
OCTOBER 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

O ctober means different

things do different people

— the leaves change color,

autumn breathes a chilly

snap into the air, and a

million hours are spent sewing the flowing

robes of a million Gandalf Halloween cos-

tumes. Here at Game Developer, October

means our annual audio issue.

The past year has seen a number of

interesting developments on the game

audio front. The proliferation of console

development has taken the focus of game

audio away from those reviled, tinny

speakers sitting on the desktop and into

players’ increasingly sophisticated home-

theater setups in their living rooms.

Players so far have liked what they’ve

heard coming through their new con-

soles, and audio is fast becoming a dis-

tinguishing factor among games as

graphics gradually declines in dominance

on the feature list.

For their part, audio software and

hardware companies are continuing to

recognize the growing importance of

their game audio customers. Other ven-

dors such, as Analog Devices and

Sensaura, have admirably attacked some

gaping holes in game-audio-specific

development tools.

In March, a group of game audio veter-

ans launched the Game Audio Network

Guild. Its goal is to foster more and better

communication both within the game

audio community as well as with other

disciplines of game development. Clearly

there is a need for some kind of common

language between designers, producers,

and audio people, as “Can you make that

sound bigger?” just doesn’t cut it any-

more. Also recognizing the need to demys-

tify audio creation among all game devel-

opers, Game Developer has been running

our monthly “Sound Principles” audio

column since March.

Few people would choose to watch a

movie in total silence or while listening

to their favorite CD instead, but most

games still give players the option to turn

off sound effects and music. But develop-

ers should never give players a reason to

turn it off, which players will do quickly

when a game’s audio becomes intolerably

repetitive or predictable.

To combat many of the common com-

plaints about game audio, in this month’s

cover feature, “Building an Adaptive

Audio Experience” (p. 28), Ion Storm

audio director Alexander Brandon exam-

ines several breakthrough games that used

different adaptive audio techniques to link

game music and sound to story and game-

play in rich, dynamic ways. As much as

game audio development can feel like

reinventing the wheel each time, there are

many valuable lessons existing already

about what works and what doesn’t.

On the subject of game audio, Alex

also did this month’s Profile (p. 12), in

which he was delighted to interview one

of his game-music heroes, Hirokazu

“Hip” Tanaka. Hip counts among his

influences The Monkees, Burt Bacharach,

and reggae dub music, which you can

think about next time you’re listening to

the music and sound effects he did for

some of the classic NES/Famicom-era

games while he was at Nintendo, such as

METROID and KID ICARUS. In addition to

apparently having some random Boston-

area band named after him, Hip now

runs Creatures Inc., where he keeps in

touch with Nintendo through work on

the Pokemon franchise.

Rounding out the audio focus this

month, well-known game composer

Jeremy Soule (NEVERWINTER NIGHTS and

MORROWIND are among his recent cred-

its) takes a hard look at the business

side of game music in our “Sound

Principles” column (p. 24), where he

asks, “What Is Your Game Music

Worth?” If we’re going to start suffering

from the growing pains and creative

tensions of the film and music business,

we might as well learn how to make

money like they do.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

Turn It Up

Take Two buys Barking Dog, Sony picks up
Incog. Take-Two, the corporate parent of

Rockstar Games, acquired Vancouver-

based Barking Dog for $3 million in

cash and 242,450 shares of restricted

common stock. Barking Dog, currently

working on a title for Rockstar, employs

around 50 developers in three different

teams. Barking Dog will take on the

name Rockstar Vancouver, bringing the

number of Rockstar studios to three.

The studio located in Oakville, Ontario

(formerly known as Rockstar Canada),

will now be called Rockstar Toronto.

Sony Computer Entertainment America

has acquired TWISTED METAL developer

Incog. Salt Lake City–based Incog Inc.,

formerly known as Incognito Studios, will

become a Sony internal studio with all

current employees staying on in Incog’s

Utah location and under the Incog name.

Incog’s TWISTED METAL franchise has sold

more than 5 million units in its lifetime,

making the developer a tempting target in

Sony’s bid to strengthen its internal devel-

opment efforts. The terms of the deal

were not disclosed.

In the black. Electronic Arts announced its

first-quarter results, posting consolidated

net revenues of $331.9 million, an

increase of 82 percent from last year. Net

income for the quarter rebounded to

$7.4 million from a net loss of $45.3 mil-

lion last year. The company cited higher

sales for PC and PS2 games as a major

reason for its strong performance during

the quarter. EA.com, however, continues

to lose money. Net revenues at EA.com

were up 21 percent to $19.8 million, but

EA’s online division still tallied a $12.8

million loss.

Activision also posted strong first-

quarter results, with net revenues up 73

percent to $191.3 million. Net income

for the quarter reached $20.7 million. In

addition to the sterling financial results,

Activision’s first quarter also included the

acquisition of DAVE MIRRA BMX devel-

oper Z-Axis, the purchase of a 30-per-

cent stake in developer Infinity Ward, the

securing of distribution rights to id’s

DOOM III, and a contract extension with

Tony Hawk until 2015. Based on the

favorable first quarter, Activision raised

its fiscal-year revenue projections from

$890 million to $920 million.

THQ joined EA and Activision in post-

ing unexpectedly strong results. The com-

pany reported second-quarter net income

of $4.9 million, an increase of 43 percent

from last year. Revenue hit $85.8 million,

up 55 percent from last year. These results

exclude a previously announced non-cash

charge of $2.6 million (7 cents per share),

for the discontinuation of the Network

Interactive Sports (NIS) online joint ven-

ture in the United Kingdom. THQ also

increased its 2002 guidance for revenue

from $515 million to $525 million.

In the red. Midway posted strongly

improved second-quarter revenues but

was still unable to stop the red ink. The

company’s revenues hit $28.1 million, a

healthy improvement from the same peri-

od one year ago, but it wasn’t enough to

keep Midway from posting a pretax loss

of $10.7 million. With consolidation and

stock charges tallied, Midway’s net loss

reached $27.9 million. The company

shipped nine titles in the second quarter

and anticipates shipping 10 more in the

coming quarter, leading the company to

maintain its fiscal-year projection of a

pretax income of $25 to $33 million.

Take-Two adds value. In addition to beefing

up its Rockstar label, Take-Two is mak-

ing moves to secure its place in the value

segment. The company is launching a

new label, Gotham Games, to focus on

mass-market and value-priced titles. The

first titles under the Gotham imprint

include SERIOUS SAM for Xbox and

CELEBRITY DEATHMATCH for PSX. q

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r4

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

SERIOUS SAM TAKES TWO. The SERIOUS SAM series will be one of the first titles tackled by
Gotham Games, Take-Two’s newest label.

U P C O M I N G E V E N T S

CCAALLEENNDDAARR
I N T E R A C T I V E
E N T E R T A I N M E N T
F O R U M

SCANDIC HOTEL

Copenhagen, Denmark
October 14–15, 2002
Cost: e2,518 plus tax
www.marcusevansuk.com

P R O J E C T B A R - B - Q
GUADALUPE RIVER RANCH

Boerne, Tex.
October 17–15, 2002
Cost: $1,850–$2,200
www.projectbarbq.com

XX

W hy should you

spend a dime on

wireless Java

development tools

when Sun provides

their own kit for free? Good question.

For wireless game developers, Metro-

werks’ CodeWarrior Wireless Studio 7

definitely serves to fill a growing need.

Wireless games are getting more compli-

cated. Memory capacities are rising and

multimedia capabilities are improving,

and the spare-bedroom programmer

banging out a mobile game in a few

weekends will have to get serious. This

necessitates things like debuggers, source

control, and having the ability to quickly

build your code for multiple handsets.

Slowly, we are rising from the primor-

dial soup of stale WAP products and sim-

plistic embedded games, but even within

a leading mobile applications platform

standard such as Sun’s Java 2 Micro

Edition (J2ME), there’s still a mess of

custom extensions and handset features.

Extensions to access features such as

MIDI music, sprite graphics, pixel trans-

parency, and low-level networking are

commonplace in various J2ME SDKs.

CodeWarrior Wireless Studio 7 has taken

on the daunting task of uniting all of

these disparate SDK extensions.

Opening the Box

C odeWarrior Wireless Studio 7

Professional Edition comes on two

discs. The first has

the actual IDE on it

while the second CD,

labeled “SDK Disc,”

contains the J2ME

SDKs and emulators

for Sun, Motorola,

Siemens, and Sprint

PCS. It also includes

Sun’s PersonalJava SDK

as well as support for

the Sharp Zaurus plat-

form. The SDK disc has

a few third-party libra-

ries, including PointBase

Micro Edition, Softwired

iBus-Mobile LE, Lutris Enhydra kXML,

and kSOAP. This also includes the popu-

lar Retroguard obfuscator. Many of these

additions are of minor importance to the

average game developer. However, Retro-

guard is invaluable when trying to slim

down your application for distribution.

Using Wireless Studio

C odeWarrior Wireless Studio works

largely the same way as their nor-

mal Java IDE. In fact, you can also cre-

ate Java 2 Standard Edition (J2SE) proj-

ects with it. Think of it as Java Code-

Warrior; it includes all of the standard

features of editing, project management,

and version control integration, and

adds mobile development features such

as editing JAD properties, verifying and

packaging the MIDlet suite, obfuscating,

and developing your code

with a variety of different

emulators and SDKs.

That last feature is the

major advantage of Wireless

Studio 7. The J2ME world

is currently awash in non-

standard extensions and

unique hardware imple-

mentations. CodeWarrior

has consolidated many of

these custom SDKs and

emulators under one

roof. Simply pick which

SDK you want to compile with and you

are in business. CodeWarrior also will

work with updated versions of some

SDKs. In particular, newer offerings such

as version 2.0 of Motorola’s J2ME SDK

have installation options to merge auto-

matically with CodeWarrior. Hopefully

more manufacturers will follow suit.

CodeWarrior Wireless Studio is, in

many cases, at the mercy of the quality

control of another company’s SDK. Some

of the SDKs, such as with Sprint PCS’s

toolkit, are genuine beta releases, while

others are finished products with a lot of

quirks. Even though Motorola now owns

Metrowerks, support for Motorola hard-

ware is the worst of the lot. Metrowerks

wisely allows for switching between any

of the provided kits, as well as the ability

to register different VMs and SDKs to

expand support for other devices.

Wireless Studio 7 comes with Code-

Warrior’s familiar debugging tools. This

includes their robust source-level debug-

ger with all the pleasantries we have

grown accustomed to in a modern

debugger. However, one of the more

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r6

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

R A L P H B A R B A G A L L O | Formerly of Ion Storm, Ralph runs Flarb Development, a
wireless gaming studio in Southern California. He currently is finishing up a book, Wireless

Game Development in C/C++ with BREW (Wordware), for release later this year.

Metrowerks’ CodeWarrior
Wireless Studio 7

by ralph barbagal lo

interesting features is the ability to do

on-device debugging. Emulators are often

extremely inaccurate when compared

with an actual handset, making it neces-

sary to debug your code extensively on

real hardware before releasing a commer-

cial application.

Previously, you have only been able to

get println output via a terminal pro-

gram communicating from the handset to

a host PC. CodeWarrior Wireless Studio

7 includes support for debugging on the

device itself. This means you can connect

the debugger to the handset and step

through code as it executes on the actual

hardware. This requires a debug version

of the handset firmware to be installed

on the device. Right now, only debug

Java VMs for PDAs are supported with

on-device debugging. Metrowerks is

working with manufacturers to provide

developer firmware updates that work

with CodeWarrior’s debugger. This is an

absolute godsend and, if it works, is

alone worth the price of admission.

Ahead of the Game

W hen it comes to J2ME IDEs for

mobile game development,

CodeWarrior Wireless Studio 7 is way

ahead of the pack. At a mere $599

(MSRP), it’s an absolute steal when com-

pared to competing products, such as

Borland’s JBuilder, that can approach

prices of $2,000. CodeWarrior has an-

nounced an upcoming “Entertainment

Edition” of Wireless Studio that will

have specific features for game develop-

ment, including multiplayer server

libraries and such. Considering the minis-

cule budgets of the average mobile game,

CodeWarrior’s low price and useful array

of features make it the only choice for

cash-strapped development houses of the

mobile age.

PMG’S MESSIAH:
ANIMATE 3.0

by sergio rosas

W ith version 3.0, PMG’s Messiah is

no longer just a character anima-

tion plug-in for Lightwave 3D, but is now

a full-featured 3D animation package

busting at the seams with great features.

The biggest improvement to Messiah is

that it is now a stand-alone program,

with added support for multiple render-

ing pipelines. Straight out of the box,

Messiah animations can be exported for

rendering in Lightwave, 3DS Max,

Maya, and Softimage XSI. Don’t get too

excited, though, because Messiah anima-

tion data gets exported to the other ren-

dering packages as vertex deformations

only. In other words, you load up your

model in the 3D package you want to

render in and apply the Messiah plug-in;

the plug-in then deforms your model’s

vertices frame by frame. Still, this is the

best effort I have seen among any 3D

package to try to play well with others.

Messiah can import from a variety of

formats, including 3DS (.3DS), BioVision

Mocap Data (.BVH), DXF objects (.DXF),

Messiah Motion (.FXM), Messiah Scene

(.FXS), Motion Analysis Hierarchical

Translation Rotation (.HTR), Lightwave

5.x or 6.x objects (.LWO; unfortunately,

Messiah doesn’t support some of the

advanced features of the new Lightwave

objects such as skelegons, weight maps, or

endomorphs, but it does support loading

in individual object layers), and Wavefront

objects (.OBJ).

Messiah has the ability to export its

skeletal weight and animation data to

ASCII format, making it very easy for

programmers to do what they need with

it. Additionally, Messiah has added a full

scripting language and an SDK to allow

developers to create their plug-ins or

pipelines in and out of Messiah.

Messiah’s strength is apparent when

setting up advanced character rigs. Setting

up skeletons is similar to the way you

draw bones in the Lightwave layout,

except with a more refined interface. The

program has a Setup tab that takes the

character back to its rest position for easy

bone editing. You can actually start ani-

mating a character and then go back to

the Setup tab to modify a bone or add an

extra bone or muscle, all without losing

your animation. Messiah’s bones are

amazingly fast, even with complicated IK

and expressions on a rig. Although the

bones deformation envelope works well,

Messiah doesn’t currently have the ability

to create or import weight maps.

The program has a very powerful

implementation of expressions, shipping

with a ton of predefined expression func-

tions that are simple plug-and-play, even

for nonmathematicians. IK, sliders, and

morph targets are straightforward to imp-

lement and can all be tied into expressions

as well. One neat feature new to Animate

3.0 is the premade Setups panel, which

comes with some setups, and with one

double-click, you can also add your own.

Messiah has a built in nonlinear anima-

tion (NLA) system called Compose. It lets

XP R O D U C T R E V I E W S

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r8

STATS
METROWERKS

Austin, TX
(512) 997-4901
www.metrowerks.com

PRICE
$599 (MSRP)

SYSTEM REQUIREMENTS
PC Software: Windows 98/2000/Me/NT 4.0

with Service Pack 4 or later, Sun Micro-
systems’ Java SDK, 1.2 or later (JSDK
1.3.1 and JSDK 1.4.0 included). Intel
Pentium class or AMD-K6 class proce-
ssor, 64MB RAM, 250MB free hard disk
space, CD-ROM drive for installation.

PROS
1. Unites many different J2ME SDKs

under one environment.
2. Price is very reasonable compared

to other similar products.
3. On-device debugging will be the

ultimate feature once more manufactur-
ers support it.

CONS
1. Third-party J2ME SDK integrations vary

widely in quality.
2. CodeWarrior interface — either you love

it or you hate it.
3. On-device debugging only works on one

device (at the moment).

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

CODEWARRIOR
WIRELESS STUDIO 7

XXXX

you work with motion clips in the same

way you would with video clips. Basically

you group some items (bones, objects, and

the like) into a character and then make a

library of motion clips (say, a pose or a

walk cycle) for it. Then you can arrange

the clips in any order and/or blend the

clips into one another using a linear blend

or a curve. Compose has an elegant inter-

face that is easy and intuitive to use.

Much like a nonlinear video editor, it’s

possible to scale, repeat, copy, and blend

animations using visual representations of

the clips on multiple tracks in a timeline.

You can also modify any aspect of the

character’s performance on an instance of

the motion clip, or even modify the origi-

nal motion clip itself. Compose is a well-

refined NLA with many second-genera-

tion features. For instance, a walk-cycle

motion clip captured from one character

can be applied to a different character

using a tool that matches the individual

items in one group to the items in a differ-

ent group. Most NLAs have similar fea-

tures, but Messiah’s has advanced features

like auto-matching, hierarchy matching,

and base-name filtering.

Another advanced feature is how

Compose applies the edited motions to

the character. For each item in a character

group, you have the option to apply the

motion before or after the character’s IK.

Motions can also be applied instead of —

or combined with — the motions that the

character has in the current scene already.

The possible combinations are additive,

subtractive, multiply, divide, greater than,

or less than.

You can also have a variety of motion

end behaviors (such as cycle or oscillate)

and rest value compensation so your

character won’t pop backwards at the

end of each walk cycle. Another great

feature is that you can define multiple

character groups with overlapping items.

For instance, you can make a character

group for an entire character, and also

make a group for just the hand.

In short, with all its refined features,

Messiah: Animate is a pretty serious non-

linear animation system. Messiah:

Animate has an MSRP of $1,045; the

upgrade from Messiah 1.5 is $395. PMG

is making available a free downloadable

demo version of Messiah: Animate 3.0 at

www.projectmessiah.com.

| Messiah: Animate 3.0
PMG | www.projectmessiah.com

Sergio Rosas is an art director at Ion
Storm. Contact him at
srosas@ionstorm.com.

WACOM CINTIQ 18SX
by spencer lindsay

I ’ve played with LCD pen tablets at

trade shows before, but doing actual

production work on Wacom’s Cintiq

18SX is incredible — not that my co-

workers let me get much work done when

it showed up on my

desk. Once the

word got out

that we had one

of these down in

our lab, every artist

in the company

traipsed through

my office with

nothing but cries

of glee for this

amazing tool. I

had to wipe

their drool off

the monitor several times.

The Cintiq 18SX combines a high-res-

olution 18.1-inch LCD display with a

pressure-sensitive pen tablet. The tablet

sits on a cast-aluminum swivel stand so

you can move your artwork to fit your

position. If you’re a lefty, it tilts the way

you hold your regular pen and paper. I

found that taking the tablet off of the

stand and putting it in my lap like a

sketchpad worked the best, but at 17

pounds (without the stand) it was just a

bit too heavy to be comfortable for long

periods of time. All the connection cables

(the Cintiq supports both USB and serial

and works with either a DVI or VGA

video connection) are in one umbilicus,

so there’s no tangling. I can say that

using the 18SX completely changes the

way I interface with my computer.

Although I tend to like my monitor

resolution way up in the “can’t see it”

range, Cintiq’s 1280�1024 maximum

resolution and 24-bit color depth are

really great for Photoshop projects. After

a bit of research, I was able to hook both

the Cintiq tablet and my 24-inch monitor

to the same workstation. Being able to

work in Photoshop on the tablet and

then switch to my 3D program and the

mouse was a dream come true.

The response time of the tablet, rated

by Wacom at 27 milliseconds, and moni-

tor is fantastic. Being used to a bit of lag

when working on larger images, I was

pleasantly surprised to find the response

time of the Cintiq was better than my

current stylus. This had the effect of

removing even further the interface barri-

er between my artwork and me.

The pen and tablet have the

same intuitive and adjustable

settings that I use on my

“old” Wacom tablet, so I

had no problem setting

the pressure settings

correctly and get-

ting to work.

Cintiq offers

512 levels of

pressure sensi-

tivity, so using

this thing with the

new brush modes in

Photoshop 7 is amazing — just like

painting with a brush.

The Cintiq 18SX includes a two-but-

ton grip pen with an eraser. The tablet is

also bundled with Wacom’s Pen Tools

software and Corel Painter Classic, and

Wacom offers an add-on kit for Irix-

based workstations.

Simply put, this tool is revolutionary;

not only does it simplify the computer

for traditional artists, it introduces a

whole new method of interface for us

hardcore digital art geeks.

The Wacom Cintiq 18SX retails for

$3,499. Go get one.

| Cintiq 18sx LCD Tablet
Wacom | www.wacom.com

Spencer Lindsay recently moved
to Carlsbad, Calif., where he is
currently working at Angel Studios.

XP R O D U C T R E V I E W S

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r10

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

XXXX

XXXXX

In 1986, we in the U.S. were playing the Nintendo

Entertainment System (known as the Famicom in

Japan), and roughly a third of the music for its first set

of games was written by Hirokazu “Hip” Tanaka, then

with Nintendo Co. Ltd. He has written music for

countless other games as well as designing the Game Boy

Camera and Printer, and also scored the soundtrack to the

Pokemon TV series. He now runs Creatures Inc., which

makes Pokemon cards and developed the hit Japanese Game

Boy Color title CHEE-CHAI ALIEN. Thanks to the translation

assistance of Kaito Okutani and Hideyuki Shida, I managed

to have a few words with this legendary composer.

Alexander Brandon. How did you get involved in music for games?
Hip Tanaka. I studied electronic engineering at uni-

versity, but you can probably guess what it was

like. My professor once summoned me and

said, “I understand if you want to make a liv-

ing with your music, but I just cannot allow

you to graduate as an engineer like this.”

Then, I found a newspaper ad from

Nintendo for a sound engineer position. I

went to the interview, and fortunately I was

accepted. At the same time, though, my band

was selected as a finalist in a music competi-

tion and I got a chance to debut as a pro. It

made me think about my future, but I decided

to take the job at Nintendo. The band, by the

way, found a replacement and made their

national debut.

AB. For METROID, how did you go about creating the
music? Did someone give you graphics from the game and ideas for
themes?

HT. I had a concept that the music for METROID should be cre-

ated not as game music, but as music the players feel as if they

were encountering a living creature. I wanted to create the sound

without any distinctions between music and sound effects. The

image I had was, “Anything that comes out from the game is the

sound that game makes.”

They allowed me to be in charge of the game’s music. I

even insisted that game designers change certain graphical

concepts in the maps from my point of view. Indeed, I named

all the maps. In Japan, METROID was released on a disk sys-

tem. The Japanese version has one more voice of polyphony,

and it sounds much better.

AB. What was it like working with the technology to create music
for the original Nintendo games?

HT. There was a dedicated sound design tool available when

the Famicom was introduced. It was common for most sound

designers to use sound tools in the PC and convert the MIDI

data into Famicom’s sound data. But then I didn’t use any

sequencers specialized for music and sound. I always created

my own sequencer and used assembly for the programming

language. Being a programmer and a composer using my orig-

inal program was a strong element of my uniqueness.

AB. Do you have a studio now that you use to create music for
current games and Pokemon?

HT. My company is called Creatures Inc., and the former

president is the executive producer of Pokemon. I took a job

creating the music for Pokemon TV series in my spare time,

before Pokemon gained today’s popularity. At first, I com-

posed the music for it almost as a joke and didn’t take it seri-

ously. But I was asked to continue compos-

ing music for the anime series. Nintendo did-

n’t allow employees to work for other com-

panies, so combining my personal reasons

that I had then, I made the decision to leave

the company.

Everybody thinks I am a dedicated music

composer, but before resigning from

Nintendo, I planned and developed Pocket

Camera and Pocket Printer. I gave a presen-

tation to [former Nintendo chairman and

president Hiroshi] Yamauchi, and I drew all

the images and even programmed the proto-

type game myself.

AB. What are your thoughts on making music
and sound for games now, compared to in the
1980s?

HT. Today, I think it’s common now to work more systemati-

cally, not relying on one single sound designer as I used to do,

but coordinating several groups who specialize in each field.

However, what really doesn’t change is that sound design is a

human-to-human business, not like you are doing it for dogs or

birds. Not only that, but you have to tackle gamers’ feelings,

which is something we’ve never been able to grasp completely.

AB. Do you have plans to create music for an album or CD?
HT. Buckner and Garcia published a record album called

Pac-Man Fever in 1982. In it, they had music for the DONKEY

KONG arcade version. This song starts with Donkey Kong’s

stomps as well as Mario’s squeaking footsteps. I made both of

the sound effects, and you can’t imagine how happy I was

when I first heard it. I was really touched! I haven’t heard of

any releases in the near future regarding my works.

Wait, there’s more! Check out the unabridged version of this
interview at Gamasutra.com. q

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | a l e x a n d e r b r a n d o n

Shooting from the Hip:
An Interview with Hip Tanaka

DONKEY KONG (1980): sound effects

GYROMITE (1985)

DUCK HUNT (1985)

KID ICARUS (1986)

METROID (1986)

SUPER MARIO LAND (1989)

BALLOON FIGHT (1990)

H I P T A N A K A :
S O F T O G R A P H Y H I G H L I G H T S

t r a n s l a t i o n : k a i t o o k u t a n i

E very year we create larger amounts of content for

our game worlds, and each piece of content

becomes richer. As a result of this trend, scripting

languages are becoming increasingly important. A

scripting language should enable content builders

to make game events happen easily by expressing ideas in a

high-level manner. And ideally, a faulty script won’t crash the

game and disrupt workflow.

With subjects like graphics or AI, we often turn to academic

research for solutions. This is a good idea for programming

languages, too, but it doesn’t work as well. Most programming

language research doesn’t have much to say about making

events happen in a game world. Much of what we want is

highly domain-specific, so we should apply our domain experi-

ence to come up with ideas for solutions that other people

wouldn’t consider.

It’s difficult to devise good features for a scripting language;

we don’t have many good examples, since most familiar lan-

guages are made for a different kind of programming from the

one we want. So in this month’s column and the next, I’m

going to concoct an experimental programming language fea-

ture. My goal is to show an example of a tool that could be

useful for games that we would be unlikely to see in a general-

purpose programming language. I also want to play a little bit

with the feature and show the interaction between domain-spe-

cific concerns and language design.

Dealing with Time

I like 3D games, which are about events that happen over

periods of time inside some region of space. Traditional pro-

gramming doesn’t deal well with time and space, so they should

be good subjects to explore for domain-specific improvements.

We often want to talk about the behavior of things that

change over time. We want to ask questions such as “Has the

player been closely following the messenger he’s supposed to

spy on long enough to complete the mission?” or “Have there

been enough combat events lately to keep the player interested,

or should we increase the number of wandering monsters?” or

“Is the player making continual progress toward the goal, or

should we guide him more?”

Programming these aspects of a game is usually a lot of work.

We need to make a piece of code that runs every frame and

measures certain things about the state of the world, then records

those values somewhere so that we can look at them in the

future, or averages them together into some quantity about

which we then make decisions. These systems often grow to be

unwieldy, and they easily pollute other portions of the code base

(we’ll see some examples of contamination next month).

In most programming languages, when we assign a variable to

a new value, the old value is completely erased. But if the lan-

guage possessed some kind of short-term memory about how the

variable has been behaving, we could use that facility to answer a

lot of time-based questions. And maybe in the end, our scripting

language will be a little more organic, a little less mechanical.

I will implement this memory by building it into the vari-

able handler for a scripting system. Since it’s in the core of the

interpreter, we can invest effort to make the feature high-qual-

ity (for example, mathematically well defined and frame-rate

independent), and the benefits will propagate through the sys-

tem: everyone who performs time-related queries will get

high-quality results.

I am choosing this feature because it’s kind of cool and some-

thing I’ve never seen before, and it’s a facility you could imagine

existing in almost any language. I’m not choosing it as a magic

bullet to solve all our scripting problems; time-related queries are

not necessarily the biggest content-development bottleneck. But

by exploring features like this, step by step, we can eventually

arrive at a programming paradigm very different from what we

have now, a paradigm that is much more productive for us.

How Variables Tend to Work

One of the main tasks of a scripting system is to manage

communication between the core game engine (fast, low-

level code) and the running scripts (slow, high-level code).

So that the scripting system can perform code execution and

run-time type-checking, each variable accessible by the scripting

language is stored in a table, and the entry for that variable is a

data record containing more than just the variable’s value: for

example, a string that tells you its name and an integer telling

you its type (Boolean, real number, integer, entity ID, and so on).

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r14

Toward Better

j o n a t h a n b l o w

Part 1Scripting:

I N N E R P R O D U C T

JONATHAN BLOW I Jonathan has taken a
renewed interest in programming language
design. Send polemics about language semantics
to jon@number-none.com.

I will store the history information inside this data record.

History will automatically be available at all times for every vari-

able in the system, without requiring the programmer to ask

explicitly for variables to be tracked. Behind the scenes, the

engine must be updating the history of all variables defined in the

system, so the history update needs to be a fast operation.

The majority of these computations will produce values

that are never referenced, and many optimization-obsessed

programmers will grimace at that notion. But I want the his-

tory information to be easy to use and maximally dependable.

The programmer should expend exactly zero extra effort to

get at it. I don’t want the unreliable behavior that would hap-

pen otherwise. Imagine that a script is dynamically loaded,

and that script suddenly wants to know how a certain vari-

able has been behaving for the past 30 seconds. But the infor-

mation isn’t available, because analysis of the previously

loaded scripts told us that nobody would care about that vari-

able’s history. This is a specific case of a pattern I call “opti-

mization impeding progress.” We end up spending huge

amounts of time debugging and not enough time actually

making the game.

I don’t want come across as an anti-optimization bigot;

optimization is very important in creating smooth-running

systems. But we always need to weigh the benefit of an opti-

mization against the damage it causes, being cognizant of the

house-of-cards complexity that we tend to build up after

many optimizations. The talent in being a good modern soft-

ware engineer is in choosing the few best optimizations, not in

optimizing everything. We need to optimize our optimization

efforts, as it were.

I expect that the amount of CPU we spend tracking history

will be vastly overshadowed by time spent running actual script

code. Optimization in this case would be unproductive.

Vectors Changing over Time

W e could devise a system where, every frame, we sample

the current value of some variable and store it in an

array. Then scripting code could look over this array and

make decisions every frame. But storing a large number of

samples for every variable is costly, and it’s unclear how we

should process that sample array consistently and meaningful-

ly (for example, without variable frame rate messing us up).

We might be led toward methods involving signal reconstruc-

tion from nonuniform samples, a slow and painful activity.

So instead of recording many exact values, I want to record

a small number of approximate values that tell us about the

trend of a variable over time. As a result, the system can

answer questions about the general behavior of a value but

can’t say precisely what the value was at a given time.

Some time ago, a coworker showed me a simple hack for

smoothing rapidly changing values. If x is some fluctuating

input value, and the ith sample of x is xi, then

yi � kyi�1
+ (1 – k) xi, where 0 � k � 1 is a value that changes

more smoothly. Another way to interpret “more smoothly” is

“takes some time to converge to the input value,” where the

amount of time is controlled by k. (This equation is a simple

low-pass IIR filter.) This construct originally came up when we

were drawing frame counters. Instead of displaying the instan-

taneous frame rate, which is difficult to read because it changes

so quickly, we would smooth the frame rate by two different

values of k, to show short-term and medium-term trends.

This filter is much like what I want, except that the rate of

convergence here depends on the number of iterations you run.

So if you perform this operation once per frame, the rate of con-

vergence depends heavily on the frame rate. But you can derive a

less-hacky, frame-rate-independent version of this operation.

Make k a function of duration, then write an expression that

says the results of filtering serially, first with k(�t
1
) and then with

k(�t
2
), should be equal to filtering once with k(�t

1
� �t

2
). Work

some math and you get k(�t) � (ba
)

�t
. Both b and a are parame-

ters you can adjust, but for our purposes they comprise only one

degree of freedom, as we’ll see in a moment.

For each variable, I set up an array of these functions, where

each function converges at a different speed. I’ll control these

by designating that h equals the amount of time it takes for the

filter to converge to 90 percent of a fixed input value. Conver-

gence is asymptotic, so the filter will never actually reach the

input value. The values of h might range from, say, 0.1 seconds

to 30 minutes.

The appropriate k is k(h, �t) � (0.1
1/h

)
�t

, where �t is the frame

time. The division and exponentiation look scary, but actually

our system can be very fast. The value of k depends only on h
and �t; h is fixed permanently, and the frame time changes only

once per frame. So when it’s time to update the scripting system,

we precompute the handful of values of k that we will be using.

Then we iterate over all the variables, updating their history data

using only addition and multiplication.

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

If the language possessed some
kind of short-term memory

about how the
variable has been behaving, we

could use that facility to answer
a lot of

time-based questions.

Once this mechanism is in place, we can ask questions

about a scalar value, such as “Has it been generally increasing

or decreasing over the last n seconds?” just by looking at the

history data. You can imagine abstracted language primitives

such as Trend(variable, time_period) that might encapsulate this

concept. We can also ask roughly, “What has the average

value of the variable been over the last t seconds?” though it’s

actually unclear what a perfectly well defined notion of aver-

age would be; you get into signal-windowing issues. But our

version is pretty good.

To answer questions about a variable for arbitrary times,

we need to interpolate between the history values. For now,

I’ll just use linear interpolation; maybe next month I’ll discuss

alternatives.

We can straightforwardly extend all this filtering to vector

values by performing the scalar history tracking on each coordi-

nate of a vector. So we can also talk about the history of where

entities have been in space.

Fluctuation

I t would be useful to know more than the average of some par-

ticular value. We might want to ask, “Is this value steady or is

it fluctuating? Is it becoming more stable over time or less sta-

ble?” We can answer these questions if we track the variance of

our variables. We blend variances together over time, the same

way we are computing means.

Variance of a scalar variable is another scalar, which you com-

pute by averaging the squares of the input values. The variance

of an n-vector is an n�n matrix, which you compute by averag-

ing the “squares” of the vectors, which you get by taking the

outer product of each vector with itself. (I have put “squares” in

quotes here because there are several valid ways of multiplying

vectors, one alternative being the Clifford product). For more

detail about this outer product matrix, see last month’s column,

“My Friend, the Covariance Body” (Inner Product, September

2002). I called this a “variance-covariance matrix,” among other

things, which is what you should search for on the web for more

information. In general, though, I prefer to think of this matrix

as being just the variance of a vector variable.

The matrix is symmetric, so we only need to store the upper

triangle, which is nice. Eigen-decomposition of the matrix yields

an ellipse that tells us generally where in space a point has been.

So we can use this to ask questions such as “Has the player been

exploring a wide area, or has he been sedentary? What’s been the

primary direction of his travel, and has he been mostly going

straight or has he zigzagged a lot?” You might think to answer

these questions just by analyzing a log of averages of the player’s

position, but you run into aliasing problems that way. The vari-

ance carries information of a rich character that can be leveraged

effectively using a small number of samples, as you can see by

running this month’s sample code.

Last month I presented the covariance body as an encapsulated

concept, but sometimes it’s better to violate this abstraction.

Recall that in order to combine two variance matrices, we need

to shift them so that the variances are computed around a com-

mon point. Often this common point is the mean value of the

inputs. But to make the system as simple and fast as possible, I

have chosen to compute the variances of all values with respect

to the origin. So we can just add the matrices together without

shifting them. When the time comes to display a variance, then

we compute the shifted matrix and perform the eigen-decomposi-

tion on that.

Sample Code, and Next Month

T his month’s code, available at www.gdmag.com, defines

two variables that get updated in real time: one scalar,

representing the clock; and one 2D vector, representing the

position of the mouse pointer in the window. Once per frame,

a history manager computes new averages and variances for

these variables. Each frame, the histories are drawn on the

screen: a linear trail of white showing the pointer’s average

positions and a series of blue ellipses showing the typical

areas covered. Pressing s will toggle an enforced slow-down of

the frame rate; you can see that the behavior of the averaging

stays consistent despite the frame rate changes.

Aside from the variable declaration system, there’s no actual

scripting language yet. I’ll fix that next month, when I look at

some operations we can support on history-augmented vari-

ables. We’ll also examine some concrete applications of the

history feature. There’s no room to discuss the examples fully

in this article, but in order to end with something tangible, I’ll

summarize them now.

The first example is a commentator for a game like DANCE

DANCE REVOLUTION. The game assigns you a momentary rating

based on how well you hit each arrow; this rating fluctuates very

quickly. But because the rating is automatically being tracked

over time, the script can easily check for broad patterns in the

history. So if you do poorly for a while but then start doing very

well, the commentator might say, “What a comeback! For a

while, I thought you were going to lose!”

The second example is a mortar unit from a real-time strategy

game. It fires ballistic shells that take some time to reach the tar-

get; in order to hit, it should only fire when the target is staying

within a relatively small area, though the target doesn’t have to

be unmoving. Imagine a soldier alternating between two posi-

tions in a trench. Since every unit in the game has a position vec-

tor, and that vector is being remembered over time, the mortar

vehicle can check how spread out the target’s position has been

over the past n seconds and fire if the result is tight enough.

Next month I’ll look at both these cases, see how they might

be done traditionally, and then implement them using history

information. q

w w w . g d m a g . c o m 17

A R T I S T ’ S V I E W h a y d e n d u v a l l

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r18

A rt at my school was a

compulsory subject until

you turned 14. When you

turned 14, you had the

option to continue by

choosing it from a group that included

metalwork (how to burn yourself badly

with a welding torch), domestic science

(how to burn yourself badly with a pan

full of boiling custard), and woodwork

(how to lose most of your fingers in the

band saw). If, like me, you stood a bet-

ter-than-average chance of getting perma-

nently maimed in any class that involved

rotating blades or white-hot metal, art

seemed like the only route to graduation

with all my extremities intact.

Unfortunately, my high school had

been around for just over 100 years and

considered itself to have a proud tradi-

tion of academic and sporting excellence.

Its reputation was essentially built on

two things, its rugby team and its

absolute refusal to move with the times.

In practice, this meant that all

fundraising and additional budget in the

school went to send the rugby team and

a selection of teachers to Australia each

year to play schools from the Southern

Hemisphere. In addition to the funding

wasteland that was left in the wake of

my school’s pursuit of sporting excel-

lence, its refusal to modernize either

teaching methods or equipment meant

that art lessons were a little bleak.

In addition to the appalling state of the

school’s resources, teaching methods that

hadn’t budged since the era of Jack the

Ripper meant that in six years I drew

more bowls of fruit than you could possi-

bly imagine.

As our school was barely able to find

the budget for a few dozen pencils,

computers were something that only

existed in the outside world. During my

last years of high school, the Com-

modore Amiga emerged as an affordable

machine with unprecedented graphical

capabilities (4,096 colors was almost

beyond comprehension for those of us

who had come through the 8-bit scene).

Meanwhile, my art classes remained

fruit-centric, even though I was now at

least using oil pastels.

A few years later, as the first modeling

packages available to anyone outside of

Pixar began to emerge, a whole three-

dimensional world started to unfold. It

became apparent that for those who were

interested, a new set of skills needed to

be developed along with those that

helped create an image in the flat world.

As time went on, the tools evidently

became more powerful, and we now find

ourselves in the present, where there is

little that a high-end package can’t

accomplish in the hands of someone who

knows what he or she is doing.

It’s all very well to be able to push a

pencil around, and rules of proportion,

perspective, and composition are all good

to know, but if you work in games and

are expected to create a world filled with

characters, you’d better be able to apply

that knowledge in all three dimensions.

Take Your Pick

F ire up any search engine and type

something like “3D character mod-

eling,” and you will be faced with an

interminable list of forum discussions

and tutorials about the best way to build

a character. Across the various packages

available, there are a number of basic

methods that crop up, each with its own

advantages and disadvantages, support-

ers and detractors. Evidently, building a

character for a game is not quite the

same as building one for a Disney movie

(not yet, at least), but there are still a

variety of options worth considering. The

following are two of the most popular.

NURBS

I f you find that your father, like mine, is

still waiting for you to get a proper job,

preferably something that involves either

some form of mathematics or moving

around heavy objects, try talking to him

about your close association with Non-

Uniform Rational B-Splines. In a Mary

Poppins, supercalifragilisticexpialidocious

sort of way, the full explanation of

NURBS sounds more grandiose than it

actually is.

In their full glory, NURBS are basis-

spline curves described by an equation

expressed as a ratio between two polyno-

mials, created by the interpolation

between three or more points, along

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

Character Matters: Part 2
Getting Ahead of the Curve

In a Mary Poppins, supercal-

ifragilisticexpialidocious sort

of way, the full explanation

of NURBS sounds more

grandiose than it actually is.

which the extent of the influence of its

control vertices may vary.

If you look into the description of

NURBS objects, apart from developing a

headache, you will find that these awk-

ward little guys exist in parameter space

as well as regular geometric space, and

that their mathematical origin is both a

plus and a minus. You can also edit

NURBS using point curves and surfaces

as opposed to control vertices (CVs),

which is essentially just an alternate

interface, as the underlying NURBS are

still constructed using CVs. A point curve

or surface, however, allows the user to

manipulate points that lie directly on the

surface or curve. It does not rely on

weighting to define the magnitude of its

influence but rather its positioning.

Figures 1a–1d show how NURBS and

CV point curves and surfaces differ.

So what, in practice, do we do with

NURBS that lets us turn all of this termi-

nology into a character?

One of the most popular methods of

NURBS modeling is an approach that is

similar to building a wire framework over

which a surface will be applied. In this

case, the framework is one of splines, and

the surface will be generated over these

using each spline’s shape as a guide.

The advantage of NURBS is primarily

that you can create organic, smooth sur-

face contours quite easily and avoid the

angularity of polygons. NURBS also

allow you to adjust shapes through the

manipulation of CVs, all of which

(through position and weighting) can

produce smooth changes across the sur-

face, retaining its organic feel.

Effectively, this means that the number

of control points that you need to con-

sider for a very smooth mesh is far

lower than would be necessary if the

model was simply made from polygons

(with the associated number of vertices).

The NURBS naysayers bring up a few

downsides that are worth considering.

For one, the system overhead is larger

with a NURBS model than the much

more efficient polygon geometry.

But one of the main problems with

NURBS is that after a couple of days try-

ing to model a character, it is easy to feel

that you’ve been involved in protracted

negotiations with your software. Model-

ing with NURBS can sometimes be a bit

like modeling through a third party; in

this case, the third party is the mechanics

behind NURBS construction. A common

complaint about the NURBS approach is

the perceived distance it creates between

the artist and the final product. The

manipulation of a NURBS object doesn’t

provide the direct interactive feeling of

working with a form, and adding detail

exactly how and where you want it can be

anything but straightforward.

In addition to these problems, anima-

tion with NURBS carries a much larger

overhead than animating a polygon

mesh, so ultimately a NURBS character

is likely to be converted to polygons

after it has been built. This top-down

approach creates a high-resolution mesh

with the understanding that it will be

optimized to a lower level of detail once

the modeling has been completed.

Currently, low-end characters are bot-

toming out at 1,000 to 2,000 polygons,

mid-range characters are in the 3,000-

to 5,000-polygon range, and some

games are putting as many as 13,000

polygons into their characters at their

highest level of detail. With these kinds

of figures becoming the industry norm,

a top-down approach such as NURBS is

more viable than ever.

The Power of a Box

W hat is the antithesis of the mathe-

matically intricate curve network

at the center of NURBS construction?

How about a plain old box? There

aren’t many objects less complex than a

box, and this six-sided primitive shape

forms the basis of another popular

method for creating characters, subdivi-

sion surface, or sub-d, modeling.

In recent years, packages that deal

specifically with this technique have

arrived, prompting the heavy hitters of

the 3D market to expand their tool sets

to provide the same level of features.

There is still a divide between the special-

ists and the high-end packages that cover

a far greater breadth of functionality, but

as “lower-end” graphics begin to be

important for a growing number of peo-

w w w . g d m a g . c o m 21

FIGURES 1A–1D. Using NURBS gives artists the option of using point surfaces (1a) and point
curves (1c) to manipulate points that lie directly on the surface or curve. CVs, or control vertices
(1b, 1d), offer artists an alternate interface.

A B

C D

ple using these packages, the tool sets

will continue to expand in the direction

of subdivision surface modeling.

As far as character creation goes, the

methodology is simple: it is the applica-

tion that makes the difference, as is often

the case. It’s essentially a bottom-up

process, and the basic procedure is as fol-

lows (the tools you need are available in

just about any 3D package):

Step 1. Make a box.

Step 2. Edit the box until it forms a

rough approximation of the shape you

desire: extruding, scaling faces, moving

vertices, and so on. At this stage, the

mesh is very low on detail, and therefore

it is an ideal time to concentrate on

describing the basic volume that you are

looking for without getting too hung up

on the details.

Step 3. Refine the mesh until it meets

the level of detail that you require. The

first method is simply dividing edges

where needed, working with the mesh

right down at a basic triangle level, until

you are happy. This method requires a

good deal of vertex moving, and as the

level of detail increases, so does the

number of vertices that you need to

manage. The second method is to use a

smoothing function on the mesh to add

the majority of the detail. Figures 2a–2b

show an example of how subdividing

surfaces turns a simple character into a

more complex figure.

The exact approach each package uses

varies slightly, but the procedure is essen-

tially the same. A relatively low-detail

model is used as a control mesh from

which the computer is able to generate a

more detailed version through a subdivi-

sion of faces. The exact structure of the

control object then becomes less impor-

tant in terms of its own shape, and more

relevant in terms of the end result that is

obtained through smoothing.

The specifics of this stage of the process

have been covered time and again in many

tutorials that deal with this method of

modeling, but essentially, you need to be

aware that the actual placement of ver-

tices on your control mesh will be moder-

ated by the smoothing function. Some fea-

tures will need to be exaggerated, and

sharp variations on the surface will be

smoothed out unless edges are doubled to

preserve the detail.

Also, the smoothing function is most

reliable when the control mesh is created

using four-sided polygons (quads). Main-

taining as many quad faces as possible is

often the most difficult part to master.

With practice, however, the process

becomes easier.

The sub-d faithful have long been

advocates of this particular method of

creating geometry, as it allows the artist

direct control over every aspect of the

mesh. This lets you add detail where

you choose without any need to consid-

er the effect it will have across the rest

of a model’s surface. It also is generally

regarded as having a closer link to tradi-

tional sculpting techniques. The down-

sides are the large number of vertices

generated at high detail levels and the

need to break down the angularity of

the triangles to achieve organic shapes.

The Way to Go

L ooking at these two methods, how

do you determine which is best for

your project? It depends on whom you

talk to and what you want to achieve.

Here are some aspects of character

design to consider when deciding which

method to use.

Shape. If your character has many

smooth curves and rounded forms, then

NURBS modeling may be the right

choice. However, at high levels of detail,

polygons are obviously going to require

the manipulation of large amounts of

vertices, and maintaining smooth curva-

ture can become an issue.

Flat, angular forms are perfectly suit-

ed to polygonal construction, and there

is little point wasting energy on NURBS

if your character is Boxalon the Cube-

shaped Cube Monster.

Level of detail. As I mentioned earlier,

NURBS modeling is more suited to con-

tinuous, smooth forms than those with

abrupt surface changes, so if you design

your character with a large amount of

localized detail that needs to be part of

a single mesh, polygons could be the

way to go. As an example, a Giant

Squid Monster might well be suited to a

NURBS approach, but if it is a Giant

Cyborg Squid Monster, adding in the

mechanical details at the end of each

tentacle would be a lot more straightfor-

ward if you use polygons.

Tools. Make sure your tools are suitable

for the method you intend to use. The lat-

est iterations of all the big players in the

3D arena have moved to cover both

NURBS and the polygon approach, with

varying degrees of success. There are also

some relatively cheap packages on the

market that specialize in the subdivision

approach that are worth considering.

Changes/additions. Within reason, are

there likely to be many changes or addi-

tions to the character’s mesh? If so,

adding detail to a NURBS model, or

adapting it in some way, can pose more

of a problem than working with a polyg-

onal mesh.

The bottom line, however, is that a

character’s strength lies primarily in the

quality of its conception and design, not

in the method used to produce it. But it

is good to know that there are a variety

of options available to artists for charac-

ter creation, and that it’s all about

choosing the method that fits best. q

A R T I S T ’ S V I E W

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r22

FIGURES 2A–2B. A low-detail mesh (left)
becomes a well-defined character through a
subdivision of surfaces (right).

w w w . g d m a g . c o m 23

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r24

A fter all these years in the

game industry, it still sur-

prises me that some game

companies don’t seem to

realize that, by default,

they own a stake in the music business. As

in films, music is an integral part of the

gaming audience’s overall experience. The

story line, visual presentation, sound

effects, and musical score work together

to draw players into the interactive envi-

ronment and propel them ever deeper into

the game experience.

According to the Interactive Digital

Software Association, domestic sales of

computer and videogames in 2001 totaled

$6.5 billion. That’s almost 225 million

pieces of software sold last year in the

United States alone. Although estimates

vary, some industry pundits project that

worldwide annual revenue for video and

computer games will reach as high as

$100 billion within the next decade.

Those of us creating these games are an

important and powerful presence in the

entertainment world, and we shouldn’t

discount the impact our products have on

today’s pop culture, and tomorrow’s. Part

of what went into the 225 million boxes

snapped up and devoured up by eager

consumers last year includes the music. It

stands to reason that real opportunities

exist for game companies to reap great

rewards from music, simply by thinking a

bit more like music companies.

Historically, film studios and record

companies understand how music can

generate magic when it comes to profit

margins. Likewise, game music can gener-

ate revenue in many ways. For instance,

was your game advertised on television?

Was music from the game used in these

ads? Was paperwork filed to the perform-

ing rights agencies reporting the play list

of the ads? If not, your company may

have missed potential opportunities to

redeem tens of thousands of dollars in

performing rights fees.

On a more general note, soundtrack

sales have consistently generated revenue

for film companies throughout the years

— why not for games? At Artistry Enter-

tainment, we routinely get hundreds of e-

mails from fans saying they bought partic-

ular games specifically because of our

music, and bushels more requesting

soundtrack-only purchases. Granted, I

can’t say we get hundreds of thousands of

such e-mails, but certainly enough for our

fans to have made their point loud and

clear. Other game composers I know are

experiencing similar feedback. Spend some

time in any game forum, and you’re likely

to see a number of lively debates on the

merits of any number of game sound-

tracks. While I’m always pleased to find

people enjoying and appreciating my

music, the occasional criticism doesn’t

bother me much because it means above

all that people are paying attention — and

that to them, the music matters.

So how can you, as a game developer

or publisher, use music to help make

your game more successful? First, be

sure your music has entertainment value

on its own merit. Turn off the monitor,

remove the gameplay, and see if the

music still grabs you. If it doesn’t —

Houston, we have a problem.

Second, you have to think like a music

company. Investigate every potential

angle for generating revenue. Query pro-

fessionals in the music industry, and

research books written on the subject.

Hire an expert consultant. Get advice

from publishing and record executives,

attorneys, marketing folks, and others

knowledgeable about the music business.

Third, you must cut smart deals. You

can often make money by saving money.

Sometimes the simplest thing to do is

grant music-publishing rights to com-

posers in exchange for lower creative

fees. If your company isn’t interested in

selling sheet music, managing sync

licenses, or CD soundtrack sales,

chances are that your composer has all

of these options already available —

you can still use the music however you

want in your game, often in perpetuity.

Composers with a personal stake in a

score’s financial performance always

deliver better music.

And finally, be sure to review your

contracts. Many companies are reluc-

tant to deviate from boilerplate tem-

plates developed in an outdated industry

and business environment. Companies

slow to adapt to the new marketplace

conditions concerning music may very

well be truncating a wellspring of poten-

tial growth.

Plenty of marketing people in games

have historically said that game music

doesn’t sell. Wrong — it is selling your

game. If the music in your product isn’t

worth a stand-alone $10 to $15 sound-

track purchase price, then it’s not as good

as it should be, and definitely not as good

as it could be. If it cannot compete in

today’s market, it’s likely hurting sales —

and your company’s bottom line. q

JEREMY SOULE | Jeremy is one of today’s most widely recognized
game composers. He and his company, Artistry Entertainment,
have created multiple award-winning soundtracks for the interac-
tive entertainment industry’s top publishers and developers.

j e r e m y s o u l eS O U N D P R I N C I P L E S

Your
Game Music

What Is

Worth?

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r26

“Where shall I begin, please your

Majesty?” she asked. “Begin at the begin-

ning,” the King said, gravely, “and go on

till you come to the end: then stop.”

— Lewis Carroll, Alice’s Adventures
in Wonderland

“Let’s start at the very beginning, a

very good place to start.”

— Oscar Hammerstein II, The Sound
of Music

“Carroll, Hammerstein, what do they

know about games?”

— Noah Falstein, “Better by Design”

The Rule: Begin at the middle.

W hen you are set-

ting about to

develop a game,

rather than start-

ing with the first

level or initial scene of a game, pick a

representative point near the middle and

start there. The best order to develop a

game is middle, beginning, then end.

The Rule’s domain. This rule applies to

game development processes for all types

of games, but particularly those com-

posed of discrete levels or chapters.

Rules that it trumps. “Start with what

you know.” It’s tempting, and seemingly

reasonable, to begin with the part of the

game you know best, and often that’s the

start of the game. But there are two

important reasons to start at the middle

instead.

The first reason is that the beginning

of a game is a special case, and so is the

end, so both are liable to exceptions. By

starting in the middle, you are likely to

encounter more typical problems and

opportunities, with a better balance of

gameplay.

The second reason to start in the mid-

dle is that the first level you implement in

a game is often cruder and less polished

than those you implement later. But you

don’t want the first thing the player sees

to be the crudest. Likewise, you want to

leave the player at the end of the game

with a sense of exhilaration and excite-

ment, so doing the last levels first is

unwise, not to mention impractical. Of

course, you don’t want any part of the

game to be crude and unfinished, but

reality intrudes and some parts of the

game are going to be better than others.

The middle of the game is encountered

by players after they have already been

hooked and before the game builds to a

climax, and so is the safest place for less

polished levels.

Rules that it is trumped by. “Do the

hardest part first.” Often, it is more crit-

ical to tackle the hardest part of the

game, even if this is not in the middle.

I’ll have more on this rule in a future

column. It also can be trumped by the

rule “Throw away the first level you

do.” When the central activity of a game

is uncertain, as can happen when you

tackle an unfamiliar genre, use new tech-

nology, or incorporate many innova-

tions, it can pay to implement whatever

part of the game you understand best,

and realize that later in development you

will go back and throw out that first

attempt when you have a better handle

on the core gameplay. In this case it can

still be helpful to start in the middle, but

since you’re going to redo that first

effort anyway, it’s not as critical.

Examples and counterexamples. While

developing SINISTAR, my first published

game, we tried to tune the turning and

movement speed of the central player-con-

trolled spaceship based on the first, easiest

level. Then, when we had introduced a

more crowded and busier later level, we

found that the speed we had chosen was

too slow to respond to the multiple enemy

threats, and had to readjust. If we had

started with the later level, or at least held

off tuning until that point, we would have

saved valuable time.

From the mailbox. Some readers sent

me some compelling cautions about the

use of asymmetrical distribution, the sub-

ject of my August 2002 column. Chris

Bateman of International Hobo pointed

out that although it is a useful rule, it is

“somewhat offset by higher QA costs,”

since it is harder to test rare, random

responses. And Charles of Chasm.org

pointed out that my example of using it

for standard responses in an RTS was

flawed. Players count on unambiguous

acknowledgments of basic inputs to let

them know their orders are being carried

out. He suggests, “Maybe you need

another rule, ‘Input Feedback,’ which

states that all input actions in the game

will have direct, unambiguous feedback

to the player, and which trumps

‘Asymmetrical Distribution.’” A point

well taken.

And finally, lest any fans of Charles

Lutwidge Dodgson, better known as

Lewis Carroll, protest, I admit that any-

one who can work card games and

chess into his books has some knowl-

edge of games. But I stand behind what

I said about Oscar Hammerstein II. q

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

Begin at the Middle

n o a h f a l s t e i nB E T T E R B Y D E S I G N

ust what is adaptive audio? Thomas Dolby Robertson

said it best: “Adaptive audio systems provide a

heightened user experience through a dynamic audio

soundtrack which adapts to a variety of emotional

and dramatic states resulting, perhaps, from choices

the user makes.”

The big surprise? He said that about five years ago. Funny

for a bloke who goes from mainstream pop (“She Blinded Me

with Science,” in addition to his lesser-known but even more

cool “Budapest by Blimp”) to interactive audio engines

(Beatnik) to mobile phones (the new Beatnik).

Want an even bigger surprise? No one has really document-

ed adaptive audio (or AA, as some call it). Papers have been

written skirting around it, conjecturing and theorizing, but no

methodologies have been offered. It’s time to change that.

In this article we’ll be talking to a few old hands and a few

new ones about their techniques and how they’ve worked, and

hopefully they’ll offer inspiration to sound and music people

out there looking to add spice to their production efforts. We’ll

also talk about a group devoted to furthering adaptive audio

and the man behind it.

What Games Use It, and Who Has
Done It?

P otentially, all games can use AA. Let’s see how by examin-

ing a title that uses a fairly straightforward design,

RUSSIAN SQUARES, a puzzle game with a soundtrack by Guy

Whitmore. You can see Guy’s RUSSIAN SQUARES DirectMusic

Producer project in Figure 1. The sequences are to the right (in

piano-roll format with blue bars designating notes and note

lengths), and how the sequences are used in the game is indicat-

ed by the list in the left column that contains “Motifs,”

“Patterns,” and so on.

For Whitmore, this puzzle game was a wonderful opportu-

nity to show how an adaptive score could work seamlessly

with the core game design elements. The game starts with

rows and columns of squares. The player’s goal is to eliminate

rows of squares by matching the color or shape of the

squares. As the player eliminates rows, the difficulty increases.

The time given decreases, and blockers are introduced to get

in the player’s way.

The adaptive audio design. When creating a game score, the

first step is deciding what the game calls for. Whitmore says he

approaches each game without a particular adaptive technique

in mind, but rather brainstorms in the abstract. That way the

creative work leads the technical decisions, instead of vice versa.

Once he has an abstract idea of how the score could work,

it’s time to decide how to get the game engine to do it. Provid-

ing an adaptive audio design document as a complement to or

even a part of the game design document is an important step

in creating a highly adaptive score.

Adaptive elements. The physical core of RUSSIAN SQUARES’

gameplay is the elimination and addition of rows, so

Whitmore made this the core of the music functionality. As

rows are added or taken away, the music responds by subtly

changing: an instrument is added or subtracted, or the harmo-

ny or rhythm changes, for example. The music follows the

overall pace of the player. To accomplish this response there

Building an Adaptive
Audio Experience

A D A P T I V E A U D I O

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r28

FIGURE 1. Guy Whitmore’s RUSSIAN SQUARES DirectMusic Producer project
shows both sequences as well as how they are used in the game.

ALEXANDER BRANDON | When he’s not spending time with his
wife, Jeanette, or gathering old game soundtracks for a massive
compilation, Alexander keeps busy as the audio director for Ion
Storm Austin. He is also a member of the board of directors for the
Game Audio Network Guild (www.audiogang.org) and is on the
steering committee of the Interactive Audio Special Interest Group
(www.iasig.org). Contact him at alexb@ionstorm.com.

What it is, why it’s important, who does it, and how to
implement it.

J

a l e x a n d e r b r a n d o n

w w w . g d m a g . c o m 29

Ill
us

tr
at

io
n

by
 D

av
id

 M
oo

re

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r30

A D A P T I V E A U D I O

A n analogy I’ve become fond of using is that linear music

is analogous to 2D prerendered art as adaptive music is

analogous to 3D game-rendered art.

What did games gain from game-rendered art assets? The

ability to view objects from any side or distance and the flexi-

bility to create a truly interactive game environment, which

put gamers in a more immersive and controllable environ-

ment.

Games gained the ability to view objects from any side or

distance and the flexibility to create a truly interactive game

environment, which puts gamers in a more immersive and

controllable environment.

The analogy is very literal. Currently most game music is

“prerendered”: it’s mixed in fairly large sections prior to

being put in a game. Music that is more adaptive, on the

other hand, is “game-rendered” — music components are

assembled by the game as it is being played.

This brings up the concept of the spectrum of adaptability.

On one end of the spectrum is linear, prerendered music, and

on the other is music that is completely game-rendered. There

are now many options for combining small, prerendered

assets, such as WAV files, with assets that tend to be more

flexible, such as MIDI files. Where on the spectrum a score

lies depends on the game at hand, plus aesthetic decisions

made by the composer and game designer.

Different degrees of adaptability are called for at different

times within a game: a linear cutscene versus the ever-chang-

ing game environment. While I’m always experimenting with

deeper and subtler levels of adaptability, I still use some pre-

rendered assets. Why? Production values. All the adaptability

in the world means nothing if the music doesn’t sound good

in the first place. I look for a balance between high produc-

tion values and the flexibility of adaptive techniques.

— Guy Whitmore

FIGURE 2. RUSSIAN SQUARES offers a perfect abstract representation of a
simple nonlinear adaptive audio design.

Arbitrary
Player Row

Position

Player
Adds/

Subtracts
Row

Next Row,
New Rhythm

Next Row,
New

Instrument

Next Row,
New Melody/

Harmony

GAME TYPE

Side-scrolling action
adventure

Graphic adventure

First-person action/
first person RPG

Music-based action
game

TECHNIQUES USED

MOD-based sound-
track transitions
using scripts

iMUSE soundtrack
transitioning system
between screens
using flowchart-like
interface

MOD-based sound-
track transitions
using scripts

Soundtrack con-
struction based on
gameplay using MIDI
transitions

GAME

SHADOW OF THE BEAST 2

THE DIG

UNREAL/DEUS EX

REZ

TABLE 1. A selection of games from the early 1990s to the present and
what adaptive audio techniques were employed by each one.

are about 70 music cells (DirectMusic calls them “groove lev-

els”) per composition. As the player completes rows, the

music incrementally transitions to the next cell. Logical transi-

tion boundaries make those transitions musical and seamless.

In this case they used the boundaries of the measures.

However, Guy found that simply moving along a linear curve

from low intensity cells to high intensity cells didn’t work aes-

thetically. In other words, adding layer after layer and increas-

ing the tempo wasn’t very musical. Given the game’s style of

music — modern electronica — it needed larger sections, instru-

mentation changes, rhythmic shifts, and tonal changes to keep

it interesting. In this way the cells would progress in a multi-

dimensional manner.

Figure 2 shows how the simple adaptive audio worked in

RUSSIAN SQUARES to fit a fairly nonlinear design. As the player

goes from row to row, the music can vary in a number of dif-

ferent ways using seamless transitions in DirectMusic. Each

variation can also be used in addition to other variations for a

much bigger listening palette of music, so all three of the varia-

tions shown in Figure 2 are possible in any order and combina-

tion as the player adds or subtracts rows.

The main method of keeping individual cells from getting

monotonous was the use of instrument-level variation. Each cell

is anywhere from two to eight measures in length and repeats

as the player works on a given row. Within DirectMusic, each

instrument can have up to 32 variations, which, when com-

bined with other instruments, increases the amount of variation

logarithmically. Most often, one to three instruments per cell

use variation, giving the music an organic, spontaneous feel

while preventing that looped feeling. Too much variation, how-

ever, can unglue the music’s coherence.

With the examples in RUSSIAN SQUARES, we get an idea of

The Spectrum of Adaptability

Map
Area 2

Goal
Trigger

Map
Area 1

Map
Area 3

Cinematic

FIGURE 4. In THE DIG, the story is linear, but the game mechanics are
not. The iMUSE system juggled different areas, triggers, and cinematic
sequences as the player encountered them.

w w w . g d m a g . c o m 31

Level
Theme

Boss Attack
Theme “Goal Theme”

Sub Level Theme

Sub Level Theme

Sub Level Theme

New Level
Theme

FIGURE 3. SHADOW OF THE BEAST 2 presents a more linear basic approach
to AA, a step up from a single theme played in the background. In addi-
tion to the standard music transition upon changing levels, there were
also sub levels activated by triggers and themes for boss creatures as
well as goal-related themes.

how to use AA in nearly any type of game using a similar sys-

tem. But let’s take a closer look at a few titles (listed in Table 1)

with more complexity than RUSSIAN SQUARES.

SHADOW OF THE BEAST 2

T im Wright, Jester Interactive’s creative director, did the audio

work for SHADOW OF THE BEAST 2 in 1990 well before most

of us thought game audio was the cool place to be. Jester made

SHADOW OF THE BEAST 2 for the Amiga for Psygnosis.

It was his first ever piece of commercial in-game music, and he

was one of a two-man team. He composed the music and created

the sound effects, and his brother Lee managed all the audio pro-

gramming, compression, interrupt handling, and other details.

BEAST 2 featured basic adaptive audio in the sense that each

game level consisted of sublevel areas. Each of these sublevels

had a musical theme that would kick in when the player

crossed certain triggers. In addition to themes for each area in

the game, there were themes for surprise attacks from larger

creatures, and also when certain switches were activated, to let

players know they had done something significant.

Figure 3 shows SHADOW OF THE BEAST 2’s approach to AA,

which was more linear than RUSSIAN SQUARES’ (shown in Figure

2). The music for SOTB2 was heavily based around each envi-

ronment, which was fairly unusual for those days.

Ultimately, Tim won several Best Soundtrack awards for his

efforts. In most of those cases, his adaptive soundtrack was

specifically mentioned as one of the reasons for honoring the

game’s music.

THE DIG

T HE DIG’s sweeping score was used in conjunction with an

engine that had used AA years before anything else like it

happened on the PC. Michael Land wrote its music, and the

now infamous iMUSE, or Interactive Music Streaming Engine,

was used to blend his Wagnerian chords and melodies in

streaming audio with adaptive techniques.

THE DIG, released in 1995, presented a fairly easy design with

which to work. The player journeyed from screen to screen in the

typical Sierra/LucasArts graphic adventure style and found ways

of discovering and achieving goals to continue the story. Transi-

tions for the soundtrack were based on moving from area to

area, and various scripted events, such as accomplishing a goal.

There are two kinds of actions that represent these sound-

track transitions: immediate and conditional. The immediate

The “Adaptive Audio Now” Initiative

T here is currently very little organized knowledge of adap-

tive game scores out there, which is why I decided to

launch the Adaptive Audio Now working group of the IA-SIG.

Interactive audio for games is still in its nascent stages of

development. There is already a rich history of interactive

game audio out there but very little information about its line-

age and how it came to be. Many of us are creating our own

rules as we go, simply because there are not yet standard tech-

niques for creating an interactive game score. This working

group and area of the IA-SIG web site fill a void in the current

and ongoing state of adaptive audio in games and online

media. It will follow the progress and evolution of adaptive

game scoring as new games are released.

The approach is pragmatic in that published games and

media will be its focus. The emphasis is on practical applica-

tion, in the words of those who have created adaptive game

scores. It will be a place to share and gather information,

techniques, and production tips, as well as a place for others

in the industry to find out what the interactive audio commu-

nity is up to.

For more information about AAN, visit www.iasig.org/aan.
— Guy Whitmore

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r

A D A P T I V E A U D I O

action allows the directing system to change the way the music is played (or

change the piece of music being played) immediately — jumping to another place

in the music, changing an instrument, changing volume, whatever.

The conditional action is what makes iMUSE so impressive when it’s experi-

enced. It allows the directing system to tell the sound driver to apply the change at

the next musically appropriate time. This allows smooth transitions and change of

instruments, as opposed to the sudden changes found even in today’s games.

According to Land, iMUSE “started out as essentially a souped-up MIDI

sequencer and has evolved into more a methodology than anything else.” These

days iMUSE is used only for streamed music, as a way to organize all the different

music cues and see how they relate to each other by using a graphic layout. Land

says the system allows the composer to specify musical responses such as transi-

tions at a fairly detailed level.

Figure 4 shows how the iMUSE system straddled THE DIG’s linear story and

nonlinear game mechanics, the standard model for graphic adventures since the

KING’S QUEST and SCOTT ADAMS ADVENTURES days. The system provided seamless

transitioning between areas, in any order. Players wandered between various areas

consisting of a full screen each, where they solved puzzles and made choices to

accomplish goals. As they walked to another area, the redbook soundtrack would

cross-fade seamlessly based on measures and segments to ensure no harsh musical

transitions. If the player accomplished a goal and a transition was needed to a cin-

ematic quickly, the soundtrack would change using cross-fading.

UNREAL/DEUS EX

U p until now we’ve only looked at 2D games. And, as with art and program-

ming, 3D presents a much different challenge for AA. Now the composer and

sound designers are presented with an environment that approaches reality from

the human perspective, through emulation, simulation, or a combination of both.

There are more axes of movement, more axes of vision, and more possibilities for

game mechanics than ever presented in 2D. Some of the questions that the UNREAL

music team considered during the design phase included:

• Is music played in the background all the time or as a localized sound effect?

• If it is a localized sound effect, how is it represented? Simplified geometry

within a level object, such as a building or landscape heightmap, or abstract

geometry not related to the world and given its own parameters?

• Are transitions made with instant switching or various levels of cross-fading?

Because Looking Glass had done it successfully for the first time in a 3D envi-

ronment in ULTIMA UNDERWORLD series, 1998’s UNREAL used adaptive audio using

transitions similar to those in earlier games. Even with old design practices, care-

ful considerations had to be made about when and where music was played.

DEUS EX followed suit in 2000 with a modified version of UNREAL’s engine. In

these games the MOD format once again took hold, this time on the PC rather

than the Amiga of SHADOW OF THE BEAST 2’s day. Otherwise, games were rife

Suspense
Segment

Script Trigger
(Enemy Appears)

Script Trigger
(All Enemies Defeated)

Ambient
Segment

Action
Segment

FIGURE 5. The AA design in UNREAL used UnrealScript cues to transition between music
tracks based on the action.

An Interview with REZ Creator
Tetsuya Mizuguchi

Q. How long have you been involved in
the videogame industry? What games
have you created to date?

A. I have been working in the videogame

industry for 13 years now. To date, I have

been involved in the creation of the follow-

ing games: SEGA RALLY (arcade), SEGA

RALLY (Saturn version), MANXTT, SEGA

TOURING CAR CHAMPIONSHIP, SEGA RALLY 2

(arcade), SPACE CHANNEL 5, REZ, and SPACE

CHANNEL 5, PART 2.

Q. REZ is a very unique and original game
design. Was it difficult or easy to con-
vince Sega to publish such a different
kind of game?

A. Sega was at first perplexed by the con-

cept of REZ; however, I would not say it was

difficult to convince them. Sega is a compa-

ny founded on innovation and creativity.

Q. In REZ, how did the audio work with
the visuals? For example, how was the
audio triggered and changed throughout
the game?

A. In REZ, when you shoot down the

enemy, notes of sound and visuals burst

open. As you play, these actions compose

an original score. If your gameplay is

good, both the music and movie will

become powerful, but if your gameplay is

poor, the music will never climax. Try

imagining that in a tube called a three-

dimensional score, you are shooting

objects that are MIDI packets filled with

sounds and visuals.

with the evil General MIDI format and all the tinny tin tin sounds it held. While

the tunes were good, the sounds were not. MODs upped the ante and provided that

much-needed step in between GM to streamed-audio quality.

UNREAL and DEUS EX used the Galaxy Music System to transition within a single

MOD file from “ambient,” “action,” “suspense,” and, for DEUS EX, “conversation”

and “death” music tracks. Music used simple fades (alas, no cross-fades) within each

level, depending on whether the player was wandering around, fighting, approaching a

fight, and, in DEUS EX, talking to an NPC or getting killed. The system was about as

straightforward as you can get, but it was a step up from everything else in the first-

person 3D genre, with the exceptions of ULTIMA UNDERWORLD and FADE TO BLACK.

Figure 5 shows the AA for UNREAL using 1MB MOD files and scripted cues writ-

ten in UnrealScript. Though simple, it sparked a few reactions, both negative and pos-

itive. Positive reactions were from people who thought the music added to the experi-

ence and made it feel more cinematic. Negative reactions came from people who

thought the music took too much away from the realism. For instance, if a monster

was near the player the game would call an action soundtrack to play, but in very

rare cases the player wasn’t even looking at the monster, so it acted as a cue not

grounded in the game world, indicating danger. This proved to be a valuable lesson

for later efforts.

REZ

L et’s now enter a world where music and audio have a controlling share in a

game’s design and overall success. Over the last 10 years, games such as PARAPPA

THE RAPPER, SAMBA DE AMIGO, FREQUENCY, and REZ have changed how game sound-

tracks are used and perceived dramatically. The groundbreaking REZ (2001) was the

brainchild of Tetsuya Mizuguchi, head of Sega’s United Game Artists studio.

Just what’s the big deal about REZ? Not only does it look a lot like the movie

Tron, amazing in and of itself, but the game is a first-of-its-kind shooter where each

shot contributes to the soundtrack, yet not one sound is out of place or interruptive

in the way we’ve noted that certain AA transitions have been in first-person titles.

REZ presents the player with a perfect AA environment, tailored to drive the game-

play itself. Simply put, REZ is a fantastic example of well-executed AA in action.

Looking to find out more about Mizuguchi’s inspiration and design for the game, I

asked a few questions of the man himself. See the Q&A sidebar on this page.

The Future of AA

A s we’ve seen, adaptive audio has been around for a fair amount of time, con-

sidering the relative nascence of games. Still, because of the abstract nature of

music, it remains one of the most difficult things to do in a game. For those of us

writing music for puzzle, sports, or non-3D first-person games, the job is easier

than in a more immersive first-person genre. But for all genres, if you want to go

beyond these examples for your next titles, don’t wait until you ship a game to try

them. Drawing interaction diagrams and creating simulations is possible without

writing one line of code.

It would be great if we were all multi-talented and could write our own 3D

engine demos to see what really happens within a game engine when we apply

adaptive audio techniques, but in the meantime, don’t think that shipping a game

will be the be-all end-all of adaptive audio research. Go for it with enough panache

and you just might get the same attention as today’s latest graphical bells and whis-

tles. But gameplay remains the true judge. Base your audio design according to how

the game plays as best you can. You and your players will be rewarded with a bet-

ter overall game experience. q

w w w . g d m a g . c o m

Q. Did you use a custom audio engine, or
did you use licensed technology?

A. Both. For the creation of REZ, we used

licensed technologies, such as ADX [Ed: ADX

is a multi-stream sound technology made by

CRI Middleware Co. Ltd.], and for other

parts we developed original audio engines.

Q. How much influence did music com-
posers have over the whole project?

A. In the case of REZ, our music composers

had the same level of influence as the creators.

Q. Was there a lot of audio revision based
on the design needs of the game, or did
the musicians and sound designers under-
stand enough at the beginning to make
good judgments throughout the project?

A. At the preproduction stage, we spent every

day making a lot of modifications. After the

gameplay was finalized, we did not make as

many adjustments. As we started to talk with

the musicians after preproduction, I think

everyone had a full understanding of the needs

of the game design.

Q. What percentage of the project was
spent developing and refining the audio
engine? At what point in development did
the audio engine become complete?

A. We spent approximately 50 percent of the

time on the audio engine and 50 percent on

developing the visual engine. The audio engine

was completed at the stage when 70 percent of

the visual development was already finished.

Q. How does music tell the player what to
do in REZ, and do you think the same tech-
niques can be used in other game types,
such as adventure games?

A. Through the controller, the music in REZ

communicates the pleasure of driving emotions

and instincts to players. Of course, it is possi-

ble to translate this application to other games.

Q. Is there anything that you think
could have been improved about the PS2
hardware?

A. In general, sound performance can be

improved in consoles. If the hardware compa-

nies can improve the sound performance of

game machines, they can also become audio-

visual synthesizers controlled fully by MIDI. I

believe that future game machines should

always have a side like this.

— A.B.

b r i a n h a w k i n sC A M E R A C O N T R O L

Creating
an Event-Driven

Cinematic Camera:
Part 1

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r34

Il
lu

s
t

r
a

t
io

n
 b

y
 G

r
e

g
 H

a
r

g
r

e
a

v
e

s

I n the beginning, Auguste and Louis Lumiere made their

first short movies without changing the position of the

camera. It would take others, such as the magician

Georges Melies, to stop and move the camera to create

more dynamic scenes than could be done with a sta-

tionary, continuously running camera. Over the next century,

cinematographers and editors have learned the best ways to

film, cut, and transition between different shots to make the

movie experience larger than life.

When it comes to camera setup, the dynamic nature of games

puts us back to the days of Lumiere. With minimal or no con-

trol of the placement of the actors in a game, camera shots are

often set as stationary or dragged behind one of the actors.

Here and there, we see games that try innovative camera tech-

niques — some that work and others that do not. One way to

improve the chances of success is to take the film industry’s cen-

tury of experience and adapt it to our industry.

One method at our disposal in games is to create a system

that automates camera placement and scene transitions (similar

to the jobs of the cinematographer, director, and film editor on a

major film production). In this, the first of a two-part series of

articles on this subject, I’ll look at automating the work the cine-

matographer does in setting up cameras to capture the best view

of a scene. This will lay the groundwork for choosing among

available scenes and camera shots required by the director and

editor, which I will cover largely in part 2 next month.

Describing the Shot

S ince the position and orientation of the actors is not known

ahead of time, a method of describing the shot without

exact positioning information is necessary. In order to arrive at

a suitable set of parameters, let’s look at the basic rules and

descriptions that a cinematographer follows when setting up a

camera shot. We are not searching for a complete description of

how the shot is set up, but just for enough information from

which to establish a position and orientation for the camera.

For example, while we may eventually wish to implement dif-

ferent camera filters for interesting effects, what we care about

now is mainly the field-of-view for the camera.

The most important rule of cinematography is called the 180-

degree rule: The camera should not cross the line of action. The

line of action is an imaginary line that partitions a scene into

two distinct areas, usually going through the main actors or in

the direction of movement. By not crossing the line between

shots, a scene’s screen direction and space is preserved. This

idea can be extended to account for the three-dimensional

nature of certain games by using a plane to partition space

rather than just a line. This information is constant across all or

several of the shots in a scene.

Once the line of action has been established, camera place-

ment within the valid area follows what is known as the trian-

gle system. Figure 1 shows the four basic camera positions for

two actors: standard, over-the-shoulder, point of view, and pro-

file. Each of these layouts has the same camera at the top point

of the triangle, which is used for the establishing (or master)

shot. The remaining cameras are meant to favor one actor over

another. Figure 1 shows the approximate locations of the cam-

eras on a two-dimensional plane, leaving the need for another

parameter to describe the height or vertical angle of the camera.

Two remaining parameters involve the framing of the actor

or actors on the screen. The first of these parameters is the shot

size, which will determine the distance of the camera from the

actor. Figure 2 shows the visible portions for a human actor in

the common shot sizes. In addition to these shots, the long shot

frames the actor with plenty of space between the edge of the

screen and the actor. The other parameter determines the

w w w . g d m a g . c o m 35

B R I A N H A W K I N S | Brian began his career doing research at
Justsystem Pittsburgh Research Center, where he focused on scripted
character animation using natural language. He worked at Activi-
sion as the game core lead on STAR TREK: ARMADA, and contributed
to CIVILIZATION: CALL TO POWER and CALL TO POWER 2. His last
project was working for Seven Studios as lead programmer on
DEFENDER. Brian holds a B.S. in mathematics and computer science
from Carnegie Mellon University.

FIGURE 1. Common triangular camera arrangements: (a) standard, (b)
over-the-shoulder, (c) point of view, and (d) profile.

a b

c d

emphasis given to one actor or another, or the approximate

screen space taken up by each actor. This information should

be sufficient for us to move on to laying out the actual data

structure and working out the equations for determining the

final position and orientation. From here I’ll assume a basic

knowledge of vector math, otherwise, you may wish to refer to

Eric Lengyel’s Mathematics for 3D Game Programming and
Computer Graphics (Charles River Media, 2002) or other simi-

lar graphics text.

Setting the Scene

T he first data structure we need is the scene, which persists

across several individual shots. In a scene, we are primarily

concerned with the actors and therefore need a list of the

scene’s actors. The other important part of a scene is the line of

action, discussed earlier, which will be stored as a matrix for

reasons I will discuss shortly. This means a scene will store data

similar to:

class scene

{

// ...

list<actor> actors;

matrix line_of_action;

};

Let’s take a closer look at the actor data and see what we will

need to know about each actor. To simplify framing of the actor,

we will consider only bounding spheres. However, we do need

to use two spheres to model a human actor properly. The first

sphere encompasses the entire actor, while the second surrounds

only the head, or some other significant area for nonhuman

actors. Finally, the orientation of the actor is important and

should be included in the final data structure similar to this:

class actor

{

// ...

matrix orientation;

sphere body;

sphere head;

};

Now we turn to computing the line of action. As discussed

earlier, we can consider this more a plane of action and there-

fore conveniently store it as a matrix. Although it’s possible to

store it more succinctly, the full matrix provides convenient

directional vectors and is a standard data structure used in

most games. The exact line of action depends on the number

of actors in the scene; here I’ll be considering either one or two

actors. For one actor the line of action is the vector in the

direction the actor is facing, and for two actors the line of

action goes from the primary actor to the secondary actor. Use

these as a right-vector for the matrix, and form the rest of the

matrix using the average up-vector of the actors as a reference:

For the position of the matrix, use the position of the actor

for a single actor or for two actors the midpoint between them.

Now that we have the data of the scene to shoot, we can move

on to handling the elements of an individual shot.

Emphasis

T he first parameter we need to look at in the individual shot

is the emphasis, because it will affect several of our follow-

ing calculations. However, before we handle the emphasis we

must choose what we want to emphasize. For our purposes, I’ll

assume that you can focus on the primary actor, secondary

actor, or both. The focus is the center of the selected actor,

which I will describe how to calculate when I talk about size.

There are two ways we could handle focusing on both actors,

the simpler of which is to use the midpoint between the centers.

Later, I will discuss a slightly more complex approach that is

particularly useful for over-the-shoulder camera shots.

The emphasis chosen specifies where on screen we wish to

place the focus. Full-screen emphasis would place the focus in

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r36

M =

CO

x x x

y y y

z z z

F U R

F U R

F U R

0

0

0

0 0 0 1

U F R= ×

U

U U
=

+primary ondarysec

2

F
R U

R U
=

×
×

FIGURE 2. Visible portion of human actor for various shot sizes.

Extreme Close-up
Close-up

Medium Shot

Full Shot

Close Shot

Medium Full Shot

Medium Close Shot

C A M E R A C O N T R O L

the center of the screen, two-thirds emphasis would place it at

one-third of the way across the screen, and half emphasis would

place it at one-quarter of the way across the screen. With that in

mind, we need to convert the emphasis specification to values

we can use in our calculations.

The three important values are the angle formed between the

ray to the emphasis and the center ray, the angle between the

emphasis of the main actor and the emphasis of the second actor

(if any), and the distance from the camera to the intersection of

the emphasis ray with the view frustum plane one unit from the

camera. Table 1 shows the three main emphasis types and their

respective values. With these, we are ready to move on to some

actual calculations, starting with the camera distance from the

focus based on desired size.

The first step to computing the distance from the focus is to

determine the part of the actor to show. At the same time, we

can compute the exact location of the focus. This location is the

same as the center of the actor mentioned earlier. To do all this,

we bring the head and body spheres into play by interpolating

between them based on the desired shot size. Table 2 shows the

interpolation percentages for several common shot sizes. Take

these and plug them into the following equations:

This gives the desired center, or focus, and radius values.

Table 2 also gives the percentage of the screen we wish the

actor to occupy, which equates to the ratio of the radius to half

the screen height. Now we can form two similar right triangles,

one using the radius as the far side and one using half the

height of the frustum view plane one unit from the camera.

Respectively, the adjacent sides are the distance we are seeking

and the length value from Table 1. Since the triangles are simi-

lar, we know the following ratios are equal:

Here, we can obtain h by taking the tangent of half the verti-

cal field of view. Solving for the distance we get:

This gives us the focal point and the distance the camera will

be positioned from the focal point. Only two steps are left: the

orientation of the camera location around the focus and the

camera facing.

Angle

W e start with the line-of-action orientation matrix, MCO,

as our initial camera matrix before the angle changes are

applied. Next, we need to determine the initial offset for the

camera based on the distance we just computed:

With this as a starting place, we can break the remainder of

the angle changes down into three separate rotations:

1. Rotate MCO and voffset around the up vector of MCO by α.

2. Rotate MCO and voffset around the right vector of MCO by β.

3. Rotate MCO around the up vector of MCO by θ.

w w w . g d m a g . c o m 37

EMPHASIS OFF-CENTER SEPARATION UNIT PLANE
TYPE ANGLE (θe) ANGLE (θs) LENGTH (e)

Full
(see illustration 1) 0 0 1

1/6 FOV 1/2 FOV sec(1/6 FOV)Two-Thirds
(see illustration 2)

1/4 FOV 1/2 FOV sec(1/4 FOV)One-Half
(see illustration 3)

Extreme Close-up 0 3/2

Close-up 0 1

Close Shot 1/4 1

Medium Close Shot 1/3 1

Medium Shot 1/2 1

Medium Full Shot 3/4 1

Full Shot 1 1

Long Shot 1 1/2

TABLE 2. Interpolation values for shot sizes.

SHOT SIZE HEAD/BODY SCREEN
INTERPOLATION (khb) INTERPOLATION (ks)

 c c c= + −k khb b hb h()1

 r k r k rhb b hb h= + −()1

d
r

e
k hs

=

v Moffset CO d= × −[]0 0 1

d
er
k hs

=

FOV1

e

FOV1

e

eθ sθ

FOV1

e

eθ sθ

TABLE 1. Values for each emphasis type, where FOV is the horizontal
field of view for the camera.

1
FOV

1 2

3

FOV
e

1

e

θsθe

FOV1

e

θs

θe

Now let’s go over how to compute each of these angles. For

the first pass, we start with a simple version of α used when we

only care about ensuring that one of the actors is onscreen. The

angle is chosen based on the shot type we want from those

shown in Figure 1, although more shot types could be added.

Table 3 shows the angles to use for each shot type.

The second angle, β, is the desired vertical angle from which

to view the scene and should be between –90 and 90 degrees.

That leaves us with only θ to determine, which is based on the

emphasis angle, θe. The only modification is that we use –θe if

we are looking at the primary actor and θe if we are looking at

the secondary actor.

Finally, add voffset to the focus location to get the final camera

position. The orientation of the camera is MCO. That completes

the basic shot. Let’s look now at an alternative for shooting

two actors that is more complex but produces a better shot.

Two Heads Are Better Than One

S ometimes you want both actors in the shot, for which the

preceding methods didn’t work. An improved method for

framing in this case only need modify how α is calculated when

working out the camera angles. Figure 3 is the desired result,

and if we apply the law of sines to this, we get:

From this we derive:

Knowing that the angles in a triangle total 180 degrees, we

get the following equation for α:

Handling Obstructions

T he main problem that arises once a camera shot has been

calculated is an obstructed view of the actor or actors in the

scene. There are a number of ways to handle this, of which I’ll

examine two of the most useful.

The first method is advantageous if the scene involves moving

elements or a moving camera and you wish to ensure the actors

are visible throughout. Start by rendering the actors first, storing

the area of the screen and distance from the camera in which

each actor is rendered. Now render the rest of the scene, skipping

any objects that overlap one of the actors closer to the camera

than that actor. Now go back and sort these actors from back to

front and render them as translucent. This technique can be fairly

expensive, especially for longer shots and complex scenes.

There is a less expensive technique that we can employ dur-

ing the setup of the shot. To use this method, you must deter-

mine if a shot is obstructed once it’s chosen. A simple method is

a line intersection test that uses a set of lines going from the

camera to the bounding sphere of the actor, similar to those in

Figure 4. Other patterns of lines can be used as long as the cov-

erage is sufficient for larger objects. If there is an obstruction,

an ordered set of shot alternatives are tested until one of the

shots is unobstructed. This method allows smaller or moving

objects to obstruct parts of the actors, but it is generally faster

and less artificial than using translucency.

voffset

d

b
δ

α

θs

CprimaryCsecondary

FIGURE 3. Camera layout for a shot framing both actors.

d b

ssin sinδ θ
=

δ
θ

= −sin
sin()1 d
b

s

α θ
θ

= ° − − −90 1

s
sd

b
sin

sin()

TABLE 3. Shot angles.

Standard –45º

Over-the-Shoulder 75º

Point-of-View –90º

Profile 0º

SHOT TYPE ANGLE

FIGURE 4. Ray cast pattern for
obstruction testing.

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r38

C A M E R A C O N T R O L

On the Move

M ovement is a very important part of games, and we

would be lax if we did not consider it. First, we must

consider how to handle moving actors. When we are focusing

on only one actor, a simple solution is to follow that actor. If

we cut to a different camera angle, we must obey the line of

action at that time. However, it’s not a problem if the camera

rotates with the actor as long as the line of action is updated to

reflect the new heading.

What happens when we are looking at two actors? There

are several options, depending on the circumstances. If the

actors are both known to be traveling in the same direction,

the camera and the line of action can simply follow them as

they did with only one actor. Another possibility, which could

also be used with a single actor, is to let them travel out of

frame before establishing a new camera shot and a new scene

with a different line of action. This method allows the actors

to move around in the shot as long as they do not stray too

far. Cutting to a new scene is the only option if the actors trav-

el in opposite directions, and the new scene will likely not have

both actors in it.

One final form of movement that should be mentioned is

camera movement. Up until now, we have treated shot

changes as cuts, moving instantly from one camera position to

the other. In some cases, a better or more interesting transi-

tion can be achieved by moving the camera smoothly from

one position to the other. You could also use this to establish

a new line of action within the same scene, but this should be

used rarely.

What’s Next?

I have covered the basics of setting up a shot

using common cinematography techniques,

but there is much more that can be learned

from the film industry. For example, I han-

dled the most common cases of one or two

important actors in a scene. There are occa-

sions when three or more actors are important to a scene. See

the For More Information section for additional resources on

cinematography.

Another aspect that I have not discussed is the camera filter,

which can add certain effects and moods to the scene. I dealt

with one camera change, the field of view, because it was very

important to position. However, it is also possible to perform

color filtering, depth of field, and other more complex effects to

add certain qualities to a shot. You should experiment with

these effects to see if you can add that extra touch to your game.

A more complex issue that is rarely addressed in games cur-

rently is cinematic lighting. This is an extremely important part

of filmmaking and can lend a professional touch to any scene.

While lighting principles are well known in the film industry, in

the game industry they are normally only applied to movies

outside of the gameplay. Similar principles as those in this arti-

cle could be used to help automate some of the lighting deci-

sions for games, adding extra real-

ism and production quality to a

game.

However, the largest area

I haven’t touched on yet is

deciding what shot to use

for a given situation.

With the addition of

hints from programmers

and level designers, it’s

possible to automate the

process of shot selection.

This involves deciding

among available shots,

picking transitions,

and changing scenes

when appropriate.

Next month I’ll take a

closer look at this impor-

tant part of our work on

automating interactive

cameras. q

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r40

F O R M O R E I N F O R M AT I O N

BOOKS
Arijon, Daniel. Grammar of the Film Language. Los Angeles:

Silman-James Press, 1976.
Katz, Steven D. Film Directing Shot by Shot. Studio City, Calif.:

Michael Wiese Productions, 1991.
Lengyel, Eric. Mathematics for 3D Game Programming & Computer

Graphics. Hingham, Mass.: Charles River Media, 2002.

GAME DEVELOPER
Lander, Jeff. “Lights … Camera … Let’s Have Some Action Already!”

Graphic Content, April 2000.

C A M E R A C O N T R O L

P O S T M O R T E M r a n d y c o n d o n

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r42

R A N D Y C O N D O N | Randy has been with Z-Axis for over five years, in the indus-
try for seven, and ignoring his metallurgical degree for 14. He currently works as
project manager with Z-Axis/Activision. Spam can be sent to randy@z-axis.com.

G A M E D A T A

PUBLISHER: Acclaim Entertainment
NUMBER OF FULL TIME DEVELOPERS: 25

NUMBER OF CONTRACTORS: 2
ESTIMATED BUDGET: Multi-millions

LENGTH OF DEVELOPMENT: 12 months plus 2 for
Xbox, Gamecube

RELEASE DATE: May 2002
PLATFORM: Playstation 2, Xbox, Gamecube

DEVELOPMENT HARDWARE USED: T-10000 Sony
dev tool, Sony Test debug stations, Xbox dev

station, Gamecube dev station, 933MHz P3
PCs, Louisville Slugger XXL softball bat

DEVELOPMENT SOFTWARE USED: 3DS Max 4.2,
Photoshop, 3D Paint, Bones Pro, Sony GCC,

Visual Studio, SourceSafe, Metrowerks com-
piler, Premiere, assorted text editors

NOTABLE TECHNOLOGIES: Bink for Xbox video
PROJECT SIZE: 200 game code files, 350 engine

code files, >10GB of art assets

E ight years ago, in his small Harvard dorm room, Dave Luntz founded Z-

Axis. Soon after, the studio (or Dave, since he was the only employee)

moved west to the San Francisco Bay area. From these humble begin-

nings, Z-Axis has gone on to ship nine titles, including JOHN MADDEN

FOOTBALL ’96, THRASHER SKATE AND DESTROY, and DAVE MIRRA

FREESTYLE BMX, on a variety of platforms to the U.S., Europe, and Japan. Currently

the studio employs around 50 people constituting two development teams. I joined

the studio more than five years ago as a lowly programmer and demoted my way to

project manager.

Our most successful titles to date have been the DAVE MIRRA FREESTYLE BMX

series, made in conjunction with publisher Acclaim Entertainment. In March 2001,

Acclaim asked us to create an action sports game based on aggressive inline skating.

At the time we had several projects on the table, but Acclaim offered a comfortable

working relationship and a great business deal.

The inline game needed to be completed and blessed by Sony no later than May

2002, with Xbox and Gamecube versions finished a couple of months after that. All

three platforms would also have PAL versions in multiple languages. That gave us a

year to conceive and build a new type of game in the extreme sports genre. Twelve

months is a tight schedule in which to produce a quality title, but luckily we had

experience working within this time frame.

Our development team fell into three major areas of experience. The core art team

had come over en masse from another developer. They had done some work on

MIRRA 2, so they knew the tool sets and export procedures, as well as the warts on

the aforementioned systems. Lead designer Vince Castillo and I worked with this

team to produce an in-house prototype. This experience served as something of an

exhibition season for the team.

The programmers and most of the artists were wizened Z-Axis veterans. The

remaining team members were game development rookies. Though many of them

had worked in CG houses and had stared down brutal deadlines, they had no expe-

rience in the game industry. As a team, however, we were all hungry to make a

quality game.

As we started initial design, we analyzed the heavyweights of the genre, DAVE

MIRRA FREESTYLE BMX, a superior title with a winning record, and TONY HAWK’S

PRO SKATER, the undefeated heavyweight that caused fear-induced loss of bladder

control in lesser competition. We knew going into the project that only an extraordi-

nary game could compete with these titles.

We took the things we really liked about HAWK and MIRRA and then added things

we really wanted to see in those games. For example, we observed on the MIRRA

products that when people played for the first time, they expected HAWK’S game

Z-Axis’s
AAGGGGRREESSSSIIVVEE IINNLLIINNEE

43

control scheme. Plus, we liked the con-

trol scheme Hawk used, so we designed

and incorporated a similar system.

Most of the additions from MIRRA

were under-the-hood systems, including

traffic systems, animation engines, some

special effects code, the sound engine,

the park-editor engine, and some other

bric-a-brac. These hand-plucked goodies

helped us tremendously in finishing the

game within a year.

Next we concentrated on the new

stuff. We wanted to go fast. Really fast.

We wanted players to zoom around

faster than they could within any other

game in the genre.

We didn’t want timed runs. We want-

ed to stay in the world, letting players

do things at their own pace. When the

urge struck, they could attempt the chal-

lenges. If players wanted to hang out

and practice tricks, they could have at it.

As with many games in the RPG

world, a player improved a skill by

doing that skill well. For example, the

more grinding a player did, the better his

or her balance became. All seven player

skills increased in this manner.

We also wanted players to alter the

world. For example, completing certain

challenges could unleash

havoc. A player might

grind across a rail

where large fireworks

rested. The fuses

would ignite and send

the explosives rocket-

ing across the level.

Exploding on an over-

pass, the rubble would

subsequently settle into a giant

bowl and set of ramps. We

committed to having five to 10 of these

large animations on every level.

The MIRRA BMX products featured a

sophisticated level editor. Rather than

leave this as an independent feature

that players might discover, we wanted

to incorporate it into the main game.

We designed three of the levels to offer

w w w . g d m a g . c o m

P O S T M O R T E M

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r44

challenges requiring the construction

and then riding of a skate park. Finally,

we wanted the game to have a strong

sense of humor and fun.

We used motion capture to aid in ani-

mating the intricate tricks performed by

inliners. Trying to figure out the grind

variations these guys did on our own

made us cross-eyed, so we motion-cap-

tured the best inline skaters in the

world, who showed us how all the

grinds and tricks worked. As a bonus,

our designers and animator spent a

week immersed with the athletes and

culture of the skating community.

The motion capture took place at

Camp Woodward, a mecca for profession-

al extreme athletes and the adolescents

who emulate them. Located in a remote

part of Pennsylvania, the place has a mil-

lion ramps, rails, and other devices invit-

ing compound fractures. Campers ride all

day on whatever they want, getting

instruction from professionals.

So with the design complete and the

motion capture sitting on hard disk, we

jumped into production.

What Went Right

1. Make a plan, follow a plan.
And remember to inhale and

exhale, too. I’d omit this as obvious wis-

dom, except I keep hearing about proj-

ects that begin with a plan, follow a plan,

make a new plan, ignore that plan while

making a third plan, succumb to whim-

pering panic, and then jam whatever will

fit onto a disk before the ship deadline.

We created a design and then made

that design. I think we succeeded

because the key members of the team

contributed to the vision for the project.

Lead artist Bill Spence, lead programmer

Vince D’Amelio (a.k.a. Good Vince),

lead designer Vince Castillo (a.k.a. Evil

Vince), and I met early and often to for-

mulate the design document. (The

Vinces sat in the same cube, so we had to

apply a virtue type to clarify our Vince

identifications). In between sessions we

would brainstorm on our own, then meet

again. Bill relayed these sessions back to

his art team, who produced concept

sketches and color keys of important

geometry, animations, and gameplay.

The concept art wasn’t just cubicle

wallpaper. Level construction used the

sketches as an initial blueprint. The final

game remarkably resembles the concept

sketches developed during the first

months of the project.

As production progressed, we followed

the credo “Gameplay is king,” abandon-

ing our initial credo, “The three-day work

week is king.” Our decisions were always

examined in terms of improving gameplay.

In the cauldron of production, gameplay

can get overlooked, leading to wasted

work or sterile levels. The artists and pro-

grammers were often the first to point out

and fix their own problems. Because

everyone understood how things should

work, there was no destructive bickering

or head bashing resulting from conflicting

visions of the game. On occasions where

debates arose, people deferred to designer

Evil Vince, whom the team recognized

and trusted for his talent for level design,

despite his menacing first name.

2. Good producer, good pub-
lisher relations. Years ago, at

a mostly forgotten GDC session, I

remember a speaker insisting that your

game was doomed without a good pro-

ducer. Experience has taught me to

endorse those words.

Shawn Rosen, slated to be AGGRESSIVE

INLINE’s producer, had the MIRRA BMX

series under his belt, so we knew he was

top-flight. This fact weighed heavily in

our decision to choose this project.

In terms of third-party development

with a publisher, what makes a good

producer? Good producers are evangeli-

cal about the project within the game’s

publisher, pushing the project hard for

marketing, advertising, and press inter-

views. The importance of these qualities

cannot be overstated: The producer must

believe in the developer.

They also put the project first, and are

not egotistical or on a personal power

trip. All their yelling and arguments are to

make the product better, not testosterone-

estrogen-induced posturing. On the other

hand, the producer must not be a yes-per-
Concept art drawn in preproduction versus
final art as seen in the Playstation 2 version.

son to the developer. Agreeability can be

pleasant during production, but a game

must have objective feedback. Additional-

ly, producers are indispensable when they

can filter and focus the deluge of sugges-

tions and comments from the publisher to

the developer.

It is essential that a producer be dedi-

cated to the project. Our game should

not be one of many projects going on at

once for the producer. Alternatively, the

producer cannot be a slacker; he or she

should be working as hard as we are.

Good producers provide creative feed-

back and offer good solutions to prob-

lems we encounter. They work well with

the development team, not trying to be

the designer, but offering good sugges-

tions nonetheless.

Finally, good producers ideally have a

track record of successful projects. They

should be able to get the developer

important demo dates, press meetings,

stock meetings, and other details early,

thereby minimizing the number of sur-

prise builds and demos required by the

developer.

Not all these qualities can be deter-

mined of a producer at the beginning of

a project. The bottom line is to find a

producer who believes in you as a devel-

oper, backs the game, and works well

with the team.

We liked working with Acclaim

because they let us do pretty much what-

ever we wanted. Because of the MIRRA

successes, and because our milestones

looked good and played well, they trust-

ed us. They understood how we created

quality product and that we thrived on

minimum oversight.

3. Engine, tools, and animation
system ready for use. We

started with the graphics engine from

MIRRA 2, which allowed us to prototype

gameplay and export levels immediately.

The animation system was in place and

easily extensible to allow for our large

level animations. For example, if we

wanted a cruise missile to give a full-cav-

ity search to a Macy’s Thanksgiving Day

Parade balloon, we just needed geometry

and an appropriate animator. The tech-

nology was in place.

Our artists didn’t have to wait for the

engine or tools, so they had more time to

create and fine-tune their levels. Likewise

when motion capture data came in, the

animator could quickly export it into our

game engine. With no bike to complicate

the data, motion clean-up was minimal

compared to the BMX capture sessions.

Since the core engine was functioning,

we were able to spend time optimizing

performance for speed, texture manage-

ment, and memory usage. Without these

systems in place, we could not have pro-

duced a quality game within the schedule.

4. Profile speed, profile memory.
Throughout the course of the

project, we kept an eye on how much

memory we were using and how well the

game performed. We wanted performance

at 60Hz at all times.

This isn’t to say we constantly ran the

game through a sophisticated profiler

(although that did happen often, mostly

near the end of production). When play-

ing the game, there was an option to turn

on the profiling bars to view performance.

The bars extended horizontally across the

top of the screen, with full-screen deflec-

tion indicating a full frame at 60Hz. The

bars could show overall CPU, VU, or spe-

cific areas of code. The game code CPU

usage, displayed as a green bar, was

known as the “green bar of shame” by

the engine programmers. The program-

mers could add or remove bars to display

whatever code segments needed a look.

Thus we got a constant feel for how

the game was performing. When some-

thing new got added, we’d know imme-

diately if it was behaving as expected.

The more technical level artists used the

profiling to fine-tune geometry and even

troubleshoot slow areas for optimization.

It got to the point that when I watched

or played the game, I didn’t see an inliner

moving around, all I saw were bars fluc-

tuating on-screen.

Left to its own evil nature, memory will

run out at the worst time, such as right

before a milestone. As with performance,

we constantly reviewed our memory

usage. Listings were created detailing how

much memory each module allocated.

When something blew, we could compare

listings from earlier builds and see what

had — usually unexpectedly — grown.

While this incurred a maintenance cost, it

minimized the production-paralyzing

episodes of unexpected memory crashes.

We also found a few curious allocations

that got eliminated.

The artists were assigned memory limits

for level geometry, level textures, and ani-

mation sizes. They did a good job of stay-

ing within these parameters, minimizing

memory crashes. On a tight schedule, we

couldn’t afford to waste days searching for

memory savings.

P O S T M O R T E M

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r

These concept sketches were used to construct the models.

46

5. Locked physics early. Since our

engine was in place, we could

easily experiment with different game-

play possibilities. As preproduction

ended, we established the inliner’s speed,

jumping, and grinding abilities. Having

the physics in place defined the gap dis-

tances between quarter pipes for trans-

fers (connecting jumps) and spacing

between parallel rails so players could

jump from grind to grind. These meas-

urements provided the designers and

level artists with a basic geometry

palette. As soon as production began,

they used variations on the basic themes

to create intricate gameplay. The core

physics did not change through the

remainder of production.

Every level had a few places where a

little extra oomph was needed to make a

jump. The designers could tag any ramp

or quarter pipe to allow different boosts

when going airborne.

The significant tuning values were

placed in menus available from the

game. The programmers were free to

work on greater problems while the

designers fine-tuned parameters. When

they got something locked down, a pro-

grammer easily made the change perma-

nent. The tuning menus also allowed the

producer to experiment with the game

and give us quantitative feedback about

his opinion on behaviors.

What Went Wrong

1. Design tasks were overwhelm-
ing. We designed an amazingly

ambitious game. We thought we could do

it all within our schedule; as happens with

most games, we couldn’t. We delayed cut-

ting some features with the dream that

they could still make it in. This false hope

resulted in work continuing for several

weeks and then getting cut. For example,

we wanted a competition level in the

game, with many flavors of events; coding

and level construction continued for sever-

al weeks before reality dawned, and all

that work had to be scrapped.

Our major delay was the time required

to perfect level geometry. Since every sur-

face and edge can be ridden, the design

phase was quite sophisticated. Add to

that the iterations required to perfect

gameplay, and soon other tasks were suf-

fering from lack of attention. Even with

the advantages of a working graphics

engine, this task took more time than

any of us predicted.

We were probably one level designer

short of avoiding this bottleneck. The

skill to visualize this type of gameplay is

not common, and we had trouble finding

additional help. The level artists did a

phenomenal job assisting in this phase,

taking the designs of Evil Vince and

adding to his vision.

We didn’t skimp on this area of the

design, though, as we felt it was the

strength of the game. We wanted players

to ride the levels for hours and hours and

still discover new lines and possibilities.

Other features — the number of chal-

lenges, the amount of power-ups, and the

removal of special gaps from the game —

eventually got sacrificed for this gameplay.

Even with the cuts, each level fea-

tured between 20 and 35 challenges and

a like number of power-ups. Testing a

complete play-through was an involved

process. As shipping approached, we

spent numerous all-night sessions doing

just that.

2.The challenge of challenges.
In AGGRESSIVE INLINE, challenges

are the tasks the player must perform to

unlock new levels, enable secrets, and

acquire other rewards. For example, to

grind the hands of the clock tower, the

player must first figure out how to get

up to the clock face and then accurately

perform the jump to the clock hands. We

wanted lots and lots of challenges like

this in the game, but we underestimated

the work required to implement them

fully. Every milestone involved marathon

sessions to complete the challenges.

We used a proprietary scripting lan-

guage to code our challenges, which was

assigned to Dave Nelson, a junior pro-

grammer new to the game industry. Be-

cause of the multitude of tasks involving

the other programmers, our newbie had

to complete these tasks independently.

While Dave completed the job

admirably, more oversight would have

improved the process. Some of the script

could have been off-loaded to code func-

tions, while sage advice from experienced

programmers could have eliminated

redundancies and bugs in the scripts. By

the time some of these improvements

were made, we were past alpha.

The other major delay was that all the

geometry, animation, NPC models,

sound, icons, and support functions had

to be in place for a full challenge imple-

mentation. Slogging around to all the

people involved took significant effort

and time. When the pieces were ready for

scripting, we were only a few days out

from a milestone.

This process could have been

improved by lengthening the schedule to

implement the challenges. The artists

and animators should have completed

their work before the programmer

implemented the challenge. Achieving

this process remained difficult, as con-

stant attention had to be paid to staying

on schedule. The longer schedule would

have meant other features would have

been cut or reduced.

Making sure everyone gets the supervi-

sion they require can be a tricky thing to

accomplish. We want the leads to do

some production work, as they are some

of our most talented people. On the

other hand, without certain key bits of

advice or oversight, people can wander

off into the weeds and have to redo or

throw away work. By increasing our

understanding of the tasks and the team,

we’re confident we can strike the proper

balance in future projects.

w w w . g d m a g . c o m 47

Profiling performance of the Playstation 2
version of AGGRESSIVE INLINE. Full horizontal
deflection indicates dropping to 30 fps. The
red bar at the top is VU, the blue bar CPU, the
green bar at the bottom is game code CPU
usage. The red lines on geometry are edges
tagged for grinding.

3.Late start on technical side of
front end. Although we got the

art side of the front end prototyped and

signed off, implementation was delayed.

To add to our woes, the GUI tools had

not been battle-tested, forcing us to debug

as we used them. The programmer

responsible for the front end had also

coded the player animations, so he was

constantly jumping back and forth

between tasks trying to get everything

done and working.

The conclusion from this was that we

should have started sooner and either sim-

plified the design or distributed the pro-

gramming tasks a little more effectively.

4.Features not implemented 100
percent. Throughout production,

too many features were not completely

implemented, due primarily to schedule

pressure or inexperience. While certain

features might have met the intent of a

milestone, they would require more work

down the line. This disconnect left the

game with holes throughout most of alpha

and prevented the fine-tuning of some

challenges until very late in the project.

As discussed earlier, the challenges

were a problem. Usually they were sim-

plified or not thoroughly play-tested.

Other culprits included some acrobatic

moves such as handstands and vaults that

worked in many places, but not all. Wall

rides proved nagging and inconsistent

through early and mid-production. As

such, we couldn’t implement as many

challenges using wall rides as we had

hoped. This wasn’t a result of laziness or

sloppiness, just that the designated people

had other tasks to perform. In other cases

the feature incompletion was a rookie

mistake, where individuals didn’t realize

that the last 10 percent of the job takes

50 percent of the time.

Ultimately some challenges had to be

simplified or eliminated. Many of our

rookies (and some of the veterans) now

understand the importance of taking tasks

as close to finished as possible. This fol-

low-through has to happen for the game

to get the fine-tuning that makes it an

exceptional product. In the future, if need

be, we will rework the schedule or cut

lesser features in order to improve feature

completion. We believe in making fewer

features perfect rather than making more

features halfway.

5.PAL was not our pal. As with

most games, the team worked

insane hours to get the product complet-

ed, which initially in our case was the

NTSC version of the Playstation 2 game.

We completed that version within the ini-

tial target date of the publisher, but it left

the team burnt out. While we finished the

Xbox and Gamecube versions to the same

level of quality, the pace wasn’t as quick.

Moving forward, we will commit more

people to producing these other versions.

We had dedicated engine programmers

for the different platforms, but that

proved insufficient. Game-side program-

mers will build the project for all plat-

forms, artists will export levels for all

platforms, and we will improve the level

tools to make simultaneous exporting eas-

ier. Going through the process has greatly

improved our abilities at near-simultane-

ous platform development.

The European versions also didn’t go as

smoothly as anticipated. I misjudged the

state of our strings and sent them out for

translation too early. After the initial

translations, we had to make many

changes that led to headaches and delays.

We also ignored some basics for strings,

such as making sure the translated text

would fit in the space available. We spent

a lot of time reworking menus or translat-

ed strings to fix length problems. The

scripting language also didn’t have a

smooth transition for translations, result-

ing in a hack solution that proved time-

consuming to work around.

Vision to Reality

A s AGGRESSIVE INLINE started coming

together, we knew we were working

on something good, but how good we

didn’t know. The game passed Sony just

prior to E3, and the reviews from the

show — and subsequently from the

release — surprised us pleasantly. AGGRES-

SIVE INLINE consistently received reviews

at 90 percent or better. We felt our efforts

were rewarded.

Looking back on the project, the thing I

enjoyed most was brainstorming a vision

and then transforming that vision into

reality. We knew what we wanted to do

and we did it. The team took the ideas

and the game further than any individual

could have done.

Our team remains intact. We have dis-

sected the process of making this game

and are committed to improving on the

next. Can we keep it up? I believe so.

We’re a competitive bunch that likes to

win. As long as we don’t kill each other

playing basketball or extreme Ping-Pong

(don’t ask), Z-Axis will continue making

high-quality games and refining our

development process. q

P O S T M O R T E M

48 o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r

Scenes from the Playstation 2 version of AGGRESSIVE INLINE.

In the old days it was

quite common for a

single person to create

a computer game on

his or her own. Some

of the best-loved computer

games were created in exactly

that way. The first flight simu-

lator was written by Bruce

Artwick, SIMCITY was written

by Will Wright, and the first

million-selling computer game,

ZORK, was written by two

MIT students. The best of

these games, games such as

ELITE, ZORK, STAR RAIDERS,

ROGUE, EMPIRE, or M.U.L.E.

still stand up pretty well in

comparison to today’s offer-

ings. The first game I

designed, IMPERIUM, had one

programmer and one artist,

who did three SKUs in less

than a year. Nowadays,

almost all commercial games

are produced by large teams.

There is nothing wrong

with a large team. Sometimes

they are absolutely necessary

to get the games done to the

standards we now expect in a time frame that is economically

viable. When I was CEO of Intelligent Games, our smallest

team was usually a dozen people. But in the two years since I

left, it has struck me that the industry is losing out by sticking

exclusively to this model.

I am not saying that we should all go back to the days of

writing every game single-handedly. I like the games that I

play now, and I wouldn’t want to give them up. What I would

like to see is a complementary and vibrant subculture of small

games and small teams.

My manifesto: First, I would like to see every console come

equipped with some kind of programming system. The genera-

tion before mine grew up with the Apple II, the TRS-80, and

the Commodore Pet. My generation in England grew up with

the BBC Micro and the Sinclair Spectrum. The next generation

had Nintendo and Sega, which

provided no chance to learn

how to program (although

today’s PS2 Linux is a step in a

good direction). Second, I’d

like to see Microsoft offer a

Visual Basic for Games and

Sun create a games SDK for

Java. Third, it would be excit-

ing to see the open source

movement do more to embrace

games. Doing so not only

would allow more large games

to be created by teams of indi-

viduals working collaborative-

ly, but also would allow begin-

ners to learn from other peo-

ple’s code. My objectives are to

increase the number of devel-

opers making games and to

make the work easier in order

to increase the number and

variety of games in production.

The benefits of these simple

steps are clear: the priesthood of

game development would be

thrown open to the masses —

anyone could create games. This

would mean new pools of talent

from which to hire, the develop-

ment of games for niches not served by today’s commercial

model, and, most importantly, an opportunity for the evolution

of games to accelerate toward new game ideas and new genres.

The last point is important, because almost all the game genres

that we play today were first invented in the late 1970s or early

1980s. While technology and graphics have improved dramati-

cally since that time, basic gameplay concepts have remained

pretty static. This is because it takes so long to produce a game

today that Darwinian natural selection simply doesn’t have

enough generations to do its work. We in the game industry

often complain that our creativity is stifled, but it is hard to take

risks on a multi-million dollar, two-year project.

There is another reason why small teams are good. As team

sizes increase, so team members spend more time communi-

S O A P B O X m a t t h e w s t i b b e

o c t o b e r 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

Games for the People
by the People

cating and less time developing. The

more people are involved, the worse this

problem gets. There are some notable

exceptions, however. Austin Meyer is

one. He produces X-PLANE single-hand-

edly, and it is now the only general avia-

tion flight sim to compete with

Microsoft’s. Geoff Crammond and his

series of Formula One games is another.

It is possible to imagine not only new

ecologies of creativity emerging, but

also, perhaps, a whole new market for

computer games. If enthusiastic and tal-

ented amateurs could produce an enter-

taining game, albeit without great

graphics or sound, in six months, it

could serve as a prototype for a more

complete commercial game. It is even

possible to see an intermediate market

emerge somewhere between shareware

and full retail, perhaps distributed over

the Internet, with a much lower price

than retail games. Games could be

released into this market by well-known

publishers who could supply a degree of

quality assurance, testing, asset genera-

tion, and perhaps a small amount of

financial support for the developer in

advance of future sales.

The freeware and shareware develop-

ment communities produce some amaz-

ing games. I was astounded at the quali-

ty of the entries for the Independent

Games Festival this year. These develop-

ers’ work is all the more astounding

when you consider the difficulties they

face in bringing their products to mar-

ket. Imagine multiplying that enthusi-

asm by 10, translating it to the consoles,

and supporting it with a vibrant com-

mercial marketplace.

Bedroom programmers of the world,

unite! You have nothing to lose but

your Playstations. q

S O A P B O X

w w w . g d m a g . c o m 55

M A T T H E W S T I B B E | Matthew
founded IG, a London game studio, and
ran it for 10 years before selling out to
pursue his twin passions for writing and
flying. E-mail matthew@stibbe.net or
visit www.stibbe.net.

continued from page 56

	02gameplan
	04indwatch
	06prodrev
	12profile
	14innerp
	18artview
	24soundp
	26betterby
	28f-brandon
	34f-hawkins
	42postmort
	56soapbox

	return:

