and thus formed the building blocks of games.

Perhaps unbeknownst to many, a robust ASCII painting program 
was released last year by Melly of the TIGSource forums (http://
forums.tigsource.com/index.php?topic=14588.0). But why stop there? 
Branching from another ASCII painting program (http://code.google.
com/p/ascii-paint/), another TIGSource forum member, eigenbom, has 
created a free ASCII animation program. It’s still a work in progress, with 
actively-updated code, but is impressive even in its early days. 

One of the best features is an export to gif option. As eigenbom 
explains, “The animation exporter will slice the canvas up into a grid, and 
read the frames from left-to-right, top-to-bottom, based on the sprite 
dimensions you supply, and the number of frames you need. It will 
probably explode if you give it dodgy numbers.”

While it’s probably too early to try using this in a game (ASCII images 
can’t be explicitly isolated yet), the future implications certainly spark 
the imagination.                          —Brandon Sheffield

ascii animator 
released

\\\ Here’s a nice little image that was 
recently unearthed from the archives, 
depicting Michael Jackson visiting the 
Sega offices in Japan in 1988, prior to 
the release of the Genesis. That fellow 
showing him around is Mark Cerny 
of MARBLE MADNESS and SONIC THE 
HEDGEHOG 2 fame, who was integral 
to the early success of Sega’s big 
foray into America with STi. The young 
child with MJ is Jimmy Safechuck, 
with whom Jackson acted in a Pepsi 
commercial around that time.

Says Cerny of the visit: “For what 
it’s worth, the monkey stayed in the 
limo and did not take part in the tour. 
Not a joke!”

michael 
jackson 

visits 
sega of 

japan

http://WWW.GDMAG.COM
http://forums.tigsource.com/index.php?topic=14588.0
http://forums.tigsource.com/index.php?topic=14588.0
http://code.google.com/p/ascii-paint/
http://code.google.com/p/ascii-paint/


B r a n d o n  S h e f f i e l d

////////// We work in a rapidly changing 
creative industry, where trends can rise 
and fall inside of a year, or move on to 
become new standards that all shall 
follow. This kind of rapid growth and 
change doesn’t come from nowhere, 
though. There are catalysts to every 
big industry shift. Where would we 
be without the business and game 
architecture of Doom? If Facebook 
hadn’t come along, would we be 
employing thousands of people for 
MySpace games? What about Unity, or 
Unreal Engine 3?

We’ve decided to drill down and look 
at some of the recent concepts, games, 

companies, and services that are 
changing the game industry, for better 
or for worse. 

Mojang 
( S t o c k h o l m ,  S w e d e n )

* Much has been said about Mojang and its 
monster hit minecraft. At over 3 million paid 
accounts and 10 million users total, the game 
is a massive financial and critical success. It 
takes the concept of user-created content to 
new extremes, making the gameplay and the 
creation one and the same. 

But the reason Mojang makes our list is 
not just the money. Any company can make 

money with underhanded tactics, but Mojang 
has done so with absolute transparency. For 
one thing, it proved the viability of the "pay at 
alpha" model of self-funding. Companies have 
tried it before, and others have done it since, 
but minecraft wrote the book on the concept. 
Essentially, let people pay for something they 
like as early as possible—but make sure you 

game developer   |   october 20116

Minecraft



www.gdmag.com 7

keep supporting them, listening to them, fixing 
bugs, and being as honest with them as you 
can. Minecraft creator Markus Persson makes 
most of his announcements via Twitter rather 
than through press releases, and does his best 
to answer most emails and comments directly 
(though that's impossible with 10 million 
users), which puts Mojang at the forefront of 
company messaging as well. 

On top of that, as the company gets 
threatened by Bethesda for using ScrollS 
as the title of its upcoming game (Bethesda 
thinks Mojang's ScrollS sounds too much like 
its own the elder ScrollS), Mojang is turning 
a blind eye to the blatant copies of its game 
that have cropped up on XBLIG and PC, some of 

which have made over a million dollars. 
Mojang should be changing the way 

companies think about the game business. 
The Swedish company proves you can be 
honest, transparent, and responsive to your 
fans, and still make a massive profit.

Kickstarter 
( N e w  Y o r k ,  N Y )

* Kickstarter is likely universally known by 
readers of Game Developer, but on the off-
chance there's someone among us who's 
unaware, Kickstarter is a company that takes 
donations on behalf of a fledgling (or finishing) 
project, offering incentives for buyers, and 

general goodwill for the company that needs 
a boost. Though Kickstarter is certainly not 
the only game in town (see Game Developer 

issue May 2011, pg. 
4), it is the largest, 
and has funded the 
m o s t  s u c c e s s f u l 
game projects to date. 
K i c k s ta r te r  ta k e s 
a small cut of the 
donations (5%, Amazon 
takes another 3–5% for 

use of its payment service), but this is a small 
price to pay for a company looking for funding. 
Most of these groups wouldn't get anything 
otherwise, and the crowd-funding model has 

http://www.gdmag.com


game developer   |   october 20118

turned out to be a big deal for the indie game 
community in particular. Games such as 
Cthulhu SaveS the World and Blade Symphony 
got their funding from Kickstarter, and oCtodad 
got a sequel due to its successful campaign on 
the service. 

The great thing about crowd-funding 
versus getting funds from publishers or angel 
investors is that Kickstarter owns no part 
of submitted projects, and (for better or for 
worse) does not hold them accountable for 
their completion. Most successful projects 
seem to be nudges to the finish line rather than 
actual kick-starts, but a publisher-free funding 
model is a blessing to any independent game 
developer, and Kickstarter is currently the 
leading way to make that happen.

Gameloft 
( P a r i s ,  F r a n c e )

* Gameloft splits its time between making 
mobile versions of licensed game properties, 
like aSSaSSin'S Creed and Splinter Cell, original 
titles like aSphalt, and blatantly similar titles 
to popular games like unCharted and pokemon.

For better or for worse, Gameloft has 
pushed the envelope when it comes to making 

games that draw on the 
success of other titles. 
The company makes 
entirely competent, 
great-looking games 
for mobile devices (and 
occasionally consoles) 
that leave absolutely 
no question as to 
their origin. N.O.V.A.'s 
enemy, weapon, and 
environmental designs 
l o o k  s u s p i c i o u s l y 
like those from halo. 
S h a d o W  G u a r d i a n 
borrows themes and 
gameplay elements 
f r o m  u n C h a r t e d . 
C r y S t a l  m o n S t e r S 
use s  the  theme s, 
gameplay, and even 
battle perspectives 
f r o m  p o k e m o n . 

eternal leGaCy calls to mind Final FantaSy 
Xiii. StarFront: ColliSion does not hide its 
StarCraFt allusions. You don't have to stretch 
your brain very much to see the similarities.

Now, this isn't stealing, but it is a case of 
extreme influence. As battles around IP and 
gameplay concepts rage, Gameloft's studios 
have managed to consistently skirt the 
issue. And it seems to be working for them, 
because whenever a company like Naughty 
Dog or Nintendo doesn't release a game for 

iOS, Gameloft is there to pick up the slack, and 
make a decent game that scratches a similar 
itch. While one certainly wonders what the 
company's design meetings are like, there's 
no question that Gameloft is changing the 
business. This is especially interesting when 
you examine companies like Nintendo, which 
says it will never release a game on iOS. 
Gameloft is forcing companies to think about 
their mobile strategies a bit earlier, before 
Gameloft decides to think of it for them. 

Rovio 
( e s P o o ,  F i n l a n d )

* anGry BirdS is not a tremendously innovative 
game in itself. It's certainly a massive hit, 

with more than 42 million downloads as of 
this writing, but when you break it down, it's 
nothing more than a standard action physics 
puzzler using a formula and play-style that has 
existed for many years. It's not the game that 
puts Rovio on our list—it's how the company 
has supported it.

Once it was clear that anGry BirdS was 
going to be a success, Rovio didn't start 
planning a sequel, or even a new game. It took 
the "games as a service" model touted by MMO 
developers, and shrank it to mobile size. The 
company has released extra levels, holiday-
themed versions, and other updates and 
upgrades (including some item purchasing) 
consistently throughout the game's now 
nearly two-year lifespan. People are still 
buying anGry BirdS even now, because Rovio 
knows when people are playing a game, they 
talk about it. And when people talk, others 
become interested. Consistently building 
buzz has been critical for the title, but so has 
a massive campaign of porting to every device 
under the sun, including upcoming versions 
for Nintendo's Wii U and 3DS, as well as older 
phones and operating systems.

Rovio began as a mobile company doing 
J2ME games and working from contract 
to contract, and some of that shows in its 
porting lust. But the clever bit is that when 

they found a hit, they stuck with it, instead 
of moving on to the next contract. The 
company also used new platforms to prove 
new business models (the first version on 
the Android OS was free-to-play with ads). Is 
this sustainable? Rovio certainly thinks so, 
bragging that when it goes public, its IPO will 
be worth more than PopCap's. This remains to 
be seen, but the company is doing a fantastic 
job of pushing anGry BirdS out to as many 
people as possible, without a huge backlash 
saying that it's just milking one franchise. And 
that takes real ingenuity.

Humble Indie Bundle 
( i n t e r n e t - b a s e d )

*  The Humble Indie Bundle was an intriguing 
experiment—pack several indie games 
together, and give people a "pay what you 
want" model for downloading them. The profits 
were to be divided up among the developers. 
There had been attempts at models like this 
before, but not on this scale. The quality of 
the titles as well as the buzz generated meant 
that the first bundle went on to generate 
almost $1.3 million. Subsequent bundles 
have done even better, helping all companies 
involved generate additional income without 
the bundle claiming any ownership over the 
products themselves.

One of the project's additional successes 
comes from its ability to retain that indie 
feeling while growing massively. As the 
bundles have gotten more successful, they 
attracted the attention of investors. Sequoia 
Capital provided venture funding of $4.7 
million to the bundle's future growth, which 
is a decidedly un-humble amount of money. 
Even so, the third indie-branded bundle has 
surpassed the previous two in sales, and only 
a minimal amount of ill will has been generated 
from fans decrying the less-than-indie funding 
source. So long as the games are indie and the 
cut the bundle makes remains low, it appears 
the Bundle will continue changing the way 
indies look at their own post-release business.

Microsoft's Kinect 
( K i r K l a n d ,  W a )

* The Kinect was Microsoft's answer to the 
motion-control craze in games that started in 
earnest with Nintendo's Wii. Through the power 
of a 3D camera, Kinect makes your full body 
the controller, and early numbers looked good. 
Though Microsoft hasn't released any statistics 
in the last several months, as of March 2011, 
the peripheral had sold over 10 million units. 
The Kinect camera was instantly the cheapest 
3D camera on the market, and the device was 
quickly modified by hobbyists for nonstandard 

Pokemon (top), Crystal 
monsters (bottom).

angry Birds



use, with early demos showing some amazing 
technologies, from 3D rendering of a space in 
real time, to curious visualizers.

It quickly became clear that Kinect was a 
hit among not only game players but the tech 
community at large, and if Microsoft didn't get 

in front of the bus, the hobbyists were going to 
drive it away. So in February 2011, MS released 
a non-commercial SDK for Kinect for PC, and 
while the third-party market for PC-oriented 
use has only begun, a great number of 
impressive strides are already being made. 
Scripts exist in Google Chrome to control the 
browser with hand gestures, MotionBuilder 
is using Kinect for cheap motion capture 
(as are some hobbyists), and others have 
found virtual reality game applications for the 
hardware. Outside of games, Kinect has been 
used in video surveillance, for trying on new 
clothes in retail stores, and medical imaging. 

Kinect is proof positive that if you provide 
intelligent people with an affordable and 
intriguing product, it will take on a life of its own. 
While the Kinect's greatest success will likely 
be in games, when our world crosses over into 
other spheres, even greater things can happen.

Pixologic's Sculptris 
( L O S  A N G E L E S ,  C A )

* It wasn't too long ago that ZBrush and later 
Mudbox took the game art world by storm, 
offering 3D modeling environments that 
were closer to sculpting than they were to 
traditional Maya modeling. The high-polygon 
models couldn't be beat—but for some, the 
software was too complex and labor-intensive. 

And so it was that hobbyist Tomas 
Pettersson set about developing Sculptris in 
his spare time in 2009. The software is still 
in alpha, but already has artists excited, with 
its simpler user interface and speedier entry 
into the world of digital sculpting. Though 

some call it a "ZBrush lite," the software is 
now under the guiding hand of the ZBrush 
company Pixologic, and packs nearly as much 

power into a more user-friendly package. 
Artists, indies especially, have gotten excited 
about the development of the software, which 
looks to open up the world of digital sculpting 
to a whole new audience. What's more, it's 
free to download, though of course Pixologic 
hopes to transition users into ZBrush and 
its more robust, deeper toolset, allowing 
interoperability between both packages.

Valve's Steam 
( K I R K L A N D ,  W A )

* Steam has more than proven itself to be 
the digital publishing platform of choice for PC 
games. With more than 30 million users as of 
this writing, Steam commands a huge chunk 
of the digital game distribution marketplace. 
Downloadable console developers of games 
such as SUPER MEAT BOY have reported making 
significantly more money on Steam than on 

consoles, and cross-
platform development 
across console and 
PC is becoming more 
common as a result. 

Valve's platform has become the de-facto 
standard for independent game companies 
looking to publish on PC, and companies 
such as EA and GameStop have tried to 
make inroads with their own systems, with 
Origin and Impulse respectively. Regardless 
of whether the future of PC games will be 
fragmented across multiple services, it was 
Steam that proved the model, and remains 
a game changer for companies across the 
industry. Steam continues to update, with 
Steam Cloud, which allows some storage of 
game data on a cloud service, built-in DRM 
solutions (for better or for worse), and Steam 
Guard, a safeguard against account hacking.

Though Steam has been available for many 
years, its continued and increasing relevance 
keeps it on our list. 

Zynga 
( S A N  F R A N C I S C O ,  C A )

* Here we have the 200-pound gorilla of the 
social space. Zynga is huge, to be sure, with 
275 million active players as of September 
2011, and more than 2,000 employees— 
but the company is also leading the social 
industry on multiple fronts. For its huge 
corporate anonymity, Zynga has been rather 
open with its development practices, sharing 
best practices for web game development at 
conferences, and discussing the use of social 
metrics in games. 

In terms of its actual games, Zynga has 
also made big strides when it comes to trying 
to get the core gamer into the space, with 
games like EMPIRES & ALLIES and ADVENTURE 
WORLD. Others have made inroads, to be sure, 
but it's nice to see when a larger company 
doesn't play it totally safe. Zynga also runs 
Zynga.org, a charity outlet that has donated 
thousands to worthy causes, based on in-game 
item purchases. Though some question the 
Machiavellian tinge to  Zynga's practices, it is 
doing some good while up there at the top.

Apple’s iOS 
( C U P E R T I N O ,  C A ) 

* Though the revolution came some time ago, 
Apple deserves to make our first list of game 
changers for iTunes, and its supported iOS 
platforms. Since their inception, 
the iPhone, iPad, and iPod Touch 
have collectively become a major 
force in the game industry, and a 
(relatively) cohesive platform in their own right. 

Apple's devices have not only skyrocketed 
the company to the top of the technological 
heap, they have also launched the careers 
and assured the fortunes of a great many 
independent developers. Apple's 70/30% 

WWW.GDMAG.COM 9

Zynga's
ADVENTURE WORLD.

http://Zynga.org
http://WWW.GDMAG.COM


GAME DEVELOPER   |   OCTOBER 201110

revenue-share has become the industry 
standard, and the platform shows no sign of 
slowing down.

While Apple hasn’t put as much focus on 
facilitating games on its home computers, 
many expect some manner of convergence 
across iOS in the near future.

Cloud gaming services

* Developers in general seem to agree that 
cloud-based gaming is an important step 
in the advancement of the digital medium. 
It can free players from having to keep 
their PCs or consoles up-to-date, and could 
pose a platform-agnostic model for game 
development. But at present, there are two 
major players vying for the biggest slice of the 
pie—OnLive (Palo Alto, CA) and Gaikai (Orange 
County, CA).

OnLive is currently banking on its physical 
device, the OnLive Game System, which 
streams game content to a TV-connected box 
that allows the direct use of controllers. So 
far, more than 50 companies have signed on 
with OnLive, which uses proprietary chips to 
display its content.

Gaikai, on the other hand, is a browser-based 
service, with no specific game console, and 
the ability to embed in web sites. Many leading 
games are already available on the service.

Whether one of these companies wins 
or loses is not the point—the game changer 
is the cloud ser vice itself, which frees 
consumers from console cycles, game-based 
PC upgrades, and in some cases, installation 
or downloading of software. Gaming on the 
cloud is not a totally proven model yet, as the 
servers are quite expensive, but as costs go 
down, prospects certainly look up. 

Mozilla/Khronos Group's 
WebGL

* As the next generation of web content 
starts to become a reality, 3D games in 
browsers become more common. And for that 
to happen, we needed something better than 
standard Java. Mozilla's WebGL, among other 
3D web libraries, has risen to fill that need. 

Though WebGL is 
far from perfect, the 
fact that it provides a 
3D graphics API without 
the use of plug-ins is 

an extremely important step toward 3D games 
in the browser. There are some competitors 
out there, but at the moment, WebGL is the 
(slightly fickle) darling of the browser game 
development community. As the library 
expands and best practices start to emerge, 
trends indicate that we'll be playing a lot more 

plugin-free 3D games in our browsers than ever 
before, further reducing the barrier to entry for 
players. And who can argue with that?

Depth Analysis's MotionScan
( S Y D N E Y ,  A U S T R A L I A )

* LA NOIRE may have shuttered a studio 
(Team Bondi) and not fully pleased its parent 
(Rockstar Games) in the sales department, 
but it also brought us one heck of a piece 
of tech. Depth Analysis's 32 high-definition 
camera setup allowed full capture of all 
aspects of actors' faces, mapping them to 
their digital counterparts for an incredibly 
lifelike performance. Though the characters 

were clearly still made in game engines, the 
animation was a major breakthrough. Since the 
game hoped to allow players to gauge whether 
characters were telling the truth, precise 
performance was incredibly important.

After  many years of  R&D,  Depth 
Analysis's work appears to have paid off, 
as the performances in LA NOIRE have been 
majorly lauded. The company claims its 
setup can capture up to 50 minutes of final 
footage, processing up to 20 minutes of 
facial animation automatically per day. This 
technology is available only from Depth 
Analysis so far, but now that the technique 
has been illuminated, it's likely that others 
will follow. The only problem now is that with 
such lifelike facial animation, the rest of the 
computer-generated body begins to look even 
less realistic by comparison—but that's a 
problem for another day.

Google’s productivity services
( M O U N T A I N  V I E W ,  C A )

* Google’s Android platform is currently the 
only serious contender to iOS in the smartphone 
game space, and has shipped on millions of 
devices, yielding massive sales for some of the 
developers on the platform. Even Sony is using 
it for its upcoming tablets, and a set-top box 
is in the works to serve games to televisions 
like a standard game console. But in terms of 

game development, Google has arguably made 
an even greater impact in free collaboration 
software. While Google Docs may not be 
the perfect place to keep that game design 
document or store spreadsheets, it’s free, and 
certainly useful in the prototyping phase.

The company continues to push the 
envelope in the collaboration, and though 
some may decry the fact that through data 
mining, their users are their product, few can 
deny the services’ usefulness.

Looking forward, Google is making good 
strides with its Native Client solution. The 
intent is to get ARM native code running safely 
in browsers, allowing web programs to run at 
near-native speeds. The implications on this 
for browser-based games are pretty clear. 
Faster is (almost) always better! 

Web development pipelines

* Though much of this is still in its infancy, 
integration of browser tech into game 
development pipelines is looking to be a big 
deal in the near future. Some companies, like 
Insomniac, are building their own solutions, 
integrating browsers with their engine for 
things like level editing.

Other companies have begun using 
cascading style sheets 3D transforms to build 
UI and HUDs even in non-browser games—and 
let’s not forget client-side storage solutions.  

In some cases, groups like Fabric Engine 
are so convinced of the future of web pipelines 
that they’ve built their entire business around 
it. Though a lot of the current tech is primarily 
for building web applications, even companies 
like Blizzard have found uses for the web in 
their more traditional pipelines. Expect to see 
more of this as the years wear on. 

Riot Games 
( S A N T A  M O N I C A ,  C A )

* Though the microtransactions model has 
been proven in Korea for years, it had some 
difficulty making inroads with the core gamer 
in the U.S. and Europe. More and more games 
from Western developers have been adopting 
the model, but LEAGUE OF LEGENDS is truly 
knocking it out of the park. The game uses 
intelligent microtransaction-based game 
design that doesn’t make players feel like 
they’re playing a partial game if they don’t 
pay, and gives those that do pay something 
significant to crow about. 

As an online player-versus-player game, 
LOL has also been intelligently built for 
competitive play, which has given the game 
extra legs in other countries. The game is 
one of a handful to be brought to China, and 
distributor Tencent Holdings went so far as to 

MotionScan.



purchase a majority stake in Riot because of 
its success.

The game’s smart design, its democratic 
moderation system, and metagame overlay 
exemplify the future of Western free-to-play 
game development—and some might say, the 
PC game industry as a whole.

Indie Fund

* The indie fund was put together by a host 
of indie game development notables, including 
Jon Blow (BRAID), Ron Carmel and Kyle Gabler 
(WORLD OF GOO), Kellee Santiago (FLOWER), 
and others. Its aim is to “fix a system which 
never worked,” that is to say the relationship 
between indies and publishers. The fund 
currently supports four announced projects; 
Steph Thirion’s FARAWAY, Dan Pinchbeck’s 
DEAR ESTHER, Andy Schatz’ MONACO, and Toxic 
Games’s Q.U.B.E. 

T h e  f u n d ’ s 
overarching goal is to 
help products that are 
markedly dif ferent 
from the norm come to 

release. As the fund says on its official site, “We 
make smaller investments and ask for less in 
return. The hope is that developers see enough 
revenue from their game to self-fund their next 
project. And voilà, one more developer that is 
free to make whatever crazy game they want.”

The fund promises a flexible budget 
with no milestones, proportional repayment 
based on the amount borrowed, and no 
long-term obligations if the game fails to 
make its money back. And it’s debatable 
whether the funded games would even be 
possible without this financial backing. It’s an 
interesting experiment, and the fund seems 
like a model to watch as the games start to 
roll out and developers give feedback about 
their experiences.

Patent litigation 

* Patent lawsuits appear to be here to stay, 
and they’re definitely changing the face of 
games. It feels like every week someone is 
crawling out of the woodwork to sue Sony, 
Nintendo, Microsoft, and any other company 
they can think of for violation of their patent for 
“moving objects on a digital screen.” 

The U.S. has a particularly litigious 
culture, and it was perhaps a matter of time 
before greedy eyes turned toward the game 
industry, but we can’t help but decry most of 
these patents as mere cash-grabs. Many of 
these suits came from outside the industry—
engineers here or there who saw fit to patent 
an algorithm, technique, or process. For 
example, in recent months, Nintendo was sued 
over its Wii Remote design, with ThinkOptical, 
maker of the "Wavit Remote" saying that the 
Wii as a whole violates its patent entitled 
"Electronic equipment for handheld vision 
based absolute pointing system."

Peripheral industries aside, we’ve started to 
see lawsuits from within as well, especially those 
which question reuse of code in subsequent 
games. Some of these lawsuits are legitimate 
misuses of intellectual property, but many 
more are simply posturing matches between 
companies looking to stake out their marketing 
arenas. Unfortunately, the only people that win 
in these cases are the lawyers, and quite often 
the shady engineers with their vague patents. 
That means less money for game development, 
and less money for developers, and certainly 
changes the industry for the worse. 

Mobile social platforms

* OpenFeint was the dominant mobile 
social platform on iOS upon launch, serving 
achievements and persistent leaderboards 
across multiple games. But then Apple came 
out with its own solution, Game Center. 

Now OpenFeint exists for Android as well, 
while DeNA has taken control of most of the 
Japanese market’s standard phones. 

While all these companies and platforms 
duke it out for first place, it’s clear that this is an 
important area. Players want achievements, and 
they want social elements in their games, and 
that’s the real game changer here. Mobile games, 
even a few years ago, were largely solitary 
experiences, but that has changed completely 
with the advent of these sorts of platforms. 

Will one solution rule them all, or will the 
market fragment? As long as consumers’ 
interests are ser ved, and there some 
interoperability for developers, the revolution 
matters more than who’s fighting. 

The U.S. Supreme Court
( W A S H I N G T O N ,  D . C . )

*In a landmark decision, the U.S. Supreme Court 
ruled this year that video games are protected 
under the auspices of the First Amendment, 
striking down a California law that would have 
banned the sale of violent video games to minors. 
As the official ruling said, "Video games qualify 
for First Amendment 
protection.  L i ke 
protected books, 
plays, and movies, 
they communicate 
i d e a s  t h r o u g h 
fa m i l ia r  l itera r y 
devices and features 
distinctive to the medium."

The court also said, "Psychological studies 
purporting to show a connection between 
exposure to violent video games and harmful 
effects on children do not prove that such 
exposure causes minors to act aggressively. 
Any demonstrated effects are both small and 
indistinguishable from effects produced by 
other media."

While the ruling may seem obvious to 
those of us in the industry, one can only 
imagine what might have happened had the 
court ruled in the other direction. This is a 
critical point in the future creative freedom of 
the game industry, and can be used to good 
ends when the inevitable future cases of video 
game censorship crop up. Until a new evil 
comes along to steal the hearts and minds of 
America's youth, as movies, heavy metal, and 
comic books did before them, video games will 
continue to need solid defense in the courts. 
And the First Amendment is pretty much the 
best thing we could ask for. 

BRANDON SHEFFIELD is editor-in-chief of Game 

Developer magazine. He fully understands the internet's 

obsession with cats.

WWW.GDMAG.COM 11

Riot Games' 
LEAGUE OF LEGENDS.

http://WWW.GDMAG.COM


ADVERTISEMENT

UNREAL ENGINE 3 
POWERS TRIPLE-A , FROM 
BLOCKBUSTER RPG TO 
PUZZLE PLATFORMING

The Mass E� ect franchise is a behemoth in video 
game entertainment, a series that has literally 
reshaped the way players think about gaming and 
its immersive possibilities. The upcoming third 
installment, along with its predecessors, are all built 
on Unreal Engine 3.

 Mass E� ect 3 will feature not only improved 
environments and cinematics, but also Kinect 
integration.

“So much has changed since we began working on 
this series,” said Casey Hudson, executive producer at 
BioWare Edmonton. “When we began, the Xbox 360 
hadn’t even come out yet, and yet we had to design 
a game for it. Now, looking back, we’ve been work-
ing with Unreal Engine 3 for quite a few years. Even 
with Mass E� ect 3, we’ve been able to � nd huge new 
improvements to the engine’s performance.”

And performance is key, according to Hudson. “That’s 
allowed us to do everything from getting much bet-
ter acting with the characters to introducing better 
storytelling methods. In addition, the engine al-
lowed us to create a richer world and produce more 

entertaining cinematics. “We’ve also utilized the 
improved performance of the engine to bring more 
enemies onscreen at once, so players will contend 
with a lot more stu�  happening in this game.”

Gameplay has also changed dramatically, said 
Jesse Houston, producer of Mass E� ect 3. “If you 
look at Mass E� ect 1 to Mass E� ect 3, they’re 
almost completely di� erent games at this point. 
You’ve seen major changes in combat. You’ve seen 
major changes in role-playing elements. You’ve 
seen massive lighting changes; now we have real 
graphic � delity that is just so much better than it has 
been historically. You’re going to see performance 
improvements. We’re 30 frames per second yet 
again, locked across the board. You can really feel 
the di� erence in the controls.”

 “We’re ultimately an Unreal Engine 3 game, and 
Unreal Kismet and Unreal Matinee are a major part 
of any kind of cinematic experience,” said Houston. 
“Our team has been able to utilize Kismet and 
Matinee to create Hollywood-style cinematics that 
bring the story to life and enhance the gameplay 
experience.”  Mass E� ect 3 will be released for Xbox 
360®, PlayStation®3 and PC in early 2012.

And while Unreal Engine 3 is the choice among 
many established developers, independent studios 
like Montreal’s Minority also rely on its power. 

Minority’s upcoming PlayStation®Network exclusive 
3D puzzle-platforming adventure, Papo & Yo, has 
already snagged impressive critical accolades, 
including six awards and 20 award nominations at 
this year’s E3, including both IGN and GameSpot’s 
Best Puzzle Game of E3. GameSpot stated that “its 
deeply personal subject matter, clever implantation 
of puzzles, and surreal art design combined to make 
something unique and engaging.” 

Minority’s choice to go with Unreal Engine 3 had to 
do with not only the team’s great track record with 
the engine but also a need for agility throughout 
development. 

Julien Barnoin, lead engineer at Minority, explained, 
“We knew Unreal Engine 3 would get us creating 
gameplay mechanics and levels very quickly. We 
wanted to quickly start building gameplay elements 
and puzzles and iterating on them. UE3’s material 
editor allowed us to achieve beautiful characters and 
environments without a lot of work.  

“When artists or designers come to me asking for a 
new feature, I can often just point them to how to do 
it right in the editor, and can get back to coding the 
features that are really unique to our game.”

Papo & Yo is scheduled for release on PlayStation 
Network in 2012.

UPCOMING EPIC ATTENDED  
EVENTS

Please email licensing@epicgames.com for 
appointments

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, the Circle U logo, Unreal, Unreal Engine, UE3, Unreal Kismet and Unreal Matinee are trademarks or registered trademarks 
of Epic Game Games, Inc. in the United States and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

W W W . U N R E A L . C O M

GDC Online
Austin, TX
October 10-13, 2011

Montreal Int’l Game 
Summit
Montreal, Quebec
November 1-2, 2011

Canadian-born Mark Rein is vice 
president and  co-founder of Epic Games 
based in Cary, NC.  Epic’s Unreal Engine 
3 has won Game Developer magazine’s 
Best Engine Front Line Award � ve times 
along with entry into the Hall of Fame. 
UE3 has won three consecutive  Develop 
Industry Excellence Awards. Epic is the 

creator of the mega-hit “Unreal” series of games and the 
blockbuster “Gears of War” franchise. 
Follow @MarkRein on Twitter.

from Papo & Yo

http://WWW.UNREAL.COM
mailto:licensing@epicgames.com


WWW.GDMAG.COM 13

G A R Y  D A H L 

//////////// One of the exciting things about 
working with computers is that they provide endless 
opportunities for working smarter rather than harder. 
These opportunities have led to evolutions in game 
development tools, game engine architectures, 
and game programming paradigms. Most of these 
advances have been focused on modeling what 
happens in games rather than describing when those 
things happen. Consider how you would express the 
following rules to a computer:
• Earn a power-up after three consecutive deaths 

without scoring.
• Throw fireballs by pressing a button after rocking 

the joystick forward.
• Gain extra points by killing enemies within a 

short time after collecting a power-up.

Describing when rules like these take effect is often 
more difficult than describing their impact. Reactive 
programming is a programming paradigm that focuses 
on how programs react to change. This change might 
come in the form of new user input, the passage of time, 
or assignments to internal variables. When changes like 
these trigger reactions in code, those reactions often 
result in further changes that cascade into subsequent 
reactions. In a sense, changes flow through our 
programs. This is what the reactive programming 
paradigm encourages us to model. Instead of treating 
events as discrete isolated moments, reactive 
programming is focused on modeling and processing 
streams of interdependent events.

Reactive programming isn’t new, but it has 
primarily been used with functional programming 

>>>

http://WWW.GDMAG.COM


game developer   |   october 201114

languages in the past. Traces of these functional roots are evident in 
Microsoft’s new Reactive Extensions (Rx) library, even though it’s available 
for popular object-oriented and hybrid languages like C#, JavaScript, F#, 
and Visual Basic. After an introduction to reactive programming using Rx 
with C#, we’ll reflect on some of the key benefits of reactive programming 
for game development. In particular, we’ll look for better ways of expressing 
when things happen in games.

Reactive Programming with Rx

/// In Microsoft’s words, “Rx is a library to compose asynchronous and 
event-based programs using observable collections and LINQ-style query 
operators.” Observable collections serve as the foundation of this library. 
The IObservable interface represents a stream of event notification 
messages that follow the well-documented “Observer Design Pattern” 
used in many object-oriented applications. Of the many ways to create new 
observables, here is one of the simplest:

IObservable<long> whenSecondsElapse = Observable.Interval( 
TimeSpan.FromSeconds( 1 ) );

This simple observable creates a new event every second. The payload 
with each of these events is a simple sequence number. There are many 
ways to define observers (that implement the IObserver) interface to 
process these events. The following example simply passes every new 
whenSecondsElapse event to the WriteLine method to be printed on 

the screen. There is also a sleep instruction to prevent this asynchronous 
observable from being prematurely terminated. We’ll further discuss this 
asynchronous nature of observables below. 

whenSecondsElapse.Subscribe( Console.WriteLine );
Thread.Sleep( Timeout.Infinite );

Subjects seem to provide one of the most general shortcuts for converting 
existing game events into observable streams. They are observables that 
you can post new events to at any time. Every time an event is posted to 
the following subject, it will be printed to the screen with the prefix “RX>”.

Subject<string> whenNewInputArrives = new Subject<string>();
whenNewInputArrives.Subscribe( newInput => Console.WriteLine( 
"RX> " + newInput ) );

We can now post new event messages to this subject at any time using the 
subject’s OnNext method. Here’s some code that simply echoes the user’s 
input back to the screen by posting it to the whenNewInputArrives subject.

while ( true )
{
    Console.Write( "YOU> " );
    string input = Console.ReadLine();
    whenNewInputArrives.OnNext( input );
}

Event Driven Architecture Reactive Architecture

Imperative Architecture

Continued on Page 16

ILLUSTRATION BY JUAN RAmIRez



15W W W . G D M A G . C O M

ACADEMY OF 
INTERACTIVE ENTERTAINMENT

www.theaie.us

GDP BLANK RIGHT PAGE TEMPLATE_GD 306 MKT.V5  9/9/11  9:33 AM  Page 15

http://www.theaie.us
http://WWW.GDMAG.COM
http://storyworldconference.com


game developer   |   october 201116

When an observable event stream ends or errors out, all of its observers are 
notified and unsubscribed. To demonstrate this, we can add a conditional 
statement to the loop above that ends the event stream as soon as the 
user enters “STOP.” After you type the word “STOP,” your input will stop being 
echoed to the screen through the whenNewInputArrives observable.

if ( input == "STOP" ) whenNewInputArrives.OnCompleted();

Observable Operations

/// Now that we can create simple observables, let’s look at some of the 
high-level operations we can perform on them. Processing and composing 
observable streams represent an expressive new way of describing when 
things happen in our games. The three basic kinds of operations that we’ll 
look at include filtering, projecting, and combining.

For the purpose of this article, we’ll make use of four subjects created 
in a simple XNA game, which you can download the assets for at www.
gdmag.com/resources. There are static keyPress and keyRelease subjects 
that all GameObjects share access to, and non-static collisionEnter and 
collisionExit subjects within each GameObject.

Filtering

/// Filtering allows us to create new observables that contain only a subset 
of the events from another observable. Consider creating an observable 
of firing commands by filtering only enter key presses out of the general 
keyPresses subject. The Where method is used below to create a new 
observable that is filtered in this way.

IObservable<Keys> whenToShoot = keyPresses.Where( key => key 
== Keys.Enter );

We can also filter these events by any number of other criteria, such as 
whether there is actually ammo available for the player to shoot when this 
key is pressed. 

IObservable<Keys> whenToShoot = keyPresses
    .Where( key => key == Keys.Enter && ammoCount > 0 );

Once we’ve created a suitable observable, we can subscribe our bullet-
shooting method to observe it.

whenToShoot.Subscribe( fireKey => shoot() );

Projecting 

/// Projection involves mapping the payloads in an event stream to other 
values. For example, we might want to map the left- and right-key press 
events to -0.05 and +0.05 radians of rotation respectively. After filtering 
the key press stream down to these two events, the Select method below 
performs this projection.

IObservable<float> whenToSteer = keyPresses
    .Where( key => key == Keys.Left || key == Keys.Right )
    .Select( key => key == Keys.Left ? -0.05f : +0.05f );
whenToSteer.Subscribe( steer );

The keyPresses observable above contains only a single event as each key 
is pressed. If we want our steering handling code to be called repeatedly 
while a key is being held down, we can project each key-press event into a 
stream of multiple events that don’t stop until that same key is released. 
SelectMany projects each individual event into a new observable stream 

of events. The observable it returns is composed of all of the events from 
each of those projected streams merged together. 

IObservable<Keys> keyHolds = keyPresses.SelectMany( keyDown => 
    Observable.Interval( TimeSpan.FromMilliseconds( 10 ) )
        .Select( tick => keyDown )
        .TakeUntil( keyReleases.Where( keyUp => keyUp == 
keyDown ) ) );

To break this composition down, every keyPresses event creates a new 
observable using SelectMany. That observable creates a new event every 
10 milliseconds. The payload of these ten millisecond events is projected 
to the value of the key that is being held down using Select. Finally, these 
projected observables are terminated as soon as the held key is released. 
The TakeUntil method is taking care of this termination.

The resulting keyHolds observable can be used to capture events 
every 10 milliseconds for as long as any key is being held down. You can 
replace the keyPresses observable in the steering example above with 
this new keyHolds observable to implement more continuous steering 
controls. This same keyHolds observable can also be used to add thrust to 
propel our ship forward for as long as the up arrow key is held down.

IObservable<Keys> whenToThrust = keyHolds.Where( key => key == 
Keys.Up );
whenToThrust.Subscribe( thrustKey => thrust() );

This ability to compose and reuse new observable event streams 
presents a breakthrough in more expressively describing when things 
happen in a game.

Combining

/// Rx contains a large collection of observable stream-processing 
methods. There are many more methods available than I could hope to 
cover in this article. I can, however, demonstrate a couple patterns that 
appear more generally useful in processing game events. I’ll describe 
these patterns as serial and concurrent event combiners.

The serial combiner responds to specific sequences of serial events. 
As an example, this might be used to implement a combo attack that is 
triggered only by a specific sequence of inputs. The observable defined 
below will only trigger a combo attack after the user presses the sequence: 
up, down, up, enter.

IObservable<Keys> whenToFireCombo = keyPresses.Where( key => 
key == Keys.Up ).SelectMany(
    keyPresses.Take( 1 ).Where( key => key == Keys.Down 
).SelectMany(
    keyPresses.Take( 1 ).Where( key => key == Keys.Enter )));
whenToFireCombo.Subscribe( combo => fireCombo() );

In this example, the SelectMany method cascades new observables 
to check each subsequent serial requirement. Whenever the next key 
entered does not match the required sequence, the nested observables 
are terminated. The only events that the resulting whenToFireCombo 
observable returns occur when the final enter press in this sequence 
is matched.

The concurrent combiner responds to events that are occurring at 
the same time. As an example, consider picking up ammo only when the 
player is both colliding with an ammo pickup and pressing the space 
bar at the same time. The Join method provides a convenient way of 
detecting overlap between events with duration.

http://www.gdmag.com/resources
http://www.gdmag.com/resources


IObservable<GameObject> whenToPickup = Observable.Join(
    collisionEnter.Where( ammo => ammo is Ammo ), 
    keyPresses.Where( key => key == Keys.Space ),
    ammoEnter => collisionExit.Where( ammoExit => ammoExit == 
ammoEnter ),
    keyDown => keyReleases.Where( keyUp => keyUp == keyDown ),
    ( ammo, key ) => ammo );
whenToPickup.Subscribe( pickupAmmo );

In the Join method call above, the first and third parameters describe 
when collision events start and end. The second and fourth parameters 
describe when the enter key is pressed and released. Whenever an ammo 
collision overlaps with an enter-key press, an event is spawned with its 
payload defined by the fifth parameter of this method: the specific ammo 
object that the player is colliding with.

Scheduling and Disposing of Subscriptions

/// Our examples so far have neglected a couple somewhat clerical 
concerns. First, where and when is the code that is asynchronously 
processing observable event streams running? And second, what 
resources need to be released when observers are destroyed?

Rx uses schedulers to encapsulate work that needs to be done, and 
the context it should be done in, with a clock to help regulate when that 
work is done. All the observables we’ve worked with thus far include default 
schedulers. Microsoft has chosen the schedulers to introduce the least 
amount of concurrency reasonable for the observable type. The ObserveOn 
method allows you to change the scheduler that an observable is running 
through. In addition to the Immediate, CurrentThread, NewThread, 
ThreadPool, TaskPool, and Dispatcher schedulers that are provided with 
Rx, you can create your own IScheduler implementation for more complete 
control. The example code includes a scheduler that performs work within 
XNA’s GameComponent framework. Here’s an example of subscribing to an 
observable using that custom scheduler.

whenToShoot.ObserveOn( rxGame.scheduler ).Subscribe( shootKey 
=> shoot() );

Rx uses disposables to model observer subscriptions that can be 
terminated at any time. Whenever an observable sequence is completed 
or errors out, all related subscriptions are automatically disposed of. 
However, when an observer wishes to stop receiving event notifications 
from a live observable stream, they must manually dispose of their 
subscription. This disposable subscription is returned from the Subscribe 
method, and its Dispose method prevents further events from being 
pushed to the observer. The CompositeDisposable  is a convenient 
collection type that allows groups of disposable subscriptions to be 
disposed of together. The following code fragments add a new subscription 
to a CompositeDisposable collection called subscriptions, and then 
disposes of all of the subscriptions in that collection.

subscriptions.Add( whenToShoot.Subscribe( shootKey => shoot() 
) );
subscriptions.Dispose();

Syntactic Sugar

/// The Rx team is fond of pointing out the duality between IObservables 
and IEnumerables. Pulling data from an IEnumberable collection is 
symmetric to having data pushed to you from an IObservable. This 
observation appears to be the inspiration behind integrating LINQ and Rx. 
LINQ is Microsoft’s Language Integrated Query syntax, and has traditionally 

WWW.GDMAG.COM 17

FIGURE 1 Filtering enter key presses to trigger shooting.

FIGURE 2 Projecting left and right key presses into +/-.5 steering angles.

FIGURE 3 Projecting key pressing events into multiple key holding events.

FIGURE 4 Cascading observables that detect Up, Down, Enter serial key 
combinations.

FIGURE 5 Using join to detect concurrent space bar down and ammo collision 
combinations.

http://www.gdmag.com


game developer   |   october 201118

been used to query data from object hierarchies, xml files, and databases. 
It can now also be used to query data from observable event streams in Rx. 
Here’s a quick LINQ example of the steering observable discussed above.

var whenToSteerContinuous = from key in keyHolds
                where key == Keys.Left || key == Keys.Right
                select key == Keys.Left ? -0.05f : +0.05f ;

Although I don’t personally find this syntactic sugar particularly 
advantageous, I do believe the underlying relationship between querying 
databases and event streams is important. The shift from thinking about 
events as hookable moments in time to streams of data that can be 
processed and queried is at the heart of what reactive programming has 
to offer game developers.

A Brief History of When

/// The thing that excites me most about reactive programming in games 
is the increased focus on expressively describing when things happen 
in games. This different way of thinking about and organizing code is 
much more subtle than any new feature on a graphics card or in a game 
engine. In order to better frame this advantage, I’d like to briefly review how 
descriptions of when things happen are commonly implemented in games.

Code is generally executed from top to bottom in imperative 
architectures. When something happens it is implicitly determined by the 
relative position of an instruction. Basic control structures give us ways 
of conditionally skipping over some instructions or repeatedly executing 
them, but generally avoid directly addressing the question of when things 
should happen in a game. These implied expressions of when things should 
happen are powerful enough to implement any Turing-compatible game 
feature or algorithm, but are extremely messy and difficult to maintain.

Modern games and simulations are commonly organized around 
a main loop that runs multiple tens of iterations per second. This loop 
contains instructions implementing every possible change within a game. 
However, many of these instructions may be preceded by a condition that 
contains a true or false expression of whether those instructions should 
be run or skipped over. This condition is repeatedly evaluated within a 
loop, and serves as an explicit description of when something should 
happen in a game. Organizationally, this architecture is still quite a mess 
to deal with, as the line between event-detecting and event-handling code 
is so blurred.

Event-driven architectures break descriptions of what happens in a 
game apart from when those things happen. Many modern game engines 
expose similar sets of event handlers for programmers to implement. 
The convenience of implementing these event handlers without worrying 
about event detection is clearly limited to the set of events that an engine 
exposes. Extending these sets of events is often so cumbersome that 
programmers commonly filter overly general events instead. For instance, 
a general update or tick event that is repeatedly triggered may contain 
multiple conditions checking for events related to each player’s health, the 
elapsed time of a race, and a submersed player’s depth. Detecting game-
specific events in this way leads event-driven architectures to essentially 
degenerate into loop-style now or not-now expressions of when.

There’s a variation of event-driven architectures that carries an 
important advantage in terms of describing when things happen in games. 
Although this terminology is not completely standard, I prefer describing 
systems that serialize event messages for later processing as message-
based architectures. This is in contrast to event-driven systems that 
integrate event-handling directly into the flow of a program's execution 
with constructs like delegates, virtual functions, or function pointers.

Message-based architectures' subtle shift from collecting event-
handling code to event-notification data adds a valuable level of 

indirection. Event notification messages can be sorted, filtered, or even 
deferred for later processing. Beyond helping us more expressively 
describe when things happen in games, message-based architectures 
also offer benefits in the implementation of game save and playback 
features, networking synchronization, and powerful diagnostic tools 
for developers.

The Future of When

/// Reactive game architectures are built on top of multiple observable 
event streams, each of which individually resemble message-based 
architectures. In addition to enabling us to sort, filter, and defer the 
processing of individual event messages, reactive architectures 
encourage us to compose entirely new observables. In the previous 
example code, we composed a keyHolds observable relative to the pre-
existing keyPresses and keyReleases observables. We also created new 
observables that represented both serial and concurrent combinations of 
events from other observable event streams.

Although reactive programming is an important step in the evolution 
of describing when things happen in games, I believe that we are still 
near the beginning of this journey. Many experienced programmers are 
so accustomed to implicitly describing when things happen in games 
that it’s easy to overlook the problem and accompanying opportunities 
for improvement. I’m not sure that I would have been as sensitive to this 
problem if it weren’t for my experience helping students figure out how 
to convert polled key inputs into throttled fire commands. The process 
of identifying mutable state to track and check is just not very intuitive 
to beginning programmers. In fact, even more experienced programmers 
often prefer to avoid such messy mutable states, as can be seen in the 
design of more functional programming languages like Scheme, Haskell, 
and F#.

Reactive libraries like Rx are still a long way from fulfilling their exciting 
potential. There are currently more than a hundred operations available on 
observables. Many of these operations are redundant, and it’s not entirely 
clear what subset of them will form a sufficiently expressive basis. There 
may also be better ways of expressing common high-level processes like 
the serial and concurrent combiners discussed above. As a final note, 
Rx represents a paradigm shift in processing observable event streams. 
This requires time, both for programmers to become familiar with, and 
for tool developers to engineer specialized diagnostic and debugging 
environments around.

Final Reactions

/// Expressively describing when things happen in games is hard. We have 
evolved from using imperative and event-driven architectures to message-
based, and now reactive game architectures. But none of these are as 
expressive or intuitive in formulating descriptions of when something 
happens as in English ... yet. The composable event streams of reactive 
architectures appear to be a promising step forward, but only time and 
experience will tell.

Beyond introducing you to reactive programming and Microsoft’s Rx, I 
hope this article encourages you to experiment with new ways of explicitly 
describing when things happen in your games. It’s easy to take what we 
are used to for granted. But resisting that complacency is essential to 
advancing the state of our art. This is the programmer’s journey, to search 
for new ways to work smarter rather than harder. 

Gary Dahl  is a game programmer, designer, teacher, students, and player.  He has been 

teaching game development skills at Brown College for the last five years, and also 

develops indie games through http://sugarpillstudios.com.

http://sugarpillstudios.com


GDmag11_OCT GDC12_Fall_F.indd   1 9/6/11   1:15 PM

http://www.gdconf.com


game developer   |   october 201120

What could go wrong if your first project is an unassuming old-school PC shooter, and your second project is a big, 
multiplatform AAA title? Why would things be different if you grew from 15 to 70 employees in a couple of years? 
How does it feel to go from e-mail interviews to standing in front of the entire world as it watches your live E3 
presentation? Yeah, this could be a book. Ten thousand things went right and ten thousand things went wrong during 
the production of Bulletstorm. Obviously there's not enough space to talk about them all, so this article is a very 
subjective selection, mostly filtered through the design side. It took three and a half years to make Bulletstorm. 
We've learned, we've grown, and we hope you'll find something for yourself in this story as well.                           >>>



www.gdmag.com 21

Publisher Electronic Arts
DeVelOPer  

People Can Fly/Epic Games
Number Of DeVelOPers 

Around 80 at PCF           
leNgth Of DeVelOPmeNt  

3.5 years
release Date 

February 22, 2011
sOftWare  

Unreal Engine 3, 3ds Max, Maya, 
Photoshop, Modo, ZBrush, Motion 

Builder, MS Office 
PlatfOrm  

Xbox 360, PlayStation 3, PC

http://www.gdmag.com


game developer   |   october 201122

W h a t  W e n t  r i g h t

1  f o c u s  o n  c o r e  c o m b a t  l o o p .
/// Our philosophy is that it’s better to have a great game that’s just about 
spitting than a mediocre game about spitting, screaming, and playing the banjo.

If you have ever sighed at a game’s attempt to offer variety (e.g., not 
every game needs a driving section), you already know what I mean.

Also, stop thinking about that banjo game. It’s not going to happen.
We spent months polishing our core combat loop: shooting, kicking, 

sliding, leashing. A millisecond here, a 1% more transparent particle there. 
Improve, playtest to death, rinse, repeat. We knew it all worked together well 
when we started missing elements of our CCL while playing other games. I 
cannot count the amount of times I wanted to kick or slide into an enemy 
when enjoying a competitor's FPS.

Of course, modern games cannot rely on the CCL alone, but we also don't 
think that having myriad core features is the right solution. You will never 
have the time to polish them all properly.

We decided to focus only on the crucial ingredients, get them to 100%, 
and have the gameplay variety come from a wide palette of contexts to the 
CCL. For example, the kick is always the same thing—the same animation, 
the same sound, the same button—but its purpose can change depending 
on what the player needs to do. Kick to push an enemy away. Kick to destroy 
an enemy's armor. Kick to open a door.

2  p a c i n g  a n d  b a l a n c i n g  p a s s .
/// As with most games, Bulletstorm was built by multiple level designers, 
each working on their own fragment of the game. At a certain point we felt 
that every level had really great pacing: a good warm-up, varied encounters, 
and an interesting cliffhanger.

Most of the levels were done with “big picture” pacing in mind. For 
example, the Cave level started slow, because the ending of the preceding 

level was a six-minute boss fight, and we wanted to let players relax a little.
But as all game designers know, theory is one thing, and the actual 

implementation is another. When we put the game together, some pacing 
problems immediately crawled out of the woodwork. The Cave's relaxed opening 
was a good idea, but lasted far too long. The Underground and Ulysses sections 
were great on their own, but both exclusively featured one type of enemy 
(Burnouts), and that was tiring in the long run. The Dam level felt too long, even 
though in isolation it was one of the best levels in the game.

We made pacing and balancing our priority. We removed and added battles. 
We shortened cinematics. We fine-tuned all the values for ...everything.

In the end, we got a really well-paced game. Unfortunately, it was a little too 
well-paced for its own good. Wait, what?!

Imagine a shooter or a horror game that takes eight hours to finish, but 
where the experience is so intense that you only play one to three hours daily. 
It means it will take you three to five days to finish the game, which is how we 
imagined our game would be. 

However, with Bulletstorm, we have seen time and time again that people 
got so engaged in the experience that they finished the game in one day. It was 
still eight hours, but played in only one or two sessions. That allows us to enjoy 
the fact that over 50% of players finished Bulletstorm, which is higher than the 
industry's standard (this is easily trackable by checking “Finished the game” 
achievements in services like Raptr—see References for more). But at the same 
time, opinions started floating around that the game was short.

It was not short by current standards. But to gamers, two four-hour sessions 
are not the same as five hour-and-a-half sessions.

We are still proud of the pacing and balancing work, but intensity versus 
time is something we’ll have to think about in future projects.

3  f i n d i n g  t h e  f u n  t h r o u g h  e a r l y  f o c u s  t e s t s .
/// We never planned to offer a unique gameplay hook. We just wanted to evolve 
the genre a tiny bit. Maybe we’d do it by unmuting the main hero, even though 



it’s a first-person game. Maybe we’d differentiate by making sure that the 
sidekicks are not automatons spewing context-sensitive comments, but actual 
people we can have strong feelings about. Our intentions were nothing more 
than that. We just wanted to offer a fun high adventure—that's it.

However, the aforementioned focus on the core combat loop, 
constant iterations, and—most of all—internal focus tests led to the 
invention of Skillshots.

I am a big fan of games that offer multiple pseudo-independent systems. 
That is the core of any emergent gameplay. BULLETSTORM has a few systems like 
that: multifunctional weapons (e.g., the flail chain can wrap around enemies 
or objects), an interactive environment (e.g., the explosive trash cans of the 
future can be moved around) and the tools of war (kicking, sliding, leashing).

Players can manipulate and use these systems any way they want. That 
leads to a lot of emergent gameplay moments. You can kick an enemy into a 
trash can, which then explodes, which causes another enemy to go airborne 
and get pierced by a rocket fired by another enemy positioned on the rooftop.

But I would never have thought of naming these crazy actions—and 
indeed, I would never have thought of Skillshots at all—if not for internal 
focus tests.

To some developers, the focus test sounds like something to dread. They 
think: “There’s a reason why I’m the creator, and they’re the consumers.” 
That’s fair enough, and there is some truth to it; but on the other hand, there’s 
also a reason why Blizzard wins so big after spending insane amounts of 
time playtesting and fine-tuning.

Our early focus tests were nothing official. We were just watching each 
other play. In casual conversations we debated what was fun and what sucked.

But it was during these monitored play sessions that I noticed people were 
using BULLETSTORM's emergent combat not to be efficient, but to have fun. A 
headshot is a much faster kill than leashing an enemy toward you, then kicking 
him into a cactus. And yet still people kept on doing that, and even much more 
elaborate things. They were experimenting. Testing theories. Having fun.

“Hey, why don't we actually reward people for being creative?” I thought. 
“How about we call it a Skillshot system?” And one of our core selling points 
was born. 

4  m a n y  c o m p a n i e s ,  one game.
/// You can imagine the fragmentation challenges we faced with PeopleCanFly 
as the main developer and creative owner, Epic as co-developer and quality 
enforcer, and EA as the publisher. And there were a number of additional 
companies from all around the world helping us as well (in Germany, USA, 
China, Sweden, and Poland).

This stuff is not for the faint of heart.
Oddly enough, coordinating the outsourcing was not the hardest part. 

With good, dedicated producers in place, it’s actually something I am sure 
to repeat in the future.

It was the PCF/Epic/EA cooperation that caused the most problems. 
Everybody was equally important, and everybody could influence any part 
of the development process: design, production, and so forth. For example, 
both EA and Epic were giving us independent feedback on the milestones 
and playable builds. It was a mess.

Fortunately, we all noticed that very quickly. We understood that the key 
to fluid cooperation is a proper distribution of roles and responsibilities. In 
other words, sometimes you have to let go.

We immediately streamlined all these processes. Using the feedback 
example, EA was no longer sending feedback to PCF but to Epic. Epic then 
merged EA's feedback with its own, empowered to remove whatever they 
disagreed with, and then sent one unified chunk of feedback to PCF. This 
way we only had to deal with one source of feedback, were no longer prey 
to multiple masters, and stopped worrying about the priorities of the 
feedback items.

If you are working with several partners, letting go is the key. One of 
you knows more about the marketing than the other, another is a better 

WWW.GDMAG.COM 23

http://WWW.GDMAG.COM


game developer   |   october 201124

judge of quality. Clearly define who is responsible for what, and make life 
easier for everyone.

5  u n r e a l  e n g i n e  3 .
/// Ha! What a surprise: a guy from a company owned by Epic, creator of 
Unreal Engine, praising the Unreal Engine. Good one!

In 2004, we released Painkiller. The game took two years to make, with a 
15-person team (on the average). We had a long single-player campaign, and a 
fun multiplayer mode that was a CPL (Cyberathlete Professional League)  game of 
the year. And we did all that using our own engine, which we created from scratch.

Painkiller was really an extremely simple game at its core, though, and 
yet still we struggled. We had to outsource cinematics in order to finish the 
game on time, for example. If it had been any more complicated—and I am 
not talking about big stuff like going multiplatform, I merely mean things like 
featuring a sidekick—the game would never have happened.

Instead of merely listing the benefits of Unreal Engine—something you either 
already know or can easily google—let me just tell you three facts from PCF's past.

First, we decided to switch from our own engine to Unreal well before we 
had any idea that one day we might be a part of Epic. It was worth it to hear 
Mark Rein scream, “Finally!” into the phone. Second, from the moment we 
got the engine, it took us only a month to prepare a demo for publishers—a 
demo that Epic saw and said “Hold on for a second there, let’s talk.” Third, it 
took us two months to make two levels of Bulletstorm for a pitch demo that we 
showed in Leipzig to various publishers, and which got us a deal with EA. I have 
absolutely no idea how we could have achieved that without UE3.

W H A T  W E N T  W R O N G

1  c r e a t i v e  f - b o m b s .
/// Bulletstorm was often critiqued for its seemingly endless stream of four-
letter words.

Do you know any swear word in a foreign language? German, French, 
Polish? When you say it out loud, no biggie, right? Not a problem to use it 
during a family dinner, I assume?

That is how all the f-bombs sounded to us. Being Polish, all the strong 
language in Bulletstorm was just exotic and fun to us. We did not feel its power. 
In other words, Epic thought this is what we wanted and respected our creative 
vision, while we had no idea this vision was a bit more than we really wanted.

It was only at the end of the development, when I read the Polish 
translation of the game, that I realized how dirty we were. I swear a lot. A LOT. 
Yet still I ... kind of blushed.

But, to be honest, the language would not have been a problem if not 
for its creative usage. There are games that use way more f-bombs than 
Bulletstorm, and yet somehow it's less of a problem for them. Why?

That’s because most of the time the language is forgettable. If you hear 
a character say “You f***** scared me, you a******!” you forget about it two 
seconds later. Although, if he says “You scared the d*** off me!" it stays with 
you for a little bit longer, which creates the impression that the game is much 
fouler than it really is.

We tried to solve that by adding the language filter. Originally we forced 
the players to make a choice before they even got to the main menu. With 
best intentions to make the experience more fluid we moved the option to one 
of the submenus.

Big mistake. No one noticed it existed. It cost us a few prestigious reviews 
and a sea of tweets from angry gamers.

Next time, do it like Brutal legend: a forced choice, during the game, right 
before the first f-bomb. Personally, just in case, the game should ask the 
players once more some time later.

2  s l o w  b e g i n n i n g ,  d e b a t a b l e  e n d i n g .
/// I am not a fan of action-packed openings to video games. You do get players’ 
attention, even if the attempt reeks of desperation, but the inevitable lull after 



WWW.GDMAG.COM 25

the intro is over is a pacing killer. I think the only time I have seen a hi–octane 
opening work well was GOD OF WAR, but that's just because Kratos doesn't 
take a break, and the opening is actually the entire game.

But, by Crom, that does not mean your game can take 45 minutes 
before you get to the core gameplay! Which is exactly what BULLETSTORM did.

Endings are even more important. That 2–5% of the game can increase 
the review score if it's awesome, and kill the other 95–98% if it sucks. A bad 
ending is like finishing a delicious dinner only to learn there were worms in it.

Our ending is decent, but we were just trying to be too clever. We wanted 
the players make a certain mental choice. Bad things start happening in main 
character Grayson Hunt’s life when revenge becomes the only thing he cares 
about. At the end of the game, he can choose to continue walking down that 
path, or let go. What would YOU do? Do you think Grayson has learned anything?

But that was a bit fuzzy, and many people treated the lack of a clear 
resolution and closure—even though we destroyed an entire planet—as a 
blatant attempt to trick them into buying the sequel.

Guess what? Throughout the entire development time we were perfectly 
aware how crucial the beginning and ending of a game were, and still we got 
both of them wrong.

Be triple careful and assign an overkill amount of time and resources to 
making sure that the first and last page of your book are perfect.

3  w r o n g  c h o i c e  f o r  t h e  o n l i n e  m o d e .
/// I’m going to tell you a secret. We had a working, playable player-versus-
player mode in BULLETSTORM. It was only a basic deathmatch, and it was a 
mere prototype, but it was playable—and it was tons of fun.

But we felt that the PvP space was too crowded. Ignoring the fact that 
our PvP was unlike anything else out there (thanks to the Skillshot system 
you could win with fewer kills than the opposite team), we felt we needed 
something different. That’s how the Anarchy co-op mode was born.

That, in itself, was not a bad choice. The problem was that we decided 
on Anarchy too late in the development process. We managed to make 
the mode really fun for the hardcore, advanced BULLETSTORM players, but 
everyone else struggled. Anarchy requires tight cooperation, and is not 
bulletproof. If you don't work together, the mode is just not fun. That’s quite 
unlike PvP, where most of the time both teams and individuals can enjoy 
the carnage.

You only have one chance to make the first impression. It's better 
to release a fun and polished bare minimum effort than an unfinished 
experiment, no matter how unique.

4  l a c k  o f  c o n t e x t  i n  t h e  d e m o .
/// In the game industry we often debate whether releasing a demo makes 
sense. It’s a controversial topic. But you know what's not controversial? 
Bad demos.

I wouldn't say our demo was textbook “bad,” but it just wasn't the right 
demo. Demos should be about emotions, about the atmosphere, about the 
vibe of the game. Remember the BATMAN: ARKHAM ASYLUM demo? Perfection.

With the BULLETSTORM demo, we wanted to show people how fun the 
Skillshot system was. We wanted the players to fight for the best score, and 
thus replay the demo over and over again. So we took a very short, storyless 
fragment of one of the levels, stripped it of any story-related dialogue, and 
focused the gameplay flow on core mechanics. Also, because our mechanics 
were new in the FPS world, we added a tutorial movie.

EEEEK. Wrong.
In the full game, we take it slowly. We still have elements of the tutorial 

two hours into the adventure. Why did we expect that people would learn all 
that from a three-minute movie? Why did we expect people to watch these 
movies anyway?

Gamers were confused. So is this a time-attack, arcade-style kind of 
game? There’s no story, right? How can such a shamelessly short demo be 
so boring? All I had to do to finish it was kick, kick, kick!

We should have chosen the opposite: a story-driven “blockbuster” 
fragment of the game, focused on mystery and visual appeal. The 
BULLETSTORM demo did get two million downloads across Xbox 360 and PS3 
in two weeks’ time, which is a good success metric, but we needed to make 
sure that the demo really communicated what we wanted it to.

5  e c h o  m o d e :  t o o  l i t t l e ,  t o o  l a t e .
/// At PCF, we keep saying that Echo mode—a sort of trials and challenges 
spin on the Skillshot system that ranks players based on creativity and 
clearing stages—was created by gamers and journalists.

Our E3 demo was focused on the gameplay and core mechanics: we knew 
there was no way anyone would be able to appreciate the story with a thousand 
other games around fighting for attention with speakers larger than a fridge.

The one silly thing we did in the E3 demo—displaying the amount of 
earned skill points—turned out to be a big deal. People stayed in the demo 
room longer just to see how others performed. They were taking photos 
of their score. Even the crew held an internal competition between waves 
of visitors. Then, when we introduced Echoes via the demo, it spawned 
thousands of homemade YouTube videos.

We had never planned on making an arcade experience for BULLETSTORM, 
but what happened at E3 could not be ignored. We decided to embrace the 
score hunt and added a special gameplay mode with unlocks, stars, and 
leaderboards—the whole shebang.

It was very risky, adding a new, big gameplay mode six months before 
going gold. But we did it. We didn’t get it quite right, however. There were too 
many Echoes (maps) to make competition meaningful, and those maps didn’t 
offer new content because they were simply locations from the campaign. 

Players could win vanity items in Echo mode, but not tangible gameplay 
rewards, so the persistence layer was lacking. We also didn’t have time to 
implement leaderboards such as Best of the Week or Best in the Area. The list 
goes on.

The lesson here is that the time needed to put a feature into the game 
does not equal the time of implementation. It’s possible to strike gold and 
have your first iteration be the last, but 
most of the time that's not the case.

We addressed Echoes-related issues 
in the DLC packs by adding completely new 
maps made from scratch, but it was too 
little, too late. We’re grateful that the mode 
took off in popularity so quickly, and the 
fact that it helped round out BULLETSTORM’s 
gameplay, but we were unable to invest 
enough time to flesh it out.

I  B E L I E V E !

/// BULLETSTORM is bittersweet for us. As a new IP, it sold well over a million 
units, which is amazing when you consider the craziness of 2011, but 
disappointing if you remember that everyone expected more. It suffers from 
a catch-22: it would have been very profitable if it had taken less than three 
and a half years to create, but it would not have been the same game if we 
did not use all that time to make it shine.

But, as Mike Capps, the boss of Epic, said, "It was worth it." Through 
hard work and passion we have become a ninja team ready for any zombie 
apocalypse. We helped improve the Unreal Engine, adding features and 
improving its multiplatform support. We made a game that got praise 
from the most prestigious, toughest magazines in the world, and that has 
become a lasting memory for many gamers.

Thank you, EA, and thank you, Epic. You kick ass, PCF. We're ready for the 
next round. 

ADRIAN CHMIELARZ is creative director of People Can Fly.

references
Statistics on how many 

people finish games: 
http://edition.cnn.

com/2011/TECH/gaming.
gadgets/08/17/finishing.
videogames.snow/index.

html?hpt=te_t1

http://WWW.GDMAG.COM
http://edition.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videogames.snow/index.html?hpt=te_t1
http://edition.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videogames.snow/index.html?hpt=te_t1
http://edition.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videogames.snow/index.html?hpt=te_t1
http://edition.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videogames.snow/index.html?hpt=te_t1
http://edition.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videogames.snow/index.html?hpt=te_t1


GDCOA11_GDMag_F.indd   1 9/1/11   10:02 AM

http://www.gdconlineawards.com


www.gdmag.com 27

R e v i e w  b y  d a v i d  h e l l m a n

corel corp.

Painter 12
Yes, painting in a computer is 
much cleaner, faster, and more 
convenient than painting in 
reality. But you trade away 
the texture and dynamism of 
the pigment. You trade away 
expressiveness. Real-life media 
can be assertive collaborators. 
Watercolor is challenging, but in 
capable hands, its subtlety and 
richness enable poetry.

Enter Corel Painter. In the sterile 
world of digital painting, Painter 
enables an unusual amount of 
poetry. Faithful, intricate simulation 
of real-world media is Painter’s 
purpose, which it attacks deeply 
and broadly. In Painter, oil has 
depth; it builds up on the canvas. 
There’s a light source reflecting off 
it, bringing the paths of individual 
bristles into relief. Marker strokes 
have the variable fuzziness, bleed, 

and saturation jitter that tell you 
they’re real. There’s an entire 
category of tools for blending and 
smudging your work, ranging from 
a pointed stump to something 
called “just add water.” You can 
even simulate wind blowing across 
the canvas.

It’s still no match for physical 
media, and the various effects 
are not as convincing. In Painter 

however, you will hear the pigment 
speaking back to you more than 
in any other app. It’s spunky. It’s 
invigorating. And it’s fairly robust. 

Available tools include, but are 
not limited to: airbrushes, chalk, 
charcoal, gouache, acrylic, palette 
knives, pens, pencil, and sumi-e. 
Each of these are categories with 
a dozen or more items within 
them. Painter 12 expands the 
toolset with new alternative oil 
and watercolor effects, called Real 
Wet Oil and Real Watercolor. These 
are really wet in the sense that 
they bleed, ooze, and otherwise 
transform after application.

Corel has added some cute 
stuff, too. Kaleidoscope Mode 
duplicates your painting across 
three axes in real time, producing 
an effect deserving of its name. It’s 
immediately hypnotic.

With so many tools and 
features, it’s a good idea to 
experiment for a while. Every brush 
comes with a giant control panel 
for adjusting every variable of its 
performance. Patient tinkerers are 
sure to find just the right thing.

When you launch Painter, 
you set foot into a labyrinthine 
digital art laboratory. Every 
corridor reveals another dripping, 
splattering creation—all blessedly 
raster-based, no poncho needed. 
Dials and knobs are everywhere 
and you're invited to push and twist 
whatever you like: You are thrilled.

After visiting for a while, 
though, you admit to yourself 
that certain amenities have been 
neglected. With all the inventing 
and the late nights, nobody has 
tidied up—the interface is cluttered. 
All the customization you’ve been 

invited to do doesn’t quite excuse 
the condition of things.

Many brushes work great, 
but some perform so slowly that 
I found them unusable. It’s said 
that Cézanne would sometimes 
contemplate a canvas for hours 
between strokes. He would have 
had no problem, then, with the 
Real Wet Bristle brush (of the Real 
Watercolor set). During its post-
stroke dynamic drying action, 
the app slows down so badly that 

art is great. But cleaning up is boring. I used to paint with oils, and I ruined a lot of brushes by not rinsing them thoroughly 
enough in the turpentine. Cleaning solvents are corrosive and smell terrible. Thankfully, there is a world encased in glass, 
aluminum, and plastic, where no one ever has to clean up. In this world, mistakes can be undone with a keystroke, “save as” 
dissolves the anxiety of ruining a long-nurtured masterpiece, and a wealth of editing tools speed up experimentation.

corel corp.  
painter 12

1600 Carling avenue
Ottawa, Ontario
K1Z 8R7
Canada
www.corel.com

prIce 

› Full $429
› Upgrade $229

SYSTeM reQUIreMeNTS

› microsoft  windows 7, windows 
vista (32-bit or 64-bit editions), or 
windows XP (32-bit edition), with the 
latest Service Packs installed, 1 Ghz 
processor or higher, 1 Gb Ram, 600 
mb hard disk space for application 
files, 1280 x 800 screen resolution, 
mouse or tablet, dvd drive, internet 
explorer 7 or higher, 
›   mac OS X 10.5 or 10.6 (with latest 
revision), intel Core duo, 1 Gb Ram, 
300 mb of hd space for application 
files,  1280 x 800 screen resolution,  
mouse or tablet

proS

1   dynamic real-media simulations
2   huge range of tools
3   Customizable brush behavior

coNS

1   inconsistent performance
2  Fiddly Ui
3  Too much clutter

TooLBoX

Kaleidoscope mode.

http://www.gdmag.com
http://www.corel.com


COMPANY NAME
PRODUCT NAME
DEK

game developer   |   october 201128

toolboX

even the cursor stutters around 
the screen. God help you if you 
are painting dappled light on the 
surface of a lake. The rhythm 
imposed by this brush, and many 
others, is stroke—wait—stroke—
wait. On the other hand, the Light 
Fringe brush performed quickly 
for me. It’s up to you to figure out 
which brushes work acceptably 
on your system, and under what 
conditions. But do expect lag.

The UI suffers from the same 
unevenness. Painter 12 does 
attempt some improvements over 

previous versions, but obvious 
problems remain. Brushes have 
been regrouped to make them 
easier to find, and yet the three 
types of watercolor categories are 
scattered around. Why? Because 
their names are Watercolor, Real 
Watercolor, and Digital Watercolor, 
and the menu is arranged 
alphabetically—even though it’s 
viewed via icons!

Another example: There’s now 
a toolbar of recently used brushes, 
so you can revert quickly, but many 
of the thumbnails look exactly the 

same, and their names, which are 
displayed in a very tiny font, are 
truncated for space. Your best bet 
is to mouse over and wait for the 
overlay to appear. In short, the 
toolbar that's supposed to make 
brush selection faster is itself slow 
to use.

Many users will take these 
awkward points in stride. If you’re 
a long-time user of Painter, you 
know what to expect and will be 
pleased with upgrades like the new 
Navigator panel, which displays a 
thumbnail of the entire canvas.

But I’ve been using pro apps 
for more than 15 years, and those 
years have made me a less—not 
more—tolerant person. I want the 
power and flexibility of Painter, 
but I want a clean interface, too. I 
want the most-used controls to be 
big, and the less-used things to go 
away until I need them, especially 
because this is an art app. All 
those buttons and sliders are like 
barnacles taking over my canvas.

Look at SketchBook Pro. Yes, 
it’s a rubber ducky facing the Corel 
Painter battleship, but look at 
the approach to UI, at the brush 

resize puck. It’s 88 x 88 pixels 
big! It's easy to grab, which is 
good because you use it a lot. As 
you click-and-drag, an outline 
continuously scales so you can see 
how big your brush will be, relative 
to the zoom level of your painting. 
Back to Painter: The brush resize 
control is an 11x16 pixel rectangle, 
though “rectangle” makes it sound 
nicer than it is. There’s also no 
visual feedback. (I don’t count 
the slider itself as visual feedback 
because the value range is mapped 
unevenly.)

At the end of the day, artists will 
choose Painter 12 because it has 
the best simulation of real-world 
media. Digital watercolors that 
bleed and blend on your screen 
are a fantastic trick, and a boon to 
artists pursuing naturalistic effects 
on a tight schedule. For now, there’s 
no app that does what Painter does, 
and certainly not as elegantly. 

DAviD HEllMAN  is a computer-based artist 

living in San Francisco. He produced the art 

for the game Braid, the web cartoon "Jeff 

and Casey Time," and the comic "A Lesson 

Is Learned But the Damage Is Irreversible."

il
lU

ST
R

AT
iO

N
S 

B
Y 

D
Av

iD
 H

El
lM

AN



www.gdmag.com 29

Idea Fabrik 
Announces HeroCloud 
Middleware Bundle

/// HeroEngine developer Idea 
Fabrik recently announced the 
HeroCloud bundle, a proprietary 
development platform that 
includes middleware from five 
additional tool providers.

The HeroCloud platform 
includes Idea Fabrik's own 
HeroEngine (originally created 
by Simutronics), as well as 
modeling and animation 
technology from RAD Game 
Tools, the FMOD audio suite, 
SpeedTree, Singular Inversions' 
FaceGen, and the performance 
optimization tool Umbra.

Idea Fabrik says the 
HeroCloud license is available 
to developers for no up-front 
cost, though it uses a revenue 
sharing model in which Idea 
Fabrik receives a 30 percent 
cut of net revenue for providing 
the bundle.

"Our goal has always been to 
help game developers find ways 
to make better looking, better 
sounding, better playing games, 
and with the addition of these 
critical technologies, we continue 
to advance our mission—to 
remove the barriers that stand 
in the way of creative game 
development," says Idea Fabrik 
COO Neil Harris.

Earlier this year, Idea Fabrik 
established its own game 
development studio in northern 
Virginia, and introduced Idea 
System, a development and 
business package for 3D social 
games.

–Tom CurTis

OpenFeint SDK 
Adds New Cross-
Promotional Social 
Newsfeed

/// Mobile social game network 
OpenFeint has announced a new 
social game newsfeed for cross-
promotional updates. It’s called 

GameFeed, and it is available 
now in the OpenFeint SDK.

GameFeed's newsfeed 
provides players with real-time 
updates across OpenFeint's 
network of games, providing 
social information that includes 
updated player profiles and 
information from developers.

According to the company, 
24 beta participants saw 
sessions-per-user increase by 
an average of 25 percent, with 
some showing growth as high as 
60 percent.

"Sessions per user is a key 
engagement component of 
lifetime value and GameFeed 
significantly increases 
engagement at no additional cost 
to developers," said OpenFeint 
founder and CEO Jason Citron in 
a statement.

–Frank CiFaldi

iSwifter Adds Google+ 
Support For Flash 
Games On iPad

/// Cloud-based content 
streaming platform iSwifter has 
added Google+ game support to 
its iPad platform.

iSwifter 4.1, available 
now, allows players to access 
Flash-based Google+ games, in 
addition to its previous Facebook 
games implementation.

iSwifter launched just over 
a year ago as a cloud-based 
streaming service for iPad. 
Similar to OnLive or Gaikai, 
iSwifter streams the games over 
the cloud, bypassing the iPad's 
lack of Flash support.

–Frank CiFaldi

Sony 3D Headset 
Coming To Japan This 
November 

/// Sony has announced that 
it will launch a head-mounted 
visor later this year in Japan, 
which will be capable of HD and 
3D visuals through a pair of 
OLED screens.

The “HMZ-T1” device will 
feature two 720p displays in the 
headset, with both 2D and 3D 
high-definition visuals available, 
and 5.1 surround sound.

The headset will also be able 
to output its 
video and audio 
signals to a 
television via 
HDMI output, 
allowing users 

to view the headset content on 
another display.

The available view given 
by the two OLED displays will 
cover a 45 degree area, and 
is designed to block out the 
surrounding areas and keep the 
viewer fully immersed.

Sony says that the headset 
will be compatible with the 
PlayStation 3, allowing users to 
connect it up with their console 
and view games through the visor.

The headset will be released 
on November 11, and will cost 
around ¥60,000 ($783).

–mike rose

Sony Reveals More 
Details On First 
PlayStation-Certified 
Tablets

/// Sony has confirmed the 
price and release details for 
its Sony Tablet S, which will hit 
stores this fall starting at $499. 
It will be the first tablet able 
to legally download and play 
select games from the original 
PlayStation library.

First revealed back in April, 
the Android 3.0-powered tablet 
sports a 9.4-inch touch display 
and an NVIDIA Tegra 2 graphics 
chip, as well as Wi-Fi and 3G 
connectivity options. The $499 
model comes with 16 GB of built-
in memory, while a $599 model 
comes packed with 32 GB. 

Sony didn't provide pricing 
details for the previously-
revealed Sony Tablet P, a 
foldable tablet with two 5.5-inch 
touchscreens and 4G network 

capability set for a November 
release. Each screen can be 
controlled independently by 
Android apps, with one screen 
providing a PlayStation-style 
controller interface and the other 
showing gameplay, for example.

The tablets will be Sony's 
second and third PlayStation-
certified mobile devices, after 
the Spring launch of Sony 
Ericsson's button-sporting 
Xperia Play smartphone.

–kyle orland

Crytek Releases Free 
CryEngine 3 SDK, 
Explains Commercial 
Revshare Model

/// Crysis series developer Crytek 
has released a free downloadable 
SDK for its proprietary CryEngine 
3 engine, and has further outlined 
its revenue share model for 
commercial applications. Since its 
release last August,  as of press 
time, the free CryEngine 3 SDK 
has been downloaded more than 
300,000 times.

The engine is free to use for 
non-commercial purposes, but 
those wishing to use the engine 
for commercial products will 
have to enter into a royalty-only 
licensing agreement that sees 
Crytek receiving 20 percent of the 
game's revenues.

"This SDK contains more toys 
than we've ever released before—
it empowers people to create 
whole new games from scratch, 
not just mod Crytek’s own games, 
so we encourage all aspiring and 
indie developers to try it out," said 
Crytek's Carl Jones in a statement.

According to prior statements 
by CEO Cevat Yerli, this free SDK 
contains all of the features of its 
commercial version, saying that 
it is "the same engine we use 
internally, the same engine we 
give to our licensees, the same 
engine that powers Crysis 2." The 
SDK is available to download now 
at Crydev.net.

–Frank CiFaldi

p r o d u c t  n e w s

http://Crydev.net
http://www.gdmag.com


game developer   |   october 2011 30

/////// Tekken is a seminal entry in the pantheon of early 3D fighting games, and 
one of the only series still running, alongside VirTua FighTer and the somewhat 
newer Soul Calibur. While other fighters opted for a six-button setup using light, 
medium, and fierce punches and kicks respectively (like STreeT FighTer), or a 
four-button strength-based system (like The king oF FighTerS), Tekken used a 
limb-based system, where buttons corresponded to left punch, right punch, left 
kick, right kick. The early days of 3D in games are intriguing, to say the least, 
as companies scrimped and saved every bit and byte while trying to deliver the 
maximum visual bang for their buck. As Capcom and Namco prepare to release 
separate STreeT FighTer/Tekken mashups, we spoke with Tekken director 
Katsuhiro Harada, who has worked on their series since its inception, about the 
origins of Tekken's systems, its unique aesthetic, and its nearly nonsensical story.

Brandon Sheffield: In the original Tekken, what was the thinking behind a "four-limb"-based button system as 
opposed to a strength-and-intensity-based one?
Katsuhiro Harada: Well, before Tekken, Namco had been conducting a lot of R&D into polygon-based graphics, and 
the consensus we had was that true-to-life animation was going to become a huge aspect of game graphics going 
into the future. That turned out to be very true, of course. The limb-based control scheme sort of grew from that, 



www.gdmag.com 31

but the scheme also felt really good 
for a fighter—you could execute 
these one-two punch combos really 
quickly and intuitively.

BS: Right, the R&D was a big deal–
when I talked with Yu Suzuki a few 
months ago, he mentioned that in 
those early days everyone was 
in this race to create the most 
realistic 3D graphics possible. 
Was the extra complexity a part 
of the decision, too—having four 
buttons instead of the three 
that Virtua Fighter had? [Virtua 
Fighter was a year old in 1994 
when tekken was released, and 
only had punch, kick, and block.]

KH: Certainly we were constantly 
aiming to improve ourselves, 
trying to avoid doing things that 
were already done before. One 
thing with VF was that the action 
your character took depended on 
which side he was facing—his 
moves were flipped depending 
on whether he was facing left or 
right. Including all the animation 
data to make that function is a ton 
of work, and required what, at the 
time, was a lot of data. The control 
system for the first Tekken was an 
attempt to avoid that requirement 
and just execute the same moves 
no matter which side the fighter's 
facing—that, in turn, freed up more 

storage space for things like extra 
characters and moves.

BS: Most previous f ighters 
were working along the lines 
of light/medium/fierce—both 
in movement and in thought 
process. What was the thinking 
behind moving away from that?
KH: I think the light/medium/fierce 
system is a pretty good way to 
represent fighting in a video game, 
but it's hard to define which moves 
go into which "level" of force. It gets 
even harder with certain fighting 
styles, because how can you define 
what a "weak" sumo or capoeira 
move is? That's why we concluded 

http://www.gdmag.com


game developer   |   october 201132

that the light/medium/fierce system 
wasn't really appropriate for a game 
trying to encompass a really large 
variety of martial arts like what we 
were aiming for.

BS: Where do you draw the line 
between fantasy and reality 
in this genre? To some degree 
you're going for realism, but flash 
is important too. Capoeira, for 
example, would not really be a 
powerful style to use in fights like 
this, but it looks super cool.
KH: We certainly realize that "realism," 
as defined within the bounds of this 
game, can be a very different thing 
from what would happen in real life. 

Rocky, for example, is a film that a lot 
of people liked—but that was a work 
of fiction, and real-life boxers would 
never use really flashy moves like 
that in an actual match. It's not "real" 
realism so much as "wouldn't it be 
nice if things were like this" realism. 
That's what we aim for here, this 
manga-or movie-like atmosphere that 
has impact upon the observer. We try 
to portray what people expect of the 
reality they see within games.

BS: You have to build in those kind 
of dramatic moments—having the 
final hit replayed at the end of the 
match, and so on.
KH: Right.

BS: I feel Tekken  has its own 
universe of physics, definitely 
different from reality, and from 
other games as well. You punch 
someone and they're immediately 
off their feet and horizontal, or flip 
around in the air and so on. How 
did you come up with this type of 
physicality?
KH: That flipping around in the air 
thing is actually something that I 
devote a lot of close attention to. We 
want that manga-like atmosphere, to 
recreate the wide range of expression 
possible in manga. There's an older 
manga called Ashita no Joe, and 
that's one I draw a lot from.

BS: Was it part of the plan to make 
getting hit as dramatic as hitting, so 
to speak?
KH: Definitely. You want it to feel as 
dramatic and exciting as possible for 
the person attacking, to make him feel 
like, "Yes!" when he lands something.

BS: Talking about animation—I 
talked with Yoshinori Ono from 
Capcom about this—in a fighting 
game, speed is one of the most 
important things. When a player 
hits a button, they need that impact 
immediately. Disney animation 
emphasizes the setup over the 
impact, but fighting games have 
to take the opposite approach. 
There's this delicate balance 
between finishing animations and 
making sure the next move comes 
on time. Tekken seems to animate 
a bit more and for longer than other 
series, so I wanted your take on the 
button-to-move gap.
KH: The Tekken series treats both 
the feeling of speed and the feeling 
of exhilaration seriously, which 
is par t of why you can throw 
people into the air so easily—it 
feels lighter than it should, and 
it's fun. Another thing we treat 
importantly, though, is the feeling 
of weight that the attacks give off. 
That goes back to what I said about 
taking damage—the animation's 
done to make that feel powerful, 
and emphasizing a certain fluidity 
to the animation contributes to 
that feeling of weight or power, 
like you're really winding up your 
kicks and other techniques. Tekken 
doesn't have much of a frame 
buffer between button presses 
and on-screen attacks, but we try 

to use what we have to create that 
feeling as much as possible. It's a 
balance, like you say.

BS: As a f ighter progresses, 
additional complexity kind of gets 
layered in. New players coming 
to Tekken might be intimidated 
by this. How do you think about 
this? STreeT FighTer iV did a good 
job with trials and bringing people 
back, and the ArcAde ediTion has a 
little achievement-style crawl like 
king oF FighTerS 13. Even with that, 
though, it's very hard if you don't 
know the basic inputs.
KH: That's an important topic for any 
fighting game. You can have a practice 
mode that really goes in depth and 
strives to help players improve, but 
what we've found is that a lot of 
players never even touch practice 
modes. It's worth noting that when the 
fighter genre first hit arcades, there 
weren't any real tutorials. Instead, the 
designers tweaked the difficulty level 
such that after a couple of credits, you 
had already gone from beginner to 
intermediate player—something you 
could then improve upon by learning 
more moves and practicing. That's 
the ideal that any fighter should go 
for, and funnily enough, although a lot 
of people complain that Tekken is too 
hard to pick up, a lot of other people 
say that it's too easy for beginners 
to enter the game and beat people by 
mashing buttons! 

Personally, I don't see that as 
such a bad thing if it gets more 
people into the series, gets them 
curious about it. Another idea is to 
have an online mode where players 
can just beat on each other without 
any life gauges, chatting to each 
other while learning the moves. 
There are lots of things like that we'd 
like to try.

BS: Here's a tough one. Tekken has 
a very complicated story. Can you 
summarize it within 30 seconds 
or less?
KH: Ooh, that's hard! Basically, there 
are these three generations of father 
and son that don't get along, and two 
of them have this Devil gene, so their 
dad wants to know what the Devil 
gene is, and so they argue with each 
other about it for a bunch of years. 
(laughs) All the other characters just 
sort of get caught up in it. 



GDmag11_Oct_GDCC11_F.indd   1 8/31/11   3:11 PM

http://www.9wee.com
http://www.gdcchina.com


FMOD by Firelight Technologies 
is the de facto industry standard 
middleware system for the production 
of console and PC game soundtracks. 
An Android version of FMOD has recently 
been released, providing powerful 
interactive audio capabilities for this 
expanding market. The FMOD Designer 
tool allows sound designers to import 
audio files, implement interactivity, and 
test sounds in context. Exported event 
and soundbank files are then delivered 
to the programmer for integration into 
the game code.

Two sets of APIs control the system: FMOD Ex, 
the low-level audio engine, and FMOD Event, the 
data-driven interactive music and sound effects 
component. Both APIs can be used as desired, 
depending on whether you want to directly 
manipulate audio files or trigger audio events 
created by the sound designer. Of course, many 
of the system's preeminent features, such as 
3D positioning and reverb/filter processing, are 
either somewhat pointless or excessively CPU 
intensive, for use with mobile phones.

To demonstrate what can be done using 
the FMOD Event system on the Android OS, 
I added a soundtrack to an open-source 
(and originally silent) pinball game by Brian 
Nenninger of Dozing Cat Software (see boxout 
pg. 38). The FMOD API can be downloaded 
from the web site (www.fmod.org/index.php/
download#FMODExProgrammersAPI), and 
contains recommendations for getting started. 
Note for Mac users: The download is a Windows 
.exe installer, but the necessary files can be 
extracted using the Unarchiver (or a similar 
utility), and then placed in your build structure 
as needed.

When writing and debugging Java code for 
Android apps, I use the Eclipse IDE with the Android 
plug-in, on a quad-core i7 iMac (I also have the 
machine networked to my Pro Tools rig, which 
facilitates audio production and implementation). 
The first thing you have to decide is what level 
of Android SDK you are writing for. This can get 
somewhat complicated, since there are many 
Android devices supporting a variety of operating 
systems and hardware features.

I tested this project on a Nexus phone 
running Gingerbread (version 2.3.4), so I set 

up for SDK level 9. This means the app will run 
on Android devices that support higher level 
numbers (currently up to 13), like the Motorola 
Xoom tablet, but not on older phones running 
Froyo (version 2.2). Of course, you can set 
up your system for whatever SDK level and 
hardware you want, but this is one of the reasons 

developers complain that the Android market is 
fragmented (as opposed to the "walled garden" 
and standard hardware of the iPhone).

There are some other tasks you'll need to 
do to complete the setup of your development 
environment, as discussed in the FMOD Getting 
Started guide. This involves digging around in 

sounds good!
prOgraMMing FMOD FOr anDrOiD

l i s t i n g  1

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cBegin(JNIEnv *env, jobject thiz, jstring 

mediaPath)

{

FMOD_RESULT result = FMOD_OK;

 srand (time(NULL));

    const char *_mediaPath = (*env)->GetStringUTFChars (env, mediaPath, 0);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "create event system");

 result = FMOD_EventSystem_Create(&gEventSystem);

 CHECK_RESULT(result);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "init event system");

 result = FMOD_EventSystem_Init(gEventSystem, 32, FMOD_INIT_NORMAL, 0, FMOD_EVENT_INIT_

NORMAL);

 CHECK_RESULT(result);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "set media path= %s", _mediaPath);

 //result = FMOD_EventSystem_SetMediaPath(gEventSystem, "sdcard/fmod/");

 result = FMOD_EventSystem_SetMediaPath(gEventSystem, _mediaPath);

 CHECK_RESULT(result);

    (*env)->ReleaseStringUTFChars (env, mediaPath, _mediaPath);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "load eventsystem");

 result = FMOD_EventSystem_Load(gEventSystem, "VPS2.fev", 0, 0);

 CHECK_RESULT(result);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "get initial events");

 //there is a noticeable pause when these events play for the first time

 //getting them during initialization seems to sidestep the issue

 result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/dings", FMOD_EVENT_DEFAULT, 

&gEvent);

 CHECK_RESULT(result);

 result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/message", FMOD_EVENT_

DEFAULT, &gEvent);

 CHECK_RESULT(result);

 result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/rollover", FMOD_EVENT_

DEFAULT, &gEvent);

 CHECK_RESULT(result);

game developer   |   october 201134

tHe INNer prodUct //  peter drescHer

http://www.fmod.org/index.php/download#FMODExProgrammersAPI
http://www.fmod.org/index.php/download#FMODExProgrammersAPI


www.gdmag.com 35

the Eclipse Preferences to set classpaths and 
build variables. You will also need to install the 
C/C++ Development Tools for Eclipse and, if 
you've previously only been working in Java, the 
Android NDK.

I Dream Of JNI
» FMOD provides libraries (.so files) for various 
Android SDK levels and configurations. The 
libraries are written and compiled in C, but since 
Android apps are written in Java, FMOD functions 
must be accessed using the Java Native Interface 
(JNI). This programming framework allows Android 
methods to make calls to FMOD C functions to 
initialize the system, trigger events, and perform 
other audio tasks.

I recommend using the example programs 
included in the API download to set up your JNI 
interface code in Eclipse, because the process 
is not exactly intuitive. Rather than put your 
source code in the "src" directory, you place the 
necessary Android and Application make files 
(.mk) along with your main.c code into a folder 
named "jni." You may need to edit the Android.mk 
file to point at the shared libraries, depending on 
where you've put them in your build tree. You will 
also want to add the header (.h) file exported from 
FMOD Designer, which contains useful names for 
audio events and music segments.

In main.c, the naming convention for functions 
takes the following form: "Java" underscore 
"ClassName" underscore "MethodName," and passes 
in a JNIEnv pointer, a jobject pointer, plus any 
additional Java arguments you might need. For 
example, the initialization function in my pinball 
game looks like this:

void Java_com_dozingcatsoftware_bouncy_
FMODaudio_cBegin(JNIEnv *env, jobject thiz, 
jstring mediaPath)

Start me Up
» Every time you make any call to the FMOD 
API, you must check to make sure the command 
completed successfully. This is standard 
practice for all FMOD implementations but doubly 
important when using JNI, because memory 
corruption or thread badness in the low-level C 
code has the potential to crash the entire system. 
If the returned result does not equal FMOD_OK 
(zero), an error message is printed to the log, and 
the process is unceremoniously killed with an 
exit(-1).

Initializing the FMOD engine is performed 
using a fairly standard set of commands (see 
Listing 1). First, you create the EventSystem, 
which allocates memory for the audio engine 
and sets a pointer for use in subsequent calls. 
Then you initialize the system, passing in some 
setup variables. A series of init flags can be 
bitwise-ORed together to control various options, 
though most relate to game consoles and 3D 

l I S t I N g  2

__android_log_print(ANDROID_LOG_ERROR, "fmod", "get musicsystem");

 result = FMOD_EventSystem_GetMusicSystem(gEventSystem, &gMusicSystem);

 CHECK_RESULT(result);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "load samples");

 result = FMOD_MusicSystem_LoadSoundData(gMusicSystem, FMOD_EVENT_RESOURCE_SAMPLES, 

FMOD_EVENT_DEFAULT);

 CHECK_RESULT(result);

 __android_log_print(ANDROID_LOG_ERROR, "fmod", "prepare cues");

 result = FMOD_MusicSystem_PrepareCue(gMusicSystem, MUSICCUE_VPS2_ANDROID, &gAndroid);

 CHECK_RESULT(result);

 result = FMOD_MusicSystem_PrepareCue(gMusicSystem, MUSICCUE_VPS2_BASS,    &gBass);

 CHECK_RESULT(result);

 result = FMOD_MusicSystem_PrepareCue(gMusicSystem, MUSICCUE_VPS2_DRLOOP1, &gDrLoop1);

 CHECK_RESULT(result);

 result = FMOD_MusicSystem_PrepareCue(gMusicSystem, MUSICCUE_VPS2_DRLOOP2, &gDrLoop2);

 CHECK_RESULT(result);

 result = FMOD_MusicSystem_PrepareCue(gMusicSystem, MUSICCUE_VPS2_DRLOOP3, &gDrLoop3);

 CHECK_RESULT(result);

 result = FMOD_MusicSystem_SetCallback(gMusicSystem, segmentCallback, 0);

 CHECK_RESULT(result);

l I S t I N g  3

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cUpdate(JNIEnv *env, jobject thiz)

{

 FMOD_RESULT result = FMOD_OK;

 //called every 50ms by FMODaudio.java

 result = FMOD_EventSystem_Update(gEventSystem);

 CHECK_RESULT(result);

}

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cStart(JNIEnv *env, jobject thiz)

{

 FMOD_RESULT result = FMOD_OK;

 result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/startup", FMOD_EVENT_

DEFAULT, &gEvent);

 CHECK_RESULT(result);

 result = FMOD_Event_Start(gEvent);

 CHECK_RESULT(result);

}

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cPlayScore(JNIEnv *env, jobject thiz)

{

 FMOD_RESULT result = FMOD_OK;

 result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/dings", FMOD_EVENT_DEFAULT, 

&gEvent);

 CHECK_RESULT(result);

 result = FMOD_Event_Start(gEvent);

 CHECK_RESULT(result);

}

http://www.gdmag.com


game developer   |   october 201136

positioning. For Android, the default normal 
settings are probably best.

The number of virtual channels should be set 
depending on the maximum number of sounds you 
expect to be played at any one time. Big console 
games may have hundreds of sounds playing 
simultaneously, and mixing all of them together at 
the same time can tax even their beefy CPUs. But 
my little pinball demo will only play a maximum 
of twenty sounds at once (up to ten bumpers, five 
channels of music, plus additional sound effects), 
so the standard thirty-two channels is plenty.

Setting the Media Path
» You must then specify the pathway to the 
folder where the media files are stored; that 
is, the event (.fev) and soundbank (.fsb) 
files exported from FMOD Designer. On many 
systems, these files are copied to a folder on 
a fast-access hard drive during the installation 
process. But for Android, the files are placed 
in the Assets folder of the Eclipse project, then 
compressed and encrypted as part of the 
application package (.apk, which is similar to 
a ZIP archive). The package does not allow for 
access to a media directory.

This means you must first copy the files 
out of the archive into a folder named "fmod" on 
either internal memory or an external SD card. 
Then a Java string containing the mediaPath 
name is passed to the initialization routine. For 

this game, the space used by the uncompressed 
audio files is only 828Kb, so using internal 
memory is acceptable. Larger game audio files 
might be best stored on the SD card, which works 
as well. Of course, this can cause problems if the 
SD card is removed.

Once the system knows where to look, you 
tell it to load the .fev file into memory. Larger 
games can support multiple event and soundbank 
files for various levels, which can be loaded and 
unloaded at will. However, there is a distinct pause 
when some of the events are triggered for the first 
time, which I assume is caused by memory being 
allocated. This issue is worked around by doing a 
GetEvent call on the problematic sounds during 
initialization. Better for the pause to happen in the 
start-up procedure than during gameplay.

MuSic to My earS
» Another pause is produced when initializing 
the MusicSystem (see Listing 2), because the 
music segment samples must first be loaded 
into memory to prevent hiccups and loss of 
sync during playback. Again, this may not be a 
problem for fast console CPUs, but seems to be 
required in the mobile environment.

For this game, the combined GetEvent and 
LoadSoundData calls can produce as much as 
a 10-second delay when starting up the game, 
during which time the user is presented with 
a blank screen. This is okay for a demo project 

like this one, but explains why many mobile 
games display a pretty splash screen or simple 
animation on start-up—to distract the user while 
the audio loads.

Calls to PrepareCue allocate memory and set 
the value of pointers needed to start and stop 
the music cues, which are comprised of one or 
more music segments. SetCallback designates 
the function to be called when a segment 
finishes playing, which in this case is used to 
start the "bass" track after the "android" segment 
completes its first playback.

Actually, there are a variety of callback types 
that can be tested for, including Segment_Start, 
Sample_Release, Reset, et al. In other projects, 
I've used the Beat callback to toggle button 
colors, so that the interface flashes in time with 
the music. Callbacks can also be used to time 
sprite animation to the music's tempo, change 
sound effect pitches to match the changing keys 
of a music cue, manage sophisticated transitions 
and hero moment fanfares, and more. 

KeeP Me uPdated
» Most of the other functions in main.c are 
quite simple (see Listing 3), consisting of one 
or two calls to the FMOD API and checking 
the result each time. The most important of 
these functions is EventSystem_Update, which 
must be called in a continuous loop, every 
50 milliseconds, the entire time the app is 
running. It is used to trigger callbacks, and to 
ensure that audio events execute correctly.

To play an event, you simply do a GetEvent 
call, specifying the event by name. This sets the 
pointer to the desired FMOD_EVENT using a generic 
gEvent variable. The subsequent Start call fires 
off the event, which could be a single sound 
(like "startup"), one of a number of sounds in a 
container (like "dings"), or a complex series of 
sounds in multiple layers controlled by parameter.

As the programmer, you don't really care too 
much about how the sound is produced—that's 
the beauty of data-driven sound design. The sound 
guy, who cares obsessively about the audio, 
has already done the interactive implementation 
work in FMOD Designer. So instead of telling you, 
"When the ball hits the bumper, you need to play 
one of these six sounds, at random, no repeats, 
at half volume, up to ten times simultaneously, 
dropping the oldest sound if you go over the 
limit," he only has to say, "When the ball hits the 
bumper, play the dings event." Easy!

A similarly simple command is used to 
play the bass music cue (see Listing 4), which 
consists of five different segments (three loops 
in two keys, with two transitions) controlled by 

l i S t i n g  4

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cDoBassTrack(JNIEnv *env, jobject thiz)

{

 FMOD_RESULT result = FMOD_OK;

 FMOD_BOOL active;

 if (androidTrackPlayed) {

  FMOD_MusicPrompt_IsActive (gBass, &active);

  CHECK_RESULT(result);

  if (!active){

   result = FMOD_MusicPrompt_Begin(gBass);

   CHECK_RESULT(result);

  }

  result = FMOD_MusicSystem_SetParameterValue(gMusicSystem, MUSICPARAM_VPS2_

BASSSEQUENCE, bassSeq);

  CHECK_RESULT(result);

  //cycle through the bass sequences

  bassSeq++;

  if (bassSeq > 2)

   bassSeq = 0;

 }

}

tHe INNer prodUct //  peter drescHer

///////// As the programmer, you don't really care too much about how the sound is produced—
that's the beauty of data-driven sound design. The sound guy, who cares obsessively about 
the audio, has already done the interactive implementation work in FMOD Designer. 



www.gdmag.com 37

parameter. Making sure all the segments stream, 
loop, and segue properly, at the correct times, while 
maintaining sample accurate sync, is not a trivial 
operation, but fortunately, you don't need to do any 
of that. All you have to do is Begin the bass line, and 
set the bassSeq parameter when appropriate. Easy!

Algorithmic Versus DAtA DriVen
» Of course, in the resource-constrained environment 
of mobile phone applications, there are always 
special considerations. One is file size, and 
smaller is always better. So as an audio 
programmer, you can sometimes generate 
sounds algorithmically to save space.

The cPlayRollover function does exactly 
that (see Listing 5). The rollover event is just a 
single "plink" sound, but each time the function 
is triggered, it plays the event up to three times, 
repitching the sounds to a pentatonic scale. This 
creates a series of 41 possible notes and chords, 
using only a single sample.

A strictly data-driven way of doing the same 
thing would be to record all the combinations, 
put them in a container event, and trigger them 
to play randomly. The sounds produced during 
gameplay would be exactly the same as the 
algorithmic method, but they would require 40 
times the amount of audio memory. Algorithmic 
techniques can significantly reduce the memory 
footprint required for certain kinds of sound 
effects by slightly increasing the CPU (and 
engineering resources) required.

The DoDrumTrack function performs a similar 
operation for the interactive music (see Listing 
6). The three drum loops are designed to be 
played individually or in combinations. Rather 
than sample each combination or create intricate 
(and potentially confusing) music cue playback 
parameters, I simply start and stop the various 
loops programmatically, letting FMOD keep the 
tracks in tempo sync with the bass line.

The disadvantage of the algorithmic 
technique, of course, is that it breaks the data-driven 
model, taking the audio implementation task out of 
the hands of the sound designer, and making the 
programmer do the work. This may be considered 
"old school" (in the early days of game development, 
this was the only way to produce interactive audio), 
but it's sometimes worth the tradeoff for mobile 
audio. Besides, in this case, I'm the sound designer 
and the programmer, so it really becomes a "six of 
one, half a dozen of the other" situation.

gimme A cup of JAVA
» All functions in main.c are called from the 
FMODaudio.java class. While it's possible to use 
the native prototypes to call the C functions from 
any Java class directly, I prefer to keep all access 
to FMOD processing in one place in order to make 
modification, maintenance, and debugging easier 
to manage. The game code calls the FMODaudio 
methods whenever an audio task needs to be done. 

l i s t i n g  5

void Java_com_dozingcatsoftware_bouncy_FMODaudio_cPlayRollover(JNIEnv *env, jobject thiz)

{

 FMOD_RESULT result = FMOD_OK;

 FMOD_EVENT_PITCHUNITS units = FMOD_EVENT_PITCHUNITS_SEMITONES;

 //play up to three events, each randomly pitched to a different note in the 

pentatonic scale

 //the rollover ding is E, so in semitones, the other pitches are -4 (C), -2 (D), +3 

(G), +5 (A), +8 (C)

 float pitch[] = {-4, -2, 0, 3, 5, 8};

 int pitchDx[] = {0, 0, 0};

 int i;

     for (i = 0; i < 3; i++) {

  switch (i){

   case 0:

    result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/

rollover", FMOD_EVENT_DEFAULT, &gEvent);

    CHECK_RESULT(result);

    pitchDx[i] = (rand() % 6);

    result = FMOD_Event_SetPitch(gEvent, pitch[pitchDx[i]], units);

    CHECK_RESULT(result);

    result = FMOD_Event_Start(gEvent);

    CHECK_RESULT(result);

    break;

   case 1:

    pitchDx[i] = (rand() % 6);

    if (pitchDx[i] != pitchDx[i-1]) {

        result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/

rollover", FMOD_EVENT_DEFAULT, &gEvent);

        CHECK_RESULT(result);

        result = FMOD_Event_SetPitch(gEvent, pitch[pitchDx[i]], units);

        CHECK_RESULT(result);

        result = FMOD_Event_Start(gEvent);

        CHECK_RESULT(result);

    }

    break;

   case 2:

    pitchDx[i] = (rand() % 6);

    if (pitchDx[i] != pitchDx[i-1] &&

        pitchDx[i] != pitchDx[i-2] ) {

        result = FMOD_EventSystem_GetEvent(gEventSystem, "VPS2/VPS2/

rollover", FMOD_EVENT_DEFAULT, &gEvent);

        CHECK_RESULT(result);

        result = FMOD_Event_SetPitch(gEvent, pitch[pitchDx[i]], units);

        CHECK_RESULT(result);

        result = FMOD_Event_Start(gEvent);

        CHECK_RESULT(result);

    }

    break;

  }

    }

}

http://www.gdmag.com


game developer   |   october 201138

For example, FMODaudio.playScore is called 
from Field.java whenever the ball hits a bumper, 
which calls cPlayScore via JNI to play the "dings" 
event. The music tracks are controlled based 
on a running total of bumpers hit. This way, the 
soundtrack will never be played exactly the 
same way twice, because the rate of change will 
depend on how quickly you score. It's a simple 
but effective means for controlling the variations 
of the interactive music (see Listing 7 on www.
gdmag.com/resources).

FMODaudio.java also performs a few other 
essential tasks. It starts and calls the cUpdate 
loop every 50 milliseconds, using the Android 
Handler mechanism (as recommended by 
the FMOD example code). The main and FMOD 
libraries are loaded, and the native prototypes 
used by JNI are defined here as well.

The first time the game is played, the FMOD 
event and soundbank files are copied out of the 
archive into internal memory in BouncyActivity.
java, the primary activity class that contains 

the application control overrides. Calls to 
FMODaudio methods to start, stop, and pause 
the soundtrack are also done here. The sound 
effects events are all triggered from Field.java, 
the main gameplay class.

FMOD FOr AnDrOiD, AnD BeyOnD!
» Remember, this pinball app is intended to be 
a simple demo of what can be done using FMOD 
for Android. Much more complex, cross-platform  
implementations are possible for many handheld 
devices. The same FMOD Designer projects can 
export event and soundbank files for an Android 
phone, an iPad, a PSP, and a Nintendo 3DS. Most 
of the same API calls can be reused as well.

In fact, subsets of huge Xbox 360 and PS3 
soundtracks can easily be ported to mobile 
devices, using the same audio assets as 
the big boys and much of the same code. As 
games become more social, more networked, 
more cloud based, more ubiquitous, and 
more platform agnostic, FMOD can provide 
sophisticated interactive audio soundtracks for 
mobile games everywhere. 

Peter "PDx" Drescher is an interactive audio veteran, 

and published authority on game audio technology. 

He runs Twittering Machine, a Pro Tools project studio 

in Redmond, WA, providing music, sound effects, and 

programming services for multimedia software and mobile 

devices. Previously, he was an audio director at Microsoft, 

principal sound designer at Danger (maker of the T-Mobile 

Sidekick), and a road dog bluesman piano player.

tHe INNer prodUct //  peter drescHer

l i s t i n g  6

//play the first three tracks in sequence, then in random combinations

  ctr++;

  if (ctr > 3)

   drumTrax = (rand() % 6)+1;

  else

   drumTrax = ctr;

  switch (drumTrax){

   case 1:

    result = FMOD_MusicPrompt_Begin(gDrLoop1);

    CHECK_RESULT(result);

    break;

   case 2:

    result = FMOD_MusicPrompt_Begin(gDrLoop2);

    CHECK_RESULT(result);

    break;

   case 3:

    result = FMOD_MusicPrompt_Begin(gDrLoop3);

    CHECK_RESULT(result);

    break;

   case 4:

    result = FMOD_MusicPrompt_Begin(gDrLoop1);

    CHECK_RESULT(result);

    result = FMOD_MusicPrompt_Begin(gDrLoop2);

    CHECK_RESULT(result);

    break;

   case 5:

    result = FMOD_MusicPrompt_Begin(gDrLoop2);

    CHECK_RESULT(result);

    result = FMOD_MusicPrompt_Begin(gDrLoop3);

    CHECK_RESULT(result);

    break;

   case 6:

    result = FMOD_MusicPrompt_Begin(gDrLoop1);

    CHECK_RESULT(result);

    result = FMOD_MusicPrompt_Begin(gDrLoop3);

    CHECK_RESULT(result);

    break;

  }

The Android app and Eclipse project described 
in this article can be downloaded from www.
gdmag.com/resources or on the author's 
Twittering Machine website: www.twittering.
com/FMODforAndroid.

http://www.gdmag.com/resources
http://www.gdmag.com/resources
http://www.twittering.com/FMODforAndroid
http://www.twittering.com/FMODforAndroid
http://www.gdmag.com/resources
http://www.gdmag.com/resources


wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww........gggggggggggggggggggggggggggggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaaaaaaaaaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssssssssssssssssssuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.............................ccccccccccccccccccccccccccccccccccccccccooooooooooooooooooooooooooooooooommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

the art and business of making games

http://www.gamasutra.com


game developer   |   october 201140

Taking Feedback
why designers must learn humility

/// to be a game designer is to be wrong. ideas do not work out as planned. 
Certain mechanics prove tedious instead of fun. Players spend their time 
focusing on the “wrong” parts of the game. the original vision starts to 
slowly slip away as it comes into contact with the gamer.

Furthermore, designers are often bombarded with suggestions—from the 
rest of the team, vocal fans, well-meaning friends, and the dreaded executive 
flybys. Faced with such a deluge, a developer's natural instinct is often to 
defend the design. These suggestions are simply trials and tribulations to be 
overcome so that you, the designer, can continue making the game “your” way.

The problem with that ideas is that processing feedback is a 
fundamental part of the game design process, as important as the original 
vision itself. Games are not static objects that can be observed or judged in 
a vacuum. Instead, they live in the minds of our players, and each of them 
might experience the game in a different way.

Thus, designers need to be great listeners more than great persuaders. If 
a designer ever finds herself needing to explain why a player should be having 

fun when he is not, something has gone seriously wrong. Instead, designers 
must listen to players with a great sense of humility, with an understanding 
that this feedback is the only way to remove the fog that separates the game 
in the designer’s head from the one that is actually playable.

Ultimately, games must speak for themselves, so designers need to 
learn not to rely on the crutch of their own enthusiasm and communication 
skills to sell their ideas. Dropping one’s ego to learn from the criticism can 
be an emotional challenge for designers who identify too closely with their 
original vision. Instead, we need to place faith in the design process itself, 
not in that inevitably doomed first draft.

LisTen To The Team?
» Thus, gathering and assessing feedback is a crucial skill for any modern 
game designer. The first, and sometimes only source of feedback is the 
team itself. Any committed development team should be ready and eager 
to play its own game and provide the designer with crucial early feedback 

on what works and what doesn’t. 
However, feedback from the team carries 
significant limitations.

To begin, the team lives with the game 
for months, probably even years—far 
beyond an average player’s time with 
the game. As veterans of development 
process, they can play on auto–pilot, 
blinding themselves to unintuitive 
mechanics or confusing UI. Developers 
quickly lose the ability to see the game 
objectively, often believing that the game 
is either in better or in worse shape than 
it really is.

Further, team members are often hired 
for their special skills—3D animation, 
sound design, network optimization—and 
not because of their passion for the product 
itself. They might forget some of the simple 
joys that new players will experience when 
starting the game. More dangerously, they 
might burn out on the game altogether and 
begin to resent the intense demands of 
their most vocal community members.

design of the times //  soren johnson

 You have to design for success, plan for failure, and then know how to rebound from that failure. Our 1.0 version 
of AI WAr was successful but not wildly so. Little irritations added up and annoyed people enough that they stopped 
playing. When the public gets the game, they find problems that you never did, and you must devote time to fixing 
them. Once you do, the fans are happy, and the game becomes more successful than it would have been otherwise. 
You have to eat a lot of humble pie, but after a while you get really used to that, and the stuff that used to give me a 
hard time emotionally when I was first starting out is just par for the course now. I don’t even notice. It’s just feedback, 
and whether it’s viable determines if it goes in the ‘yes’ bucket or the ‘no’ bucket or the ‘maybe’ bucket.”

—Chris Park, designer of AI WAr: Fleet CommAnd, from the Three Moves Ahead podcast, Episode 37

Battlefield Heroes.



www.gdmag.com 41

TrusT The CommuniTy?
» The community, of course, can be an overflowing cauldron of ideas 
and suggestions. When developing Civilization iii, our most active fansite 
presented us with “The List”—an exhaustive, 20,000-word tome detailing 
their expectations for the upcoming game. Wading into the forums can be 
an overwhelming experience for most designers, requiring a thick skin as 
posters rip apart their development choices.

However, no one understands a game better than players who are 
dedicated enough to join a community and make the game a part of their social 
life. These gamers might play for hundreds of hours, gaining knowledge of 
mechanics and systems that elude even the designers themselves.

The challenge with forums is that what players say and what they 
actually do are often two different things. In a talk at GDC 2011, Ben 
Cousins described just such a situation with the free-to-play online shooter 
Battlefield Heroes. The game had not been generating enough revenue, so 
the team reworked the monetization system to make it harder for nonpaying 
players to “rent” premium items and also to sell the items directly for cash.

The change cause an uproar in the forums; within a week, a 4,000-post 
thread developed decrying the changes, with many veterans pledging 
to quit the game. Exacerbating the debate was the fact that Cousins had 
publicly declared years earlier that “we have no plans to sell weapons.” The 
press picked up the controversy, leading to articles such as “Battlefield 
Heroes Is Practically Ruined” on Kotaku.

The metrics, however, told a very different story: revenue tripled with 
no discernible decrease in active users. It is hard to tell if the posters who 
pledged to quit were actually lying, but they were clearly not representative 
of the average player. Cousins dug deeper and found that only 20% of all 
players had ever visited the forums and that only 2% had ever actually 
posted a message.

Furthermore, compared with the silent majority, community members 
had a much higher conversion rate (27% vs. 2%) and ARPPU (Average 
Revenue Per Paying User) ($110 vs. $32). Thus, the thoughts expressed 
on the forums were an inaccurate and misleading representation of the 
player base’s actual feelings. The posters were perhaps making threats in 
the hopes of changing the game in their favor (to save themselves money) 
instead of revealing their actual beliefs. 

The Heroes experience highlights the importance of metrics as a 
secondary source of feedback. Watching what players actually do can be 
as important as listening to what they have to say. Still, metrics have their 
limitations, as no set of numbers is going to help the designer understand 
why people have stopped playing the game (though metrics can show 
exactly when players quit and don't come back, which can be useful). 

While measuring how often unit X is built instead of unit Y provides a 
valuable tool for balancing an RTS, it’s not necessarily clear that making the 
two units equally viable will actually make the game more fun. Metrics are 
great at answering specific objective questions that require real data—what 
difficulty level is most commonly picked first?—but to learn whether a 
game is actually fun, the designer’s only option is to find out what players 
are feeling by listening closely to what they are saying.

Find your VoiCes
» And so it is that designers are left with the conundrum that their best 
source of feedback—the vocal fan community—is not only an unreliable 
source of information, but one that might be actively trying to mislead the 
developers. Perhaps most frustrating is the possibility that the more forum 
posters are aware that the team is listening, the more likely they are to lie 
to the designers to get what they want. MMO developers are familiar with 
the player type who will always argue that his or her character’s class is 
woefully underpowered, against all objective evidence to the contrary.

This problem can be handled with a more proactive approach to gathering 
fan feedback. Not all fans are the same, as only a precious few are able to 
see the forest for the trees and provide accurate feedback that speaks to the 

health of the game’s overall experience. While developing Civilization iv, we 
cultivated just such a group of enlightened fans to provide feedback we 
could trust.

These players had a history of being reliable sources of information 
during the post-release development of Civ iii, and we provided them with 
a special private forum for direct communication with the team. This group 
became our primary source of feedback both before and after release, 
providing us with much greater certainty about which ideas were working 
and which ones were not. Civ IV would have been significantly different—
and certainly worse–without their input.

These groups must be managed carefully, however, to prevent 
the members from developing a sense of entitlement or superiority 
over other players. For this reason, the group’s existence should be, if 
possible, a closely guarded secret. Further, the developers must try their 
best to find a representative group of players, perhaps looking outside 
the forums for new members.

LisTen earLy, LisTen oFTen
» Another accurate way to gather feedback is with “Kleenex” testing, so 
named because players get access to the pre–release game once and are 
then thrown away. The valuable lessons here come from players’ initial 
reactions to the game, before they become accustomed to UI holes or 
gameplay quirks. Valve famously runs these tests regularly by gathering up 
random players from local game stores.

However, depth testing is also important, which can only be achieved 
by giving players continual access to the game before release, to explore 
and experiment with the game’s systems and mechanics. Big publishers 
often have trouble giving fans early access to their games, for fear of 
them leaking cracked versions to pirate sites or spreading confidential 
information to rival publishers.

Indie developers actually have a big advantage here because their 
greatest danger is not security, but obscurity. Thus, many recent indies 
(spelunky, desktop dungeons, tHe Wager) have released early versions of 
their games, generating both marketing buzz and valuable feedback.

Some indie games, such as frozen synapse, MineCraft, and spyparty, 
have even generated revenue by selling access to these alphas. This option 
gives teams the chance to bootstrap their way along while also learning how 
the game performs in the wild, a great option to help fight the long odds that 
most indies face.

No matter what combination of methods you choose, the most 
important thing is that designers be humble and realize when they're wrong 
as well as when they're right. To err is human, but to be able to learn from, 
accept, and fix those errors can only make us better designers.  

s o r e n  j o h n s o n  is a designer/programmer at EA2D, working on web-based gaming 

with strategystation.com and Dragon age LegenDs. He was the lead designer of CiviLization 

iv and the co-designer of CiviLization iii. Read more of this thoughts on game design at www.

designer-notes.com

Spelunky.

http://strategystation.com
http://www.gdmag.com
http://www.designer-notes.com
http://www.designer-notes.com


pixel pusher //  steve theodore

game developer   |   october 201142

Get the memo
CommuniCating with artists

You might think that's an unfair 
stereotype. Every art department 
sports a couple people who don't 
mind over-sharing (everything I 
need to know about EvErQuEst, I 
learned through the four inches of 
wood and drywall that separated 
me from a pair chatty role-players 
who knew that no epic quest is 
truly over until it's been sung— 
endlessly—by the bards). But it's 
hard to find an art director, a tool 
developer, or a producer who thinks 
that artists in general can be relied 
upon to read memos, keep up with 
news feeds, or, as the unprintable 
saying goes, “RTFM.” 

Twitter, RSS, Web pages and 
email are marvelous tools of 
modern communications when 
it's time to let people organize 
a pub crawl, zombie walk, or 
looting spree. These remarkable 
technologies put fear in the hearts 
of authoritarians everywhere—but 
the world's dictators can at least 
rest easy in the knowledge that the 
masses will apparently never use 
all those newfangled modern tools 
to correctly export levels, check in 
properly compressed DDS files, or 
change the length of a walk cycle.

If you are one of those unlucky 
souls tasked with getting an art 
team to follow directions, you've 

probably tried it all: email notices, 
wiki pages, video tutorials, cheat 
sheets, snarky Post-it notes, and 
humorously veiled threats delivered 
at team meetings. Most likely, 
you've also despaired. Getting the 
word out about anything is a hard, 
thankless slog. It's an unending 
task. Art direction, tools, and game 
features change all the time, leaving 
many artists uncertain—or worse, 
completely certain but just plain 
wrong—about how to do their jobs.

 
Radio Silence
» The most common antidote 
is simple: Leads and managers 
wait for things to go wrong, and 
then hover over somebody's 
shoulder until they fix the problem. 
Unfortunately, in the modern game 
business it's hard to survive entirely 
on word of mouth. Big modern 

teams are too big for one person 
to effectively circulate knowledge. 
To make it worse, teams and 
outsourcers are scattered all over 
the globe, cut off from whatever 
local grapevine might exist in a 
particular studio to keep people 
at least marginally informed. And, 
to ice this dysfunctional cake, 
there's the constant churn of game 
technology. The only thing worse 
than having no information about 
how to get something into the game 
is documentation that's wrong or 
out-of-date. It's a perfect recipe for 
dysfunction and inefficiency.

You might just say, so what? 
If people don't know what to do, 
they'll ask or muddle along. People 
will figure it all out eventually—or 
get fired and become somebody 
else's problem. But it's often not the 
individuals who are the problem. 

Individually, most artists do want 
to get their jobs done, and they'll 
take pains to make sure they know 
how things work. The real source 
of the trouble is the combination 
of constant change and poor or 
inadequate communications. Lack 
of reliable, accessible information 
leaves us in the position of 
isolated medieval villagers—we 
have to get by on a combination 
of rumors, superstitions, and 
tradition. Over time, the rumors and 
misinformation become almost 
impossible to root out. Every team 
acquires a little body of magic 
rituals that people believe keep 
things running ("Delete the history! 
Always triangulate transparent 
objects! Make sure the texture 
name is all uppercase!") even 
though these do nothing but waste 
time. These taboos can persist for 

FiGuRe 1 modern wikis, like 
confluence (www.atlassian.com), 

shown here, allow you to post 
blog-style updates and alert users 

via email or RSS.  this kind of multi-
media communication is a great 

way to make sure some of this 
information actually gets into the 

hands of the team—but don't overdo 
it and get spam-filtered!

art springs from the eternal 
human impulse to describe, 
explain, and tell stories about 
the world. When we describe 
a great work of art, we say 
it speaks to us. So it’s a bit 
peculiar, to say the least, that 
so many artists treat written 
communication the way most 
people treat dentistry: We put 
it off as long as possible, and 
when it becomes unavoidable, 
we try to float free of our 
bodies and let our minds go 
to their Happy Places until the 
ordeal is over.

http://www.atlassian.com


www.gdmag.com 43

years as line artists pass them 
along by word of mouth while 
managers and tech are blithely 
confident that everyone has read 
the memos.

Good communication doesn't 
come easily. The most important 
tactic is, sadly, the most time 
consuming and expensive: Do 
everything. You can't rely on 
emails, wiki pages, help files, video 
tutorials, or even brown-bag lunch 
demos—or, to be more precise, you 
can't rely on any of them alone. 
Each tactic will reach some fraction 
of the team—the only way to reach 
everyone is to try lots of different 
avenues at once. Of course, it’s 
maddening to have to repeat the 
same information in so many 
different ways. To make it more 
irritating, keeping all these different 
versions of the same basic facts in 
sync is tricky and time-consuming. 
Despite these drawbacks, though, 
coordinating all these different 
kinds of documentation is the most 
important thing you can do to keep 
the team informed. The only offense 
that works is flooding the zone. 

SpambotS to the ReScue!
» Fortunately, modern tools make 
this much less of a chore than it 
used to be, and they don't demand 
wizardly IT skills either. Most 
modern wikis or intranets include 
RSS, email, or even Twitter feeds, 
all of which can broaden the reach 
of your updates without too much 
extra work on your part. (See Figure 
1.) The updates are an invaluable 
way to put critical info in front of 
your users. Unfortunately, (as 
anybody with an email account 
knows) too much information is 
the same thing as too little. If every 
artist's inbox has a dozen wiki 
update notices every day, you can 
bet that most of them are going to 
be unread. And not many readers 
will make it all the way through that 
20-page monthly art department 
newsletter, either. 

The best strategy is to use real-
time communications to politely put 
useful information out there for the 
team, not to snow them under. Email 
and RSS are terrible for actually 
distributing detailed information, 
since they tend to scroll by at 
the edge of a user's attention. 

However they are fabulous as 
teasers or reminders.  Just think 
about how you use your own email 
inbox as a  substitute for long-term 
memory: You skim the updates 
as they scroll by and mentally file 
them away for the future. That's 
how most artists treat the company 
mail:  They'll only pay close 
attention when  something has gone 
wrong and they need help—"Oh 
wait, wasn’t there an email about 
that last week?" And then it's off to 
the search box. 

The search box is your best 
friend—but only if you write docs 
that are search friendly.  First and 
foremost, use consistent names 
for tools, menus, and buttons so 
that finding the relevant mails is 
easy. Second, remember that your 
bulletins will probably be seen 
weeks or months in the future, 
so leave the details out. If the art 
team finds detailed information 
moldering in their inboxes, they'll 
assume it's good—even though 
it's really as old and busted as a 
2002 MySpace page. Plan for the 
day when they vaguely recall the 
email and dig it up out of their 
inboxes: Have good, search-friendly 
headlines, crisp summaries, and 
(most importantly) links to the wiki 
or document where the up-to-date 
mojo really resides.

Live fRom the aRt bibLe
» The inbox time warp underlines 
another key point. Good documents 
are alive: If you have multiple copies 
of the same information floating 
around, you're inviting confusion. 
Don't expect a busy artist who's 
got looming deadlines to compare 
version numbers or file dates to find 
the right version of a doc. You can't 
even rely on source control unless 
you have a very rigid brand of sync 
discipline. Online documentation 
is the best way to make sure 
everybody is, literally, on the same 
page. Especially nowadays, when 
wikis and other web-based tools are 
so easy to find and use, there's no 
excuse for hiding important stuff in 
Word docs, readmes, or PDFs. 

Interactive media like wikis are 
also superior to Word docs because 
they can be edited, commented on, 
and updated by lots of people. You 
do need to be realistic about what 

you expect from your wiki, however. 
The early buzz on wikis was full 
of overblown, internet-boom-era 
optimism. When it turned out that 
very few users actively update or 
edit wikis, a lot of teams concluded 
that they were just another over 
hyped tech fad and lapsed back 
into their old email-and-stored-
doc habits. It's true that only a 
small minority of users will post 
or edit wiki docs—but that's not a 
drawback. You don't need your docs 
to turn into Wikipedia. Good docs 
are not about democracy, they're 
about getting stuff done. 

The genius of wikis isn't that 
they turn everybody into an editor, 
it's that anybody can post a quick 
comment that says "This button 
doesn't work like the docs say" or 
"It works a lot faster if you close 
your UV Edit window before you 

kick it off." Tips, tricks, bugs, and 
questions don't replace formal 
editing decisions, but they make 
the docs more accurate and keep 
them fresh. Just don't expect a wiki 
to magically free the people who 
really own the docs from having to 
maintain them.

The last great thing about 
online docs is that they are easy 
to integrate directly into your 
tools. Until pretty recently, adding 
decent help to in-house tools was a 
serious chore, requiring specialized 
programs to compile CHM files 
or other esoterica. Those tools 
have gotten better in the last few 
years. You can now use tools like 
Helpinator (www.helpinator.com) 
rather than having to go through 
a complex compilation process, 
but the added time and trouble of 
having to run a program just to fix 

a typo in your docs is a slow drain 
on a task which, let's be honest, 
is already one we tend to avoid. 
Oldschool CHM files do have a nice 
professional feel, but the slickness 
isn't worth the hassle. Updating a 
wiki, on the other hand, is almost 
frictionless—fixing a typo or 
updating a description when one 
of your users points out a problem 
doesn't demand much more than 
typing. Online help is also easy 
to integrate directly into your tools: 
A line or two of maxScript, MEL, or 
Python can open a Web browser to an 
appropriate help page that's always 
up-to-date. It's hard to have too many 
help links—every dialog box or tool 
window should have at least one; 
it's a key way for all those folks who 
never read their emails to learn about 
the studio toolset.

the Doc iS in!
» If you got into this business 
because you have a burning desire 
to create informative technical 
documentation, well... Actually, 
there's no point finishing that 
thought. Nobody starts off a career 
as an artist because they want 
to make excellent wiki pages. 
Unfortunately, the work we do is 
too complex and too fluid to get by 
without some attention to boring 
stuff like documentation. Many 
of us will have to deal with email 
bulletins, RSS feeds, obscure wiki 
formatting codes and all sorts of 
other thoroughly unartistic dross in 
order to focus on our real jobs. It’s 
hardly the only aspect of the game 
art life that involves a bit of eat-
your-vegetables stoicism. On the 
plus side, doing a good job may not 
be glamorous, but it will pay off in 
the long run—in the form of fewer 
bugs, less time spent handholding 
the noobs, and hopefully more time 
to do the job you signed up for in 
the first place. 

Steve theoDoRe has been pushing pixels 

for more than a dozen years. His credits 

include Mech coMMander, half-life, TeaM 

forTress, counTer-sTrike, and halo 3. He's 

been a modeler, animator, and technical 

artist, as well as a frequent speaker at 

industry conferences. He’s currently the 

technical art director at Seattle's Undead 

Labs.

 Nobody 
starts off a 

career as an 
artist because 

they want to 
make excellent 

wiki pages. 

http://www.helpinator.com
http://www.gdmag.com


The game industry is currently head 
over heels in love with the free-to-play, 
microtransaction-supported business 
model. Time will tell whether this will 
turn out to be love everlasting or a 
passing fling. Personally, I’m always in 
favor of more choice for gamers, and 
that includes greater choice in terms of 
payment methods (aka “more paths to 
the cash register”).

While there’s no doubt that free-to-
play has a place (the list of successes is 
long and growing), I want to discuss two 
ideas common to the business model 
debate that seem to get misrepresented 
in many discussions: price elasticity 
(more specifically, price elasticity of 
demand) and market efficiency. 

Price elasticity of DemanD
» I’ve seen the graph in Figure 1 referred to 
in a number of discussions. It’s sometimes 
mislabeled as the supply/demand curve, but 
since in most cases supply is for our purposes 
unlimited (digital distribution) and/or price fixed 
at point of sale (as in console retail), it’s really 
a “price elasticity of demand” curve. This curve 
states that lowering a price (say from $60 to $30 
in the case of a big-budget retail game, or from 
$1.99 to $0.99 in a smartphone app), will cause 
demand to increase.

 When offering a game at a single price, one 
attempts to hit the optimal price to maximize 
the area of the rectangle under any point on that 
curve. What you’re doing is aiming for the apex 
of the curve seen in Figure 2. In this example, 
the high price at $70 scared away too many 
customers, while the low price at $30 garnered 
more customers, but not enough to make up for 
the lower revenue per customer.

While optimizing the area covered by the 
rectangle is good, it’s easy to see that money is 
left on the table. There are customers paying $60 
that would be willing to pay $70 for the game, 
and would-be customers willing to engage with 
the game at $30, but without that option are not 
going to be customers at all. The industry has 
addressed this in the past through things like 
premium collector-edition releases (which have 
a higher-price option) downloadable content, and 
things like basic versions or time-delayed price 
waterfalls. 

What free-to-play models try to do is to let 
customers engage at whatever level they’d like 
to, allowing an infinite number of points along 
this curve, thus maximizing the area under the 
curve that represents revenue. 

This is a simple enough concept, but it becomes 
more complicated when one starts talking about 
having multiple price points for a product.

The way I’ve seen this discussed in several 
recent conferences is that companies making 
the leap should look at the graph in Figure 1 and 
say, “I’d like to garner all that revenue at P2, but 
also charge my most enthusiastic customers the 
price at P1, and offer the price at P3 for people 

that might otherwise not be customers at all.” 
Such an approach is represented in Figure 3a. 

It looks like a great approach, but it makes 
three errors. 

The first is relatively simple: the curve 
shouldn’t extend infinitely. Raising the price of 
the product will eventually make the game hit 
a point where the number of customers willing 
to pay that price is zero. Similarly, dropping 
the price, even all the way to zero, does not 
guarantee volume will go up to, say, a number 
representing the Earth’s population. Developers 
need to consider how the customers are going to 
perceive the game’s potential value.

game developer   |   oCToBer 201144

efficiency...for whom?
DissecTing The popular free-To-play sales curve

kim pallisTer //  THe BUsiNess



www.gdmag.com 45

The second problem is that there’s a difference between what volume 
would be achieved by offering the product at any one price, and the volume 
achieved at each price point when offering the product at multiple price points. 

In the latter case, the curve is going to look more like Figure 3b.

Market efficiency
» In Figure 3b, some number of customers are willing to pay price P1, but 
it’s a lower number than it would be if the product were only offered at that 
price (represented by the dotted line). The same goes for price P2. In exchange, 
there are more customers at price P3. Some of these are previously would-be 
P1 or P2 customers, but hopefully many more are people that wouldn’t have 
been customers at all.

The area under the curve represents potential revenue, and the shaded 
areas represent revenue earned versus any white space, which is potential 
revenue left on the table. This is a form of market efficiency, and is also where 
the third erroneous interpretation comes in. 

One can extrapolate from Figure 3b that adding ever-more price points lets 
a developer better maximize the area under the curve from which they are 
extracting revenue—they would be more efficiently monetizing their audience. 

However, another way to view it is that it lets the consumer better 
minimize the overall area under the curve. In this respect, the market 
efficiency is improving to let customers pay for only what they want to, and 
not a penny more.

Either way it is a discussion of efficiency, but it cuts both ways. There’s 
the efficiency of the developer to monetize the customer, but also the 
efficiency of the customer base to extract value out of the game. I should 
be clear: Both of these are a good thing. Maximizing revenue is good for the 
industry. Maximizing value for dollar is good for the consumer.

This has played out in recent years in the music business. The default 
price point in years past was an album of 12 to 15 songs for around $15. 
Now music fans can engage at any increment of $0.99. Makers of many-hit 
albums may still sell entire albums, though fewer than before, but they will 
also reach many more customers at $0.99. However, mediocre albums that 

used to sell at $12 as the only way to get that single hit song, have sales 
now supplanted by a single $0.99 sale of that track. Musicians can reach 
more people than ever before, and consumers can buy the songs they like 
without having to buy a bunch of songs that they don’t. I think this gives us 
an indication of the implications for games. 

Free-to-play gives developers another model to target, one with many 
benefits, including a less daunting on-board ramp (a huge plus for free-to-play 

that we didn’t even touch on here), and more efficient monetization of the 
market. However, those developers coming from other parts of the market and 
from other models, need to ask themselves which form the curve will take, and 
at what level they believe customers will want to engage with their game. Free-
to-play is already working for low-cost online games, and I’m certain it will work 
for the best big-budget franchises. But those developers transitioning from 
selling a limited or lackluster experience at retail for $60 may find the free-to-
play world even crueler to them than the old model. Such cases will find that the 
free-to-play romance ends in tears.  

kiM pallister works at Intel doing game industry forecasting and requirements planning. 

When not prepping the world for super-cool hardware, he blogs at www.kimpallister.com. His 

views in this column are his and do not reflect those of his employer.            

figure 1 price elasticity of demand. figure 2 price versus revenue. figure 3a  price versus volume 
at a single price point.

figure 3b price versus volume 
at multiple  price points.

 Maximizing revenue is good for the 
industry. Maximizing value-for-dollar is 

good for the consumer."

http://www.kimpallister.com
http://www.gdmag.com
https://jobs.roc.edu/applicants/Central?quickFind=53482


Recruitment at GDC Online

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS  WWW.GDCONF.COM 

A PRIMER FOR THE JOBS AREA OF THE EXPO FLOOR

GAME DEVELOPER   |   OCTOBER 201146

\\\ The Game Developer's 
Conference held each year in 
San Francisco has become 
legendary for its recruitment 
opportunities, with many game 
companies from across the world 
recruiting heavily. But it would 
be foolish for job–seekers to wait 
until March when opportunities 
like GDC Online, held between 
October 10–13 in Austin, Texas 
are on the horizon. GDC Online 
is intended for professionals 
developing online and connected 
games (such as cloud-based 
games, MMOs, virtual worlds, 
and games on social networks). 
For developers looking to move 
into—or change jobs within—this 
space, the show offers an ideal 
opportunity to make a targeted 
connection with recruiters in a 
more intimate setting. We talked to 
a few recruiters—from CCP Games, 
Kabam, and Nexon—to hear their 
opinions of recruiting at the more 
focused GDC Online.

"Austin has a large, deep pool 
of gaming and technology talent, 
and GDC Online, with its focus, is 
an obvious place to plant a flag 
for recruiting," said Scott Thomas, 
SVP of global talent at Kabam 
(KINGDOMS OF CAMELOT, DRAGONS OF 
ATLANTIS). Paula Fellbaum, executive 
director, HR and admin operations 
at Nexon(MAPLESTORY, COMBAT ARMS) 
said that GDC Online's location and 
focus weren't the only attractions.

"[GDC Online] offers an 
opportunity to be more one-on-
one with everyone, and isn't as 
crazy as the huge shows," she 
said. "It feels like a more intimate 
environment where you have the 
opportunity to actually get to know 
a little bit about the people you are 
meeting and not just qualify and 
move on to the next person."

It's clear that this chance 
to be known as more than just 
your resume is important: With 
the continual evolution of online 
games, the recruiters surveyed 
all expressed interest in finding 
candidates with subtleties. 

Kelley Barnes, senior recruiter 
at CCP Games (EVE ONLINE, DUST 
514) explained, "Transmedia is 
a relatively new buzzword in 
employment circles, but people 
who can imagine the game 
experience and how it can impact 
consumers moving from the 
computer into the real world and 
back again are going to be highly 
desirable. Immersive virtual worlds 
are the next iteration of gaming 
and we look for creative talent 
in art, marketing, content, and 
production who understand that 
and embrace the change."

Thomas added that Kabam 
was looking for candidates with a 
"unique blend of skills," such as 
"traditional gaming veterans with 
exposure to social gaming best 
practices" he added. "We also look 
for candidates with experience 
building and managing products 
with a 'live services' component 
and short development cycles. 
In our world, a feature can go 
from concept to development to 
launched and played by millions of 
players in weeks."

Of course, if you've been a 
developer in traditional video 
games previously and feel left out 
by that kind of description, it's not 
to say that the recruiters at GDC 
Online might not still be interested 

in you. Just do your research and 
(in the words of Thomas) "don't 
get left behind."

"There's a real market for 
hardcore games on these platforms, 
and with the ever-increasing quality 
and fidelity, it's becoming obvious 
that going forward if you want a 
long-term career in gaming, the 
time to learn the ins and outs of 
the social arena is now."

Added Fellbaum, "If you have 
what it takes to stand shoulder 
to shoulder with us then we will 
consider you just like anyone else— 
just bring yourself up to speed."

Similar tips were offered to 
recent and upcoming graduates 
scouting GDC Online for their new 
career, with Barnes noting that 
(for example) CCP was at GDC 
Online to "be in the minds of new 
graduates and entry-level people" 
for future recruitment drives 
in customer support, quality 
assurance, and programming.

"Stay on top of trends," 
recommended Fellbaum. "Go to 
as many mixers and industry 
events and meet as many people 
as possible; keep your options as 
open as you can. All you need is 
that one foot in the door, that one 
helping hand, and then it’s up to 
your skills and work ethic to see 
you the rest of the way."

Thomas in turn recommended 
that students do their best to 
get as stuck-in as deeply as 
possible. "Get yourself behind the 
scenes to see how the sausage is 
made—intern at a social gaming 
start-up, understand what makes 
a social game successful, build 
your own games. Enthusiasm 
and demonstrated proactivity 
will often make up for a lack of 
experience when trying to nail 
that first job interview."

You can't, however, get 
discouraged if that first job 
interview doesn't end in success. 

Thomas admitted, "Job seeking is 
tough... Don't let rejection get you 
down; keep at it." 

Fellbaum agreed, with the 
caveat that "the industry shifts 
all the time and jobs open up 
every day. You just need to be 
persistent and showcase yourself 
professionally."

Thomas concluded, "Don't be 
afraid to ask questions. Soak up as 
much as you can. You never know 
which interaction will lead to your 
dream job, so put yourself out 
there." Why not begin by putting 
yourself out there at GDC Online? 

MATHEW KUMAR is a Toronto-based 

freelance journalist, who also runs the 

exp. Magazine (www.expdot.com).

PH
OT

O 
CO

UR
TE

SY
 O

F 
GA

M
E 

DE
VE

LO
PE

RS
 C

ON
FE

RE
NC

E

http://WWW.GDCONF.COM
http://www.expdot.com


jesse harlin //  aural fixation

www.gdmag.com 47

Separation anxiety
interactive game scores, orchestras, and you

the specter of the next generation looms on the horizon, 
and as work on strictly current-gen titles begins to set, the 
biggest achievement with regard to music in this waning 
console cycle has been the standardization of interactive 
scoring. Partially through iteration of proprietary tool sets and 
partially through the proliferation of middleware like FMOD and 
Wwise, interactive game scores have become the rule rather 
than the exception. Whether they’re layered puzzle-solving sign 
posts as in Portal 2 or beat-synchronized instrument lines in 
something like littleBigPlanet 2, composers continue to find 
new ways to make scores react to creative gameplay systems 
and player input.

Arguably the most complicated production process is interactive 
scoring centered around orchestral music. Rock, pop, and electronic 
scoring in 2011 all exist within the digital box of easily isolated Pro Tools 
stems. Orchestras, however, are by their very nature are large groups of live 
musicians in a room preforming to produce one homogenous sound. Miked 
primarily by a central three-microphone Decca Tree with supplemental 
spot mics, a room full of live microphones is fundamentally contrary to the 
needs of isolated interactive stems.

There are approaches to orchestral stem recording, though, that can 
create all the flexibility needed while working in concert with the nature of 
orchestral scoring.

DiViSi
» The first option is to divide your orchestra, and even this has two 
separate approaches with which composers and engineers can experiment. 
There is a tendency for interactive scores to frequently be composed of 

beat-synched pieces all 
within the same key, the 
same tempo, or both. In 
fact, existing interactive 
music tools, such as those 
included as a part of 
Wwise, are built to easily 
facilitate this style of 
interactive design.

If your score is being 
recorded to a click and is 
predictably going to be the 
same tempo each time 
the cue is played, the first 
option for interactive stem 
creation is to multitrack 
your orchestra in sessions 
centered around individual 
instrument families. Just 
as you would multitrack 
vocals or guitars over a 

rock combo's rhythm section, so can you multitrack different sections of 
the orchestra. Start with the section that will be playing the most notes, 
and will therefore be providing the most reference material for subsequent 

sessions. This is most likely going to be your strings, with brass second in 
line for the stage. You'll probably want to include sampled reference stems in 
your Pro Tools sessions to cover the parts of the orchestra that haven't yet 
been performed.

On the plus side, you'll have perfectly isolated sections of each family of 
instruments. These clean stems can then be mixed either interactively or in 
post to create any number of alternate mixes. This approach has been used 
to great effect in the god of War scores. 

There are drawbacks to this strategy, though. An orchestra playing 
along to a click or sampled mock-up is not an exact science. Orchestras 
have a tendency to drag, and when playing in separate sessions, sections 
of the orchestra might drag at different rates, necessitating editing to 
tighten up their performances. Additionally, setup and teardown for 
different sessions means having to carefully plan which sessions occur 
on which days to avoid delays related to issues like mic setup or unwanted 
headphone bleed. 

The other option for isolated recording is to have your orchestra perform 
at the same time, but in a space separated via a combination of baffles and 
isolation booths. Abbey Road, AIR, and Skywalker Sound's studios all have 
isolation booths connected to their main halls, though some are larger than 
others. Strings would have to be in the main space due to the sheer number 
of players, but smaller sections like winds and percussion could be isolated 
cleanly. Depending on the stage and the score, strings, brass, and woodwinds 
could all be isolated while percussion is tackled in post via samples.

This approach works well if the score isn't tied to a particular tempo, and 
there's a freedom of interpretation available with each take. The biggest hurdle 
with this approach is that, by removing sections from the larger live hall and 
moving them into tiny isolation boxes, the mix engineer will need to fake their 
homogeny through digital reverbs.

tUtti
» The other option is to have everyone in the same space and simply 
record separate stems in turn. Recording cues together lets the players 
learn the piece, and it gets you a full version of the cue that you can use for 
in-game, reference, or soundtrack mixes. Then record the cue in sections—
strings, low strings, high strings, brass, etc.—while those not playing sit 
silently in the room.

This approach is great for experimentation, as any performance 
changes or instrument combinations can be called out to the orchestra 
together as they are all in attendance. Some mix engineers prefer this 
approach because the players are all within the same physical space and 
digital fakery is kept to a minimum.

Having players sitting idly on the stage can be costly, though, if the 
session isn't strategized well. Idle players are also at a constant risk of 
accidental stage noise, which can ruin takes and waste both time and 
money. Additionally, be careful of anything that falls into the category 
of multitracked overdubs, meaning when a player plays over the top of 
something they've already recorded. This can incur an additional cost, 
depending on the musician’s contract. 

jeSSe Harlin has been composing music for games since 1999. He is currently the staff 

composer for LucasArts. You can email him at jharlin@gdmag.com.

il
lU

St
r

at
io

n
 B

y 
k

el
Se

y 
k

r
aU

S

mailto:jharlin@gdmag.com
http://www.gdmag.com


2011 GAME DEVELOPERS 
CONFERENCE EUROPE HOSTS 
MORE THAN 2,100 ATTENDEES

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS  WWW.GDCONF.COM 

GAME DEVELOPER   |   OCTOBER 201148

\\\ The 2011 edition of 
GDC Europe concluded on 
Wednesday, August 17, 
with a successful showing 
and a final attendee count 
of more than 2,100 game 
professionals representing 
57 countries. The show 
featured some 170 European 
and international speakers, a 
total of 46 exhibitors, and 35 
sponsors, and more than 
300 media representatives 
covering game 
development on PC, social 
networking sites, consoles, 
and mobile platforms. 

Now in its third year, 
GDC Europe continued 
the tradition of bringing 
high-quality content 
to the European game 
development community. 
The introduction of the 
Social Games, Independent 
Games, Smartphone 
and Tablet Games, and 
Community Management 
summits demonstrated 
the increasing importance 
of these developing 
areas to European game 
development. The Social 
Games Summit also 
proved to be a forum 
that showcased content 
across both European 

and Western independent 
developers including 
speakers Kellee Santiago 
from thatgamecompany, 
Frictional Games' Thomas 
Grip, and Spaces of Play's 
Marek Plichta.

Highlights of Day One 
at GDC Europe included 
wooga CEO Jens Begemann 
giving a keynote discussing 
today's social games and 
how they should not be 
designed to turn all core 
gamers into FARMVILLE 
farmers. In his talk, 
Begemann surprised 
attendees with the live, real-
time launch of MAGIC LAND, 
a title that contains a mix 
of social gaming elements 
with aspects from the 
dungeon-crawling genre. 
Also featured was a keynote 
talk by Enric Alvarez, game 
director and co-author 
of CASTLEVANIA: LORDS OF 
SHADOW, who discussed 
how his Spain-based studio 
Mercury Steam met the 
challenge of taking on a 
beloved franchise from a 
Japanese developer.

Day Two of GDC Europe 
was headlined by Dr. 
Michael Capps, president of 
Epic Games, who discussed 

lessons learned from the 
studio's development of 
games from Unreal to the 
GEARS OF WAR franchise to 
INFINITY BLADE, and also 
revealed that the studio is 
currently at work on five 
new unannounced titles. 
Cevat Yerli, president and 
CEO of Crytek, also gave a 
keynote at the conference 
on Tuesday. Yerli identified 
the challenges that Crytek 
faced when working on 
the development of the 
AAA online first-person 
shooter, WARFACE.

Day Three of GDC 
Europe was led by a 
keynote given by Richard 
Garriott, legendary creator 
of the genre-defining ULTIMA 
series and founder of social 
media games developer 
and publisher Portalarium, 
in which he focused on 
what he considers the 
three eras of gaming—
single player, massively 
multiplayer, and casual 
and social—detailing the 
lessons learned from each.

GDC Europe also 
featured talks from video 
game veteran Mark 
Cerny, who commented 
on the shifting industry 
landscape; BRAID creator 
Jonathan Blow, who 
touched on philosophical 
aspects of game design 
and development; Fishlabs 
Entertainment's Marc 
Hehmeyer, discussing 
taking an iOS-based game 
to Android; and Quantic 
Dream's Guillaume de 
Fondaumiere, illustrating the 
need for further evolution in 
game rating systems.

GDC Europe will return 
to Cologne, Germany on 
August 13–15, 2012.

Richard Garriot.

PH
OT

O 
CO

UR
TE

SY
 O

F 
GA

M
E 

DE
VE

LO
PE

RS
 C

ON
FE

RE
NC

E

GDC China Honors 
Winners of Shanghai, 
Beijing Game Jams
\\\ GDC China’s organizers are proud to highlight 
the winners of the IGF China-sponsored Shanghai 
and Beijing Game Jams, both of which invited 
attendees to test their game design skills in a 
two-day marathon of collaboration and creative 
experimentation.

These two China-based events invited 
professionals, indie developers, and even hobbyists 
to form teams and create a working game prototype 
from scratch, using only their own tools and tech. 
To add a twist to the traditional Game Jam formula, 
each event also had its own theme around which 
entrants had to build their games: the Shanghai 
Game Jam's topic was "Resurrection," while the 
Beijing event's theme was "Utopia."

In addition, the events encouraged entrants 
to meet other developers and work with new team 
members, and GDC China—part of UBM TechWeb, as 
is this magazine—awarded Tutorials and Summits 
passes to the outstanding teams.

The following are the winning entries from both 
the Shanghai and Beijing Game Jams.

SHANGHAI GAME JAM WINNERS
Topic: "Resurrection"
\\\ 1ST PRIZE: THE END IS NIGH 
As a frustrated soul left behind in the Rapture, 
players must try to prevent their neighbors from 
ascending into Heaven, either by dragging them 
down or simply shooting them with a gun.
\\\ 2ND PRIZE: BUD 
In this title, players control seeds that sprout and 
grow, bringing new life into a landscape torn apart 
by war, industry, and death.

BEIJING GAME JAM WINNERS
Topic: "Utopia"
\\\ 1ST PRIZE: PAC-RESISTANCE  
This PAC-MAN-inspired title has players navigating a 
dystopian city as they avoid police forces and take 
down buildings run by the oppressive government.
\\\ 2ND PRIZE: UTOPIA 
Players must navigate the game's side-scrolling 
environments using clues from "Utopia," a poem by 
Polish Nobel prize winner Wisława Szymborska.

In addition to the above titles, many other games 
produced at both of these events are available for 
download via the official Shanghai Game Jam site 
and Beijing Game Jam site.

Registration for the show is now open, at the 
event's official website. This year, the Independent 
Games Festival China will return for its third year, 
and will complement the show's numerous tracks 
and summits. 

GDC China will take place November 12–14, 
2011, at the Shanghai Exhibition Center. 

http://WWW.GDCONF.COM


www.gdmag.com 49

good JoBHired someone interesting? Let us know at editors@gdmag.com!

H i r i n g  n e w s  a n d  i n t e r v i e w s

Cutting the Tether
Ken taya jumps from Bungie to 5tH Cell
Ken Taya is an accomplished illustrator, known in the Seattle area for his posters and 
comics. In games, he worked as an environment artist at Bungie before moving to 5th Cell 
to expand his sphere of experience. We spoke with Taya about his influences, and the boons 
of working at a smaller company.

new studios
Gameforge (Star trek - InfInIte Space, 
GateS of andaron) founder and former CEO 
Klaas Kersting has formed a new mobile 
games studio, flaregames, to develop 
games with real-world interaction.

Tokyo-based social and mobile gaming 
giant DeNA has announced plans to 
establish a new studio in Singapore, as a 
means of expanding its operations in Asia, 
with an initial capital of 500k Singapore 
dollars ($410k).

Publishing veterans from Atari, Super-
Ego, and Stormfront have formed a new 
downloadable game publisher called 
FreePlay Labs, which recently launched its 
first game based on the cowboyS & alIenS 
property.

Industry vet Aaron Cammarata, with 
credits on tony Hawk'S pro Skater, pItfall 
3d, and multiple handheld titles, has 
formed AJC Games to merge mobile and 
social gaming into what he hopes will be a 
rainbow-filled, fungasmic paste.

Brandon Sheffield: What made you decide to 
leave Bungie and then join 5th Cell?
Ken Taya: I wanted to go to a company that 
reflected the wide range of styles that I also 
embody in my personal work. I also wanted to 
simply try something different.

BS: At 5th Cell, do you have more autonomy 
and influence on the art style? Or now that 
Hybrid is coming, is it not much different?
KT: At a smaller company, you undoubtedly 
have a relatively larger impact than at a big 
company, so yes. HybrId is different from my 
previous work at Bungie because I got to be 
a part of exploring and defining HybrId's new 
art style alongside each of my teammates. 
At Bungie the style had already been 
established, and we just worked to get it done. 
On HybrId there was more of an exploratory 
phase I got to experience for the first time 
in my video game career. The exploratory 
stimulus you get from trying and then 
scrapping idea after idea is where the fun is.

BS: 5th Cell as a company has excelled at 2D 
art. Have there been challenges getting the 
team up to speed on newer techniques in the 
polygonal world?
KT: HybrId is 5th Cell's first 3D game, so it 
is challenging on many levels, but throwing 
yourself at challenges is a great way to grow. 
The Hybrid team is a bunch of relatively new 
hires that each have their own background in 
3D games from previous companies, so our 
team has experience. 

BS: Your personal artwork and illustration is 
very different in style from what you’ve done 
in games. How do you view your personal 
art? Is it something to unwind with after 
working? Is it your true passion? An exercise 
to develop your skill?
KT: My personal work is my own creative outlet 
to do exactly what I want. I love the autonomy of 
doing what I want without any pressure to earn 
money from it. I make stuff for me, assuming 
there are other people like me, rather than 
making stuff I think other people will like. This 
assures that I stay my most authentic self. 

My online webcomic "i fart rainbow"  
(www.ifartrainbow.com) allows me to poke 

fun at culture using a cute and colorful 
delivery.

I sell posters of my art at conventions 
such as Emerald City Comicon & Anime Expo, 
and also through a series of galleries like Kobo 
and CakeSpy in Seattle.

The satisfaction I get from working on 
games and having millions of people view my 
work, selling my personal artwork and having 
hundreds of patrons, and then simply drawing 
for my daughter and having only her truly 
enjoy it are essentially the same.

BS: To look at your illustration work, it seems 
you’ve been influenced by Moebius and 
Masamune Shirow. Who would you claim 
your greatest influences are?
KT: I have a lot of influences; Toriyama Akira, 
Tekkon Kinkreet, and Kozyndan to name a 
few. My work gets described as busy, colorful, 
and meaningful. I grew up reading manga and 
playing video games, so they both heavily 
influence my work, and allow me to make 
games as a profession. 

BS: Do you think there's more room for an 
illustrative style in games now, compared to 
the past?
KT: There is always room for colorful 
illustrative works in games. You are seeing a 
bunch of these types of games being explored 
in many other XBLA titles. 

whowentwhere
Free-to-play MMO company Outspark 
(dIvIne SoulS, 7 draGonS) has announced 
that its chief operating officer, Philip Yun, 
will take the reins of the company as CEO 
to replace departing founder Susan Choe.

MInecraft developer Mojang has added a 
new member to its team, announcing that 
Henrik Pettersson has joined the staff as a 
graphic artist.

Zipline Games, the studio behind the Lua-
based Moai mobile game development 
platform, has appointed Shane Kim, 
formerly Microsoft Game Studios' vice 
president and overseer of franchises such 
as Halo and GearS of war, to its board of 
directors.

rIft studio Trion Worlds has hired Xbox 
veteran David Luehmann as VP of third-
party development, where he will work with 
external developers and publishers who 
can take advantage of Trion's proprietary 
online platform and technologies.

mailto:editors@gdmag.com
http://www.ifartrainbow.com
http://www.gdmag.com


game developer   |   october 201150

Tom CurTis: How did you 
arrive at the overall design 
concept for the game?
RichaRd WeschleR 
(game concept, game 
designer, level designer): 
Being big fans of classic 
platformers such as Yoshi’s 
island and donkeY kong 
CountrY, we really wanted 
to make a game that 
captured the traditional 
feel and fun of those 
games but with some 
sort of twist. The original 
design had a weight-
changing mechanic that 
allowed the player to 
change the weight of the 
main character depending 
on different-sized ore he 
picked up. The player’s 
current weight could be 
tracked with a weight 
bar, but after prototyping 
this concept, we quickly 
realized this was just too 
much for the player. The 
mechanic was streamlined 
to a simple flipped or non-

flipped state which made 
the player lighter when he 
picked up a cape.

TC: What tools did you use?
Ryan davison 
(physics programmer, 
art, animator): Our 
development environment 
was Visual Studio. The 
game itself was written in 
C++, and we used DirectX 
9 for graphics and input. 
External tools included 
Photoshop, a school-
hosted SVN, and of course, 
the support of our fellow 
students and DigiPen.

TC: What were some of the 
technical hurdles you had 
to overcome?
MaRk Mckenna (lead 
programmer): There 
were plenty of technical 
issues that had to be 
resolved throughout the 
development process. Our 
level editor, for example, 
was a bit of a challenge, 

and never did work quite 
right. There were also 
quite a few little things 
like camera movement, 
player movement, and the 
death animation that took 
several iterations to get to 
their current state.

One area we put a 
great deal of time and 
effort into was the drawing 
of the environment. 
Originally, we just needed 
to get something drawn 
so we could start creating 
levels, playtesting, and 
developing new features. 
In our early builds, the 
levels had a really ugly 
checkerboard sort of 
look. From there, without 
abandoning our simple 
tile-based approach to 
level representation, 
we developed some 
techniques for mapping 
larger textures over 
the environment, and 
trimming the borders 
between different tile 

types to soften hard 
edges. The result was 
a reasonable balance 
between visual appeal and 
content creation costs.

TC: What sort of design 
challenges did you 
encounter during 
development?
stephen Fogg (graphics 
designer, level designer): 
One of the biggest 
challenges we faced 
revolved around the 
difficulty of the game. 
Are we targeting the 
casual platformer? Do 
we go after the hardcore 
super Meat BoY fans? 
How soon and at what 
points do we ramp up the 
craziness? We decided 
that we wanted a game 
that someone entirely 
new to video games 
could sit down and have 
a good time with, but we 
also wanted to appeal 
to those individuals who 

crave an insane amount 
of challenge from their 
platformers. Our solution 
to attracting both groups 
was to create two tracks 
of levels: a normal track 
that would introduce 
all the various gravity-
flipping mechanics while 
being easy enough for a 
beginner to get through, 
and then a challenge track 
of levels that would only 
unlock with the collection 
of gems hidden within 
the normal track. The 
more the players proved 
themselves capable in 
the normal track levels, 
the more comfortable we 
were in allowing them 
to experience the higher 
difficulty of the bonus 
content.

The other major design 
challenge was sticking to a 
core concept and avoiding 
feature creep. Fairly early 
on in development we 
knew from our prototype 
that we needed to have 
gravity balls, pads, and 
beams. Beyond those, we 
had a gigantic list of ideas 
that we thought might 
work well in the game: 
springboards, wind, water, 
break-away platforms, 
moving platforms, timed 
gravity, enemies, bumpers, 
and so on. Ultimately, 90 
percent of these ideas had 
to be scrapped because 
they either clashed with 
the already established 
feel of the game, or we 
simply didn't have the 
time during the school 
year to implement and 
experiment with them. We 
had to shoot for the best 

A Flipping Good Time 
EarliEr this yEar, a studEnt tEam at thE digipEn institutE of tEchnology dEbutEd a flipping good timE, a challEnging 2d platformEr 
that lEts pl ayErs manipul atE gravit y to navigatE a sEriEs of complEx undErground cavErns. WE rEcEntly spokE With thE tEam 
bEhind this pax 10 shoWcasE WinnEr to lEarn morE about hoW thE projEct camE to bE.

w w w . a f l i p p i n g g o o d t i m e . c o m

educated play!

http://www.aflippinggoodtime.com


www.gdmag.com 51

EducatEd Play!
S T U D E N T  g a m E  P R O F I L E S

(or perhaps the simplest) 
ideas, and experiment with 
those select few. The mine 
cart proved to be both. Not 
only was it fairly easy to 
implement (we just force the 
player in a certain direction 
while in the cart), but also 
provided some of the most 
exciting gameplay moments. 

TC: What process did you 
use to tune the difficulty 
of your game, and how 
long did it take? Some of 
those levels are really 
tough!
RW: It was a very long 
process. Coming right 
out of the gate with a 
prototype, difficulty 
was something we were 
keeping a close eye on. 
What we found is that 
players really enjoyed the 
free-flowing movement of 
the game and had a lot of 
fun simply flipping through 
our environments, but at 
the same time, we also 
knew we wanted to make 
the game fairly challenging. 
So we came up with the 
idea that we would have 
both normal levels and 
challenge levels. That really 
helped in that it allowed 
us to create an enjoyable 
experience for a casual 
player, but then gave us 
the chance to ramp it up for 
the more hardcore player. 
Around the second half of 
the development process 
we were playtesting almost 
every week, and almost 
every playtest revolved 
around the difficulty and 
fun factor of specific levels. 
Levels went through many 
iterations, and by the end, 
we had a solid grasp on what 
was fun yet still fell into the 
difficulty range we wanted.
SF: It was mostly 
playtesting and iteration. 
As soon as we reached our 
first playable milestone, 
we immediately put some 
beginning levels together 

and put them to the test. 
Every Friday we ran an 
official playtesting session 
at DigiPen, asking fellow 
students and teachers to 
have a go at our game. We 
didn't stop there though. 
Every member of the team 
took the game outside of 
school to our friends and 
family so that we might 
gather feedback from a 
wider range of player types 
and skill levels. We asked 
for everyone's feedback 
and tried to actually watch 
each tester's playthrough. 
We took note of where 
players often died, which 
puzzles were too difficult, 
where the game pacing 
lagged a bit, whether the 
mechanics were clear, what 
players would like to see 
added to the game, and 
things like that. Using this 
feedback, Richard and I 
would then go back into the 
level editor and revise what 
we had. For every level you 
see in the finished game, 
there may be twice as 
many that were scrapped, 
modified, or cherry-
picked from. Each level 
received multiple passes 
to get the overall path, 
add obstacles, add items, 
place fireflies, and then 
fine-tune problem areas 
found during playtesting. 
The process was never-
ending, and continually 
cycled throughout the 
spring semester and into 
the summer.

TC: Your game certainly 
seems to draw a lot of 
inspiration from indie 
platformers like
VVVVVV and Super Meat 
Boy. Can you talk a bit 
about your influences and 
how they
affected the game?
RW: In all honesty, no one 
on the team played VVVVVV 
when we started making 
the game. It wasn’t until 

about halfway through 
the development process 
when enough people 
brought up VVVVVV that I 
sat down and played it. I 
really enjoyed the game a 
lot and was blown away! 
The game has such simple 
mechanics, but they are 
used in such creative 
ways. It taught me to look 
at our mechanics and to 
try and stretch those out 
as far as we can. Super 
Meat Boy was something 
I brought up to the team a 
number of times. I wanted 
to have levels that were 
both challenging but fair. 
Super Meat Boy gets away 
with having such a high 
difficulty due to the fact 
that its levels are so short, 
and in a Flipping good tiMe 
we made sure to kind of 
do the same thing using 
checkpoints. There is 
always a checkpoint before 
and after every difficult 
part. Granted, our game 
doesn’t get nearly as hard. 

TC: Now that you've 
finished the game, is 
there anything you would 
have done differently 
during development?
KENNETh LOmbaRDI 
(producer, graphics 
programmer): Considering 
our game is very 
dependent on the content 
and visuals, we should 

have had an editor and art 
pipeline up and running 
much sooner. Eventually 
we made up for it, but 
it wasn't until the jump 
from the Alpha to Beta 
milestones that we really 
started flowing.

TC: How does it feel 
to have your game 
showcased in the PAX 10? 
Do any of you have plans 
to expand upon the title 
now that it has gotten 
such exposure?
KL: Being showcased at 
PAX definitely reassured us 
that we were on the right 
track. The future doesn’t 
include a Flipping good 
tiMe as of now. However, if 
we made a second version 
it would be in 3D and titled 
“A Flipping Good Time 2 
3D” in hopes that people 
would read it as 23D and 
wonder how we managed 
so many dimensions.
SF: It feels incredible to 
be recognized by PAX. 
Being a part of this team 

has been an amazing 
learning experience for 
everyone involved and we 
couldn't be more proud 
of what we were able to 
create in this game. It is 
so absolutely rewarding 
to have someone pick 
up something you've 
helped fashion and create 
through hours and hours 

of work, and watch them 
enjoy playing it. And now 
we are lucky enough to 
show our game to so many 
passionate gamers who 
might otherwise have 
never have seen it. PAX 
has given us the chance 
to showcase our game 
beyond the confines of a 
typical student project, and 
we are incredibly grateful 
for that opportunity.

As for whether we 
will expand on this in the 
future—who knows? The 
team currently has our 
sights set on starting 
fresh on our junior year 
game. However, we like to 
think of a Flipping good 
tiMe as a resounding 
proof of concept. We know 
we tapped into some 
amazing gameplay with 
this project, and perhaps 
in the future we may have 
the opportunity to further 
explore the possibilities.  
RW: It feels amazing. Being 
a big fan of Penny Arcade 
and PAX; this is a dream 

come true for me. If DigiPen 
wasn’t such an intense 
school I would love to 
expand on a Flipping good 
tiMe, but we will most likely 
be very busy working on 
next year’s game.  
RD: I came to this school to 
be part of something great, 
and that is exactly what 
happened. 

http://www.gdmag.com


{  A D V E R T I S E M E N T  }

A SERIOUS LEVEL OF OPPORTUNITY. 
Create your tomorrow with the Game Art & Design programs 
at The Art Institutes.

Go from game player to game developer. Imagine having a choice of just one video 
game. In one dimension. With one landscape, one set of characters, dull graphics, 
and clunky mechanics. Well, if it wasn’t for people with a love of gaming, a head full of 
ideas, and a way with technology, that might be the all-too-real world of gaming. 

Of course, the reality is that every day seems to bring new consoles, new mobile 
gaming devices, and new technologies. And if you want to join the creative minds 
who keep pushing the industry forward, your first move is a focused education at an 
Art Institutes school. We understand how creative people think. And we know how to 
help you develop your talents so you can make the leap from game player to gaming 
professional. 

We’re your connection to this dynamic and creative industry. 

Bring us your creativity. We’ll help you explore the possibilities. In our Game Art & 
Design programs, you’ll find yourself in a creative community, collaborating with 
other students who share your passion. And instructors who work in the same fields 
they teach. Which means they know where the industry is and where it’s heading – 
and the demands of the career you’re preparing for. 

You’ll start with the fundamental courses, then move on to building your skills in 
drawing, color, design, computer applications, and creating lifelike characters. Then 
comes image manipulation, cinematography, creative storytelling, storyboarding, 
and 2D and 3D modeling techniques, featuring professional-grade technology – 
including Apple and HP workstations; Microsoft XNA, Unity 3D, and Unreal SDK game 
engines; and software including Adobe Master Collection and Autodesk Entertainment 
Creation Suite.

Get ready to share your ideas with the world. As you prepare to enter the job market, 
we’ll help you assemble a digital portfolio to showcase your talents – both on your 
own and at portfolio shows, where you can share your work with companies familiar 
with our program and our graduates. It’s all about getting your foot in the door with an 
entry-level job such as game tester/analyst, game designer, level designer, texture 
artist, cinematic artist, 2D artist, or 3D artist in a software, game design, or education 
company. 

Talk to us today. And prepare to create tomorrow. Contact us and we’ll help you get 
started toward a career in Game Art & Design. 

The Art Institutes is a system of over 45 schools throughout North America. Financial 
aid is available to those who qualify.

Program offerings, technology, and credential levels vary by school. 

THE ART INSTITUTES
Administrative Offi ce
210 Sixth Avenue, 33rd fl oor
Pittsburgh, PA 15222
1.800.894.5793

Gamer.aii.edu

You’ve got ideas for game characters. 
Getting them from your head onto 
consoles starts with fundamentals like 
drawing, color, and design. 

With your creativity and our 
technology, you can develop the 
talents you need to launch a future 
in game design.

http://Gamer.aii.edu


©
 2

01
1 

Fu
ll 

Sa
il,

 L
LC

Game Art 
Bachelor’s Degree Program 
Campus & Online

Game Development 
Bachelor’s Degree Program
Campus

Game Design 
Master’s Degree Program
Campus 

Game Design 
Bachelor’s Degree Program
Online

fullsail.edu
Winter Park, FL

 

To view detailed information regarding tuition, student outcomes, and related statistics,  
please visit fullsail.edu/outcomes-and-statistics.

Campus Degrees
Master’s

 

Bachelor’s

 
 

Associate’s

Online Degrees
Master’s

Bachelor’s

 
 

PREPARING THE  
NEW LEADERS OF THE 
DIGITAL MEDIA INDUSTRY
The Masters of Digital Media program (MDM)
is Canada’s first professional graduate
degree program of its kind in digital media 
and entertainment technology. 

Offered at Vancouver’s Centre for Digital
Media, this 16-month program and 
internship engages students in real world
projects where they gain valuable leadership
experience, hands-on training, and top 
industry connections.

Find out more. 
mdm.gnwc.ca/leaders

A
rc

hi
te

ct
ur

al
 re

nd
er

in
g 

of
 t

he
 n

ew
 C

en
tr

e 
fo

r D
ig

it
al

 M
ed

ia
 t

o 
op

en
 fa

ll 
20

12
.

>> GET EDUCATED

53W W W . G D M A G . C O M

http://fullsail.edu
http://fullsail.edu/outcomes-and-statistics
http://mdm.gnwc.ca/leaders
http://WWW.GDMAG.COM


V
FS stu

d
e
n
t w

o
rk by A

ld
o
 M

artin
e
z C

alzad
illa

Find out more. 
vfs.com/enemies

Game Design at VFS lets you 
make more enemies, better levels, 
and tighter industry connections.

In one intense year, you design and develop 
great games, present them to industry pros, 
and do it all in Vancouver, Canada, a world 
hub of game development.

The LA Times named VFS a top school 
most favored by game industry recruiters.

VFS prepared me very well for the volume 
and type of work that I do, and to produce 
the kind of gameplay that I can be proud of.

DAVID BOWRING, GAME DESIGN GRADUATE 
GAMEPLAY DESIGNER, SAINTS ROW 2

”

“

Blizzard Entertainment  . . . . . . . . . . . . . . . . . . . . . . .3

Epic Games  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

F+W Media Inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Full Sail Real World Education . . . . . . . . . . . . . . . . 53

Havok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3

Masters of Digital Media Program  . . . . . . . . . . . . 53

Rad Game Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C4

RCCD Norco College . . . . . . . . . . . . . . . . . . . . . . . . . 45

Seapine Software Inc. . . . . . . . . . . . . . . . . . . . . . . . C2

The Art Institutes . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Vancouver Film School  . . . . . . . . . . . . . . . . . . . . . . 54    

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, r
San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Regis-
tered for GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUB-
SCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S.
funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air
delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes
to Game Developer, P.O. Box 1274, Skokie, IL  60076-8274. CUSTOMER SERVICE:  For subscription orders and changes of
address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972.  All other countries call (1) (847) 647-5928 or fax (1)
(847) 647-5972.  Send payments to gd Game Developer, P.O. Box 1274, Skokie, IL  60076-8274. Call toll-free in the U.S./Canada rr
(800) 444-4881 or fax (785) 838-7566.  All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to
indicate gd Game Developer on any correspondence. All content, copyright r gd Game Developer magazine/UBM LLC, unless r
otherwise indicated. Don’t steal any of it.

>>
GE

T 
ED

UC
AT

ED

54 O C T O B E R  2 0 1 1 | G A M E  D E V E L O P E R  

http://vfs.com/enemies


UNITED STATES POSTAL SERVICE
Statement of Ownership, Management, and Circulation

1. Publication Title: Game Developer. 2. Publication No.: 13782. 3. Filing Date: August 30, 2011. 4. Issue Frequency: Monthly with a combined June/July issue. 5. Number of Issues Published Annually: 11.
6. Annual Subscription Price: $49.95. 7. Complete Mailing Address of Known Office of Publication (Not Printer): UBM LLC, 303 2nd Street – Suite 900 South, South Tower, San Francisco, CA 94107. Contact
Person: Roy Beagley. Telephone: 203-775-9465. 8. Complete Mailing Address of Headquarters or General Business Office of Publisher (Not Printer): UBM LLC, 303 2nd Street – Suite 900 South, South 
Tower, San Francisco, CA 94107. 9. Full Names and Complete Mailing Addresses of Publisher, Editor, and Managing Editor: Publisher: Simon Carless, UBM LLC, 2nd Street – Suite 900 South, South Tower,
San Francisco, CA 94107; Editor: Brandon Sheffield, UBM LLC, 303 2nd Street – Suite 900 South, South Tower, San Francisco, CA 94107; Managing Editor: None. 10. Owner: UBM LLC, 600 Community Drive, 
Manhasset, NY 11030-3875, an indirect, wholly owned subsidiary of UBM LLC, Ludgate House, 245 Blackfriars Rd., London, SE1 9UY, U.K. 11. Known Bondholders, Mortgagees, and Other Security Holders 
Owning or Holding 1 Percent or More of Total Amount of Bonds, Mortgages, or Other Securities: None. 12. Tax Status: Has Not Changed During Preceding 12 Months. 13. Publication Title: Game Developer. 14. Issue
Date for Circulation Data Below: September 2011.

15. Extent and Nature of Circulation: Average No. Copies Each  No. Copies of Single
Issue During Preceding  Issue Published Nearest 

12 Months to Filing Date
a. Total No. Copies (Net Press Run) 24,934 26,148
b. Paid and/or Requested Circulation
 (1)  Outside County Paid/Requested Mail Subscriptions  16,203 18,067 

Stated on Form 3541. 
 (2) In-County Paid/Requested Mail Subscriptions 0 0 
  Stated on PS Form 3541
 (3)  Sales Through Dealers and Carriers, Street 1,861 2,054 

Vendors, Counter Sales, and Other Paid or 
Requested Distribution Outside USPS

 (4) Requested Copies Distributed by Other Mail 0 0 
  Classes Through the USPS
c. Total Paid and/or Requested Circulation 18,064 20,121 

[Sum of 15b. (1),(2), (3), and (4)]:
d.  Nonrequested Distribution (By Mail and Outside the Mail)
 (1) Outside County Nonrequested Copies Stated on PS Form 3541  4,053 3,949
 (2) In-County Nonrequested Copies Stated on PS Form 3541 0 0
 (3) Nonrequested Copies Distributed Through the USPS by  0 0 
  Other Classes of Mail
 (4)  Nonrequested Copies  Distributed Outside the Mail  2,455 1,800 

(Pickup Stands, Trade Shows, Showrooms, and Other Sources)
e. Total Nonrequested Distribution 6,508 5,749
f. Total Distribution (Sum of 15c and 15e) 24,572 25,870
g. Copies Not Distributed 262 278
h. Total (Sum of 15g and 15h) 24,934 26,148
i. Percent Paid and/or Requested Circulation  73.51% 77.78% 
(15c Divided by 15f Times100)

16. Publication of Statement of Ownership: This Statement of Ownership will be printed in the October 2011 issue of this publication. 17. Signature and Title of Editor, Publisher, Business Manager, or Owner
(signed): Simon Carless, Date: August 30, 2011.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com


ARRESTED DEVELOPMENT //  MATTHEW WASTELAND

gAME DEVELOPER   |   OcTObER 201156

Sandwich PitcheS
Will your lunch get greenlit for production?

Round 1: t u R k e y ,  h a m ,  a n d  S w i S S
“The new Turkey, Ham, and Swiss sandwich will add the delicious 
flavor of turkey to the already popular Ham and Swiss product. 
Eaters across the globe will thrill at the addition of a new 
ingredient—turkey—to this already proven combination. Turkey, 
Ham, and Swiss will appeal to established fans of Ham and Swiss 
sandwiches, as well as anyone else looking for a good sandwich.” 

Thanks for your pitch. If we’re not mistaken, all you’ve done is taken 
a Ham and Swiss sandwich and added turkey to it. “More of the same” 
works sometimes, but there isn’t really a lot for consumers to get excited 
about here. I’d encourage you to think about what really differentiates your 
sandwich from the other lunch options in the marketplace today. We’re not 
just competing with other sandwiches anymore; in these unprecedented 
times, people are just as likely to eat hot dogs or even pizza. 

We appreciate the time you took to put this together—come back to us 
once you have a better hook.

 
Round 2: t h e  m i n d b l o w e R 

“Developed in secret for over 12 years by a small team of 
sandwich industry mavericks, The Mindblower will make 
consumers rethink everything they know about sandwiches! 
The Mindblower’s unique combination of tahini, pickled okra, 
and Pop Rocks in a tomato basil wrap will punch past the jaded, 
cynical mind of the average sandwich consumer and hit them 
straight in the gut!”

 That’s a very interesting approach. We definitely responded to the 
boldness of your design, and we like that you’re willing to take on some risk 
in pursuit of innovation here. We can see the appeal of getting customers to 
break out of the “been there, done that” sandwich routine and experience 
something new. However, there do seem to be certain unproven elements 
in the design, which are a cause for concern. Particularly, we zeroed in on 
how the reddish color of the tomato basil wrap might put off consumers 
who aren’t used to eating light red or pinkish foods. 

Additionally, because this concept is so off-the-wall, you may want to 
think about allowing people the opportunity to customize certain elements 
of the experience to their own preferences. Maybe somebody wants the 
Mindblower sandwich except on rye bread instead of in a wrap, for example. 
User customizability is, of course, a big part of our strategy right now.

Round 3: m e t a S a n d w i c h 

“Metasandwich is much more than a sandwich—it’s actually 
a powerful and easy-to-use meal-creation platform. Our 
dynamic sandwich-assembly system, The Sandwich Counter™, 
allows customers to arrange and rearrange their own custom 
sandwiches on the fly—in real time. Don’t like avocado? Don’t 
put avocado on there. Go crazy and add two slices of cheese, or 
an extra piece of lettuce. Then, share your personal sandwich 
creations with your friends using the internet! Metasandwich is 
lunch for the remix generation.”

 Okay, we get this. We like the user-generated content strategy here, 
and the idea that every customer can have the experience they want. It 
sounds like something that could really take off and sustain itself once the 
community gathers steam. 

At the same time, our design director brought up a good point: We would 
need to support all the millions of possible combinations that this system 

would allow. What if someone didn’t put any meat on their sandwich and 
then had a bad experience? I think we’d have to build in some controls—
have some of the elements of the sandwich customizable, and others 
not—so that no matter what they do,  users are always left with a good-
tasting sandwich. We’ll also want to put a disclaimer on there saying that 
modifications to the sandwiches are not necessarily endorsed by us and 
that we can’t guarantee anything about how they taste. I’ve CCed our legal 
department here so they can offer some additional suggestions on how to 
move forward with this.

 In the meantime, the community aspect of the pitch was intriguing. 
You mentioned sharing sandwich creations with friends— that reminded us 
a lot of Twitter and Facebook! It’d be great if you could push more of those 
social aspects into the concept.

 
Round 4: S a n d w i c h t o w n 

“SandwichTown is a connected entertainment experience 
designed around the wide-ranging fun of making and eating 
sandwiches. In SandwichTown, customers are challenged to 
assemble their own sandwich by rounding-up and coordinating 
groups of friends to perform various tasks, such as gathering 
wheat, kneading dough, and baking loaves of bread. Advanced 
sandwich options such as peanut butter or diagonal cuts are 
gated through a series of microtransaction tiers.

 Our pioneering ‘sandwich as a service’ model allows 
us to upsell a premium experience at every step of the 

sandwich-creation 
process. The Pro 
Basic monthly 
subscription 
level gives lunch 
customers access 
to a condiment 
bar with unlimited 
mustard, exclusive 
sneak peeks 
at upcoming 

ingredients, and special blue plastic trays instead of 
ordinary brown ones. The Pro Premium level offers an even 
more enhanced level of service (exact features TBD). Try 
SandwichTown today—all your friends are doing it!”

 Yes, we like where you’ve gone with this. It feels like sandwich-as-
sticky-app (and we don’t mean because of the grape jelly, ha ha). How soon 
do you think you could get together a proof-of-concept dynamic sandwich 
engine up and running? Have you thought about integrating some sort of 
cloud strategy?

Just one note before we start production: While we do think of this 
as the way forward, a concern was raised about the core audience and 
the perception that we might be dumbing down the sandwich experience. 
Of course we want a big, diverse audience, but we don’t want to alienate 
hardcore sandwich-eaters. Just make sure you’ve got a value proposition 
for those customers, too. Maybe in addition to all this, you could also offer 
something like, I don’t know, maybe a simple Ham and Swiss? 

matthew waSteland writes about games and game development at his blog, Magical 

Wasteland (www.magicalwasteland.com). Email him at mwasteland@gdmag.com.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com


http://www.havok.com/havok-script


http://www.radgametools.com

	Contents
	POSTMORTEM
	BULLETSTROM

	FEATURES
	GAME CHANGERS
	REACTIVE GAME ARCHITECTURES
	THE IRON FIST

	DEPARTMENTS
	EDITORIAL - Game Plan
	NEWS - Heads Up Display
	REVIEW - Tools Box
	PROGRAMMING - The Inner Product 
	DESIGN - Design of the Times
	ART - Pixel Pusher
	BUSINESS - The Business
	CAREER - GDC Jobs
	SOUND - Aural Fixation
	NEWS - GDC NEWS
	CAREER - Good Job
	EDUCATION - Educated Play
	HUMOR - Arrested Development


