
OctOber/NOvember 1995

G A M E D E V E L O P E R M A G A Z I N E

J
erry Lewis breaks character: “Lis-
ten...lay-DEEE!” It’s not much,
just a single word delivered in
that characteristic way, but the
audience goes nuts. Everyone on
stage freezes for probably a good
15 seconds while the Marquis
Theatre roars with approval. The

septuagenarian has let the audience know
that tonight it’s not going to be the saintly,
Brylcreem-haired, (ex-) chain-smoking,
dear-dear-friend-of-Liza, nominated-for-
a-Nobel-Peace-Prize, hyper-earnest shill
with the 21-hour Labor Day patter.
Tonight, it’s going to be the zany, wacky
goofball with the (once-) rubber skeleton,
the Geisha Boy, the Nutty Professor, the
Jim-Carrey-Eat-Your-Heart-Out daffy
laughmeister. Tonight, we know, there will
be shtick.

Jerry Lewis is playing Applegate (aka
The Devil) in the Broadway revival of
Damn Yankees!, and the audience is filled
with people with the good sense to turn up
their noses at Beauty and The Beast, Sunset
Boulevard, Cats!, and half a dozen other
spectacles for which stage effects and the
sheer shock of live orchestral music played
competently stand in for...well, what? The
Damn Yankees! sets are spare, filled with
pastels, forced-perspective, and dressed
with what look like authentic chrome-and-
bakelite radios, toasters, and card tables.
There’s some of the stage magic demanded
of a Broadway show nowadays, with sets
rolling on and off silently, descending from
the catwalks, popping up through trap-
doors, a shim or two, and so forth, but you
get the feeling it’s the bare minimum
required by the unions. The cast is fabulous
both in form (when Charlotte d’Amboise,
playing Lola, first appears, I do the whole
Tex Avery thing: my eyes pop three feet,
smoke shoots from my ears, and I involun-
tarily scream “Hooga-hooga!”) and func-
tion, but I’m sure the various Andrew
Lloyd Webber spectaculars offer at-least-

similar levels of competence.
Damn Yankees! succeeds in plastering

a goofy grin on your face for two-and-a-
half hours not through any one thing
(although the presence of the King of
Comedy is obviously what draws a full
theater every night), but through a balance
of elements that are a lesson to anyone in
digital entertainment. The play itself is
fluff, even by the standards of 50s musi-
cals. The book is fine but not particularly
familiar (the only song you’re likely to rec-
ognize is “[You gotta’ have] Heart.”).
Indeed, it’s the very modesty of the play,
coupled with professional delivery, that
makes it so enjoyable.

You don’t need state-of-the-art spec-
tacle to entertain. Indeed, state-of-the-art
spectacle can easily overwhelm a modest
entertainment. Although I know I’m in the
minority, I’ve always felt that Doom was
inferior to Castle Wolfenstein 3-D, its
technically limited predecessor. That’s one
reason I was doubly delighted when the
programming wizards at id made the
source code for Wolfenstein available for
public perusal (you can download it from
our ftp site or CompuServe forum; the file-
name is WOLF3DSC.ZIP).

What you need is the enthusiasm and
courage to make the game you want to
make. A little talent helps, but it’s not as
important as heart. When others say you
can’t win, that’s when the grin should start.
You gotta have heart... Oops. There I go
with that damnably hummable tune from
the show again. ■

Larry O’Brien
Editor

The Sound of Jerry

G A M E P L A N

2 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
71743.452@compuserve.com

Editorial Assistant Deborah Sommers
dsommers@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

David Sieks
dsieks@arnarb.harvard.edu

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Group Circulation Manager Kathy Henry
Circulation Manager Mike Poplardo
Newsstand Manager Pam Santoro
Reprints Stella Valdez (415) 655-4269

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, H. Verne
Packer, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

Miller Freeman
A United News & Media publication

Here is the final verdict on accessing
Game Developer code. Go to our ftp

site at ftp://ftp.mfi.com/gamedev/
pub/src. If you’re using Compuserve,
GO SDFORUM. That’s it. We
promise.

R
ecently, I began receiving a
steady stream of e-mail from
Ken Nicholson of ATI
Technologies. Ken’s an
active member of the
GamePC Consortium, a
group of close to 100 mem-
ber companies, each of

which has a hand in the game develop-
ment arena, including title developers,
tool vendors, system manufacturers,
chip, and board manufacturers. The
stated goal of the consortium is a sim-
ple and noble one: to raise the level of
game play on IBM PCs and compati-
bles.

The e-mail that Ken sent consist-
ed of discussion threads about two
related issues that are long overdue for
addressing: a three-dimensional
graphics benchmark and a hardware
specification for PC game play.

The intent of both issues is to
provide consumers with a way to look
at a game on the store shelf and tell
whether the title will run adequately
on their system. It’s far from an easy
task to get an entire industry (or even a
portion!) to agree upon sticky issues
like these, but if a middle ground is
reached, it will be a huge leap forward
for consumers and developers alike.

This month, I’m going to focus
on the consortium’s proposal for an
industry-wide three-dimensional
benchmark that would serve as one of
the components within their second
aim, the GamePC hardware specifica-
tion. Like the Multimedia PC Work-
ing Group’s MPC specification for
multimedia hardware, the GamePC
Consortium wants to create a symbol

or trademark that would indicate the
level of hardware required for different
games.

Although the ideas are still being
bantered around, I imagine the rating
system would be two or three tiered,
each tier representing a computer with
progressively more power and capabili-
ty. Using this rating system on game
boxes would instantly indicate to con-
sumers the type of system required to
enjoy the game. A rating of this sort
necessitates the hardware manufactur-
ers getting involved because it’s their
products that will be rated. Many
companies have jumped on board
already.

The hurdles to developing a
three-dimensional benchmark, as you
might surmise, are fairly large. Bench-
marks are notoriously hard to devise
and maintain, even when you don’t
have to reach a consensus across the
industry. The idea of using
Microsoft ’s Funstones benchmark
(which isn’t available yet) or asking an
independent organization such as Ziff
(the folks at PC Week Labs) to develop
a benchmark been discussed.
Although either of these scenarios
may come true, right now the three-
dimensional benchmark development
is in the hands of the industry–of
which you are a part.

The discussions by consortium
members about the benchmark have
been very insightful. Although this
article represents an excerpt of the dis-
cussion, it gives you an idea of the
problems that have to be solved before
devising a standard three-dimensional
benchmark.

A 3D Benchmark
for the Industry

Creating a method to

game play madness

may help consumers

decide what games

will work best on their

systems. Development

of this industry-wide

standard won‘t be

easy–will you be

involved?

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 5

Define What’s
Being Tested
First, Rob Glidden of SoftPress cut
right to the question that was rolling

around in my head: “What are you
testing: the 3D API, the chip, the
board, the host processor, the device
driver, or a 3D application? All these
are in the pipeline for getting a 3D
image to the screen. You need a way to
isolate out the relative performance
contribution of one aspect. To do this,
you need a baseline and a f lexible
enough implementation so that no one
is left out.”

Glidden proposed finding one or
more games that run on a number of
different chip sets and using the games’
frame rates on each configuration as an
indicator of performance. He then
explained the drawback: every chip
maker would have to make sure that
those particular games ran well on their
chip sets. There’s also the problem of
finding the proper game to exercise all
facets of the hardware within a short
enough time without having to jump to
different scenes, levels, or whatever to
get the right mix of animations.

Glidden also submitted ideas for
measuring polygons per second, pixels
per second, and frames per second.
Each, he explained, has its Achilles
heel as well: What size polygons, and
how many vertices? Are pixel fill num-
bers too abstract for consumers?
Frames per second containing what
kind of objects? These questions were
insightful, and Glidden’s final com-
ment was also good: there’s a qualita-
tive element that cannot be objectively
measured by a benchmark. For
instance, one chip set that blows away
another on a frame rate benchmark
displays inaccurate colors. Which is
better in that case?

Another person who echoed the
concerns of basing a three-dimensional
benchmark on objective vs. subjective
yardsticks was Dan Wood of Matrox.
He summed it up like this: “A word of
warning—testing three-dimensional
accelerators will be very difficult, as
most hardware...will offer different lev-
els of quality and features besides
speed. In some cases, boards may be
able to achieve very high frame-per-
second rates, while rendering very low
quality. Unfortunately, image quality is

a very difficult thing to account for in
benchmarking.” It’s a problem that I
certainly don’t see any easy way
around, short of appointing someone
or a group to subjectively judge the
quality of rendered images. And that’s
opening a whole new can of worms.

Coping with the
Three-Dimensional API
To account for the effect of the three-
dimensional API on hardware tests,
there were a number of suggestions:
• Everyone could agree to standardize

on one API for the testing. Dan
Wood as well as Lou Long of Oki
Advanced Products suggested using
Microsoft’s 3D DDI or Intel’s 3DR.
However, this may have to wait
until the day when either of these
APIs is in widespread use. An inter-
im solution would have to be found
until that day comes, if ever.

• The group could optimize the
benchmark for each API. However,
that situation would be quite a chore
for the consortium (which is young
and probably not too flush with
cash). Because the benchmark would
have to be optimized for every API,
the consortium would have to main-
tain multiple benchmarks over a
period of time as the APIs evolved.

• The group could devise the bench-
mark to be API independent. In my
mind, this seems to be the best
option.

To illustrate how an API-free
benchmark could be accomplished,
Neil Trevett of 3DLabs proposed a test
of the whole system, analogous to
Glidden’s idea. He would devise a real-
istic test, one that required moving
overlapping three-dimensional objects,
hidden surface removal, and back-face
culling in front of a textured back-
ground (he suggested multiple spheres,
cubes, and so on, bouncing around and
colliding in a three-dimensional box).

The benchmark would specify
what textures to use, the lighting, the
position of the eye, and other details.
Then, when the benchmark is tightly
specif ied, the source and binaries
would be distributed to the various

C R O S S F I R E

6 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

I
f you are interested in finding out
more about the GamePC Consor-
tium or want membership infor-
mation, the group can be reached
at:

• http://www.mmwire.com/gamepc/
gpchome.html

• CompuServe: GO GAMEPC
• or contact Ken Nicholson of ATI

Technologies at 75300.2772@com-
puserve.com.

Here’s an sampling of GamePC Consor-
tium member companies:

GAME DEVELOPERS:
Acclaim
Accolade
Broderbund
Interplay
Lucas Arts
Maxis
Microprose
Origin
Spectrum Holobyte

TOOL VENDORS:
Argonaut
Autodesk
Caligari
Intel

SYSTEM VENDORS:
Acer
Apple
IBM

CHIP AND BOARD MANUFACTURERS:
ATI
Cirrus Logic
Creative Labs
Diamond Multimedia
Matrox
Media Vision
Trident
VLSI
Weitek
Yamaha

W H O ’ S I N V O L V E D ?

hardware companies, and they could
use whatever API they wished for the
testing, as long as the resulting anima-
tion was identical to the specification.
This would also mimic the optimiza-
tions that game developers make for
various hardware.

Oh Yeah–the
Other Platforms
While virtually everyone involved in
the discussion was focused on Win-
dows 95 as the testing platform, Dave
Thielen of Windward Studios remind-
ed everyone that there were other oper-
ating systems and environments to
consider.

“This benchmark needs to run on
Win16, Win/NT, and OS/2 as well as
Windows 95,” Thielen said. “In all the
hoopla over Windows 95, everyone
seems to have forgotten that Win16
stil l owns the desktop market and
OS/2 has 10%–while Windows 95 has
0%.” Very good point, and one I hope
people don’t overlook. As I mentioned

last time (“The Windows 95 Game
Plan,” August/September 1995), the
market for Windows 95 is not going to
kill the DOS and Win16 game market
overnight, and it bears some considera-
tion in whatever three-dimensional
benchmark is adopted.

Testing Conditions
Once the GamePC Consortium agrees
on a standard benchmark, whether it’s
API independent or dependent, it must
specify the conditions under which the
benchmark will be run. The tests must
occur in an environment every compa-
ny can duplicate, and none can deviate
from in the interests of a better perfor-
mance rating. Lou Long explained that
the test “...must state the physical para-
meters like the width and height of the
window (if not full screen) in pixels,
the depth (bits per pixel), the color
mode (palletized or true color), and
any other parameter that affects the
total number of bits rendered by the
hardware.”

So, as you can see, a flock of issues
must be dealt with before a PC three-
dimensional benchmark is finalized.
Despite the technical hurdles, I believe
the benchmark will be here sooner
rather than later. If you’d like to throw
your two cents into the discussion, I’ve
included the contact information for
the GamePC Consortium. You may be
testing your own games with this
benchmark in the near future, so it’s
worth the time to donate input. Next
time I ’ l l examine the plans for a
GamePC hardware level; it is akin to
MPC hardware ratings of which the
three-dimensional benchmark is but a
single part. ■

Alex Dunne is a contributing editor
for Game Developer magazine. Contact
him via e-mail at 75010.2665@com-
puserve.com or through Game Developer
magazine.

8 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

C R O S S F I R E

Sweet
Animation
Suite

Nicole Claro
Barbara Hanscome

B I T B L A S T S

E
ven though you shouldn’t put
all your eggs in one basket,
count your chickens before
they hatch, or put the old cart
before the horse, you should
try to keep all your develop-
ment tools in one place. What
better way to expedite three-

dimensional animation than with a full
suite of tools at your fingertips?

Crystal graphics is now shipping
just such a product. The company’s new
Crystal Kaleidoscope (pictured here
however minutely) is centered around

TOPAS Professional 5.1 a three-dimen-
sional modeling, rendering, and anima-
tion package for the PC. Also included
are Fractal Design Painter 3.1 (to create
natural-looking art from calligraphy to
oils to airbrushes), Kai’s Power Tools 2.0
SE (gradients, textures, and filters),
Elastic Reality 1.01 (for morphing and
special effects), and Leadview 3.0 (for
managing and compressing images).
Each tool has won awards on its own. In

addition, the set comes with four CD-
ROMS with textures, images, and three-
dimensional models from a variety of
other manufacturers. Crystal Kaleido-
scope retails for $1,995.
■ For more information contact:

CrystalGraphics Inc.
3110 Patrick Henry Dr.
Santa Clara, Calif. 95054
Tel: (408) 496-6175
Fax: (408) 496-0970

Bring the Noise
Now you can perform a post-recording
cleansing on any game audio you create.
Tracer Technologies recently began
shipping its Digital Audio Reconstruc-
tion Technology (DART) software.
DART removes all surface noise, pops,
clicks, and other disturbances from any
audio source. As long as you’re using a
Windows-compatible sound card, you
can use DART.

After recording, the software
applies TriCleanse, a three-part process
that includes a smoothing processor, a
postfiltering processor, and an outlier
detector. The first component smooths
and reconstructs the signal, the second
removes surface noise, hiss, and any
other distortion, the third searches for
hard noises, such as pops and clicks, and
automatically removes them. You can
even keep the noise you’ve removed in a
separate file and reapply different levels
of the TriCleanse process until you’re
satisfied with the sound quality. DART
also features Soundtree, which lets you
review several takes of a sound file and
choose your favorite one. Its toolbox
includes an eight-band graphic equalizer;
cut, copy, and paste editing; sound left

10 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Sound, animation,

upgrades, trade

shows, and

gossip.These are the

tools of the trade.

Here‘s a sampling of

some new and

upcoming stuff you

might want to

check out.

CrystalGraphics’s Kaleidoscope features
a quartet of powerful rendering and ani-
mation tools built around the core of the
company’s TOPAS technology.

and right splitter; low, high, bandpass,
and notch filtering; visual and audio
markers; unlimited active windows; a
gain adjuster; and a mixer application. It
retails for $399.
■ For more information contact:

Tracer Technologies Inc.
P.O. Box 188
Dallastown, Pa. 17313
Tel: (717) 747-0200
Fax: (717) 741-6709

Digitize, Digitize, Digitize!
Looking to make realistic, three-dimen-
sional models in less time? Check out
Vertisketch 2.0, a new plug-in from
Idaho’s Blevins enterprises. (I spent two
days in Boise on a recent road trip. I am
now officially a seasoned traveler.)

Vertisketch 2.0 is designed for use
with LightWave 3D 4.0 and any sup-
ported three-dimensional digitizer. It
features many new functions such as
lofting, which automatically creates

polygons, and autosurf, which creates a
surface at the stroke of a key. Vertisketch
2.0 comes in two different models, one
that relies on a footswitch alone and one
that incorporates a rotating digitizing
platform.

■ For more information contact:
Blevins Enterprises
121 Sweet Ave.
Moscow, Id. 83843
Tel: (208) 885-3805
Fax: (208) 885-3803

Two-Legged Wonders
To accompany its upcoming 3D Studio
MAX (the newest version of 3D Studio
for Windows NT), Autodesk has
announced Biped, a software product for
creating lifelike, free-form animations of
two-legged characters.

According to Autodesk, the techno-
logically advanced software combines sev-
eral innovative techniques with advanced
inverse kinematics and skinning functions
which let the characters move at any pace.
Gait, arm swing, and center of gravity
will automatically correspond to any pace
you create. You use Biped by creating a
set of character footprints, which you
then manipulate easily. Change the posi-
tion and time on the ground of one foot-
print from the next, and your creation can
walk, run, stagger, dance, jump, flip, or
any variety of these movements. Biped
features three elements that allow for this:
step-driven animation, free-form
keyframing, and physics-based interpola-
tion. It also includes a skeletal/skin defor-
mation module for creation of seamless
joints and realistic muscles and body mass
changes as a character moves over time.
Biped and 3D Studio MAX will ship
sometime in 1996.
■ For more information contact:

Autodesk Inc.
111 McInnis Pkwy.
San Rafael, Calif. 94903
Tel: (415) 507-6112
Fax: (415) 507-6112

Christmas Crunch Sneak
Attack...As we move into Christmas
crunch season id has, with one master
stroke, subverted the competition’s pro-
grammers by releasing the source code
for Wolfenstein 3-D. What game pro-
grammer could resist delving into John
Carmack’s code to the detriment of his
or her current deadline? The source is
available on the Internet from ftp.idsoft-
ware.com or on CompuServe in the
GAMDEV library. There’s an intro by John
Carmack pointing out what’s cool and
what needs updating.

Shareware Authors out for
blood...Game authors are on the warpath
against unscrupulous publishers who take
shareware to retail and CD-ROMs without
permission. Apogee, id, MVP, Red-
wood Games, and TriSoft are all sicc-
ing lawyers on these pirates. With the
entry of Interplay’s Descent into the
shareware market, we may see some
expert copyright muscle behind this effort.
Question: What giant distributor/publisher
told a developer whose game it had pirat-
ed, “We’re so big we can use our petty
cash fund to keep you tied up fighting us
until you go bankrupt”?

Musical Chairs...Matt Gruson has
joined Disney Interactive because he
“saw a lot of interesting opportunities
and the chance to work under an experi-
enced management team.” Gruson
(whose first big game was Earthrise
back in the 80s) founded the Graphic
Adventure Group at Microprose,
developed the MADS game engine
which was used in Rex Nebular (still on
the top 100 list of games), and then went
to Sanctuary Woods. He says the
Graphic Adventure Group was “the
most energetic and wonderful group,”
and his goal is to get together with a
group like that again. When asked if he’ll
try to reassemble the crew (some of
whom followed him to Sanctuary), he
replied, “No comment.”

Sega Exodus...Wallace Poulter has
left Sega to become an Executive Produc-
er of GameTek’s new sports division. In
a switch, instead of Poulter having to
move to Florida, GameTek will move to the
San Francisco Bay Area. Relocating all
those Sega folks they picked up must
have looked more expensive than moving
the whole company. Others jumping from
Sega to GameTek include Tom Reuter-
dahl (now VP of development) and Andy
Johnson, who will work under Poulter.
Meanwhile the exodus from Sega contin-
ues, with Chris Garske going to Good
Times Software and Wayne
Townsend, former head of Sega
Sports, leaving to start his own develop-
ment group.

Got gossip? E-mail The Gossip Lady at
71501.3553@compuserve.com.

S
c

h
m

o
o

z
e

n

e
w

s
.
.
.

S
c

h
m

o
o

z
e

n

e
w

s
.
.
.

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 11

Vertisketch lets you create lifelike
three-dimensional models with the sim-
ple stroke of a digitizing brush.

Kids are People, Too
Creators of children’s edutainment will
have the chance to connect with 3,000 of
their potential customers October 5-8 at
the second Children’s Multimedia Expo
in San Francisco, Calif. The event,
which debuted in June of 1995, will
bring together thousands of kids, educa-
tors, parents, retail buyers, and multime-
dia pros for four days of show and tell.
Edutainment developers will have the
opportunity to gain important feedback
on their products during demos and
focus group testing with some 3,000
children and teachers brought in from
schools throughout California. (Wow
kids, here’s a field trip to a place where
you can play computer games all day
long—the only catch is you’ve got to
answer a few questions from some
friendly marketing executives....) Last
year, multimedia companies demonstrat-
ed works in progress as well as titles cur-
rently shipping.

Two days of the four-day event are

closed to the general public. During the
weekend, the doors open to everyone
and special family-focused Internet and
World Wide Web demos and workshops
will take place. At the end of the Expo,
students and teachers will vote on their
favorite titles in the Kids’ Choice and
Teachers’ Choice Awards.

Vendors exhibiting at the show are
by invitation only. Companies interested
in participating in this event or future
Children’s Multimedia Expos must sub-
mit their products for review. For more
information, contact event producer
Shannon Tobin at (415) 788-9990 or fax
(415) 243-8939. ■
■ For more information contact:

Shannon Tobin
Event Producer
Children’s Multimedia Expo
Tel: (415)788-9990

Nicole Claro is managing editor for
Game Developer magazine. Barbara
Hanscome is managing editor for Software
Development magazine.

B I T B L A S T S

12 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

!U P G R A D E

YOURS!
• Caligari’s newest upgrade is

trueSpace2 for Windows. It
features new animation and
video capabilities and true-
Clips, a CD-ROM of more
than 200 textures and 600
three-dimensional objects.
The upgrade is available to
trueSpace1.0 users for $149
and $795 for new users.

• Borland is shipping Turbo
C++ 4.5, which includes five
free games with full source
code. This latest version is
geared toward beginning
programmers and retails for
$79.95 for new users and
$49.95 for owners of any
previous versions of Turbo
C++.

A
s you can see from the title,
this article is not “Perspective
Texture Mapping, Part IV,”
the continuation of our epic
perspective texture mapping
series. Don’t panic, I’m not
breaking my promise to deliv-
er a wicked fast perspective

texture mapper, but to break up the
series a bit I thought I’d insert a non-
texture mapping article here in the mid-
dle (although the topic is definitely
applicable to texture mapping, as you’ll
see). We’ll resume with Part IV next
issue.

This time through, we’re going to
discuss memory bandwidth. Plainly stat-
ed, memory bandwidth is a measure of
how much memory you can read and or
write in a given amount of time.

From that description, it should
be clear that memory bandwidth
affects every kind of game on every
platform, from scroll ing platform
games on an 8-bit Nintendo or Atari
2600 system to high-end military sim-
ulators that cost millions of dollars.
Memory bandwidth governs how many
sprites the hardware in the older con-
soles can move around, and how many
polygons can be textured per second in
hardware on the newest machines or in
software on the PC.

In fact, an oft-cited goal of PC
graphics programmers is to “get your
texture mapper running at memory
bandwidth,” because there’s not much
more you can do to increase its speed
after that. To get a tad flowery, memory
bandwidth can be an open door or a
brick wall. It all depends on how much
of it you’ve got.

Lies, Damn Lies, and
Bandwidth Numbers
On today’s machines, we usually mea-
sure memory bandwidth in megabytes
per second (MB/s), but you’ll sometimes
see bytes per second, dwords (a dword is
four bytes in this article) per second, and
so on. If you’re looking at a bunch of
memory bandwidth numbers, it’s obvi-
ously important to know which measure-
ment units they’re in.

Like most statistics, the bandwidth
numbers themselves aren’t enough to tell
the whole story, and you need to know
exactly how the numbers were generated
for a specific machine to give them
meaning. For example, I could tell you
the laptop on which I’m typing right now
gets 42 MB/s, but you really aren’t any
more knowledgeable than before because
you don’t know if I mean read band-
width, write bandwidth, copy bandwidth,
sequential or random reads or writes, or
any combination thereof. All these para-
meters can make a big difference inwhat
a bandwidth number really means.

In fact, it’s rare that any general
bandwidth number will mean anything in
the context of your specific game. I’m
going to talk about various things that can
affect your game’s memory bandwidth,
techniques for measuring that bandwidth,
and pitfalls you’ll encounter along the way.

Pyramid Power
First, we need a one-minute refresher on
how modern CPUs and motherboards
work. I’m certainly no hardware engi-
neer, so we’ll limit our discussion to how
the software sees the hardware.

Throughout computer history,
there’s always been a pyramid diagram

Memory
Miscellanea

Don‘t worry, perspec-

tive texture mapping is

alive and well. But this

month, Chris Hecker

takes a break from his

series on texture

mapping to explore the

nuances of

memory bandwidth in

game programming.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 15

that describes the speed of the compo-
nent vs. how much of that component
you’re likely to have in your system (usu-
ally because faster components are more
expensive). Figure 1 shows this diagram
for memory components.

At the top of Figure 1 we have the
CPU registers, which usually take a single
cycle to access and are the most flexible of
all types of memory, but are pretty scarce
(Intel x86 processors have only eight gen-
eral purpose registers, each of which holds
four bytes, while most new processors like
the PowerPC have around 32—all the par-
enthetical numbers in this paragraph are
estimates and will vary in practice). Below
the registers, we have the on-chip cache
memory, sometimes called the level 1
cache. This is usually a small amount (8 to
32KB or so) of fast memory with access
times slightly slower than registers. Cache
memory is a little less flexible than regis-
ters, as well. Most CPU architectures don’t
let you add a number in the cache directly
to another number in the cache without
using the registers for temporary storage.

On the next rung down, we have the
off-chip level 2 cache, which usually has
more storage space (256KB to 1MB), but
is much slower than the on-chip cache,
generally on the order of five times slower
or more.

Second to last in our diagram, we
have main memory—of which there’s
usually a relatively large amount (4 to
32MB). As you’d expect, it’s even slower
than any of the memories above it. Final-
ly, we end up with the hard disk, which
has oodles of storage (well, okay, my hard
disk sometimes has less space free than I
have main memory, but it still has more
raw storage!) if you’re willing to pay for
the access time and transfer rates. CD-
ROMs and tape drives would be below
hard disks if we put them in the dia-
grams, because they’re cheaper (and
slower) per megabyte.

The most interesting thing about
Figure 1 is that it holds for almost every
machine architecture, from Commodore
64s to Crays. On the lowest end, you
might not have caches, and at the higher
end you might have more layers, but the
speed vs. cost ratios still stand.

With that refresher, let’s get to the
hints, tips, and techniques for determin-
ing the memory bandwidth for your
game, so you can strive to achieve it.

What’s Your
Access Pattern?
As I mentioned, a single number doesn’t
tell the whole story about memory band-
width. In fact, there are zillions of differ-

ent kinds of memory bandwidth, each
different because the access pattern used
to generate the numbers is different. The
access pattern is the way the application
moves the memory around, and there are
as many different types as there are pro-
grams. Three general categories that are
important, but by no means form a com-
plete list, are sequential copy bandwidth,
sequential write bandwidth, and random
read-sequential write bandwidth.

Sequential copy bandwidth is the
number that applies when you’re copying
a block of memory from one place to
another—to copy a new piece of digital
audio into the play buffer, for example.
Sequential write bandwidth is what you
see when filling a rectangle or polygon,
zeroing an array, or anything else where
you’re writing a single value or a value
that’s generated using instructions (as
opposed to read from a source) to a desti-
nation. Finally, random read-sequential
write bandwidth is what you see when
texture mapping, where your source loca-
tions are fairly randomly distributed, but
you’re usually writing a scanline at a time
to the destination.

From these descriptions, you can
easily come up with other kinds of band-
widths and situations in which they’d
arise. You might find multiple reads and
a single write interesting if you’re mixing
digital audio or alpha blending sprites.
Likewise, a single read and multiple
writes might be your thing if you’re
stretching an image. The key is to figure
out which type of bandwidth is most
appropriate to your application and mea-
sure it.

It’s clear that any useful and inter-
esting application is going to do more
than just copy bits all day, but memory
bandwidth gives a good upper bound on
your performance. In other words, even
if you were the best optimizer on earth,
you still wouldn’t be able to get your
code faster than memory bandwidth if
you need to move those bits around.
This may seem like a limitation, and it
is, but you can also look at it as an
opportunity. If you can figure out a way
to reduce your memory bandwidth
requirements by redesigning your algo-
rithm or possibly by changing your

B E H I N D T H E S C R E E N

16 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 1. Component Cost vs. Amount

Decreasing
cost per
megabyte

Hard Disk

Registers

On-chip Cache (L1)

Off-chip Cache (L2)

Main Memory

access pattern you can open up new pos-
sibilities for optimization.

An Accessible Example
For example, if you were writing a solid
polygon rasterizer, you could measure
sequential write bandwidth and compare
it to the fill rate you get through your
rasterizer. The difference is your over-
head above memory bandwidth. Your
goal is to minimize this overhead or, if
possible, cheat somehow so you get the
same effect on the screen but aren’t
bound by the same memory bandwidth
limitations.

Let’s say you have the world’s fastest
90-degree bitmap rotator; you can take a
bitmap and rotate it 90 degrees at memo-
ry bandwidth on your machine—you’re
very proud of this code. You know it
works at memory bandwidth because you
measured it without any instructions
except the copies in the inner loop and
got the same bandwidth number when
you added your rotator code. Let’s also
say your code is “destination-centric,”
that is, it scans horizontally in the desti-
nation and therefore it scans vertically in
the source to accomplish the rotation. Of
course, you measured memory bandwidth
doing the same thing, so let’s call this
access pattern vertical read-sequential
write. Since we’re running up against this
memory bandwidth limitation, how can
we restructure the algorithm to have a
different limitation?

It’s immediately apparent that you
should measure sequential read-vertical
write, which will accomplish the same
rotation, but might be a different speed.
Also, another possibility is to spend a lit-
tle memory and pre-rotate your bitmaps,
so your access pattern is sequential copy.
Will either of these be faster? I don’t
know, and we can’t say with certainty
until we’ve timed it. My hunch is that
sequential copy will be the fastest in
terms of pure bandwidth because it’s
probably the access pattern for which the
memory subsystem was optimized, but
it’s just that, a hunch. It’s entirely possi-
ble the extra memory overhead from pre-
rotated bitmaps would make the overall
code slower because of paging.

The real solution, if this is a bottle-

neck in your game’s run-time speed (and
you shouldn’t even be bothering to mea-
sure this stuff if it isn’t a bottleneck), is to

profile the various techniques at startup
and have your game self-configure to use
the fastest possible pattern for the given
machine.

It may seem like I’m being wishy-
washy by not just declaring a single
access pattern the fastest, but we’ve got
far too many variables to do so. The
problem is compounded by the number
of different hardware architectures out
there, so what’s fastest on your machine
might not be fastest on mine and vice
versa. The best we can do is have a list of
things to look out for when we’re mea-

suring bandwidth. Cache effects would
definitely be at the top of this list.

Understand the Cache
The processor cache is usually an object
of great fear, wonder, and misunder-
standing. A friend of mine named Terje
Mathisen says, “All programming can be
thought of as an exercise in caching.”
Although Terje isn’t talking specifically
about the processor cache, this is a rule to
live by when you’re trying to optimize on
modern processors. If we apply this idea
to the processor cache and memory
bandwidth, it means, “Figure out how to
put your important data in the cache and
keep it there.” This may seem obvious,
but keeping your data in the cache is
more difficult than you might think.

Before we bother getting into this,
what difference does it make? Well, on
my laptop, the speed difference between
reading from the on-chip cache and
reading from sequential uncached memo-
ry is tenfold—and this isn’t even the
whole story. I’m reading sequentially in
this example, so at least some of the reads
are cached for reasons I’ll explain shortly.
If I ensure that all the reads are uncached
by reading pseudo-randomly, the pro-
gram reads from the cache about 30
times faster than from main memory.
You can do a lot in 30 cycles on a mod-
ern processor, so I’d rather not spend
them waiting on memory.

I’m going to assume you know gen-
erally what a cache is and how it works, so
the only high-level description I’ll give is
this: the cache stores frequently accessed
data in fast on-chip memory, so when you
reference it the chip doesn’t have to go out
to the memory bus to fetch your request.

Caches are broken up into cache
lines, which are usually 16 or 32 bytes
long, and the processor reads in an entire
cache line from memory when a cache
miss occurs. These cache lines are aligned
on address boundaries that correspond to
their length, so 16-byte cache lines are
aligned on 16-byte boundaries, for exam-
ple (addresses ending in 0 hexadecimal).
This is why my previous sequential reads
were partially cached. Assuming a 16-
byte cache line, every fourth dword I read
in my test brought in another cache line,

B E H I N D T H E S C R E E N

18 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

What‘s fastest on

your machine

might not be

fastest on mine.

The best we can

do is have a list of

things to look for

when we‘re mea-

suring bandwidth.

and the next three dwords were read
from the cache’s fast memory. The use of
cache lines also means that if you’re refer-
encing two bytes at addresses that differ
by more than a cache line (or if there’s a
cache line boundary between them) you’ll
be using two lines, even if you’re only
accessing those two bytes.

Life in the cache gets even worse
when we delve deeper into its behavior.
Most modern caches are N-way set asso-
ciative for some small integer N, usually
2 or 4. A cache set is a group of N cache
lines, so a two-way set associative cache
has a bunch of sets, each containing two
cache lines. You can tell how many sets
there are by taking the size of the cache
in bytes, dividing by the number of bytes
per line to get the total number of lines,
and then dividing by N for your cache to
get the total number of sets. For example,
the Pentium has 8KB of two-way set
associative data cache with 32-byte cache
lines, so 8KB / 32 bytes / 2 lines per set =
128 sets.

The cache translates a memory
address into a cache line address by using
the lowest bits for the intra-line address,
the next few bits for the set address, and
the remaining high bits for the cache tag.
Figure 2 shows the breakdown for the
Pentium. Because there are 32 bytes in a
cache line, the lower five bits are used for
the intra-cache line address, and the next
seven bits give us the 128 sets we calculat-
ed previously. Which line a given address
uses in its set is up to a replacement algo-
rithm (usually least recently used or an
algorithm close to it) based on the cache
tag bits. In other words, every address
that contains the same set address bits
will map to the same set, and all those
addresses must share the lines in that set.

This is where the replacement algo-
rithm comes in. If all the lines in the set
are currently full and none of the tags
matches the requested address, then one
of the currently cached lines needs to be
replaced by the current requested line.
For example, on the Pentium only two of
the many possible cache lines (20 bits
worth of lines because bits 12-31 make
up the tag—that’s 1,048,576 possible
lines!) for a given set can be in the cache
at the same time.

You can see why this works well in
the general case because referenced
addresses are likely to be near each
other—a phenomenon called locality of
reference—so they’ll have different set
addresses. The set architecture allows for
some addresses to be not-so-near each
other because it lets very different
addresses with the same low bits map to
N different cache lines (in contrast, a
cache architecture called direct mapped
has no sets, so each address with the
same low bits shares a single cache line).

However, in certain cases this kind of
cache architecture can really screw you up.
For example, let’s say you’re reading verti-
cal strips from a bitmap like the bitmap
rotator we discussed previously—down
one vertical scanline, then down the next,
and so on. The width of your bitmap will

dictate how much of the cache you end up
using. If your bitmap is 256 bytes wide, a
single increment vertically will step bit 8—
and never any bits below bit 8—in your
address. If you compare that with the
Pentium’s cache address layout in Figure
2, you’ll notice that you’re only using four
bits of your possible seven bits of set
address. This means that instead of using
all 128 sets, you’re only using 16 of them
or only 1/8 of your total cache! The star-
tling implication of this is the next hori-
zontal byte from the first scanline will not
be in the cache when you get back up
there if you’ve gone farther than 32 scan
lines (16 sets x 2 lines per set) because it’s
been pushed out of its set by another line.

Assume Nothing
What can you do about this sort of
thing? Well, first you need to realize

when it is happening in your code. To
do this, you need to get good at profil-
ing. Profiling at this level doesn’t mean
just running the code profiler that comes
with your compiler and examining the
results, it means figuring out exactly
where your code is spending its time in
the inner loop. You can definitely use
the high level profiler to find the inner
loop in the first place, but once you’ve
found it, if you want to max it out and
really pin down why it’s taking the time
it is, you’re going to need to get down
and dirty with a very accurate timer (per-
sonally, I use timeGetTime or QueryPerfor-
manceCounter on Windows, but any accu-
rate timer will work) and a knowledge of
assembly language.

Before continuing I should stress
that this kind of profiling and optimiza-

tion takes a very long time, so you should
make absolutely sure you’re applying that
time to the right part of your code. In a
game, there are probably 10 lines of code
in the entire project that might need this
sort of attention, and if you’re going to
spend a week looking at them you had
better make sure they’re the right 10 lines.

Michael Abrash’s phrase, “Assume
nothing!” and its corollary, “Time every-
thing,” are words to live by in this neck of
the woods. Abrash is the master of this
sort of optimizing, so you should definit-
ley read his book Zen of Code Optimiza-
tion (Coriolis, 1994). As a bonus, the
disk that accopanies the book comes with
a very accurate timer designed specifically
for this in-depth profiling.

While I was writing this column,
the need for this very kind of profiling
came up. I was gathering bandwidth

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 2. Pentium Cache Addressing

Address Bits

31 12 11 5 4 0

Cache tag Set address
Intra-line
address

statistics for various access patterns on
my 486 laptop and I was trying to time
cached reads. I know from both experi-
ence and the 486 manual that a read
from the cache is a single cycle, but I
couldn’t seem to convince my timing
program of this fact. It kept returning
around 1.5 cycles per read, and when
you’re timing at this level that’s 50%
off. My test program had an unrolled
loop of a couple of hundred reads, and
then I looped back to the top a bunch
of times. I was very careful not to
unroll my loop so much that it blew out
the code cache, so I simply couldn’t
figure out what was going on. I timed
other single cycle instructions with the
same timing harness (using a millisec-
ond timer and looping a lot), and they
returned reasonable times, like 1.02
cycles, but my reads kept returning 1.5.
If I stuck a nop in between the unrolled
reads I got the expected two cycles, one
for the read and one for the nop. I
stared at the code, trying to find an
address generation interlock, (AGI—

Intel-speak for a type of pipeline stall),
but there weren’t any.

Finally it hit me. I remembered that
if you’re continuously reading from
cached memory without allowing even a
single free memory cycle for prefetching
instructions, the 486 will stall your code
to fill the prefetch queue. Eureka! I veri-
fied this was the culprit by changing the
number of consecutive reads and got the
expected one cycle per read. I also looked
it up in the 486 Programmer’s Reference
Manual from Intel, and the stall was list-
ed there among the others.

Time to Cache Out
As you can see, figuring out where every
cycle is going in your inner loop, espe-
cially when there are strange effects
brought on by your memory access pat-
tern, is very difficult and time consum-
ing. I highly recommend reading and
rereading the manual for your processor
before you try to do this. Also, always
test your timing program with known
inputs so you can verify that it works;

Heisenberg is alive and well at this level.
I haven’t covered video memory and

its associated bandwidth weirdnesses at
all. Nor have I discussed processor write
buffers, write-back versus write-through
caches, processors that don’t write allocate
cache lines (like the Pentium), new trends
in memory that affect the bandwidth
numbers (like EDO memory, RAMBUS,
and SDRAM), groovy new cache/access
pattern debugging instructions (like
RDMSR on the Pentium), and much
more. Hopefully this article gives you
enough background and forewarning
about the strangeness you’ll encounter
that when it’s time to max out your inner
loop, memory bandwidth won’t be the
mystery it can be for the unprepared. ■

Chris Hecker wonders why five-year-
old workstations with incredibly slow
CPUS still have better memory bandwidth
than today’s top-of-the-line PCs. You can
commiserate with him at checker@bix.com.

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 21

Organizing User Input, Part I:
The Input Queue Manager
and Keyboard Events

O R G A N I Z I N G U S E R I N P U T

M
ost programs I’ve written have
required some form of input
from the user. In most cases,
the programming language or
the library provided with the
language was sufficient to get
the input in a reasonable
manner. Of course, none of

these programs was a game.
Fast action games need to process

multiple, simultaneous key presses at a
frantic rate. Most fighting games provide
combinations of keystrokes that, when
pressed within a limited time frame, cause
some special move to be executed. Not to
mention the mouse and joystick, other
common game input devices that aren’t
even supported by most compiler libraries.
The question is, how can we obtain the
user’s input in a reasonably efficient and
general manner?

The input queue manager presented
in this article is my solution to this prob-
lem. This manager accepts the raw input

from the hardware devices and stores each
input as an event on an internally main-
tained queue. When a client program
requests input, the oldest event is returned.

The main design goals for the input
queue manager were:
• Gather user input asynchronously to the

client program
• Minimize memory and execution over-

head
• Return user input in a single format

regardless of the input device.
I developed the input queue manager

in C and assembly language using ancient
versions of Borland C/C++ and Turbo
Assembler, though I’ve now converted
most of the assembly language to C for the
sake of maintenance.

The Input Queue
Manager Structure
Figure 1 is a block diagram of the input
queue manager. The keyboard, mouse, and
timer generate interrupts when they are in
need of service. The input queue manager
handles these interrupts, storing the infor-
mation gathered on an internal queue and
supplying that information to the client
program, on request, as events. In addition,
the client program may post events to the
input queue if required. The mouse cursor
interface allows the event manager to
accept mouse events even if the video
mode isn’t supported by the default mouse
driver (as in Mode X and VESA).

“Why no joystick handler?” you may
ask. The input queue manager only han-
dles events that can be gathered via inter-
rupt. One of my design goals was to pro-
vide as little overhead to the client program
as possible. The joystick has to be polled at
regular intervals for its current position and

22 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 1. Input Queue Manager Block Diagram

keyboard
interrupt

Client
Program

Keyboard
Hdlr

Mouse
Hdlr

Timer
Hdlr

Mouse Cursor
Interface

mouse
event

timer
interrupt

Events

User Defined Events

Input Queue
Manager

button state, so I chose not to make joy-
stick support intrinsic to the design.

Using the Input
Queue Manager
Before digging into the nuts and bolts of
the input queue manager, I’ll present a
simple example of its use to give you a feel-
ing for the interface. This example exits
after the escape key is pressed. Pressing any
other key causes that key’s ASCII value to
be printed. Listing 1 contains the code for
the example.

You must include the header file,
inputq.h, at the top of all source files that
make use of the input queue manager.
This file defines the input queue manager’s
data structures and provides prototypes for
all its visible functions, the names of which
are prefaced with INPQ_.

The first call to the input queue man-
ager is INPQ_allocate(). This routine allo-
cates all required events and a correspond-
ing queue large enough to hold them. The
number of events to allocate is supplied as
an input parameter to the call.

Next, we enable key press events with
a call to INPQ_enable_keyboard(). This rou-
tine installs a keyboard interrupt handler
and tells it to notify us every time a key is
pressed.

At this point, every key pressed will
enqueue an event. These events will sit
patiently on the input queue until the
client program makes a call to
INPQ_dequeue().

INPQ_dequeue() is implemented like
the standard C library time() routine. If no
events are on the queue, NULL is returned. If
there is an event, a pointer to the event is
returned. If an event structure is passed
into INPQ_dequeue(), it will be used as the

repository for the event, and its pointer will
be the return value. Otherwise, an event
structure internal to the input queue man-
ager will be used. This structure is only
valid until the next call to INPQ_dequeue()
with a NULL event parameter.

When INPQ_dequeue() is called, the
next event matching the supplied event
mask, key_down in this case, will be
removed from the input queue and
returned to the client program.

In our example, if the event is valid, it
will be checked to determine if the key
pressed was the escape key. If it is, we
break out of the input gathering loop.
Otherwise, the ASCII value of the key is
printed.

Finally, INPQ_release() is called to
deallocate memory held by the input queue
manager and restore the vectors of all
interrupts that had been taken over. This
call is just a formality, though. Because the
execution of this routine is critical to the
continued operation of the machine after
the client program terminates, INPQ_allo-
cate() installs it as an exit handler. So,
while calling this routine is a good practice,
it’s not absolutely necessary.

This is all I’m going to say for
now about the visible interface to the
input queue manager. These functions,
along with the functions to enable the
mouse and timer handlers, make up the
crux of the interface. Table 1 contains a
list of all visible input queue manager
functions.

The Event Structure
Figure 2 is a graphical representation of
the event structure. Listing 2 shows the
actual type definitions. Each event is iden-
tified by its type field, which contains a

Fire keys, key

combinations, timed

key combinations...

What‘s a programmer

to do? Create a

single, high-perfor-

mance input

manager, that‘s

what!

Mike Michaels

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 23

unique binary value depending upon the
event in question. The values are assigned
from the EVENT_TYPE enumeration defined
in Listing 2.

Each event type has some unique
information assoicated with it. This infor-
mation is stored in the event’s data field.
The information returned by keyboard
events, for example, is the scan code of the
key that was pressed or released. The
information associated with some events
may not be complete without additional
context information. This information is
stored in the attributes field. Scan codes do
not take into account the state of the shift,
ctrl, and alt keys. These keys must be reg-
istered by the keyboard handler and their
state passed along in the attributes field of
the event.

Finally, each event contains a time-
stamp obtained from the CMOS clock at
the time the event is queued. The time-
stamp serves two purposes. First, it allows
the input queue manager to properly
order events internally (we’ll discuss this
in more detail in a subsequent section).
Second, it allows the client program to
determine the span between two or more
events, à la the fighting game example
mentioned previously.

Each of the event types and their cor-

responding data and attributes will be
discussed more thoroughly when we
are discussing specific event types. For
the time being, let’s move on to look at
the data structure on which the input
queue is based, the priority queue.

Priority Queue Concepts
The client program isn’t necessarily
going to process events as soon as
they are available, so some sort of
queue is required. A priority queue
data structure was chosen for a num-
ber of reasons.

The priority queue structure
allows events to be processed effi-
ciently, in order or according to event

type. Read “efficiently” as “in reasonable
time.” Pull out those data structures
books and dust them off: a priority queue
is a data structure that supports insertion
of new prioritized elements and deletion
of the element with the smallest (or
largest) priority.

The priority queue structure can be
implemented to require a fixed memory
overhead. In other words, all memory for
events and support structures can be preal-
located when the input queue manager is
initialized. This precludes the input queue
manager allocating and freeing memory as
events are processed, eliminating the risk
of the input queue manager causing mem-
ory fragmentation.

O R G A N I Z I N G U S E R I N P U T

24 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

#include <stdio.h>
#include “inputq.h”
int main (void)
{

EVENT event;
if (!INPQ_allocate (32) ||

!INPQ_enable_keyboard (key_down))
{

printf (“Unable to initialize \
input queue manager.\n”);

exit (1);
}

for (;;)
{

if (INPQ_dequeue (&event, key_down))
{

if (event.data.kbd.scancode ==
ky_ESC)

break;
printf (“%c\n”,

INPQ_ascii (&event));
}

}
INPQ_release ();

}

Listing 1. Input Queue Manager

Input Queue Control Functions
INPQ_allocate() Initializes the input queue manager.
INPQ_release() Cleans up after the input queue manager.
INPQ_enable_keyboard() Enable keyboard events.
INPQ_disable_keyboard() Disable keyboard events.
INPQ_enable_mouse() Enable mouse events.
INPQ_disable_mouse() Disable mouse events.
INPQ_enable_timer() Enable timer events.
INPQ_disable_timer() Disable timer events.
INPQ_enable_user() Enable user-defined events.
INPQ_disable_user() Disable user-defined events.
INPQ_events_enabled() Return enable events.

Queue Management Functions
INPQ_dequeue() Dequeue an event, based upon event type.
INPQ_enqueue() Enqueue an event, possibly user defined.

Keyboard Support Functions
INPQ_ascii() Translate a scan code to its ASCII equivalent.

Mouse Support Functions
INPQ_show_mouse() Show the mouse cursor.
INPQ_hide_mouse() Hide the mouse cursor.
INPQ_mouse.visible() Return true if the mouse is currently visible.
INPQ_obscure_mouse() Hide mouse cursor without affecting events.
INPQ_unobscure_mouse() Show mouse cursor without affecting events.
INPQ_set_graphics_cursor_shape() Set the mouse cursor shape.
INPQ_set_mouse_position() Reposition mouse to new coordinates.
INPQ_get_mouse_position() Return mouse’s current coordinates.
INPQ_push_mouse_regions() Prepare to define hotspots.
INPQ_define_mouse_region() Define a hotspot.
INPQ_pop_mouse_regions() Discard mouse regions.

Timer Support Functions
INPQ_set_alarm() Enable one of 16 countdown timer alarms.

Table 1. Input Queue Manager API

Our priority queue implementation
will be based upon a specific type of binary
tree data structure known as a heap. A
heap is a binary tree that satisfies the heap
condition: the priority of any given node is
less than or equal to the priorities of the
node’s children (if they exist). This condi-
tion can easily be encapsulated in an array
representation, as shown in Figure 3.

Assume that the values within the
nodes are the priorities. It is trivial to verify
that every node in this tree satisfies the
heap condition, and therefore this tree is a

heap. Now we can convert this tree repre-
sentation into an array representation by
simply starting at the root of the tree and
adding elements to the array in a top-to-
bottom, left-to-right, fashion (a breadth-
first traversal if you will).

Within the array, the children for any
node, say the node at position k, are locat-
ed at positions 2k and 2k+1. This in turn
implies that the parent of any node, say the
node at position j, can be found at position
(int)(j/2). For example, in Figure 2, the
children of the node located at position 3
are located at positions 2 * 3 = 6 and 2 * 3 +
1 = 7 respectively. Conversely, the parent

of the node located at position 7 is
(int)(7/2) = 3.

Given that we can find the parent
and children of any node regardless of its
location on the heap, how do we perform
insertion and deletion operations? Listing
3 contains the heap manager code, includ-
ing code to perform insertion (enqueue)
and deletion (dequeue) operations on the
heap.

To insert an element into a heap, we
see that the enqueue() function starts by
inserting the new element at the end of the
array. This corresponds to placing the new
element at the bottom of the heap. At this
point, we may not even have a heap any-
more, because the heap condition may be
violated at this terminal position. The rou-
tine reorder_heap() is called to fix any vio-
lations of the heap condition. It does this
by checking the priority of the newly
inserted event against the priority of its
parent. If the parent priority is larger, the
two events are swapped. This continues
until the new event can no longer be
swapped with its parent, resulting in a tree

that satisfies the heap condition.
Deleting an element from the queue

is just slightly more complicated. The
dequeue() operation first deallocates the
event to be deleted, returning it to the pool
of available events. Then, the event at the
last array index in the heap is inserted in
the position of the deleted event. Again,
we may no longer have a valid heap, since
the event we just inserted has an arbitrary
priority. The reorder_heap() routine is
again called to restore the heap to a valid
state.

This time though, reorder_heap()
must try and work the inserted event down

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 25

Figure 2. Event Structure

Timestamp

Data

Attributes Type

31 0

#include “basic_dt.h”
#include “scancode.h”

#define LAST_ALARM 15

typedef enum {
null_event = 0x0000,
key_down = 0x0001,
key_up = 0x0002,
mouse_down = 0x0004,
mouse_up = 0x0008,
mouse_move = 0x0010,
timer_alarm = 0x0020,
first_usr = 0x0040,
last_usr = 0x8000

} EVENT_MASK;

/*
** Attributes Structures
*/

typedef struct {
u16 k_extended : 1;
u16 k_shift : 1;
u16 k_ctrl : 1;
u16 k_alt : 1;
u16 k_unused : 12;

} KEYBOARD_ATTR;

typedef struct {
u16 m_region : 8;
u16 m_left : 1;
u16 m_right : : 1;
u16 m_center : 1;
u16 m_unused : 5;

} MOUSE_ATTR;

typedef union {
KEYBOARD_ATTR kbd;
MOUSE_ATTR mouse;
u16 value;

} INPQATTR;

/*
** Data Structures
*/

typedef struct {
u8 scancode;
u8 reserved1;
u16 reserved2;

} KEYBOARD_DATA;

typedef struct {
s16 x;
s16 y;

} MOUSE_DATA;

typedef struct {
u8 alarm;
u8 reserved1;
u16 reserved2;

} TIMER_DATA;

typedef union {
KEYBOARD_DATA kbd;
MOUSE_DATA mouse;
TIMER_DATA timer;
s32 value;

} INPQDATA;

/*
** Event structure
*/

typedef struct {
u32 timestamp;
u16 type;
INPQATTR attr;
INPQDATA data;

} EVENT;

Listing 2. Excerpts from INPUTQ.H

the heap until the heap condition is satis-
fied. It does this by checking the children
of the newly inserted event. If no children
exist, the heap condition is satisfied, and
the routine is done.

If children exist, the newly inserted
event’s priority is checked against the
largest of its children’s priorities. If the
newly inserted event’s priority is greater, it
and the larger child are swapped. This
continues until there are no more children
to check (at which point the event is at the
bottom level of the heap) or the event’s
priority is less than both of its children’s
priorities, satisfying the heap condition.

The final operation we want the pri-
ority queue to perform is a search for an
arbitrary element. The routines
locate_event() and find_event() work
together to perform a recursive binary
search of the heap based upon an event
type. I used a recursive search because it
was easy—I didn’t anticipate a burgeoning
heap and I was getting lazy. Needless to
say, a better implementation would use a
state variable and a loop to remove the
dangers associated with the recursion.

Both the insertion and deletion oper-
ations can be performed in time propor-
tional to O(ln N). The binary search oper-
ation, for an arbitrary value, can be per-
formed in time proportional to O(2ln N)
on average, with a worst case time propor-
tional to O(N).

To provide some basis for compari-
son, consider implementing the priority
queue with a standard, albeit modified,
queue structure. Insertion would require
nothing more than adding a new element
to the end of the queue (remember, we

want to delete items with the smallest pri-
orities). Assuming we keep a pointer to the
tail of the queue, this operation can be per-
formed in constant time (O(1)). Deleting
the element with the smallest priority is
also trivial: just remove the element at the
head of the list. Again, this is a constant
time operation. But if you want to find an
arbitrary element, searching the queue is
going to take time proportional to O(N)
on average.

The heap implementation takes
slightly longer to insert and delete ele-
ments, because it must maintain the

heap condition, but when searching for
arbitrary elements, it is significantly
faster on average than the standard
queue implementation.

The Event Pool
As I mentioned previously, INPQ_allocate()
and INPQ_release(), shown in Listing 4,
work together to allocate and free memory
for events and the input queue. Once allo-

cated, events are stored in a pool, which is
managed by the allocate_event() and deal-
locate_event() routines.

Allocate_event() is called from our
event handlers when input is received. If
there is an event to return, the CMOS
timer function, GetTickCount (also shown in
Table 2) is consulted and its current value
is stored in the timestamp field of the
event.

The timestamp value is important in
two ways. First and foremost, it is used to
order the input queue. The queue is
ordered from smallest timestamp (oldest

event) to largest timestamp (newest event).
All queued events have nonzero timestamp
values, so this field is also used as a free
indicator in the event pool. Any event with
a zero timestamp cannot possibly reside on
the input queue and is therefore available
for allocation.

Before it returns the address of the
new event to its caller, allocate_event()
enqueues the event. The only responsi-

O R G A N I Z I N G U S E R I N P U T

26 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 3. Conversion of a Heap Represented as a Tree into an Array

4

position

priority

1

7

2

10

3

30

4

9

5

20

6

50

7

21

84

10

20 50

7

30 9

21

Int 1AH Function 00H

Get Tick Count

Returns with the contents of the clock tick counter.
Call with:
AH = 00H

Returns:
AL = rolled-over flag

00H if midnight not passed since last read
<> 00H if midnight passed since last read

CX:DX = tick count (high 16 bits in CX)

Table 2. CMOS Get Tick Count Function

bility the caller has is to fill in the event
type, data, and attributes fields. Deallo-
cate_event() does little more than reset
the timestamp of the supplied event to
zero, freeing it for later use.

Taking Control
of the Keyboard
Now that we can allocate and deallocate
events, we’re ready to start talking about
populating the queue. The input queue
manager has three event handlers—one
each for the keyboard, the system timer,
and the mouse. The event handlers for the
keyboard and the system timer both grab
interrupt vectors and install interrupt ser-
vice routines to gain control of all input
from the given device. The mouse handler
is slightly different. It makes use of the
existing mouse device driver for its event
notification.

The final topic we’re going to discuss
is the keyboard event handler. We’ll cover
the timer and mouse event handlers in the
second part of this series.

The IBM PC keyboard communi-
cates with the PC BIOS via hardware
interrupt 09h. Whenever a key is pressed or
released, an interrupt 09h is generated and
in most cases, the scan code of the key
pressed can be read from the keyboard port
located at address 60h.

Certain keys generate extended scan
codes. A key that generates an extended
scan code requires the keyboard handler to
processes two or more interrupts for the
single key. On the first interrupt, the
extended scan code identifier, 0E0h, is read
from the keyboard port. The actual scan
code may be read from the keyboard port
on the next interrupt.

In most cases, extended scan codes
are used when there are multiple identical
keys on the keyboard. For example, the ctrl
key on the lefthand side of the keyboard
returns a standard scan code, and the one
on the right returns the same scan code
value, but as an extended scan code combi-
nation.

Some keys, such as print screen/sys-
tem request and pause/break, generate
multiple extended scan code sequences.
The simple keyboard handler we’re devel-
oping will not look for these, though this
will not really be a problem. Each subse-

quence is an extended scan
code sequence; a single key-
stroke generates multiple
events.

Our keyboard handler
will perform the following
functions:
• Obtain the scan code for

the keystroke (taking into
account the extended scan
code behavior)

• Acknowledge to the hard-
ware that the interrupt was
received and handled

• Track the current state of
the shift, ctrl, and alt keys
(the keyboard handler does
not differentiate between
left and right instances of
these keys)

• If appropriate, allocate an
event and fill in the current
attributes and scan code
values.

Keyboard Events
Figure 4 is a graphical repre-
sentation of a keyboard event.
The event type field will
either have bit 1 or bit 2 set to
indicate a key_down or key_up
event, respectively. The attrib-
utes field contains bit flags
indicating whether the event
was obtained as a result of an
extended scan code as well as
the state of the shift, ctrl, and
alt keys at the time that the
event was generated. Finally,
the data field contains the
actual scan code received.

You might ask why the
ASCII code for the key isn’t
stored in the event as well.
Originally, it was, and the
event handler was spending
most of its time doing the
scan code to ASCII value
translation. Because of the
overhead and because each
key is uniquely identified by its scan code, I
made an executive decision to perform the
ASCII translation outside the interrupt
and only at the request of the client pro-
gram. This method offers one more

advantage: if an ASCII value is never
requested (via a call to INPQ_ascii()), the
code to perform the translation (and the
substantial translation tables) never get
linked into the client program’s executable.

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 27

BOOLEAN INPQ_allocate (s16 n)
{

if (n <= 0)
n = DEFAULT_QUEUE_DEPTH;

pool = (EVENT *) calloc (n, sizeof (EVENT));
if (!pool)

return False;
pool_last = n - 1;
pool_first_free = 0;

queue = (EVENT **) calloc (n + 1, sizeof (EVENT **));
if (!queue)
{

free (pool);
pool = NULL;
return False;

}
queue_max = n;
queue_last = 0;

atexit (INPQ_release);
return True;

}

void INPQ_release (void)
{

INPQ_disable_keyboard (events_enabled);
INPQ_disable_mouse (events_enabled);
INPQ_disable_timer (events_enabled);

if (queue)
{

free (queue);
queue = NULL;

}
if (pool)
{

free (pool);
pool = NULL

}
}
BOOLEAN INPQ_enable_keyboard (EVENT_MASK keyboard_events)
{

keyboard_events &= (key_down | key_up);
if (keyboard_events)
{

initialize_keyboard ();
events_enabled |= keyboard_events;

}
return True;

}

void INPQ_disable_keyboard (EVENT_MASK keyboard_events)
{

keyboard_events &= (key_down | key_up);
events_enabled &= ~keyboard_events;
if (!(events_enabled & (key_down | key_up)))

release_keyboard ();
}

Listing 4. Excerpts from INPUTQ.C

The Keyboard Event Handler
Listing 5 contains the code for the key-
board event handler. The first two routines
are used to initialize and release the key-
board interrupt, respectively. The key-
board_events() routine, as the name
implies, gathers keyboard events and
returns them on the input queue.

The first thing that keyboard_events()
does is grab the byte from the keyboard
port and clear the interrupt controller:

scancode = inp (KEYBOARD_PORT);

outp (PIC_REGISTER,

NONSPECIFIC_EOI);

// acknowledge_interrupt

The interrupt controller must be
cleared because interrupt 09h is a hardware
interrupt. It is actually attached to a line on
the programmable interrupt controller
(PIC). Whenever the PIC generates an
interrupt, that interrupt is masked off until

the handler informs it that the interrupt
has been noticed. The interrupt is
acknowledged by outputting a value of
0x20 (nonspecific EOI) to the PIC control
port at address 0x20.

Originally, this operation was per-
formed at the end of the interrupt handler,
which I consider a much safer place for it.
But as soon as I had the debugger stop on
a breakpoint within the keyboard handler,
the machine would hang, and no further

keyboard input was possible. This was
because the PIC refused to allow any
more keyboard interrupts to occur until
it saw an EOI for the current interrupt.
But I couldn’t make the debugger con-
tinue to the point of the EOI until I
could use the keyboard again (a frustrat-
ing catch-22).

After the interrupt has been
acknowledged, the scan code is checked
against the extended scan code. If it
matches, we record the fact and exit the
handler, knowing that the next interrupt
we receive will contain the actual scan
code.

If the scan code isn’t the extended
scan code, the handler determines the
event type (key_down or key_up) and the
state of the special keys (shift, ctrl, and
alt). This is all the information we need
to generate an event. But we only gener-
ate an event if the current event type
matches one of the currently enabled
event types.

If the input queue manager is
enabled for the event that’s been
received, an event structure is allocated
with a call to allocate_event(), and the
keyboard attributes and data fields are
filled in. If the input queue is full (all
events have been allocated, but the user
hasn’t dequeued any at the time we want
to post an event), we increment the
lost_input variable. This variable isn’t
currently looked at anywhere, but I fig-
ured that eventually, it might be a useful
debugging aid.

Where We’re Going
That does it for now. We’ve covered the
basic input queue manager, the event
structures, and how keyboards events are
actually generated. Next time, we’ll dis-
cuss user-defined events, timer events,

O R G A N I Z I N G U S E R I N P U T

28 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

static void interrupt (*oldint9h)(void) = NULL;
static u16 static_attributes = 0;

BOOLEAN initialize_keyboard (void)
{

if (!oldint9h)
{

oldint9h = getvect (KBD_INT);
setvect (KBD_INT, keyboard_events);
return True;

}
return False;

}

void release_keyboard (void)
{

if (oldint9h)
{

setvect (KBD_INT, oldint9h);
oldint9h = NULL;

}
}

static void interrupt keyboard_events (void)
{

register u8 scancode;
u16 evt_mask = 0;

scancode = inp (KEYBOARD_PORT);
// acknowledge_interrupt
outp (PIC_REGISTER, NONSPECIFIC_EOI);

if (scancode == EXTENDED_SCAN_CODE)
{

static_attributes |= MOD_EXTENDED;
return;

}

// assume key down event, modify if we
// find out otherwise.
evt_mask |= key_down;
if (scancode & 0x80)

evt_mask <<= 1;

// clear key up flag in scancode
scancode &= 0x7F;

if (evt_mask & key_down)
{

// key press modifiers
switch (scancode) {

case ky_CTRL :

static_attributes |= MOD_CTRL;
break;

case ky_ALT :
static_attributes |= MOD_ALT;
break;

case ky_LEFT_SHIFT :
case ky_RIGHT_SHIFT :

static_attributes |=
MOD_SHIFT;

break;
default :

break;
}

}
else
{

// key release modifiers
switch (scancode) {

case ky_CTRL :
static_attributes &=

~MOD_CTRL;
break;

case ky_ALT :
static_attributes &= ~MOD_ALT;
break;

case ky_LEFT_SHIFT :
case ky_RIGHT_SHIFT :

static_attributes &=
~MOD_SHIFT;

break;
default :

break;
}

}

if (events_enabled & evt_mask)
{

EVENT *event = allocate_event ();

if (event)
{

event->event_mask = evt_mask;
event->data.value = scancode;
event->attributes.value =

static_attributes;
}
else

++lost_input;
}

static_attributes &= ~MOD_EXTENDED;
}

Listing 5. KBD.C

and mouse events. We’ll also go into the
mouse cursor interface, which will allow us
to self-draw the mouse cursor in any video
mode.

Because of space limitations inherent
in a magazine format, there is no way that
the entire source for the input queue man-
ager could be included with this article.
Further, most of the comments were
stripped out of the source that is included.
Therefore, I encourage you to download
the full source from the Game Developer ftp
site (ftp://ftp.mfi.com/pub/gamedev/
src) or on CompuServe SDFORUM’s
Game Developer library. If you don’t have
access to either of these resources, but you

do have an e-mail address, I’d be happy to
e-mail a uuencoded version of the sources
to you. Just send mail to inpq-
source@irvine.com with a subject line of
“inpq source.” ■

Mike Michaels is a senior software engi-
neer with Irvine Compiler Corp., a small
company that produces ADA compilers. Yes, he
realizes that Ada is dead. No, he doesn’t write
games in Ada. You can contact him via e-mail
at mike@irvine.com.

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 29

Figure 4. Keyboard Event Structure

Timestamp

31 0

ke
yd

ow
n

ke
yu

p

ex
te

nd
ed

sh
ift

ct
rl

al
t

Scan Code

Algorithms, Second Edition; Robert Sedgewick, Addison Wesley, 1988
This book provided a wealth of information when I was trying to remember how priority
queues worked—that data structures class was a long, long time ago!

PC Game Programmers Encyclopedia v. 1.0a; Mark Feldman, et. al. 1994
The PCGPE—is a collection of text files and a viewer program—can be located at
ftp://x2ftp.oulu.fi:/pub/msdos/programming/gpe/. The viewer and some of the text files
were written by Feldman. Other files were garnered from sources throughout the Internet.
Topics range from basic tutorials on assembly language to algorithmic explanations of
texture mapping. I found this to be an indespensible guide when it came time to write the
keyboard and timer interrupt handlers.

Advanced MS-DOS Programming, Second Edition; Ray Duncan, Microsoft Press, 1988
This volume’s reference section lists all the BIOS and MS-DOS interrupt functions you are
likely to need. While the text glosses over mouse programming, the reference guide lists
all the mouse driver functions.

Microsoft Macro Assembler Reference v. 6.0; Microsoft Corp.
I used this volume to create the scan code to ASCII translation tables used by the
INPQ_ascii() routine.

R E F E R E N C E S

XSplat: A Foundation
for Cross-Platform
Development

X S P L A T

T
he UC Theatre in Berkeley,
Calif. plays kung fu double fea-
tures every Thursday. Recently, I
had the pleasure of catching
Twin Dragons, in which Jackie
Chan plays twin brothers acci-
dentally separated at birth in
Hong Kong. One moves to the

U.S. with his wealthy parents, studies at
posh New York private schools, and
grows up to be an acclaimed piano player
with very refined tastes. The other is
found by a prostitute and grows up on
the streets of Hong Kong to become an
expert fighter. Neither brother knows of
the other’s existence.

Eventually, of course, the brothers
meet. They become fast friends and learn
to take advantage of their identical
appearances for maximum comic effect.
The kung fu master receives a standing

ovation for his passionate performance as
conductor of a major orchestra, and the
musician brother helps to defeat the
forces of a major organized crime boss.
All the while, Jackie Chan pulls off plen-
ty of the insane gymnastic stunts that
make his movies so painfully enjoyable.

The “twins separated at birth” plot
is awfully predictable. Every few years we
see a new interpretation. I’m quite sure
you’ve caught a few choice scenes from
the 90s courtroom remake, Apple vs.
Microsoft.

Separated at Birth
I would gladly bet that for the last several
years, Microsoft and Apple have
employed more lawyers, clerks, judges,
witnesses, paralegals, stenographers, and
pizza makers while arguing over their
claims and counterclaims than there are

30 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 1. The XSplat generic game architecture

CXSplatWindow

COffscreenBuffer

Macintosh
WaitNextEvent

Event Handlers

Win32Handle Input

Simulate Render

Generic Game Loop

PeekMessage

XSplatWindowProc

middle managers at IBM. The Battle of
the Operating Systems rages between the
twin children of Xerox PARC as they
struggle over the look and feel of modern
GUI computing.

As the distance between Apple and
Microsoft shrinks, each begins to exert a
strange influence on the other. Windows
95 introduces an integrated desktop
metaphor, complete with a drag-and-
drop recycling bin, plug-and-play, long
filenames, and shortcuts to programs and
documents. In Copland (MacOS 96?),
Apple promises a true kernel-based oper-
ating system with a device driver layer,
protected memory, and user interface ele-
ments such as the ability to minimize
windows or gather them in “trays” at the
bottom of the screen.

All this belies the secret truth it’s
taken hundreds of lawyers to obscure:
Windows and the Macintosh operating
system are identical twins, born of the
same womb and separated at birth.
QuickTime, meet Video for Windows.
QuickDraw, GDI. OpenDoc, OLE.
Component, DLL. PPC, DDE. What’s
the ultimate difference? As programmers,
we can create a single lollipop that will
make both twin babies happy.

I’m being naive on purpose to make
a point: games generally bypass a large
portion of the operating system in favor
of algorithms specific to their application.
Show me a system capable of displaying
256-color palletized images and handling
user input via a mouse and keyboard, and
I’ll show you an ideal platform for today’s
games and most of tomorrow’s. Tack on a
rich set of standard system services such
as event management, a 32-bit flat mem-
ory model, a heap manager, and a file I/O

system, throw in a 98% combined market
share, and almost any game programmer
will be in heaven.

In this five-part series, I’ll explore
and develop a simple, reusable, platform-
independent, GUI-based game library
for the Macintosh and Windows that
gives us something close to this ideal sys-
tem. For historical reasons, I’ve chosen to
call this small library XSplat.

This is actually the second article of
the series, which I began with “A C++
Class for Cross-Platform Double
Buffered Graphics” (June/July 1995).
Subsequent articles will continue to build
on each other until we have created a
full-fledged playable game whose core
code has been written for XSplat and
compiles for Macintosh and Windows
with no additional effort. The game
won’t be a cutting-edge mega-technolog-
ical hit, but it will be a full-featured one
that (I have high hopes) will be fun and
playable.

Developing a complete cross-plat-
form game library involves a lot of code.
Generally, there will be more code asso-
ciated with these articles than we can
print here, but you’ll find complete
source code and compiled executables on
the Game Developer ftp site,
ftp://ftp.mfi.com/pub/gamedev/src/, in
the /xsplat directory. All code will com-
pile on the Macintosh using Metrowerks
C/C++ and on Windows using Microsoft
Visual C++ v. 2.1.

The System Speaks
The most significant feature of any stan-
dard Windows/Mac application is a loop
that waits for the operating system to
percolate events up from the user. When

With operating

systems becoming

increasingly similar,

complete cross-plat-

form development is

essential. In the first

of a five-part series,

Jon Blossom lays the

groundwork with a

library called XSPLAT.

Jon Blossom

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 31

the loop sees a message it cares about, it
calls out to some other set of functions to
process the event, then returns its ear to
the queue and continues until the user
exits the application. Pretty basic stuff.

All we have to do is plug in to the appro-
priate queue.

On both systems, windows provide
the atomic units of graphical applications,
so most messages are tied to individual

windows as the user performs actions on
them. The application just creates a win-
dow, calls on the system to process events,
handles game logic, and renders until the
program terminates. Our goal today is to
encapsulate all this in a platform-inde-
pendent game loop that looks like this:

void XSplatMain(void)

{

// Create a 320x240 window with the

title “XSplat Window”

CXSplatWindow *pWindow = new

CXSplatWindow(“XSplatWindow”, 320,

240);

if (pWindow)

{

while (GameIsRunning)

{

DispatchEvents();

DoGameLogic();

Render();

}

// Get rid of the window for good

delete pWindow;

}

}

All the logic of the user interface
takes place in the CXSplatWindow object.
DispatchEvents translates messages from
the system into CXSplatWindow methods,
DoGameLogic controls the actual flow of the
non-event-based portions of the game, if
any, and Render displays the current game
state on the screen. Figure 1 shows this
platform-independent architecture.

Event notification differs signifi-
cantly between the Macintosh and Win-
dows systems. The Macintosh pours all
its messages through one pipe, requiring
that the application filter and distribute
messages at the receiving end of the pipe.
In Windows, the message filter sits at the
sending end of the pipe, and the system
eases the burden by passing messages out
to individual windows instead of to the
controlling application.

Big deal. CXSplatWindow provides an
adapter that plugs onto either end and
redirects messages however we want
them. This funnel adapter can even han-
dle many system messages itself, passing

X S P L A T

32 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

class CXSplatWindow
{
public:

CXSplatWindow(char const *Caption, int WindowWidth=0,
int WindowHeight=0, unsigned char const *Colors = 0);

~CXSplatWindow(void);

void Activate(void);
void Deactivate(void);
void Terminate(void);

void KeyDown(char Key, int RepeatCount);

void MouseDown(int x, int y);
void MouseUp(int x, int y);
void MouseMove(int x, int y);

COffscreenBuffer *GetOffscreenBuffer(void)
{ return pOffscreenBuffer; };

protected:
int IsActiveFlag;
int MouseDownFlag;
COffscreenBuffer *pOffscreenBuffer;

#if defined(_WINDOWS)
// Windows implementation details

HPALETTE Palette;
HWND Window;

friend LONG PASCAL XSplatWindowProc(HWND, UINT, WPARAM, LPARAM);

#elif defined(_MACINTOSH)
// Macintosh implementation details

WindowPtr Window;
PaletteHandle WinPalette;

friend void HandleMouseDown(EventRecord *pEvent);

#endif
};

// This is the XSplat message processing system
void DispatchEvents(void);

// This is the XSplat main function, called from WinMain or
// from main after platform-specific setup
void XSplatMain(void);

Listing 1. XSplat Windowing and Messaging System Declaration

along only a
handful of
i m p o r t a n t
events such as
keyboard and
mouse input.

Listing 1
shows a decla-
ration of a min-
imal CXSplatWin-
dow interface,
whose member

functions you may want to virtualize. I’ve
combined Macintosh and 32-bit Win-
dows declarations using the preprocessor
symbols _WINDOWS and _MACINTOSH, defined
elsewhere. There’s also a friend called
XSplatWindowProc required by the Win32
CXSplatWindow implementation, for reasons
I’ll describe shortly.

Constructing Windows
A CXSplatWindow is more than just a mes-
sage filter. It’s the atomic unit of the

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 33

// This will be used as the window class name for CXSplatWindows
static char XSplatWindowClassName[] = “XSPLAT”;

// This will be the window style of all new created CXSplatWindows
// For now, don’t allow the window to be resized
static const DWORD XSplatWindowStyle =

WS_OVERLAPPEDWINDOW & ~WS_THICKFRAME;

CXSplatWindow::CXSplatWindow(const char *Caption, int WindowWidth,
int WindowHeight, unsigned char const *Colors) :
Palette(0), Window(0), pOffscreenBuffer(0),
IsActiveFlag(0), MouseDownFlag(0)

{
extern HINSTANCE ghInstance;
assert(ghInstance);

// Register the XSplatWindow class if it isn’t already registered
int Success = 1;
WNDCLASS ClassInfo;
if (!GetClassInfo(ghInstance, XSplatWindowClassName, &ClassInfo))
{

ClassInfo.hCursor = LoadCursor(0, IDC_ARROW);
ClassInfo.hIcon = LoadIcon(ghInstance, IDI_APPLICATION);
ClassInfo.lpszMenuName = 0;
ClassInfo.lpszClassName = XSplatWindowClassName;
ClassInfo.hbrBackground = HBRUSH(GetStockObject(WHITE_BRUSH));
ClassInfo.hInstance = ghInstance;
ClassInfo.style = CS_VREDRAW | CS_HREDRAW | CS_OWNDC;
ClassInfo.lpfnWndProc = WNDPROC(XSplatWindowProc);
ClassInfo.cbWndExtra = 0;
ClassInfo.cbClsExtra = 0;

Success = RegisterClass(&ClassInfo);
}

if (Success)
{

// Determine screen dimensions
int ScreenWidth = GetSystemMetrics(SM_CXSCREEN);
int ScreenHeight = GetSystemMetrics(SM_CYSCREEN);

// Given a zero or negative dimension, fill the screen
if (WindowWidth <= 0)

WindowWidth = ScreenWidth;
if (WindowHeight <= 0)

WindowHeight = ScreenHeight;

// Determine the window size for the requested client area
RECT WindowRect = { 0, 0, WindowWidth, WindowHeight };
AdjustWindowRect(&WindowRect, XSplatWindowStyle, 0);

// Make sure it’s not larger than the screen
int WindowWidth = WindowRect.right - WindowRect.left;
if (WindowWidth > ScreenWidth) WindowWidth = ScreenWidth;

int WindowHeight = WindowRect.bottom - WindowRect.top;
if (WindowHeight > ScreenHeight) WindowHeight = ScreenHeight;

// Create the window centered on the screen
int Left = (ScreenWidth - WindowWidth) / 2;
int Top = (ScreenHeight - WindowHeight) / 2;

Window = CreateWindow(XSplatWindowClassName, Caption,
XSplatWindowStyle, Left, Top, WindowWidth, WindowHeight,
0, 0, ghInstance, 0);

if (Window)
{

// Store a pointer back to this object in GWL_USERDATA

SetWindowLong(Window, GWL_USERDATA, (long)this);

// TODO: Set up the palette from the given Colors
// TODO: We’ll do this in a later article...
// For now, create a gray wash
struct
{

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} LogPalette =
{

0x300, // Palette version
256 // Number of colors

};

for (int i=0; i<256; ++i)
{

LogPalette.aEntries[i].peRed =
LogPalette.aEntries[i].peGreen =
LogPalette.aEntries[i].peBlue = i;

LogPalette.aEntries[i].peFlags = 0;
}
Palette = CreatePalette((LOGPALETTE *)&LogPalette);

// Initialize the Window’s DC as necessary
// Since it’s a CS_OWNDC, these settings will last
// forever
HDC hdc = GetDC(Window);
if (hdc)
{

SetMapMode(hdc, MM_TEXT);
SelectPalette(hdc, Palette, FALSE);
RealizePalette(hdc);

// This isn’t really necessary, but...
ReleaseDC(Window, hdc);

}

// All ready to go, show the window
ShowWindow(Window, SW_NORMAL);

// Set up the offscreen environment. Note that because
// of the way COffscreenBuffer was originally defined,
// the window must be visible and active
assert(GetActiveWindow() == Window);
pOffscreenBuffer = new COffscreenBuffer;

}
}

}

Listing 2. CXSplatWindow Constructor for Win32

XSplat interface, the atomic unit of
either target system. It’s a visible,
interactive piece of the user interface.

The CXSplatWindow constructor
creates a window using platform-
specific system functions. We pass
along a title, an optional height and
width, and an optional array of 768
bytes describing 256 RGB triplets
(XSplat assumes an 8-bit palletized
display, and we’ll deal with palettes
in a future article). If height or width
is omitted, zero, or negative, the
constructor creates a window that
fills the screen in the omitted dimen-
sion. No value or a null pointer for
ColorArray tells the constructor to use
a default gray wash for the window.

So the command:

CXSplatWindow *pWindow = new

CXSplatWindow(“Testing”);

will create a full-screen window
with a gray wash and the title “Test-
ing.”

We’l l want the window to
display an image of our own cre-
ation, so we’ll create a COffscreen-
Buffer for every CXSplatWindow
using the code introduced in my
last article (to access this code, go
to the Game Developer ftp site at
ftp://ftp.mfi.com/gdmag/src.).

The CXSplatWindow constructors
are very simple and hide the nuances
of each platform from XSplat appli-
cations. Listing 2 shows the 32-bit
Windows version, and Listing 3
shows the Macintosh version. Let’s
take a look at what’s going on in
each.

In Windows, every window
requires an associated window class,
and every window class requires an
associated window procedure. Before
creating a window, the constructor
makes sure the window class XSPLAT
has been registered for a window
based on the XSplatWindowProc proce-
dure. This requires an instance han-
dle, provided through a global ghIn-
stance handle that we set up in Win-
Main. We’ll take a look at XSplatWin-
dowProc, a target for the Windows

messaging mechanism, a little later.
The XSPLAT window class uses the

CS_OWNDC style; changes to the window’s
device context will remain across
GetDC/ReleaseDC calls. On Windows 3.1
(and on Win32s), CS_OWNDC windows eat
up precious system resources, but it’s well
worth it for this type of application. On
Windows NT and Windows 95, there’s
not really anything to worry about.

Once it has a window to work with,
the Windows constructor creates a gray
wash palette using a fake LOGPALETTE
structure on the stack, initializes the win-
dow’s device context, and creates an asso-
ciated COffscreenBuffer. When the win-
dow is ready, it’s revealed to the user.

The Macintosh CXSplatWindow con-
structor does almost exactly the same
thing. It creates a window with the given
dimensions using the system call NewCWin-
dow, creates a gray wash palette associated
with the window, initializes the drawing
system for the window, and attaches a
COffscreenBuffer object.

The CXSplatWindow object holds a
system-specific reference to the associat-
ed system-specific window (HWND on
Windows and WindowPtr on Macintosh).
However, the message dispatching func-
tions need to associate a CXSplatWindow
object with a system-specific window. To
do this, we’ll take advantage of functions
on both platforms that attach 32 bits of
application-specific data to any window.
On Windows, the API to do this is
SetWindowLong. Its Macintosh twin is
SetWRefCon. XSplat uses these 32 bits to

X S P L A T

34 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

CXSplatWindow::CXSplatWindow(const char *Caption,
int WindowWidth,

int WindowHeight, unsigned char const *Colors) :
WinPalette(0), Window(0), pOffscreenBuffer(0),
IsActiveFlag(0), MouseDownFlag(0)

{
// Determine the screen size
int ScreenWidth = qd.screenBits.bounds.right -

qd.screenBits.bounds.left;
int ScreenHeight = qd.screenBits.bounds.bottom -

qd.screenBits.bounds.top;

// Given a zero or negative dimension, fill the
// screen
if (WindowWidth <= 0)

WindowWidth = ScreenWidth;
if (WindowHeight <= 0)

WindowHeight = ScreenHeight;

// Create the window centered on the screen
int Left = (ScreenWidth - WindowWidth) / 2;
int Top = (ScreenHeight - WindowHeight) / 2;

Rect WindowRect = {Top, Left,
Top + WindowHeight, Left + WindowWidth};

// Convert the caption to a pascal string
// TODO: This doesn’t do well with non-ASCII
// character sets...
char unsigned PascalCaption[256];
strcpy((char *)&PascalCaption[1], Caption);
PascalCaption[0] = (char unsigned)strlen(Cap-

tion);

// Create a new color document window with these
// dimensions
Window = NewCWindow(0, &WindowRect, PascalCap
tion, TRUE, noGrowDocProc, WindowPtr(-1),
TRUE, 0);

if (Window)
{

// Store a pointer back to the window
SetWRefCon(Window, (long)this);

// TODO: Set up the palette from the given
// Colors
// TODO: We’ll do this in a later article...
// For now, create a gray wash
// Create a palette for the window and make
// sure it will give a 1:1 color mapping
// with pmExplicit | pmAnimated.
WinPalette = NewPalette(256, 0, pmExplicit |

pmAnimated, 0);
if (WinPalette)
{

for (int i=0; i<256; ++i)
{

RGBColor rgb;
rgb.red = i << 8;
rgb.green = rgb.red;
rgb.blue = rgb.red;

SetEntryColor(WinPalette, i, &rgb);
}
SetEntryUsage(WinPalette, 0, pmExplicit

| pmAnimated, 0);
SetEntryUsage(WinPalette, 255, pmExplic-

it | pmAnimated, 0);
SetPalette(Window, WinPalette, FALSE);

}

// Initialize the Window
SetPort(Window);
ForeColor(blackColor);
BackColor(whiteColor);
PenNormal();

// Set up the offscreen
// environment. Note that because
// of the way COffscreenBuffer was
// originally defined, the window
// must be visible and active
pOffscreenBuffer = new COffscreen-

Buffer;
}

}

Listing 3. CXSplat Window Constructor for Macintosh

store a pointer back to a CXSplatWindow
object, used by DispatchEvents to reroute
system-specific messages to more general
CXSplatWindow controllers.

Two other member variables, IsAc-
tiveFlag and MouseDownFlag need some
examination. These variables (I’ve made
them individual integers for simplicity)
will store information received as a result
of MouseDown/MouseUp and Activate/Deacti-
vate events. There’s a lot more to cover
before we can address those functions,
though. Specifically, we need a message
switchboard to translate system events
into calls to CXSplatWindow objects.

Passing Messages
The XSplat function DispatchEvents han-
dles the polling and processing of system
messages. To build a single-window
application, just create a CXSplatWindow
object, and DispatchEvents will do the rest.

On Windows, DispatchEvents per-
forms a standard PeekMessage/Trans-
lateMessage/DispatchMessage dance. The
real event filtering occurs in the
XSplatWindowProc procedure, the recipient
of all messages dispatched to XSPLAT win-
dows this way. When a message of inter-
est enters XSplatWindowProc, the procedure
passes it on to the CXSplatWindow object
associated with the target window.
Unless some evil application has mucked
with the window’s instance data, we can
be sure of finding a valid pointer to the
CXSplatWindow object using GetWindowLong.

On the Macintosh, DispatchEvents
calls WaitNextEvent to look for events. As
long as it finds events in the queue, it
either handles these according to some
default behavior or passes them on to the
appropriate CXSplatWindow, retrieved
through a GetWRefCon call. This is exactly
the same process as DispatchEvents under
Windows, without the XSplatWindowProc
step in the middle.

The Macintosh XSplat switchboard
has to be smarter than its Windows
counterpart because the operating system
doesn’t always associate events with win-
dows. In particular, there’s no real sup-
port for the promised mouse movement
events. WaitNextEvent can tell you when
the mouse leaves a given region, but we
want to know whenever and wherever the

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 35

// Windows DispatchEvents is very minimal. It just forces the
// system to pass events on to XSplatWindowProc
void DispatchEvents(void)
{

MSG Message;

while (PeekMessage(&Message, 0, 0, 0, PM_REMOVE))
{

TranslateMessage(&Message);
DispatchMessage(&Message);

}
}
LONG PASCAL XSplatWindowProc(HWND Window, UINT Message, WPARAM wParam,

LPARAM lParam)
{

// You don’t really need the pXSplatWindow to process all
// messages — most just go through DefWindowProc anyway. If you’re
// concerned, move this into the messages that really care.
CXSplatWindow *pXSplatWindow =

(CXSplatWindow *)GetWindowLong(Window, GWL_USERDATA);

switch(Message)
{

case WM_ACTIVATE:
// Re-realize the palette on activate
if (pXSplatWindow)
{

HDC hdc = GetDC(Window);
SelectPalette(hdc, pXSplatWindow->Palette, FALSE);
ReleaseDC(Window, hdc);

// Let the CXSplatWindow know that it’s becoming active
if (LOWORD(wParam) != WA_INACTIVE)

pXSplatWindow->Activate();
else

pXSplatWindow->Deactivate();
}
break;

case WM_CHAR:
pXSplatWindow->KeyDown((char)wParam, LOWORD(lParam));
break;

case WM_CLOSE:
case WM_DESTROY:

if (pXSplatWindow)
{

// Avoid a bad delete/WM_DESTROY loop
// Reset the pointer back here to avoid confusion
pXSplatWindow->Window = 0;

}
GameRunningFlag = 0;
break;

case WM_LBUTTONDOWN:
SetCapture(Window);
if (pXSplatWindow)

pXSplatWindow->MouseDown(LOWORD(lParam), HIWORD(lParam));
break;

case WM_LBUTTONUP:
ReleaseCapture();
if (pXSplatWindow)

pXSplatWindow->MouseUp(LOWORD(lParam), HIWORD(lParam));
break;

case WM_MOUSEMOVE:
if (pXSplatWindow)

pXSplatWindow->MouseMove(LOWORD(lParam), HIWORD(lParam));

Listing 4. Some of the Win Dispatch Architecture (Con’t. on p. 36)

mouse changes position anywhere on the
screen, relative to the origin of the win-
dow’s content region. So every time it
goes through the loop, DispatchEvents
checks the current mouse position and
passes it through to the appropriate CXS-
platWindow if it has changed.

But how do we decide on an
“appropriate window?” In Windows, we
can capture the mouse using SetCapture
after a mouse down event so that all

subsequent mouse events go to that win-
dow, then release the capture when the
button comes up. Because the Macin-
tosh version generates its own mouse
events, it also must keep its own capture
information.

When a mouse down event occurs
in the content region of a window, Han-
dleMouseDown stores a pointer to the CXS-
platWindow receiving the event. Dis-
patchEvents passes subsequent mouse

events to that CXSplatWindow, resetting the
capture pointer on the next mouse up
event. If there’s no window receiving the
capture, DispatchEvents will pass the
events on to the CXSplatWindow associated
with the front window.

On both platforms, DispatchEvents
provides default behaviors for application
activation and deactivation, window
dragging and resizing, and basic system
events. It also handles window updates
by copying the COffscreenBuffer to the
screen through standard methods. All the
application has to deal with are the
aspects that make it unique: responding
to the mouse, pausing the game on deac-
tivation, and constructing the off-screen
image.

Unfortunately, there’s not enough
space here to print or describe the two
systems in their entirety. To give you the
general feel for what’s going on, Listings
3 and 4 show important pieces of the
XSplat event management functions for
both platforms. Events coming through
system-specific channels such as WM_LBUT-
TONDOWN or mouseDown notifications are
turned into calls to CXSplatWindow objects,
which don’t have to worry about the
source of the message. Again, complete
source code is available on ftp.mfi.com.

A Complete Application
Let’s create a complete application using
the XSplat system so far, just to prove
that it can actually be done. Since all the
messaging, window creation, and double
buffering has been set up, we only have
to implement XSplatMain, Windows Win-
Main, and Macintosh main, then we need to
implement a CXSplatWindow object.

We need a simple application that’s
going to use the architecture so far. How
about a rudimentary paint program? This
application will present a small (320-by-
240) window filled with the colors of the
palette (a gray wash, for now). As you
click the mouse button and drag the cur-
sor across the window, the application
will invert the pixels it touches, and you’ll
be able to draw simple pictures.

First, we’ll need an XSplatMain that
sets up a CXSplatWindow and fills it with a
cycle of palette colors before entering a
standard message processing loop.

X S P L A T

36 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

break;

case WM_PAINT:
// Since we’ve always got a complete picture of the game around
// in the offscreen buffer, default paint handling poses no
// problem: copy the offscreen buffer, if any, to the screen

PAINTSTRUCT Paint;
HDC hdc;
hdc = BeginPaint(Window, &Paint);

if (pXSplatWindow)
{

COffscreenBuffer *pOffscreen =
pXSplatWindow->pOffscreenBuffer;

if (pOffscreen)
{

// Lock and Unlock are no-ops on Windows, but include
// them for good measure.
pOffscreen->Lock();
pOffscreen->SwapBuffer();
pOffscreen->Unlock();

}
}

EndPaint(Window, &Paint);
break;

case WM_PALETTECHANGED:
// Ignore palette changed messages for this window
if ((HWND)wParam == Window)

break;

// For others, re-realize palette
case WM_QUERYNEWPALETTE:

if (pXSplatWindow)
{

HDC hdc = GetDC(Window);

SelectPalette(hdc, pXSplatWindow->Palette, FALSE);
BOOL Redraw = RealizePalette(hdc);
ReleaseDC(Window, hdc);

if (Redraw)
InvalidateRect(Window, 0, FALSE);

return Redraw;
}
break;

}

return DefWindowProc(Window, Message, wParam, lParam);
}

Listing 4. Some of the Win Dispatch Architecture (Con’t. from p. 35)

Second, we’ll need a CXSplatWin-
dow::MouseMove that flips pixels in response
to mouse movement whenever the mouse
button is down and the window is active.
The other CXSplatWindow functions set
mouse down and window activation flags.
To keep things easy to implement, we’ll
swap in the whole buffer whenever a pixel
changes. In a real situation, this would be
ridiculous, but for now all we have is
COffscreen::SwapBuffer, which is good
enough for this little test.

Listing 5 shows the implementation
of the platform-independent application.

See You Real Soon
So far, we have a completely functional
(though very simple) drawing application
that runs on several platforms. The code
to implement the specific behavior of the
application used XSplat interfaces to
avoid platform dependencies, and as the
XSplat messaging, windowing, and dou-
ble-buffering system grows beneath us,
we’ll be able to write more complex
games that should only rarely have to
know what kind of computer they’re run-
ning on.

In the next article in this series, we’ll
address palettes and the color zero prob-
lem, take a look at some of the flaws in
the design so far, and move on with the
design and implementation of a real
XSplat demo game. See you then! ■

After revealing his employer at the end
of his last article, Jon Blossom left himself
wide open to an onslaught of vicious head-
hunters and had to fight them off with a
bamboo cane. You can reach him via e-mail
at blossom@mobius.net or through Game
Developer magazine.

X S P L A T

38 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

// GameRunningFlag is reset by the event handling system when
// the user quits the game.
int GameRunningFlag = 1;

void XSplatMain(void)
{

// Create a 320x240 window with no specific colors
CXSplatWindow *pWindow =

new CXSplatWindow(“XSplat Test Application”, 320, 240);

if (pWindow)
{

// Fill the buffer with the palette in horizontal lines
COffscreenBuffer *pBuffer = pWindow->GetOffscreenBuffer();
if (pBuffer)
{

pBuffer->Lock();
char unsigned *pBits = pBuffer->GetBits();
for (int y=0; y<pBuffer->GetHeight(); ++y)
{

memset((void *)pBits, y % 256, pBuffer->GetWidth());
pBits += pBuffer->GetStride();

}
pBuffer->Unlock();

}

// Loop until termination
while (GameRunningFlag)
{

DispatchEvents();
}

delete pWindow;
}

}

// Here’s where the work is done: any time the mouse moves
// within the buffered area while the window is active, invert a
// pixel and redraw the window.
// Of course, swapping in the whole buffer in response to one
// pixel change is ridiculous, but hey, this is only a test.

void CXSplatWindow::Activate(void)
{

IsActiveFlag = 1;
}

void CXSplatWindow::Deactivate(void)
{

IsActiveFlag = 0;
}

void CXSplatWindow::MouseDown(int x, iny)
{

MouseDownFlag = 1;
}

void CXSplatWindow::MouseUp(int x, int y)
{

MouseDownFlag = 0;
}

void CXSplatWindow::MouseMove(int x, int y)
{

if (IsActiveFlag && MouseDownFlag &&
x >= 0 && y >= 0 &&
x < pOffscreenBuffer->GetWidth() &&
y < pOffscreenBuffer->GetHeight())

{

pOffscreenBuffer->Lock();

char unsigned *pPixel = pOff-
screenBuffer->GetBits() +

pOffscreenBuffer->GetStride()
* y + x;

*pPixel = ~(*pPixel);

pOffscreenBuffer->SwapBuffer();
pOffscreenBuffer->Unlock();

}
}

Listing 5. A Very Simple Drawing Application Using XSplat

The
Mode X-Files

T H E M O D E X - F I L E S

A
pril 1, 1995, is a day I’ll remem-
ber as long as I live. I was up in
the gold country of California
for a nice drive. It wasn’t the Sil-
icon Valley, so it suited me all
the better. I pulled into an out-
of-the-way filling station to top
off my tank—enough to make it

back to the freeway. It was getting dark,
and the last thing I wanted to do was to
run out of gas on a lonely back road.

The station attendant, old and sim-
ple, spoke only in binary, answering each
question with “Yep” and “Nope.” I handed
him my 15 bucks for the lousy seven gal-
lons of gas. That’s when it all happened.
An old topless Chevy Blazer skidded onto
the crumbling asphalt, almost rear-ending
my car. Three young men leaped out of the
truck. Their faces were stone white like
they had seen a ghost. One of them
yanked the passenger side door open,
almost pulling the muddy door off its
hinges. A young woman lifelessly fell out
of the seat. She was alive but limp, her eyes
were open and focused on nothing.

I raced over to lend a hand. “What
happened here gentlemen?” I asked as I
cushioned her head with my rolled up
jacket.

“We’ve seen it...,” the driver spoke
frantically.

“Seen what?” I asked. There was no
answer. The young men stared at each
other, looking for a reason to break some
unknown secret.

Something was strange about these
fellows. I walked around their vehicle,
but saw nothing out of the ordinary.
There were four yellow helmets in the
back with California Dept. of Forestry
insignias on them. The back of the truck

held chain saws and shovels. A fresh
dent was in the side of the truck. I
looked through the driver’s open door
and saw a laptop plugged into the AC
outlet of a cigerette lighter. I looked up
at one of the young men. His fearful eyes
met mine, and he looked back at the lap-
top. I could tell by the frightened look
on his face that this was the key to what-
ever happened in the woods.

He watched me as I pulled the com-
pass off the dashboard of the Blazer and
held it over the computer. It spun wildly
with no sense of direction to the magnetic
North Pole. Amazing, I thought to myself.
This can’t be happening, but it is. These
were young people, who but just an hour
ago, believed their young selves to be
immortal. But something changed us all
that night. Something I never believed to
be true. I was bearing witness to people
who had actually had a mode X encounter
of the first kind.

When I got back that night to my
house. I immediately searched the internet
for information regarding mode X. There
was hardly any solid information—nothing
to attribute to what I saw the previous
night. There were documents of others
who had witnessed mode X and a listing of
talk shows like Montel Williams and Don-
ahue with upcoming episodes featuring
mode X encounters.

But what interested me the most
were the references to a certain man—
Michael Abrash—supposedly hired to
reverse engineer this alien technology.
Abrash had published several articles about
it in credible journals. These allegedly con-
tained detailed accounts of programming
mode X. In some cases, there were refer-
ences to using mode X to go beyond two

40 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

dimensions at an unearthly speed.
After more exhausting searches, again

all pointing to Michael Abrash, I decided
to rip apart his code and get answers for
myself. My quest was clear: define the fun-
damentals of mode X to use in my graph-
ics library. So I set forth on my metaphysi-
cal pilgrimage, a man, his computer, a
bible on graphics, a notebook, a pencil, a
scientific calculator, and some Cheetos.

The following is the result of my out-
of-assembly-language experience—every-
thing I witnessed, touched, sensed, and
discovered in the couple of weeks that I
locked myself in my study, unshaven but
not fasting. I wish to clarify that I was a
digital religious zealot and not a fanatic.
When I finally cracked open my door and
emerged with the answers, my nostrils
flared as fresh air from the hall rushed into
the cluttered room. What I discovered
during this time alone is carefully docu-
mented. Some of you out there may not
believe what I have seen. But I don’t care.
It’s true. And it really happened to me.

Without further ado, I present an
accurate account of information, unedited,
as it happened, of the strange goings on
and alien technology used in setting mode
X. Oddly, this information is in no way
documented by physicist Bob Lazar and in
no way relates to accounts of extraterrestri-
al technology hidden in the Nevada desert
or the alleged Sport model UFO. The log-
ical place to start is with a prophetic ques-
tion, “What is mode X, where did it come
from, and what is it doing here?”

Mode X is an undocumented and
unsupported video mode that uses VGA
hardware efficiently in 256 colors. The Air
Force, the mysterious men in black, and
IBM deny its existence. Game developers

stumbled on this mysterious graphics
mode early on, and the most elaborate and
credible witness is Michael Abrash author
of these now infamous accounts.

Witnesses describe mode X as having
a resolution of 320-by-240 pixels, using
four 64K planes of VGA memory, and
supporting page flipping. Further, a page
of memory in mode X is only 76,800 pixels
long. Documents released under the Free-
dom of Information Act describe industrial
implementations using a page-flipping
scheme in mode X with speeds unprece-
dented by the IBM-supported mode 13h.
This document goes on to indicate that
mode X still has adequate video memory
to store a static backdrop and sprites.

Information released, based on
Michael Abrash’s prophetic testimony, is
described herein. Places where IBM trun-
cated Abrash’s original text with heavy
black markers is carefully pieced together
for continuity and validity.

Untangling VGA Mode X
After placing a few phone calls, I located a
credible eyewitness. I convinced the
woman, who requested not to be identi-
fied, to meet me in a restaurant and discuss
what she knew about configuring this
mysterious mode. I convinced her that I
wasn’t with IBM, and as long as she
divulged what she knew to me, I would get
it to the public.

Fearing for her own safety, she insist-
ed that she tell me only one of two secrets
she knew firsthand—the location of the
alien corpses from the 1947 Roswell inci-
dent or solid information on setting mode
X. I wanted mode X. Her face went white
and, with a shaking hand, she reached into
her purse and pulled out a gold Cross pen.

Fox‘s new advertising

theme: Programming

for Mode X is cool.

Cool like us.

Here is an account of

a close encounter

with this alien

technology.

(The truth is

out there).

Michael J. Norton

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 41

She glanced over her shoulder, then
sketched out the following information on
a napkin. She finished in under five min-
utes and downed her Fresca. Before her
hasty flight she told me never to contact
her again.

The notes from the napkin are trans-
lated here. It was a very big napkin.

Programming in mode X is tedious
and not as straightforward as mode 13h.
For instance, VGA can be set to mode 13h
by calling the bios function. The function
in Listing 1, written in Watcom C++, sets
a video mode by passing it the mode value.
For example:

setVideoMode(0x13);

// sets video to mode 13h

Because mode X is unsupported by
bios, you are left with the task of chang-
ing the video mode. You can achieve this
by setting mode 13h with a call to bios
and tweaking the video registers to the
desired mode. The first objective is to
remove the chain 4 attribute from video
mode 13h. This is what makes mode 13h
appear to be a single linear plane. The
chain 4 mode can be turned off by alter-
ing bits in the VGA’s sequencer registers.
The reset register, index 1, and the mem-
ory mode register at index 4 need to be
set as follows:

#define SEQC_INDEX 0x03c4

// sequence controller index

outpw(SEQC_INDEX, 0x0604);

// disable chain 4 mode

Abrash recommends setting the clock
to 25MHz for fixed-frequency monitors.
This involves invoking a synchronous reset
to stop the sequencer, setting the clock to
the new scan rate, and restarting the
sequencer:

#define MISC_OUTPUT 0x032c

// miscellaneous output register

outpw(SEQC_INDEX, 0x0100);

// reset, stop the sequencer

outpw(MISC_OUTPUT, 0x0e3);

// select 25MHz dot clock and

60Hz scanning rate.

outpw(SEQC_INDEX, 0x0300);

// restart the sequencer

The last obstacle to tackle in setting
mode X is to write the proper values into
the CRT controller (CRTC) registers.
Writing to the CRTC registers requires
having write privileges. On VGA, bits 6
and 7 of the CRTC register, vertical
retrace end, are used to protect CRTC
registers at indexes 0 through 7:

#define CRTC_INDEX 0x03d4

#define VRE_REGISTER 0x11

outp(CRTC_INDEX, VRE_REGISTER);

// CRTC write protect bit

outp(CRTC_INDEX + 1, (inp(CRTC_INDEX +

1) & 0x7f));

// remove write protect

The write protect on various registers
of the CRTC has now been lifted, so new
values for mode X can be set. The values
being passed are the parameters Abrash
provided in his code, shown in Listing 2.

Finally, to wrap up setting mode X,
the map mask register, index 02h, of the

sequencer registers needs to be informed of
how the memory planes are to be orga-
nized. In the case of mode X, all four
planes need to be enabled:

outpw(SEQC_INDEX, 0x0f02);

// enable writes on all four planes.

Why didn’t IBM include mode X as
a supported video mode? Other video
modes are plane oriented, like VGA mode
02h. In fact, mode 13h is plane oriented,
but its planes are chained to make it appear
as a linear address space. This feature is a
good one because of the simplicity it offers
in programming. However, chained
planes, in this case four planes per pixel,
throw off the pixel spacing. The resolution
is nonsquare, where mode X provides
square pixel spacing, with one plane per
pixel. The aspect ratio of mode X is 1:1.
Why IBM didn’t offer a complimentary
plane-oriented mode to 13h like mode X is
certainly a mystery.

Figures 1A and 1B show chained-
plane mode 13h and mode X referencing
pixels. Listing 3 shows hows to set mode X
with the Watcom 10.0 compiler.

Navigating Mode X
Of course, no information or key witness is
valid without the testimony of an expert. I
took the original notes and the napkin to a
close friend at Stanford University who is

T H E M O D E X - F I L E S

42 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

void setVideoMode(int xmode)
{

union REGS regs;

regs.w.ax = xmode;
int386(0x10, ®s, ®s);

}

Listing 1. Using Bios to Set

#define VALUE_VERTICAL_TOTAL 0x00d06
#define VALUE_OVERFLOW 0x03e07
#define VALUE_MAX_SCAN_LINE 0x04109
#define VALUE_VERT_RETRACE_START 0x0ea10
#define VALUE_VERT_RETRACE_LOW 0x0ac11
#define VALUE_VERT_DISPLAY_END 0x0df12
#define VALUE_UNDERLINE_LOCATION 0x00014
#define VALUE_VERT_BLANK_START 0x0e715
#define VALUE_VERT_BLANK_END 0x00616
#define VALUE_MODE_CONTROL 0x0e317

outpw(CRTC_INDEX, VALUE_VERTICAL_TOTAL); // vertical total
outpw(CRTC_INDEX, VALUE_OVERFLOW); // overflow
outpw(CRTC_INDEX, VALUE_MAX_SCAN_LINE); // set for double scan
outpw(CRTC_INDEX, VALUE_VERT_RETRACE_START); // vsync start
outpw(CRTC_INDEX, VALUE_VERT_RETRACE_LOW); // v sync end and protect
outpw(CRTC_INDEX, VALUE_VERT_DISPLAY_END); // vert displayed
outpw(CRTC_INDEX, VALUE_UNDERLINE_LOCATION); // turn off dword mode
outpw(CRTC_INDEX, VALUE_VERT_BLANK_START); // v vblank start
outpw(CRTC_INDEX, VALUE_VERT_BLANK_END); // v blank end
outpw(CRTC_INDEX, VALUE_MODE_CONTROL); // turn on byte mode

Listing 2. Abrash’s Parameter Values

part of the SETI project. He took one look
at the notes and sat down in awe. He told
me that while I was waiting I could take a
peak at some data of what he believed to
be signals from an extra-terrestrial civiliza-
tion.

I told him I was not in the least bit
interested and to concentrate on the infor-
mation I had provided him. By 2:00 the
following morning—and three large
combo pizzas later—we staggered over to
an XWindows terminal logged into a Cray
supercomputer. Characters of alien origin
shot across the screen. What does this all
mean I asked myself. My affiliate reached
into his drawer and pulled out a wire
hanger wrapped in aluminum foil. He
informed me to stick my head out the win-
dow and hold the hanger still on his mark.

“Now,” he yelled as he scrambled to
dump the file to a print queue.

By now, its obvious that working in
the mysterious mode X is not as simple as
its supported, chained planar video mode
13h is. Plotting pixels in a linear bitmap is
easy. But now that the attributes of the
video memory have been modified and its
chained mode disabled, navigating this
alien mode can be difficult.

Mode X and mode 13h do share two
commonalities: that they’re both one byte
per pixel and they both have 320 columns
per row. The latter is true because mode X
is a hybrid video mode of 13h and only the
scan lines were reconfigured.

To write a pixel, a pointer must be
initialized to reference video memory. This

example uses
DOS4/GW and
C++, so the video
pointer will not be
type far. In protect-
ed mode under
DOS4/GW, the
video memory is
mapped in the same
segment as the
code. To set a
pointer to VGA
memory, be it mode
13h or mode X, we
use the following
snippet of code:

char *pVideoMem;

// pointer to VGA memory, DOS4/GW

pVideoMem = (char*)(0xA0000);

// initialize pointer to VGA memory.

DOS4/GW uses physical memory
addresses; that’s why the pointer was ini-
tialized to location 0xA0000 and not seg-
ment A000:000. This pointer references the
first byte in VGA memory at offset 0. In
plain English, this is the first pixel in the
upper left-hand corner of the screen. The
pixel can be plotted by assigning the loca-
tion a byte value:

char pixelValue;

// a value to write to memory

pixelValue = 127;

// assign a value

*pVideoMem = pixelValue;

// write the value to memory

This code is useful if we only write to
the first coordinate of the screen, but what
about the tens of thousands of other pixels
we wish to set? To plot other pixels, we
will need to understand how video memo-
ry is organized.

In mode 13h, video memory is
chained to give it a flat bitmap effect. The
plotting of a pixel in one of the 320
columns by 200 rows is a simple matter of
arithmetic. For instance, to plot a point,
P(109,47), where X=109 and Y=47, we
simply calculate the scan line and the byte
offset into the scan line of the location we
wish to plot.

To compute the scanline (or row)
from a given point, P, multiply the Y coor-
dinate times the maximum number of
bytes per scanlines. This value will tell us at
what logical row in memory the pixel is

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 43

Figure 1a. VGA Mode 13h 64K Linear Bitmap Organization

(0,0)
320

200

(0,199) (319,199)

A000:0000

A000:F8C0 A000:F9FF

Figure 1b. VGA Mode X Plane Memory Organization

Pixel 0 Plane 0

(0,0) 320

Display

240

4 x 64k Planes of Display Memory

1A000:0000 2 3 4

Pixel 4 Pixel 8 • • • Pixel n-3

Pixel 1 Plane 1Pixel 5 Pixel 9 • • • Pixel n-2

Pixel 2 Plane 2Pixel 6 Pixel 10 • • • Pixel n-1

Pixel 3 Plane 3Pixel 7 Pixel 11 • • • Pixel n

located. From this location, the pixel will
be at an offset X from the start of the row.
Sounds a little confusing? Let’s figure an
example.

Find the pixel location in VGA
memory of P(109,47) in mode 13h:

scanline = Y *320 = 47 *320 = 15040 =

0x3AC0

offset = X = 109 = 0x6D

pixel memory

location = VGA memory ptr + scanline

+ offset

= A0000 + 0x6D + 0x3AC0

= 0xA3B2D

The code looks like this:

unsigned int scanLine, offset;

scanLine = Y * 320;

// compute the scan line, Y

*(BYTES/ROW)

offset = X;

// offset of pixel from scanline

pVideoMem = (char *) (0xA0000) + scanLine

+ offset;

// ptr to pixel location

*pVideoMem = pixelValue;

// assign a value to the pixel

Figure 2 shows the pointer arithmetic
and point coordinates for this example.

Navigating mode 13h is easy. Now
with the understanding of how a chained
linear bitmap works, we can apply what we

know to unchained planar memory, such
as mode X. The important thing to keep
in mind is that mode X scanlines are not
320 bytes per row. Mode X is
unchained—the bytes are organized across
four planes of memory. So a mode X scan
line now has (320 bytes/scan line) / 4
planes = 80 bytes / scan line plane.

The computation of a scan line in
mode X, using the example P(109, 47)
looks like:

scanLine = Y * 80;

// mode X scan line

Figure 3 shows the pointer, planes,
and points in mode X.

This value is useless unless we can
tell the VGA which memory plane this
scan line corresponds to. The plane can
be determined by playing a few games
with the X coordinate using logical
operators:

X = 109 = 0x006D = 0000 0000 0110 1101

We want to filter and mask out the X
value:

X = 109 0000 0000 0110 1101

& MASK = 255 & 0000 0000 1111 1111

Result= 109 0000 0000 0110 1101

The operation is very uneventful and
is in place only to act as a bit filter. We
want to be certain that we accurately grab
the low order eight bits. Actually, the low-
order two bits are the only ones of concern
because these will reveal which memory
plane this scanline belongs to. Masking out
the plane is also accomplished with a logi-
cal AND operation.

T H E M O D E X - F I L E S

44 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

void setModeX(void)
{

setVideoMode(0x13); // set the bios supported video mode 13h

outpw(SEQC_INDEX, 0x0604); // disable chain 4 mode
outpw(SEQC_INDEX, 0x0100); // reset, stop the sequencer

outp(MISC_OUTPUT, 0xe3); // select 25 Mhz dot clock and 60 Hz scan rate
outpw(SEQC_INDEX, 0x0300); // restart the sequencer

outp(CRTC_INDEX, 0x11); // vertical retrace end register
outp(CRTC_INDEX + 1, (inp(CRTC_INDEX + 1) & 0x7f)); // remove write protects

outpw(CRTC_INDEX, VALUE_VERTICAL_TOTAL); // vertical total
outpw(CRTC_INDEX, VALUE_OVERFLOW); // overflow, bit 8, vert counts
outpw(CRTC_INDEX, VALUE_MAX_SCAN_LINE); // set for double scan
outpw(CRTC_INDEX, VALUE_VERT_RETRACE_START); // vsync start
outpw(CRTC_INDEX, VALUE_VERT_RETRACE_LOW); // v sync end
outpw(CRTC_INDEX, VALUE_VERT_DISPLAY_END); // vert displayed
outpw(CRTC_INDEX, VALUE_UNDERLINE_LOCATION); // dword mode off
outpw(CRTC_INDEX, VALUE_VERT_BLANK_START); // v vblank start
outpw(CRTC_INDEX, VALUE_VERT_BLANK_END); // v blank end
outpw(CRTC_INDEX, VALUE_MODE_CONTROL); // turn on byte mode

outpw(SEQC_INDEX, 0x0f02); // enable writes on all four planes

}

Listing 3. Setting Mode X with the Watcom 10.0 Compiler

Figure 2. Pointer Arithmetic, Point Coordinates, and Mode 13h

pVideoMem = A0000

320 bytes

Display

200 x 320
bytes

Scanlines from
pVideoMem
= 47 x 320
bytes

P(109,47)

Offset = 109 bytes

There are four planes ordered 0 to 3:

PLANE MASK = 3 = 0x03 = 0000 0000 0000

0011

Result = 109 0000 0000 0110 1101

& PLANE MASK= 3 & 0000 0000 0000 0011

Plane = 1 0000 0000 0000 0001

This operation tells us which plane of
display memory we are going to write a
value to. The sequence controller MapMask
register needs to be instructed which plane
this is to allow the CPU to carry out a
write operation on this memory. The Map-
Mask register is an 8-bit register, and only
the four low-order bits, 0 to 3, are of any
significance. Bits 0 to 3 correspond to

planes 0 to 3. Setting
bit 0 allows write
operations by the
CPU to memory
plane 0. This behav-
ior is identical for all
four bits in the Map-
Mask register at index
02h.

The code for
this operation looks
like this:

nPlane = (x & 0x00ff)

& 0x03;

/* calculate the

plane from the X

coordinate*/

regs.w.ax = 0x0100 +

0x02;

/* set the index to

02h and initialize

bit for pixel’s

plane*/

Pay careful
attention to the last
line of code. This is
not computing an
index into the
sequence controller.
It’s actually a clever
scheme to initialize
the AX register before
calling the outpw()
function. The low
byte, AL, is being ini-

tialized to the index 02h, the MapMask regis-
ter in the sequence controller. The high
byte, AH, is being initialized to set bit 1 of
the MapMask register:

regs.w.ax = 0x0100 + 0x02 = 0x0102 =

0000 0001 0000 0010

index of Map Mask register = AL = 0000

0010

initialize pixel plane to 1 = AH = 0000

0001

The value in AH is then shifted left
nPlane times. This value will be loaded into
the MapMask register to enable a write to the
desired plane of video memory:

regs.h.ah = regs.h.ah << nPlane;

// set the bit for the pixel’s plane

outpw(SEQC_INDEX, regs.w.ax);

// set Map Mask to enable write

The write to the memory plane can
now be performed in the familiar manner.
The one exception to this operation is that
X is no longer a linear mapping. The offset
is now at X/4. So:

scanLineOffset = (y*80) + (x>>2);

pVideoMem = (char*)(0xA0000 +

scanLineOffset);

*pVideoMem = pixelValue;

That’s it for writing a pixel to a mode
X planar memory location. You can now
port your old mode 13h line drawing and
graphics libraries over to mode X. The
complete listing is shown in Listing 4.

By now, both my colleague and I had
had very little sleep but we were eager,
nonetheless, to test this unearthly technol-
ogy. We loaded up a laptop and drove out
to a dry lake bed in the Nevada desert
where we executed the following test pro-
gram. The test was short. We merely pow-
ered up mode X, threw out a rectangle on
the laptop’s display, and powered it down.
I can attest to the fact that my adrenaline
was racing, for we had no idea what mode
X would do, nor to the destructive power it
was capable of. The test was successful,
and as UFOlogist Bob Lazar would say,
uneventful. The source code used at the
Nevada test site is shown in Listing 5.

Copying Linear Bitmaps to
VGA Planar Memory
My scientific colleague made some good
assumptions about how to use mode X,
but it was my radical cyberpunk anarchist
friend who made the most astounding
contributions. Based on the frequency of
cattle mutilations per year divided by the
rate that the giant stone heads on Easter
Island creep toward the sea, the following
piece to the big puzzle came to light. And
I quote, “This technology could be radical-
ly applied to games, dude!” What revela-
tion had my reality-twisted friend stum-
bled upon? What could this possibly
mean? And why did he have a “Linux
Inside” sticker stuck to his tower case?

Plotting pixels is okay for tinkering

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 45

Figure 3. Pointers, Planes, Points, and Mode X

Plane 0

Plane 1

Plane 2

Plane 3

pVideoMem = A0000

320

27 bytes

Display

240

Scanlines
from
pVideoMem
= 47 x 80
bytes

plane
= 109 mod 4
= 1

P(109,47)

Offset =
109/4 = 27

80 bytes/scanline Plane

with mode X, but let’s face it, we want to
get down to some serious business. Games
must have cool backgrounds and sprites,
right? The only way this can be accom-
plished is if .PCX and .IFF files can be
loaded into display memory. These files
are typically decoded into memory and are
suitable for a display mode like 13h. Now
you’re going to learn how you can expand
your horizons and your graphics library at
the same time. The goal here is to write a
useful tool that takes the decoded graphics
image from linear memory and writes it to
display memory for use with mode X.

A good starting point is to identify
the differences in linear memory and VGA
planar memory. A Deluxe Paint LBM
image in memory is a 320-by-200 pixel
bitmap with 256 colors. Describing this
image in rectangular terms we have:
• Left = 0
• Right = 320
• Top = 0
• Bottom = 200.

Images are commonly described in
terms of logical rectangular coordinates. In
actuality, they are stored as chunks of
memory, where their scan lines are stored
consecutively, one right after the other. For
the programmer and game designer, it is
simpler to maintain descriptions of images

in terms of the rectangular boundaries. It is
easy to determine physical memory attrib-
utes of a source image from a descriptive
bounding rectangle. Using the example of
a Deluxe Paint II image, the physical
attributes of memory can easily be
retrieved. This pseudocode calculates the
number of bytes per scanline and starting
offset of the image in the chunky bitmap:

unsigned int srcBitMapWidth, left, top,

right, bottom;

srcBitMapWidth = right - left = 320 - 0

= 320

srcOffset = (srcBitMapWidth * top)

+ left = (320 * 0) + 0 = 0

These are precisely the values we
would need if we were to write this bitmap
to VGA mode 13h memory. In fact, all
that’s needed from here is a pointer to
VGA memory and a pointer to the source
image. The entire image could simply be
blasted to the screen with a call to strcpy()
because the source is 320 by 200 bytes and
so is the destination VGA memory.

That’s basically all we would have to
do if we were working in video mode 13h.
However, we’re working with mode X.
We must now calculate a destination
bitmap based on four memory planes. The

difference between the source image mem-
ory and destination video memory is that
the image is stored in linear memory, and
the destination is planar video memory.
Our task is to devise a means to map a
chunky bitmap in memory to four VGA
memory planes.

The description of the source image
in terms of srcBitMapWidth and srcOffset
needs no further attention. This is all the
information, including the image srcPtr
itself, we will need to map the chunky
bitmap. Similar descriptions are needed for
the destination memory. The destination
bitmap width for VGA plane memory is
simply the source bitmap width divided
among four planes of VGA memory.
With the value of srcBitMapWidth, dest-
BitMapWidth and destBitMapOffset can be
computed as follows:

destBitMapWidth = srcBitMapWidth / 4

destBitMapOffset = (destBitMapWidth *

top) + (left/4)

If you’re still in the game here, you’ve
determined by now that this information
sheds no light as to which plane of memo-

T H E M O D E X - F I L E S

46 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

// plot pixel in mode X
#define BYTES_PER_SCAN_LINE 80
#define MAP_MASK 0x02
#define INITIAL_PLANE_BIT 0x100
#define MAP_MASK_PLANE_INIT INITIAL_PLANE_BIT + MAP_MASK
#define BIT_FILTER_MASK 0x00FF
#define MAX_PLANE_N 0x03

void writePixelModeX(unsigned int x, unsigned int y, char pixelValue)
{

union REGS regs;
char *pVideoMem;
char nPlane;
unsigned int scanLineOffset;

nPlane = 0;
scanLineOffset = 0;

scanLineOffset = (y*BYTES_PER_SCAN_LINE) + (x>>2);
nPlane = (x & BIT_FILTER_MASK) & MAX_PLANE_N;
regs.w.ax = MAP_MASK_PLANE_INIT; // set index 02h, and initialize plane = 1
regs.h.ah = regs.h.ah << nPlane;
outpw(SEQC_INDEX, regs.w.ax);
pVideoMem = (char*)(0xA0000 + scanLineOffset);
*pVideoMem = pixelValue;

}

Listing 4. Plotting a Pixel in Mode X

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

#include “modex.hpp”

void main()
{
unsigned int i;

setModeX();

for (i=0; i<240;i++)
{

writePixelModeX(0,i,0x23);
writePixelModeX(319,i, 0x23);

}

for (i=0;i<320;i++)
{

writePixelModeX(i,0,0x23);
writePixelModeX(i,199,0x23);
writePixelModeX(i,239,0x23);

}

getch();
setVideoMode(0x03);
printf(“done... press any key to
continue\n”);

}

Listing 5. Test Site Source Code

ry we are to enable CPU writes to. Recall
from the earlier discussion of plotting pix-
els in mode X that the X coordinate was
the key in unraveling the mystery of which
plane is to be write enabled. Well, the
bitmap doesn’t have an X coordinate
or...does it? Simple high school geometry
proofs showed that a rectangle can be
described by two points: P1(x1, y1) and
P2(x2, y2). The bounding rectangle of the
bitmap is defined by two points. They are
P1(left, top) and P2(right, bottom). The
left boundary is what we’ll use to deter-
mine the initial plane to write enable:

char nPlane, planeMask;

nPlane = left & 0x03;

left = 0000 0000 0000 0000

& mask = 0000 0000 0000 0011

nPlane = 0000 0000 0000 0000 = 0

planeMask = 0x11 SHL nPlane = 0001 0001

<< 0 = 0001 0001

By performing a logical AND operation
on the left coordinate with the mask 0x11,
we can determine the initial plane we need
to enable. Play around on paper and shift
the bits 0x11 about two or three times.
Computing the initial plane is significant
for two reasons. First, you do not need to
have a rectangle that’s 320 by 200 or starts
at left = 0, top = 0. Second, this initial
value will come into play later, for cycling
the planes to write enable.

But that’s coming up, and let’s not
get ahead of ourselves. With this informa-
tion in hand, we now know the plane for
the first destination pixel. The following
code does this:

nPlane = left & MAX_PLANE_N;

planeMask = 0x11 << nPlane;

The first plane is now calculated, but
not yet enabled. We must loop through
the entire chunky bitmap image in memo-
ry and write it to the proper VGA memory
planes. This will require a nested loop—
the outer loop will walk the rows of the
linear bitmap, and the inner loop will han-
dle translating the linear image scan lines
to the VGA memory planes. The
pseudocode is shown in Listing 6.

This code resembles a brute-force

mode 13h blitter. The exception is the
initialization of register bitsROLplane
with the current planeMask value we com-
puted earlier. The code then drops inside
to the nested loop where a miracle
occurs RectWidth - 1 times.

Now what’s so miraculous about the
inner loop? It needs to do several things:
• Enable the desired plane for a write

operation
• Change the plane for the next pixel
• Copy the source image pixel to the

proper VGA plane memory location.
The first step is simple and is already

included in the pseudocode in Listing 6.
The plane, as you already know, is enabled
by setting the proper bits in the MapMask
register of the sequence controller. That’s

why the outp() function call is in the inner
loop. The second step, involving changing
the plane for the next pixel is not so easy.

Instead of computing the plane by
looking at the current offset, we will
approach the problem from a simpler
angle. The plane to be enabled is cyclic by
design. That is, if plane 2 is being enabled
for a write operation, the next plane to be
enabled after the write is plane 3. After
plane 3 has been written, we need to wrap
around back to plane 0. We already know
the initial plane to enable. We calculated
this earlier. This value will initiate the
cyclic sequence. By taking this initial value,
planeMask, we can determine the next plane
to be enabled by performing a ROL opera-
tion. You can access an example of this
cycle on the Game Developer ftp site
(ftp://ftp.mfi.com/gamedev/pub/src).

In the final ROL operation on the
planeMask, the bit in nibble 7 moved left
out of the byte and set the CPU CarryFlag.
In a ROL operation, when the CarryFlag is
set, the bit that rolled out of nibble 7 rolls
back into nibble 0. This emulated ROL
operation on the planeMask bits provides a
simple mechanism for cycling the planes to
write enable. The only drawback is that ROL
operations are not provided in the C
library function calls or by any binary oper-
ators. So we need to write one ourselves:

unsigned int bitCarryFlag = 0;

char bitsROLplane = planeMask;

The operation of performing a ROL on
a byte value can be accomplished by using

the C and C++ shift left operator, <<. This
will perform a bitwise shift left, but will
not indicate when a bit set in nibble 7 has
shifted out to the left:

bitsROLplane = bitsROLplane << 1;

// shift bits left once

The bitwise shift left is basically the
SHL operator. Once the bit has shifted out
of the high nibble, it falls into the bit
bucket never to be recovered. We must
manually check the bit in nibble 7 before
the logical shift operator is used. The nib-
ble can be examined with a mask opera-
tion, which we’ll use to mimic a CarryFlag
when the bit shifts out of the byte. The
following example illustrates a case where
plane 3 wraps around to plane 0, based on
the result in the bitCarryFlag:

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 47

RectWidth = right - left;
nRows = bottom - top;

outp(SEQC_INDEX, MAP_MASK);
for(rows=0; rows<nRows; rows++)
{

bitsROLplane = planeMask;
for(scanlines=0; scanlines<RectWidth; scanlines++)
{

outp(SEQC_INDEX + 1, bitsROLplane); // enable desired plane for a write
A miracle occurs here... // occurred sometime after the 7th day

}
pVideoMem += destBitMapWidth;
SourcePtr += srcBitMapWidth;

}

Listing 6. Pseudocode for a Nested Loop

bitCarryFlag = bitsROLplane & nibbleMask;

bitsROLplane = 10001000

nibbleMask= & 1000 0000 = 0x80

bitCarryFlag = 1000 0000 = 0x80

Now perform the logical SHL opera-
tion on bitsROLplane:

bitsROLplane << 1 = 0001 0000

This is the condition we need to test
for to wrap the plane back to zero. When
the value in bitCarryFlag is equal to 80h,
the plane will wrap. This test carried out in
the following manner:

if (bitCarryFlag == 0x80)

wrapPlane;

What precisely does it mean to wrap
the plane? The value 0x80 is a bit filter to
alter the contents in bitsROLplane to fit the
cyclic model. The wrapping around occurs
by performing a logical OR operation on
bitsROLplane:

bitsROLplane = bitsROLplane | 0x01;

bitsROLplane = 0001 0000

OR 0000 0001

bitsROLplane = 0001 0001

That’s the whole tamale for plane
wrapping. It’s not so difficult once you’ve
walked through it. The code for perform-
ing this operation looks like this:

bitCarryFlag = 0;

bitCarryFlag = bitsROLplane & 0x80;

// test for non-zero high order nibble

bitsROLplane = bitsROLplane << 1;

// set mask for next pixel’s plane

if (bitCarryFlag == 0x80)

// if high order nibble non-zero

bitsROLplane = bitsROLplane | 0x01;

// carry the bit to lowest nibble

The third and final dilemma we need
to resolve is mapping linear bitmap bytes
to the corresponding VGA planes. The
outer loop controls what row is being
updated on both the bitmap and the VGA
memory. The inner loop is walking the
scanlines. This is simply moving to the off-
set from the start of the scanline and

updating each pixel in the bitmap to the
designated plane of memory from the ROL
operation.

Translating offsets in mode X mem-
ory is simple. Remember that we treated
the X coordinate in the earlier examples
as the offset in memory. The coordinate
X, or the offset, mapped to a VGA plane
at offset X/4. The mapping of a byte from
a chunky bitmap to a defined VGA plane
of memory is the same. Translating pixels
is accomplished by the following code
snippet:

pVideoMem[scanlines>>2] =

SourcePtr[scanlines];

The pointer pVideoMem is referencing
the VGA memory plane, and SourcePtr is
referencing the byte to be mapped. The
index, scanlines, is byte offset in memory
from SourcePtr of the pixel to be mapped:

pVideoMem[scanlines>>2] =

SourcePtr[scanlines];

Trust No One
Now you have enough information to be
dangerous. No longer can the assembly
language listings in Michael Abrash’s The
Zen of Graphics Programming (Coriolis,
1994) be of any threat to you. If you don’t
have this book yet, buy it! Abrash gave
away all the industry secrets in one book.
As I mentioned, the source code is old, real
mode 8086 code, and requires some atten-
tion when porting it to Watcom protect-
ed-mode compilers.

As I paced the small apartment of my
cyberpunk anarchist friend, my deep prob-
ing meditations were disrupted by a stereo
tone from the Sound Blaster 16 card of his
computer, signalling the succesful end of a
compile.

He had compiled the linear bitmap
translator and was ready to execute it.
Time flowed in slow motion as I ran
towards him, shouting, “Nooo!” My hands
reached out to stop his right index finger as
it glided over to tap the enter key on his
keyboard.

His head turned slowly, grinning like
some sinister goblin, his eyes hidden
behind round purple reflective lensed
cyberpunk sunglasses. The words rolled off

his tongue with no concern to their
impending dangerous implications.

“Rock and roll, dude!” he said, and
his finger pressed the enter key. I froze in
my tracks as the computer set the alien
mode and wrote the bitmap in system
memory out to the mode X display. My
heart pounded harder and shorter than it
did out in the Nevada desert. I looked at
him, my facial expression scorning him for
being so technically irresponsible. The
consequences could have been far worse.
The thought that raced through my mind
was that mode X could somehow chaoti-
cally react with our atmosphere and burn
up all the oxygen. But that didn’t happen.

“Whoa, dude,” he said. “Check it
out—we’re all still here.” His hands
pressed firmly against the chest of his tie-
dyed t-shirt. He wanted to make certain
that the molecular organization of his body
was still structurally intact. He got up from
his chair and pulled back the curtain.
“Excellent!” he nodded, “The time contin-
uum seems to be in order as well.”

This test somehow alerted the boys
from Big Blue. A network tap started to
set off an alarm. They were getting a fix on
our location. The anarchist cyber dude
started scrambling his IP octets to confuse
the people tracking his network routes and
hops.

“Until we can finish constructing our
They Live VR visors, no one is safe,” he
gravely stated.

Due to space constraints,I couldn’t
list all the code necessary to this encounter.
You can access the complete listing for
copying a chunky bitmap to VGA mode X
planar memory and the code used in the
test by the cyber dude on the Game Devel-
oper ftp site.

All I can say for now is, watch out.
Mode X works—on Windows 95, too, in
protected mode. Maybe Redmond is
where we’ll find them. You don’t have to
believe me, see for yourself. Mode X is out
there and it’s in your system. ■

Michael J. Norton holds a B.S. in physics
and has worked as a programmer for 12 years.
He is currently working on a book for pro-
gramming the Windows 95 SDK.

T H E M O D E X - F I L E S

48 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

H
ow do we make games girls
and women will buy? It’s a
question today’s game compa-
nies must ask themselves or
lose out on a little more than
half the potential electronic
entertainment market. Most
game industry executives seem

to conclude that if they are to consider
targeting girls and women at all, it will
not be at the risk of excluding their core
market of boys and men, which is why
games for kids are often touted as being
“gender inclusive.” But what does gender
inclusive mean, exactly, and is it the most
effective way to attract the female mar-
ket? Game industry pros have conflicting
opinions.

Some feel that the games claiming
to be gender inclusive really aren’t, and
that all this talk of gender-inclusivity just
perpetuates serving the needs of a male
audience. “Until the day when ‘gender
neutral’ stops meaning ‘really boys,’ I
truly believe that we have to create games
specifically for girls,” says cartoonist
Trina Robbins, who wrote and designed
Sanctuary Woods’ interactive CD-ROM
Hawaii High, Mystery of the Tiki.

If you look at some of the research
into gender differences, the idea of a gen-
der inclusive game seems like a diffi-
cult—if not impossible—goal to reach. A
1984 edition of Personal Computing
Teacher features a study “Situational
Stress as a Consequence of Sex-Stereo-
typed Software,” which states that if you
take games with the characteristics girls
like and make boys play it, boys show
signs of situational anxiety and their per-
formance and focus deteriorates. The
study claims girls have the same reaction

when playing with “boy” software. (At
the same time, a common belief exists in
this industry that girls will play “boys’
games,” but boys will not play “girls’
games”—an attitude that can’t do much
except tilt the scales toward the tastes and
preferences of males.)

Still, game developers are cautious
about stereotyping and generalizing gen-
der differences in game preference and
play. “If we say ‘girls don’t like violence
so we’ll give them Barbie Dolls’ or ‘ girls
want story, so we won’t let them play
Sonic the Hedgehog,’ we’re creating par-
adigms of exclusion for both boys and
girls,” says Margy Gilman, an interactive
TV producer in San Diego. “It’s just as
discriminating to boys [to give them only
violence] and not to give them story and
character. There are lots of boys who care
about that.”

Creative Wonders is also cautious
about excluding boys. Its new title Made-
line and the Magnificent Puppet Show
boasts a famous female heroine chosen for
her pluckiness and popularity with girls
and women from the storybooks of Lud-
wig Bemelmans. But Creative Wonders
says Madeline is not a game “for girls,”
but a game for children that girls “espe-
cially” will like. Even the Women’s Inter-
active Entertainment Association has
taken a stance supporting “gender inclu-
sivity” over “gender specificity.” “It’s not
about making gender specific titles,”
explained WIEA president Valerie Hen-
nigan. “It’s about making them ‘gender
friendly’....and it’s marketing those games
to girls. Interactive entertainment isn’t
even marketed to females.”

While the discussion continues
about how to best reach girls and

Gamin’ for
Grrrrls

How have some game

companies tried to

appeal to girls? Are

these games vastly

different from those

designed for a more

general audience?

And how?

Barbara Hanscome

C H O P P I N G B L O C K

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 51

women—be it with an affirmative action
approach or with gender inclusive games
for boys and girls—this installment of
Chopping Block takes a look at a few
titles for children and what characteristics
might make them appeal to girls (and in
some cases, to boys as well).

Sega and Nintendo Games
Much of the research into girls’ game
preferences suggests that what many of
the classic arcade, Nintendo, and Sega
style games are made of (repetition, scor-
ing, speed, violence, target shooting, time
limits, reinforcement based on skill
instead of effort) is unappealing, boring,
and senseless to girls.

In 1994, Sega introduced Crystal’s
Pony Tale, a game designed to attract
girls aged four to seven to the Sega plat-

form. The game was created by Sega’s all-
women Girls Task Force to be a girl’s first
Sega game—and in many ways that is
exactly what it is (kind of a Sonic the
Hedgehog with pink training wheels.)

In Crystal’s Pony Tale, Crystal’s
friends have been kidnapped by a wicked
witch and hidden throughout the game.

Players must help Crystal find seven crys-
tal shapes to free her pony pals from cap-
tivity. Using the Sega keypad, players help
Crystal gallop and leap in the air and
capture keys and horseshoes. The horse-
shoes let Crystal move to three other “lev-
els” or environments in the game, and the
keys let her open treasure chests, where
crystals and clues can be found. The hid-
den ponies are marked in the game with a
silhouette of a horse and the shape of a
crystal. If Crystal has the correct rock in
tow, the player can move Crystal next to
the pony’s shape, press the action key, and
release Crystal’s friend.

Crystal must collect the right num-
ber of horseshoes before she can pass into
the next environment, but the game isn’t
based on scoring or attaining the next
level as much as it is on helping Crystal

help her friends—a goal a four-year-old
girl might find more worthwhile than
shooting at a target. When Crystal suc-
ceeds in doing this, hearts of love and
gratitude spring forth from her pony
friend onto Crystal’s head. It’s corny, but
the positive feedback can’t be ignored.

Still, you certainly wouldn’t call

Crystal’s Pony Tale a “story-driven”
game—and research indicates that girls
are more interested in story lines than fast
action. Crystal’s Pony Tale follows the
same tried-and-true, linear action formula
of any Sega title. The “story” is more akin
to a game “theme.”

The game is slower paced than your
typical Sega or Nintendo action adven-
ture. There is no time limit; Crystal can
stop and talk to a cow in the barn,
munch on hay, or sniff sunflowers with-
out the threat of being bonked or killed
by incoming villains. The player also has
a game map of sorts, which enables
Crystal to move between levels if she
wants to.

In keeping with research showing
girls are more motivated by sound, voices,
and music than boys, the game lets girls
choose the background music at the
beginning of the game from a number of
classical pieces.

As for violence, well, Crystal isn’t a
exactly Steven Segal, but she does exhibit
some aggressive behavior. Whenever
Crystal tries to rescue a friend, the pastel-
colored sky turns dark, the music picks up
tempo, and the evil witch swoops onto
the scene. If you continuously press the
action key, Crystal rears on her hind legs
and whinnies repeatedly. Without blood-
shed or bullets, the witch disappears and
serenity returns.

Character involvement is crucial to a
girl’s enjoyment of a game experience,
according to research. But we know very
little about this pony. The players’ guide
tells us that Crystal is the “shyest” pony in
the land, but if you don’t read the guide,
you miss out on this information (which
might give some players a sense of
accomplishment after helping Crystal
overcome her shyness and fight the
witch).

Sega seems to prefer using animals
in their gender-inclusive children’s games
instead of humans, perhaps because they
are easier to gender-neutralize. In fact,
Crystal could be either male or female;
the character is so poorly rendered you
can barely see its face. If I were a five-
year-old girl and my big brother were
playing a richly animated game like
Earthworm Jim on our family Sega sys-

C H O P P I N G B L O C K

52 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

I
ndustry and academic research reveal some interesting differences in what many
girls find fun, challenging, and engaging in electornic entertainment. But of course, as
you’d expect when dealing with human preferences and tastes, contradictions
abound. Still, some of this research is hard to ignore. Here’s a summary of some of the
findings:

• Females prefer utility, reality, and constructive goals, while males prefer aggressive
and competitive themes and are less interested in the far-reaching benefits of a game.

• Females find sound, especially voices, motivating, while males are often observed play-
ing with the sound turned off.

• Females are less interested in “games” (meaning play involving established rules, clear
objectives, and the notion of winning) than other forms of play.

• Females like interactive products without scoring or competition and are less interest-
ed in winning. Males often mention scoring (and winning) when discussing games.

• Females are flexible with rules and will change rules to suit a situation, while males are
more inflexible with rules. They use rules to determine domination and enjoy following
them.

• Females are frustrated when having to start over from the beginning of a game. Males
find this motivating.

• Females are more confident, optimistic, and motivated when feedback focuses on effort
vs. ability. They see feedback as a reflection of their ability and will question them-
selves if the feedback is negative.

• When feedback is based on effort, males see it as a reflection of poor performance and
loose motivation.

W H A T D O G I R L S L I K E ? W H A T D O B O Y S L I K E ?

tem, I’d feel a little slighted.
Some girls, especially girls at the

older end of the game’s age-range, might
find the Arthurian castles a bit tired and
cliché. According to Sega, they set the
story in this environment because
research indicated girls like fantasy, but
does fantasy really mean witches and gob-
lins? It’s no wonder many of them
skedaddle on over to the more exciting
world of Donkey Kong Country—a game
popular with both girls and boys.

Donkey Kong Country
Nintendo’s Donkey Kong Country wasn’t
designed “for girls” or with girls in mind,
but girls certainly like it. In a nationwide
survey of 1,600 kids taken by interactive
TV producer Margy Gilman, Donkey
Kong was listed in the top five favorite
games of girls (along with Mario Broth-
ers, Sonic the Hedgehog, Lion King,
and—believe it or not—Mortal Kombat).

The game takes players on a jungle
adventure with two primates: Donkey
Kong (a big macho ape) and his friend
Diddy (a small, agile monkey). Your goal
is to help them recapture their horde of
bananas, which have been stolen from
them by the evil Kremlings. You help
Donkey and Diddy run and jump over
obstacles, grab ropes and swing through
the forest, even swim through water
worlds capturing bananas, letters (that
spell out Donkey Kong of course), and
extra lives. You’ve got to move fast or any
number of beasts will run you down.
When you “lose a life,” you start over
from the beginning of the level; if you
lose several lives in succession, you “die”
and start over from the beginning.

Going by the research into what
girls like in games, there would be little in
Donky Kong to get a girl hooked on
video gaming. The game isn’t based in
reality; nor does it involve a story. (You’re
supposed to be helping Donkey and
Diddy regain their hoard of bananas, but
if you don’t read the players guide, you
don’t know this or care.) Game feedback
is based on the number of points you
score and the level you achieve—which
research says girls find less motivating
than feedback based on trying. So why is
the game popular with girls? Could it be

that a large number of girls out there
enjoy the fast action, the funny anima-
tions, and three-dimensionally rendered
jungle worlds, and the challenge of attain-

ing points and mastering the levels?
What I find disappointing in Don-

key Kong is that the game features only
one female character: Candy Kong, an
ape in a hot-pink bathing suit with noth-
ing better to do than pose provocatively in
a booth and help Donkey and Diddy save
their points. Basically, she’s stuck playing
Vanna White while the guys go out for a
swingin’ banana hunt. Humph! That’s
not very “gender inclusive.”

Another gripe: you’re deprived of
most of the game until you reach a certain
level of skill. Donkey Kong contains
seven environments and 40 levels. Each
level is wonderfully different and features
new obstacles and characters, which you’ll
never see unless you play the game well
enough and score high enough to reach
these levels. Game developers I’ve spoken
with call this setup “having to earn the

game,” and they say girls find this game
plan more of a turn-off than blood spurt-
ing from a corpse any day.

Sure, girls can master the game just
as well as boys can, but research suggests
that they’ll become bored (or frustrated)
with the experience long before that will
happen.

Donkey Kong Country 2 coming
out this December, might have more “girl
appeal.” Girls might find the goal of the
game more “worthwhile”: you’re actually
trying to save Donkey Kong from capture
by the evil Kremlings. But more impor-
tant, it stars a female character (at last, a
female saving a male in distress!). This
game stars Dixie Kong, Diddy’s little
monkey friend, who sports a pink t-shirt
and a long, platinum-blonde ponytail.
Some might argue that she’s really just
Diddy in drag, but it’s hard not to smile
when watching her in action. Face it,
she’s cute. And she takes the lead
throughout the game, dragging Diddy
around and leaping above obstacles, her
ponytail whipping about like a propeller.
According to a Nintendo spokesperson,
the company hopes Dixie will be the next
flagship character for the Nintendo line.

Hawaii High,
Mystery of the Tiki
Released in 1993, Hawaii High, Mystery
of the Tiki, from Sanctuary Woods was
one of the first interactive CD-ROMs
created specifically for girls aged eight and
up. Hawaii High is more interactive story
than adventure game, in keeping with the
theory that girls like character and story
more than fast action. It stars a teenager
named Jennifer, who just moved from
New York to Hawaii, where her mom, a
working professional, has taken a job. She
and her new friend Malaya are on an
adventure to return a lost Tiki statue to its
rightful place. Hot on their trail are two
dastardly villains (a man and a woman—
equally bad) who want the Tiki for its
resale value on the black market.

Trina Robbins, who wrote and
designed the game, said she used the
Nancy Drew mysteries for inspiration.
Those stories, said Robbins contain the
classic things many girls like. “Girls
haven’t changed; girls will never change.

C H O P P I N G B L O C K

54 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Unfortunately, Candy Kong, the only
female character in Donkey Kong Country,
serves as little more than a showpiece.

We will always like adventure and prob-
lem-solving.” Robbins says she created
two female protagonists because girls like
to play together. She also wanted charac-
ters that girls could relate to and who
were a little older than the game’s target
market. “Nancy Drew was a teenager but
it was much younger girls who read her
books.”

An assumption game developers
make is that girls like “fantasy,” yet
research states they like themes based in
reality. Hawaii High takes both into
account. Robbins uses elements of fantasy
and mythology in the game, but the story
takes place in today’s modern world—and
Robbins provides real-life situations her
players can relate to. For example, we
begin the game on Jennifer’s first day of
school, where she faces a classroom full of
beachniks in shorts. Dressed in New York
City urban chic, it’s apparent that she
feels like an outcast, as anyone would in
the same situation.

Like many interactive stories, Hawaii
High lets the players move at their own
pace and interact with the environment. It
also includes a “story map” that lets the
player begin where she left off or “lost” the
game. The things that work least well in
the game, according to Robbins, are a few
puzzles, which were thrown in by male
programmers on her team to “make the
game more exciting.” In one, the player
must maneuver the characters through a
three-dimensional maze—an annoying
interruption for any player, especially if
she or he is trying to get to the next clue.
Robbins says her gut feeling was that girls
wouldn’t like the puzzles because “they’re
closer to boys’ twitch games.”

Hawaii High’s dress-up segment was
criticized in the press, as was the choice of
pink attire for one of the characters. Rob-
bins calls such criticism “throwing the
baby out with the bath water” in an
attempt to avoid sexism. “Girls do wear
pink, and I felt that it was one of the per-
sonality traits of this particular girl to wear
lots of pink. The other girl character wears
bright reds and blues.” As for the dress up
game: “Girls like to play dress up. Women
do, too!” says Robbins.

Women and girl protagonists, espe-
cially in preteen adventures, are also prone

to romance. Robbins purposely kept this
to a minimum. “It’s really the idea of
romance that they like. At that age, most
girls think little boys are horrible. Girls
are much more interested in interaction
between females.” She took care of the
romance issue with a scene in which Jen-
nifer watches a cute boy play the ukulele
and sing, while little hearts dance over her

head. “Requisite romance taken care of,”
explains Robbins, “back to the girls!”

Chop Suey
Created by writer Theresa Duncan and
artist Monica Gesue with the idea of cre-
ating a CD-ROM girls would like (but
not a “game for girls,” per se), Chop Suey
from Magnet Interactive and 20th Cen-
tury Fox isn’t easy to define. It’s neither
game (no action, no rules, no scoring) nor
interactive story (there’s no beginning,
middle, or end), nor creative activity pro-
gram. You might call it an “interactive
poem.” The CD-ROM combines hip,
engaging art, with melodious, alliterative

prose read by National Public Radio’s
David Sedaris (who was selected for the
job, according to Magnet, for his androg-
ynous voice). In fact, if you were to give it
edutainment value, it would be that it
shows the beauty and power of words.

Duncan said she modeled the game
after classic children’s literature such as
Maurice Sendak’s Where the Wild Things
Are. She said she didn’t pay much atten-
tion to research, but “designed it from the
heart.” Chop Suey features two sisters:
Lily and June Bugg, who live in Cortland,
Ohio. In the first scene, all we see of
them are their legs and anklette socked
feet—one sister’s legs are brown, the
other’s are white. Other than that, we see
little of them throughout the game, since
we experience everything from their point
of view. The two girls have just gone
shopping for red licorice at a candy store
called Cupid’s Treats and eaten chop suey
with their father at the Ping Ping Palace.
They’re lounging in the grass, watching
clouds pass overhead and trying to make
sense of their shapes.

Soon, we’re floating above a colorful
map of Cortland, and the city is our oys-
ter. We can explore the Carnival, Aunt
Vera’s House, Cupid’s Treats, and several
other spots on the map. Once we venture
forth, we can return to the map with a
click of the mouse—we’re not going to
get caught in a puzzle or a maze where we
can’t escape.

The “story” comprises memories and
moments in a few character’s past and pre-
sent lives. We’re voyeurs sneaking into
bedrooms, peaking through windows, and
rummaging through drawers. In Aunt
Vera’s room, her life unfolds as June Bugg
and Lily remember things she’s said
before, embellish her stories, and fantasize
about her adventures. (And none of these
fantasies involves castles or witches, by the
way.) We discover Miss Vera’s life is “a
long series of magical stories, like shiny,
dull pearls on a long, long, necklace.” Vera
is a former Rockette who lived in New
York City. Click on a picture on the wall
and learn about her three ex-husbands (all
named Bob). One Bob lives on the edge
of town and still sends her “roses of the
palest pink.” Click on the matchbook
cover on her bureau and go to a nightclub

C H O P P I N G B L O C K

56 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

T
he gender differences cited in
this article come from a wide
range of sources, including
published academic and indus-
try research as well as unpub-

lished surveys. If you’d like more
information on gender differences,
here are some excellent sources:
• “Gender and the Art of Designing

Interactive Media,” by Heidi Dangel-
maier, Computer Game Developer’s
Report, Aug. 1995

• “We Have Never Forgetful Flowers
in Our Garden: Girls’ Responses to
Electronic Games,” Maria Klawe, et.
al.; University of British Columbia,
Dept. of Computer Science, Dec.
1993.

• “Exploring Common Conceptions
About Boys and Electronic Games”,
Maria Klawe, et. al., University of
British Columbia Department of Com-
puter Science, Jan. 1994.

• “How the other Half Plays,” by Bar-
bara Lanza, Computer Game Develop-
ers Conference Proceedings, 1994.

R E F E R E N C E S

called the Single Spotlight, where a
lounge singer performs a sad love song.

Even better, you can snoop in a boy’s
room. In this case it’s Vera’s teenage son,
Dooner, a rock and roll musician with a
motorcycle and a silk aviator scarf, who
“used to sing songs about girls named
Lurlalou, or Pitapat, or just plain Mary.”
Dooner sits on his bed amidst record
album covers and bags of “Fame-On!”
chips, oblivious that you’re rifling through
his bedroom drawers. We find a maga-
zine called Girly (which we can’t read)
and his diary (which we can read), reveal-
ing an account of his date at the carnival
with a painter named Monica.

In this game, at the picnic scene
(where you watch Aunt Vera dance with
an Elvis Presley look-alike named Ned),
a lawnmower buzzes in the background,
birds sing, wind chimes jingle in the
breeze, and a dog barks. (If you pick up
x-ray sunglasses at the bottom of the
screen, you’ll see Vera and her current
beau in their underwear!)

For those who enjoy dress-up
games, you have a few options to choose
from. You can raid Aunt Vera’s closet.
Click on a long, red evening gown and
see Aunt Vera lounging languidly in a
hammock, a bowl of fruit on her lap. You
can also dress up a drooling rambunctious
dog named Mud Pup in loud boxer
shorts, socks, and a shirt, while punk rock
bounces in the background. In another

segment, you put eyelashes, sunglasses,
and a goatee on a woman’s face.

Chop Suey isn’t based on scoring or
fast action, but on a mood, style, and
sense of humor that kids and adults can
enjoy. While the gender stereotyped
experiences of romance and dress-up
might sound corny, these elements are
handled in a humorous, fun way. It’s clear
that Chop Suey appeals to a different
sense of play—one based on exploration
instead of target shooting and violence,
one that delivers entertainment value
from humor, characters, and the beauty
and power of language and art. This
defies the traditional “game” experience
that boys seem to like so much, but is this
type of computer play something that
only girls can appreciate?

Elroy Goes Bugzerk
Elroy Goes Bugzerk from Headbone
Interactive is another story-based game
that boys might enjoy as well as girls—if
not more so. The CD-ROM is billed as a
“comic adventure for kids aged 7 to 97”
and features a boy named Elroy and his
dog, Blue, who are hunting for a rare
stink-bomb-dropping beetle called the
Technoloptera, in the hopes of winning
their city’s annual Insectathon.

This game’s protagonist is all boy.
He loves scatological humor (in one scene
he enters a cave of locusts and comes out
covered in locust poop). He’s loud, he’s

sarcastic—but he’s vulnerable, too. It’s
clear that Elroy is in a predicament: if he
doesn’t catch the beetle by the end of the
weekend, he’s going to lose the Insec-
tathon and his nemesis, the evil Gordon
Smugs, will win. It’s your job as the player
to help him.

The game features long stretches of
animated action with few chances to use
the mouse. Eventually, the story stops,
Elroy asks you what he should do, and
you tell him by clicking your mouse. Your
actions usually involve telling Elroy to go
one direction or another, exploring ele-
ments in a room, or choosing from a list
of options, but most of them require some
thinking. You need to use what you learn
throughout the game (such as information
about insects) to determine Elroy’s—and
the wisecracking technoloptera’s—fate.

Like Chop Suey, Elroy relies on
story and character as well as its own style
of cornball humor. These elements lean
toward stereotypic “male” preferences,
which might turn off some girls. But the
style of play lends itself to a wide range of
characters and story elements—just as
Chop Suey does. Adding a female heroine
to Elroy’s story could make the game
more appealing to girls, especially if she’s
an important character who girls can iden-
tify with—and not just a “token” show-
piece. According to Headbone, Elroy will
get a female sidekick in the next title.

Appealing to the huge range of play
preferences that girls and boys have is a
great challenge for game developers, and
one that might seem daunting. However,
as interactive entertainment designer
Heidi Dangelmaier puts it, “Gender is not
a burden to bear but an intriguing human
dynamic that can bring texture and pas-
sion to interactivity.” To reach girls and
women with electronic entertainment
(and a new audience of boys and men), it’s
obvious that game developers need to con-
sider new directions in computer play.
Addressing different preferences and
styles in gameplay (be they gender influ-
enced or not) will make those new direc-
tions more interesting and exciting—for
male and female gamers alike. ■

Barbara Hanscome is managing editor
of Software Development magazine.

C H O P P I N G B L O C K

58 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Neither game nor puzzle, but a quiet exploration of a small town from the point of view of
two sisters, Chop Suey’s main focus is on interactive video, audio, and storytelling.

D
igital entertainment has come a
long way since Pong was able to
captivate us for hours on end.
As the technology has grown,
so has the scope of game devel-
opment. The digitized faces of
big-name stars have taken the
place of humble sprites, story-

lines are assembled by herds of suits, and
graphics and programming are farmed out
to production houses in faraway countries.
In such big-stakes projects, Creative Con-
trol is an elusive bird: once the cage door is
opened, off it flutters...and it doesn’t come
back when you whistle.

But if you’re starting to think “I
Did It My Way” is a tune no longer
heard in the game industry, you should
listen more closely to that humming
sound emanating from Ian Firth. Firth is
putting the finishing touches on Void
Pirates from Diversions Software and
SofSource Inc. I recently had the chance
to ask him some questions about the

project, and because I like you I’ll let you
in on what he had to say:

GD: Give us a little background: what is
Diversions Software, what’s your role
there, and what did you have to do with
the upcoming Void Pirates?

IF: Diversions Software was formed in
1992, after I created the artwork for Win-
Fish, a joint venture of 2 Guys Software
(myself and Andrew Novotak). I am based
in Denver and am the sole employee. My
role is “lone wolf,” and I am responsible
for every aspect of Void: code, art, anima-
tion, sound, even ad copy and box design.

GD: So what sort of projects has Diver-
sions developed?

IF: I currently have one retail product on
the market—Grey Wolf, a WWII U-
Boat shooter—and a dozen shareware
games and apps, including Prairie Dog

Void Pirates
on Parade

Developing a visually

exciting game takes

more than the right

design tools. Hard

work, capital, and

actors who‘ll work for

beer are all

part of the mix.

David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 61

New features in Caligari trueSpace2—such as three-dimensional booleans and three-dimen-
sionally rendered solid modeling—helped in the creation of this space station built into an
asteroid, which players see from the main viewer on the bridge of their ship.

Hunt 2-Judgment Day, second place win-
ner in last year’s Ziff-Davis Shareware
Awards. Two years of shareware develop-
ment have included Prairie Dog Hunt for
Windows and its sequel, Trap Shooting,
Fortress, TailGunner, StarGunner, and a
few applications including StarTex, a star
texture generator for rendering programs.

GD: What’s the connection with Sof-
Source?

IF: SofSource licensed rights to a few of
my shareware games and, after I sent them
a demo of Grey Wolf in mid-94, agreed to
feed me while I developed that project. I
was recently out of work as a database pro-
grammer and jumped at the chance. I had
always wondered why games
cost so much to develop, so I
set out to create Grey Wolf for
$5K and did. Void came next,
with a little bigger budget.

GD: How do you come to be
making computer games? Are
you an artist who’s gotten
into computers, or a techie
type who’s gotten into digital
art, or someone who’s always
wanted to make computer
games and just took on all the
necassary roles, or what?

IF: I think more the techie
type. The last decade of my
life has been spent as a mechanical design-
er. I have been interested in graphics and
3D work since 1985, when first exposed to
it. I spent time as a kid attempting to write
games for the Atari 800 in Basic, but got
tired of it after getting a car. My passion
went from writing silly shooters for Win-
dows to full-bore game development while
creating Grey Wolf.

GD: What was that first exposure to 3D
you just mentioned, and what about it
interested you and inspired you to get
involved?

IF: My first exposure to 3D was on an
Applicon CAD CAM system at Stor-
ageTek here in Colorado. From there I
moved to AutoCAD. The first animation

I did was a flyby of Durango airport with
AutoCAD 9 in 1989. Just seeing what was
possible is what drew me into it, and I
don’t think it will ever end.

GD: There’s a lot of rendered 3D in Void
Pirates, which I understand was done with
Caligari trueSpace. With your CAD back-
ground, how did you settle on that tool?

IF: My background in 3D includes 3D
Studio, Macromodel, AutoCAD AME,
and anything else I could get my hands on.
trueSpace was chosen due to price when
Grey Wolf began, and I quickly adapted to
it. Money was not available for 3D Studio
and, even if it were, I would not have used
it due to the fact that it is DOS based.

When Void Pirates started, I picked up a
second system (P90), for rendering, and
stuck with trueSpace. The only limitation
was lack of 3D Boolean operations, but I
still managed. When trueSpace2 showed
up, I did go back and redesign some of the
ships in the game using the new Boolean
features. I also created some interesting
stations built into tunnels on asteroids,
which couldn’t be done in trueSpace 1.0. I
just wish the motion blur option was
faster.

GD: What made you stick with trueSpace
after Grey Wolf?

IF: trueSpace is the easiest, most refined
piece of software I’ve ever seen. There is so
much packed into 1.2 MB of EXE: no

DLLs, nothing. The interface is also the
finest in the world, making designing so
much easier. Win95 uses cascading menus,
something I have hated since AutoCAD
2.6. I can’t believe Microsoft would go
back so far in user interface design. Anoth-
er reason for using trueSpace is the pletho-
ra of game companies touting “3D Studio-
Rendered Everything!!!” I want to be able
to say “Not a single thing was rendered in
3DS, and not a single actor you will recog-
nize!” My actors are all people from a bar
downtown and are working for beer.

Money is another reason. I don’t have
$4K plus another $5K for plug-ins for 3D
Studio. I paid $469 for trueSpace...and I’ve
seen some terrible 3D Studio stuff hit the
shelves.

I am shipping the true-
Space2 demo along with
some models with Void
Pirates.

GD: What other tools did
you make use of to create
the graphics for Void
Pirates?

IF: Everything was done
on a Digital P90 with
40MB of RAM, 2GB [of
storage], and Stealth 64
VRAM. Post production
was done with Adobe Pre-
miere and in:sync RAZOR.
All textures (400MB

worth) and touch-up were done with
Corel Photo-Paint 5+. Live footage was
shot with a Sony Hi-8 against my living
room wall. Footage was captured with an
Intel ISVR Pro card. All artwork in the
game uses the Indeo 3.2 fixed palette.
There is a bit of graininess because of
this, but palette problems are hexed.
There is a little choppiness to some of
the images, but I am willing to sacrifice
image quality in favor of easy, flash-free
palettes.

GD: Let’s talk about the look of the game.
The sci-fi setting in Void Pirates is realistic
and nicely detailed. What were some
influences, and what did you try to do to
differentiate your game visuals from sci-fi
imagery we’ve all seen before?

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Moving beyond the single-screen user interface, Void Pirates uses a main
bridge screen with seven hotspots leading to detailed control screens.

IF: I was always impressed by the style of
the original Aliens movie. The interior of
the Nostromo was very well done—people
smoking, porno magazines, empty coffee
cups, and the two bobbing ducks in the
main area really gave a realistic look to life
in space.

The Orinoco (the player’s ship) was
designed after looking at the mess on my
desks here at home: ashtrays, soda cans,
general disarray everywhere, but I still
know exactly where everything is. Since
space is dark, the overall mood of the game
is dark; a sad future similar to Blade Run-
ner. The shininess and lighting of the Star
Trek series always seemed too happy. Void
Pirates focuses on trading of narcotics,
stolen property, and the like, and a darkly
lit design sets the mood (hopefully). The
darkness also helps by masking areas where
there should be more detail but I couldn’t
afford to put it in.

GD: Couldn’t afford in what sense?

IF: Total budget was around $20K—this
includes my rent and bills. Seven months,
$20K, and one person is very little to create
a saleable multimedia product these days. I
would love to spend twelve months on
Void Pirates and $100K, but it isn’t avail-
able, so I have to create what I can with
what I have in as little time as possible.
The design was limited by what I could
render with 40MB RAM, without hitting
the swap file. Time is limited developing a
game with one or two systems. Total hours
for modeling and rendering would be
about 800 so far.

GD: So far? What remains to be done?

IF: More animations, more cut scenes.
The still artwork is 99% finished. I think
of something new each day. I’ll spend thir-
ty minutes trying to get an idea into true-
Space2. If I can’t, I give up and try some-
thing else the next day.

GD: Will the game feature a lot of
animation?

IF: The majority of the animations are
actual gameplay. Void Pirates uses many
concepts from other games. Ships are

attacked during strafing runs similar to
Rebel Assault, displayed with an AVI.
After disabling a ship, the hull is breached
with a drone, which you then pilot
around the interior of the ship as in Iron
Helix. The animations are not the main
point of the game, and I have tried to
integrate them as seamlessly as possible.
There are also cut scenes that play as the
player progresses through the game.

GD: You voiced some strong opinions
about user interface design earlier. One of
the great logistical and creative challenges
in game design is creating an interface that
manages tos atisfy all the various gameplay
requirements, coexist peacefully with all
the technical limitations of the minimum
target system, be readily usable by the
player, and stillf it the game milieu and
look good.

How did you approach this task in
Void Pirates?

IF: The Void Pirates user interface has
changed only a little during development.
I had grown tired of the single-screen user
interface (such as Daedalus Encounter,
Journeyman, Iron Helix) and wanted the
player to see more. Grey Wolf has a
Myst-type interface, where the player can
walk through the ship. The only problem
is a lack of crew members. It was basically
a ghost ship, and the player had to do
everything.

In Void Pirates, the user interface
consists of a main bridge screen with seven
hotspots. Five of them take you to closeups
of the control clicked on, and the other
two take you to the Main Cannon or the
Gun Turret. Originally, a walkthrough
design was used, but the image quality suf-
fered from compression, so still image
interfaces it was. The player can get tired
of walking around the ship in short time—
as in 7th Guest—so stills make sense.

To lose the ghost ship image, there
is a VidPhone the player can use to talk
to crew members. The crew members are
live video shot against blue screen here
in my home. All communications with
nonplayer characters are handled via
remote video drones or a text based ter-
minal. All selling and trading is handled
in this manner, and the player never

leaves the ship while in port.
System requirements are MPC2 for a

minimum, DX2/66 8MB RAM recom-
mended, accelerated video highly recom-
mended. I expect a lot of people calling
tech support saying their Packard Bell
486/25 won’t play the game. I’ve run into
about 90% of Grey Wolf customers having
their systems set up wrong for decent
Windows performance. The only limiting
factor in the game is video card speed, and
CD-ROM transfer speed.

I did run into a problem with CD-
ROM playback speed. My limit of 270kps
AVIs has caused a bit of image degrada-
tion, and there are certain parts of the
game where frames cannot be skipped.
There is a graphics diagnostic program,
along with VidTest in case the user needs
to determine whether their system is
MPC2 compliant.

GD: So what’s next after you burn in
Void Pirates?

IF: I and two other developers are coming
out with a Visual Basic Game Toolkit,
which will include a lot of source from
Void, plus a replacement for Surround-
Video (scrollable, scaleable virtual reality
AVI files) I have come up with using
Visual Basic and trueSpace. Hopefully the
Toolkit will get finished this year. It is in
the planning stage right now, and I have
very little time to work on it. It will
include source for various types of games:
scrolling, platform, shooters, AVI walk-
throughs... Plenty of code for blitted but-
tons, instead of the standard Windows
look. The other two authors are contribut-
ing sound and music goodies, and busi-
ness multimedia stuff, as it isn’t aimed at
game design only.

If we can find some capital, Andrew
(WinFish guy) and I are going to hook up
again. He is working diligently with the
Intel 3DR toolkit, and we are thinking
along the lines of a networkable Tank
Simulation, due to the speed of 3DR.
With trueSpace, we should be able to cre-
ate a very nice interface for a Tank.

And yesterday, SofSource and I
agreed on a vastly improved Grey Wolf 2,
for next spring. At least I don’t have to
wear a tie for another eight months. ■

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

	back:

