
NOVEMBER 1999

G A M E D E V E L O P E R M A G A Z I N E

W ith one of the largest
console launches ever
just behind us and at
least two more loom-

ing on the horizon over the next 18
months, many people are speculating
about the features of these next sys-
tems. Upon seeing the impressive fea-
ture sets of the new consoles, some
have raised questions as to the long-
term viability of the PC as a gaming
platform. It’s tough to look at a console
spec sheet, read that it has broadband
Internet access, amazing graphics and
audio capabilities, a keyboard, DVD
support, support for electronic software
distribution and backwards compatibil-
ity, and not see that the PC faces stiff
competition. The traditional strengths
of the PC are being co-opted by con-
soles. I for one don’t believe PC gaming
will go away, but the platform must
confront these challenges head-on.

To grow the PC market, prices must
continue to drop. Fortunately they are,
and it’s one reason I’m bullish on the
PC’s future. One big reason for recent
drops in PC prices is the direct result of
marketing campaigns by ISPs like
Compuserve and AOL. Compuserve, for
example, is subsidizing the cost of
Compaq, HP and eMachine entry-level
systems to the tune of a $400 rebate at
purchase. In return, these consumers
(many of them first-time PC purchasers)
agree to subscribe to Compuserve for
three years at $21.95 per month. These
ISPs are gambling that it’s better to
underwrite the cost of these new
machines today and recoup that invest-
ment through extended online service
agreements. The ISP gets reimbursed for
its up-front investment from these
multi-year service agreements, it gets
“content” in the form of new chat par-
ticipants, more eyeballs for which it can
sell advertising space on its service, and
other assorted benefits. If it persuades
these indentured servants — I mean,
customers — to stay with Compuserve
after the agreement is terminated, so
much the better for the ISP. The bottom
line is that as I write this, you can buy a
brand new 400MHz eMachine with 15-

inch monitor and a color printer for
about $90 more than a Dreamcast.

While I’m glad that more PCs are
working their way into homes — it cer-
tainly will grow the base of casual
gamers — there are a couple of aspects
to these incentives that don’t bode well
for the PC game industry. First, these
rebate programs are seeding households
with machines barely equipped to play
today’s games. The latest graphics and
audio hardware won’t be found in a
$289 computer, and without these capa-
bilities, the systems offer little in terms
of a cutting-edge gaming experience.
Second, long-term service agreements
with online services like Compuserve
could hamper the growth of broadband
access to the Internet, and enabling
broadband access is essential for grow-
ing the online gaming market.

It would be interesting to see a major
game publisher like Electronic Arts step
up and subsidize a line of high-end
game PCs, targeting veteran PC owners
and hard-core gamers. In return for the
rebate at purchase, these consumers
might agree to buy a certain number of
games from EA over a span of years (the
Columbia House music club model), or
sign a multi-year subscription to a per-
sistent game world like ULTIMA ONLINE.
The latter option is especially intrigu-
ing, since the risk to publishers of these
games is high — developing and main-
taining a persistent world is expensive,
they are more difficult to manage, and
more rides on their success than with
traditional games. A publisher could
ensure that when the game was built,
some percentage of players would be
locked into the game. A guaranteed rev-
enue stream over a period of years looks
good on the books, and in the hit-or-
miss world of game publishing, that’s
important to Wall Street.

Of course, there’s nothing stopping
any of the console manufacturers from
launching a similar rebate program to
entice their customers. It may simply
be a matter of who strikes first. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9

4

P L A NG A M E

Can Subsidized Hardware

Save PC Gaming?

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Paul Steed psteed@idsoftware.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Director Gabe Zichermann

MarCom Manager Susan McDonald

Junior MarCom Project Manager Beena Jacob

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Assistant Circulation Manager Craig Diamantine

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
CFO/COO Ed Pinedo
Executive Vice Presidents Darrell Denny, Galen A.
Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

h t t p : / / w w w. g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

A New Chip off the Old Block

METACREATIONS has unveiled Carrara,
its newest entry into the fray of “bar-
gain” 3D modeling and animation
packages. The name is appropriate
enough: Italy’s Carrara marble has
been prized for its unsurpassed quality
since ancient times, back when a huge
slab of marble was the original model-
ing environment for 3D artists.

Carrara is actually the marriage of
Metacreations’ Ray Dream Studio and
Infini-D products. So what separates it
from the rest of increasingly crowded
pack of 3D modeling and animation
programs? It has much the same laun-
dry list of features and effects as many
of its competitors, including multiple
renderers, Direct3D and OpenGL sup-
port, importing and exporting of most
industry-standard 2D and 3D file for-
mats, scads of shaders and presets, and
an SDK for customization. However,
one feature that sets it apart is its clean,
attractive user interface, which lacks
the screen-clogging blizzard of buttons

characteristic of certain wildly popular
high-end packages.

Carrara will sell for $499 and run on
Windows 95/98/2000/NT 4.0 and
Macintosh platforms.
■ Metacreations Corp.

Carpinteria, Calif.

(805) 566-6200

http://www.metacreations.com

X-File Management and More

NXN SOFTWARE has announced Alien-
brain, the successor to its groundbreak-
ing asset management tool tailored
specifically for game developers,
MediaStation. Remember back in high
school when you wrote your first game?
Maybe you had a few dozen files and
kept track of them on the back of your
physics homework. Whatever system
you had, it wouldn’t work on today’s
development projects which now com-
prise thousands of files and mountains
of media to manage.

The folks at NxN feel your pain, and
Alienbrain is their antidote to the
mind-boggling complexity of manag-
ing a game development project. The
client/server system includes four mod-
ules to track file management, version
control, process automation and pro-

ject tracking across differ-
ent user groups: “Genius”
is designed for the artists
on your team, “Intelli-
gence” for the program-
mers, “Control” is the
command center for pro-
ject administrators and
tool developers, and
“Knowledge” is for pro-
ducer-types. While the
nomenclature won’t settle
any debates about who
the real brains on your
team are, each module
contains features and
functionality unique to
the needs of its users.

Alienbrain’s server systems require
Windows NT 4.0 or later, and clients
require Windows 95/98/2000/NT 4.0.
Pricing was not yet finalized at press
time, but the servers are expected to
cost in the neighborhood of $4,900,
with client systems priced at around
$1,900. NxN also offers flexible volume
pricing packages.
■ NxN Software AG

Munich, Germany

+49 (89) 27-32-24-0

http://www.alienbrain.com

Gearing Up for the Next Generation

CRITERION SOFTWARE has revealed the
third generation of its multi-platform
3D development toolkit, Renderware.
By now we’ve all gotten an idea of
what the near future of 3D gaming
holds both for PCs and consoles. As
demands on developers increase, plat-
forms diversify and pressure builds to
decrease development lead time, more
developers may be considering outside
resources for help.

Renderware is based on a streamlined
plug-in architecture that allows develop-
ers to mix and match functionality by
overloading the pipeline with their own
tools (physics or collision detection, for
example,) when they so desire. The PC
version supports Glide, OpenGL and
Direct3D, with a device-independent
architecture that will enable easier port-
ing to consoles and tomorrow’s digital
TV platforms.

Renderware 3 will be available by
year’s end for PC, Playstation 2 and
iMac at $1,000 per programmer per
platform per year with no royalties,
and third-party plug-in development is
in full swing. Linux, Dreamcast and
Nintendo Dolphin versions of Render-
ware are also being considered.
■ Criterion Software Ltd.

Guildford, Surrey, U.K.

+44 (0) 1483-406200

http://www.renderware.com

New Products: Metacreations intro-
duces Carrara, NxN rolls out Alien-
brain, and Criterion unveils its next
generation of Renderware. p. 7

Industry Watch: Dell snubs ATI,
Microsoft shows off its new console,
Sony divulges more PSX2 secrets, and
Aureal busts out with boards. p. 8

Product Review: Jeff Lander sings the
praises of multi-resolution meshes as he
reports on Digimation’s MultiRes Toolkit
and Plug-in for 3D Studio Max. p. 10News from the World of Game Development

7

Carrara’s modeling interface: its lack of clutter may

be inviting to some, limiting to others.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Alex Dunne

DREAMS DO COME TRUE. Sega’s Dream-
cast launch proved to be better than
the company hoped, with preliminary
figures indicating that $97 million in
sales were rung up around the U.S. on
9/9/99. Sega claims it was the biggest
24 hours in entertainment retail sales,
easily surpassing the $28 million that
The Phantom Menace took in on open-
ing day last May.

PSX2 NEWS. Carefully timed to coin-
cide with the Dreamcast launch, Sony
stole some of Sega’s thunder with a
number of Playstation 2 announce-
ments. The company revealed that the
PSX2 will debut in Japan next March
(three months later than originally
planned, possibly due to chip manufac-
turing problems), and in the U.S. and
Europe next fall. Japanese consumers
will have to cough up 39,800 yen ($365
at press time) for the system. Sony also
revealed that it will distribute games via
the Internet, made possible by the
PSX2’s broadband support and an
upcoming hard drive Sony will sell. To
support this new means of distributing
console titles, Sony is creating an elec-
tronic transaction system, and an e-
distribution server. In developer news,
Sony will give PSX2 developers tools
that support the regular Playstation
programming/debugging mode as well
as a new workstation mode for creating
PSX2 graphics, all on the same system.

ENTER MICROSOFT... At ECTS, Micro-
soft demo’d its upcoming console
(code-named the “X-Box”) to various
developers and analysts. As we go to
press, no release date for this console

has been hinted at, and product specs
are sketchy. But the word on the street
is that the X-Box will be based around
a 500MHz Intel chip, the Nvidia
GeForce 256, a DVD drive, a multi-giga-
byte hard disk, and of course, some fla-
vor of Windows. Who will produce this
console? Not Microsoft, apparently —
Dell, Gateway and Samsung have been
lined up as manufacturers.

IT’S TEN NO MORE. Total Entertainment
Network (TEN) ditched its name and its
target market, deciding that the casual
game market is more lucrative than its
previous focus on hard-core players. The
company, now called Pogo.com, is
focused strictly on card, trivia, board
and other “family” games. The site has
more than 3.5 million members, and
has lined up has distribution relation-
ships with @Home, Alta Vista, Cnet,
Excite, Go, Netscape, and Sony.

BE LINES UP TITLES. Be Inc. and Mono-
lith announced that SHOGO: MOBILE

ARMOR DIVISION will be brought to the
BeOS. SHOGO will be developed and pub-
lished for BeOS by Wildcard Design. At
ECTS, Be showed CIVILIZATION: CALL TO

POWER, CORUM 3, and QUAKE 2 running
on its operating system.

DELL DECISION HURTS ATI. ATI
acknowledged that Dell’s recent deci-
sion go with Nvidia chips in its
OptiPlex computer line will cost ATI
$10 million in sales per quarter. The
company still expects to meet fourth-
quarter sales projections when it
reports results on October 21, but that
didn’t quell some panicked investors,
and trading of ATI’s stock was halted
on both the Toronto and Nasdaq
exchanges after the company revealed
the cost of that lost deal. ATI points
out that it will still supply Dell’s note-

book PCs, and that its relation-
ship with the big computer
company is still strong.

AUREAL LAUNCHES CARDS.
Aureal entered the board busi-
ness and is shipping two new
Aureal-branded sound cards,
the Vortex SQ1500 and the
Vortex2 SQ2500. The new
cards are marketed under the
Aureal name by I/OMagic
Corporation, and are support-
ed by a multimillion dollar

marketing campaign. Based on
Aureal’s AU8810 processor, the
SQ1500 supports A3D 1.0 and features
a 512-voice wavetable synthesizer. The
SQ2500 is based on a new version of
the Vortex2 AU8830 processor and
supports A3D 2.0 with a 576-voice
wavetable synthesizer. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

8

1999 GDC RoadTrips

OGDEN ECCLES CONFERENCE

CENTER

Salt Lake City, Utah
November 1, 1999

THOMPSON CONFERENCE CENTER

AT THE UNIVERSITY OF TEXAS

Austin, Tex.
November 3, 1999

Cost: $120 ea. (discounts available)
http://roadtrips.gdconf.com

Software Development East

WASHINGTON CONVENTION CENTER

Washington, D.C.
November 8–12, 1999
Cost: variable
http://www.sdexpo.com

RE:Play Real World Conference

TISCHMAN AUDITORIUM AT THE

PARSONS SCHOOL OF DESIGN

New York, N.Y.
November 13, 1999
Cost: free
http://www.eyebeam.org/replay

Comdex Fall

SANDS EXPO & CONVENTION CENTER

Las Vegas, Nev.
November 15–19, 1999
Cost: variable
http://www.comdex.com

UPCOMING EVENTS

CALENDAR

Sony took advantage of the Dreamcast launch

to divulge more tidbits about the Playstation 2.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10 Digimation’s
MultiRes

by Jeff Lander

S calable 3D graphics has been a
major event in 3D graphics this
past year. With so many differ-

ent gaming platforms and such a variety
of graphics cards, making content that
performs similarly on all systems is a
real challenge. Game developers have
commonly used different level-of-detail
models to balance the performance.
However, creating LOD models is a time
consuming and tedious project for any
game artist. Furthermore, dynamically
changing between LOD models during
the game can lead to annoying popping
as they switch. Graphics researchers
have been promoting the idea of con-
tinuous LOD algorithms for 3D models.
In these algorithms, the model will
smoothly scale from very high to very
low polygon counts. In fact, Stan Melax
wrote an article in this magazine about
implementing a continuous LOD sys-
tem (“A Simple, Fast, and Effective
Polygon Reduction Algorithm,” Novem-
ber 1998). However, creating a system
that handles all the lighting and texture
information and smoothly integrates
into your production is a task that
could easily tie up development
resources for some time.

I DON’T HAVE THAT KIND OF TIME. With
this in mind, I looked with interest at
several commercially available continu-
ous LOD systems at Siggraph 1998.
One of these was a very interesting sys-
tem developed by Intel. At the time,
the project was not quite ready to be a
product, but looked very promising.
Well, at the GDC this year, Intel
unveiled the fruits of this labor. They
have teamed up with Digimation to
produce the MultiRes Software Toolkit
and Plug-in for 3D Studio Max.

The MultiRes Plug-in enhances 3D
Studio Max by providing a method for
reducing a high polygon mesh to a
lower polygon count mesh. In this way,
the plug-in is similar to the Optimize
routine that is built into 3D Studio
Max. However, MultiRes is quite a bit
more powerful. For example, you can
set exact polygon count targets as well
as a reduction percentage. Also, Multi-
Res does an excellent job of preserving
texture coordinates and vertex normals.
Artists are even able to fine-tune the
reduction algorithm by a variety of con-
trols as well as selecting the vertices not
to remove.

As a modeling tool alone, this pro-
vides a pretty powerful and useful way
for artists to craft content. However, the
real power of MultiRes is realized by
creating a multi-resolution mesh. This
special mesh file contains all the infor-

mation needed to create a mesh that
can dynamically scale from its full reso-
lution down to 1 polygon composed of
3 vertices. This MultiRes mesh can then
be used directly in your game as scal-
able content. It can also be exported
into the MetaStream 3D format that is
used with tools from MetaCreations to
view scalable 3D models on the web.

You can see an example of MRM in
action in Figure 1. The first image is the
original mesh at 6,126 vertices or
11,766 faces. I then reduced this down
to just 64 vertices for 120 faces. Obvi-
ously, this looks pretty bad up close, but
when the object gets far away it looks
fine. The MRM algorithm preserved the
outline of the arms and legs. This is
where real-time use of MultiRes really
makes a difference. A herd of these ani-
mals at full resolution would grind any
system to a halt. But a herd of them at
120 polygons is perfectly reasonable.
HOW DO I USE IT? If you are a 3D Studio
Max user, the plug-in couldn’t be any
easier. You simply select your model
and select the plug-in from the Modifi-
er panel. You can then “Generate” the
MultiRes mesh and start interactively
reducing the vertex count in the
model. The default generation options
do a good job of mesh reduction for
many models. However, you can really
fine-tune the operation.

The “Vertex Merging” option allows
you to determine whether or not
unconnected areas of the mesh will be
merged as the reduction proceeds. You
specify the maximum distance in 3DS
Max units that the algorithm will con-
sider for merging. This can be useful if
your mesh is composed of parts that
are not topologically connected.

“Boundary Metric” gives you the
options with respect to any material
changes in to model. It will then try to
avoid collapsing vertices that cross
these material boundaries.

Most of the time, the algorithm
along with these options will allow
you to create a good mesh. However,
there are times that you will want to
select vertices that you do not want to
collapse in the model. Perhaps there is
a feature in the model that is distinct
and you wish to be preserved. You can
select the “Maintain Base Vertices”
option and then select the vertices you
wish to preserve. These vertices will
then be maintained throughout the
reduction process.

Jeff Lander is always trying to find a tool to make his life easier and cut down on
unnecessary work at Darwin 3D. If you can recommend any nifty tools, pass them
on to jeffl@darwin3d.com.

F I G U R E 1 . The bottom dinosaur’s

face count has been reduced dramati-

cally, but looks fine from a distance.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

11

The final option determines how the
normals in the model will be handled.
While vertices are removed, the topolo-
gy can change pretty dramatically. You
can simply use the original vertex nor-
mals throughout the reduction. Other-
wise, by setting the “Multiple Normals
per vertex” option, the system will cre-
ate new normals based on the surround-
ing faces as the model reduces. This
option comes at the cost of increasing
the number of update records that must
be recorded. Whether or not this is
needed depends greatly on your applica-
tion and models.

That’s all there is to it. Once you are
happy with the reduction, you can save
it out, ready to use in your application.
BUT I DON’T USE MAX. If you don’t use
3D Studio Max, you won’t get the bene-
fit of this nifty plug-in. However, the

benefits of MultiRes are still available to
you. The MultiRes Software toolkit con-
tains all the functions you will need to
create a scalable mesh. You simply set
the parameters for the reduction and
submit a structure containing all the
vertices, normals, and faces in the
model to the GenerateMRM function.

I found it very easy to take models
created in Softimage and convert them
into a MRM by modifying the Digima-
tion sample viewer. This would be easy
to do for any polygonal model.
SO HOW DO I USE IT IN MY GAME? Now I
have a nice MRM all ready to go and I
want to use it in my game application.
The examples provided with the
Software Toolkit make this easy. There
is both a Direct3D and OpenGL exam-
ple of working with a MultiRes mesh.

One thing developers will appreciate
is that while the MRM generation func-
tions are in a Dynamic Link Library
(DLL), all the run-time code needed to
display and manipulate the meshes are
straight C. You need no extra libraries
to ship with your project. This also
makes it possible to use the MRM tech-
nology on game consoles.

Also, as the algorithm works by
changing the connectivity of the
meshes, the actual vertices are left
alone. This means that the MultiRes
algorithm can work with most anima-
tion schemes such as skeletal deforma-
tion, morphing, or even QUAKE-style
mesh flipping.
OTHER FEATURES. The MultiRes Toolkit
also offers another very valuable feature.
In order to render polygonal meshes in
the fastest way possible, many 3D
graphics cards prefer to receive the

meshes as triangle strips. These strips
can be tricky to create and often require
custom tools to generate them.

MultiRes provides a way to generate
triangle strips from a polygonal model.
However, since the model’s topology
changes, as the level of detail changes
an initial triangle strip would become
invalid. To address this issue, the Multi-
Res Toolkit provides a way to generate
triangle strips on the fly. Very cool...
WHAT’S THE BOTTOM LINE? The 3DS Max
MultiRes plug-in is $295. By itself, this
plug-in may be of use to Max modelers
who wish to have a better polygon
reduction tool or want to generate
MetaStream objects for web viewing. If
you don’t use Max or really want the
game interactivity, this is probably not
for you.

The MultiRes Software Toolkit
includes three license copies of the Max
plug-in as well as all the libraries and
code needed to generate and display
continuous LOD meshes. The cost of
the toolkit is a flat fee of $5,995 per fin-
ished game title. When you consider all
the technology included and the
amount of development time it would
take to create this functionality, this
seems like a great deal to me.

Obviously, I’m not the only one who
thinks this is interesting. Both Valve
with TEAM FORTRESS 2 and Pandemic
Studios with DARK REIGN 2 have licensed
the MultiRes Toolkit for their upcoming
3D titles. I expect many more to follow.

MultiRes is the first commercial pro-
ject to come out of the collaboration
between Intel and Digimation. I cer-
tainly look forward to other products
that come of this partnership. ■

Digimation Inc.
St. Rose, La.
(800) 854-4496
http://www.digimation
.com

Price: Plug-in is $295.
Software toolkit is
$5,995 per finished
game, including three
copies of the plug-in.

Software Requirements:
Windows 95/98/2000/
NT 4.0; 3D Studio Max
for the plug-in.

Pros:

1. Full source code for plug-
in and run-time modules
for Direct 3D and
OpenGL.

2. High-quality polygon-
reduction algorithm with
great performance.

3. No per-copy royalties on
game sales.

Cons:

1. Plug-in only comes for
3D Studio Max. Users of
other packages must roll
their own conversion
programs from library
included in SDK.

2. Toolkit cost is up-front
although pretty reason-
able.

3. Users will need to adapt
their game engines to
work with the multi-
resolution meshes.

MultiRes:

F I G U R E 2 . The MultiRes user

interface.

b y J e f f L a n d e r G R A P H I C C O N T E N T

In fact, many of these objects are not
even just lying around looking all
organic. They slop, splash, waddle, and
plop about you all the time. Many
shapes around you are even in motion.
These objects change shape effortlessly
as you game artists crumple under the
pressure of having to model such phe-
nomena. When was the last time you
saw a nice splashing fountain in a
game, anyway?

Animators have faced the challenge
of visually creating the organic world
we live in for some time now. To help
them out, commercial modeling pack-
ages have provided the artist with tools
for creating organic shapes. One of the
methods for creating organic objects is
through the use of blobby balls that
can be combined together to form a
clay-like sculpture. The commercial
animation package developers have
realized the usefulness of this tech-
nique and coined all sorts of propri-
etary terms for their version. You may
have seen ads for meta-balls, meta-clay,
blob-modeling, and various other ways
of combining the term “meta” with
some form of goop.

To create an object from this meta-
goop, an artist drags around primitive
elements, usually spheres, which repre-
sent the rough shape of the object.
Each of these elements has a center
position and several parameters associ-
ated with it. These parameters define
how the element will interact with the
particles and world surrounding it. You
can see an example structure for a
meta-goop particle in Listing 1.

The position describes the center of
the element. I also need to keep track
of the radius of influence of the ele-

ment (actually squared so I save some
math later) and the strength of the ele-
ment. This strength parameter defines
how the element will affect the space
surrounding it.

The elements interact with each
other by creating an energy field
around them. This is similar to the
way planets create a gravitational field
for a solar system. It is possible to eval-
uate the energy of the system at an
arbitrary point in space. The formula
to determine the amount of energy
that an element contributes to the
point is given as:
distance = squaredDistance(&goop->

position,&testPosition);

if (distance < goop->radiusSquared)

{

falloff = 1.0f - (distance/goop->

radiusSquared);

fieldStrength += goop->strength * falloff

* falloff;

}

By running this formula over all the
elements in your system, you get the
exact field strength for that position.
The energy field creates some interest-

ing data but is not much of an object.
What I want to create are particles that
will visually grow together as they get
closer. You can see an example in
Figure 1. In order to create an object
that will show this visual aspect of the
energy field, it is necessary to define a
value that will represent the outer shell
of the object — the threshold.

The energy field varies in strength
from zero on up at any position you
may evaluate. In fact, there is nothing
to keep you from defining negative
strength for an element, creating nega-
tive regions, or holes, in the energy
field. This is useful for effects such as
denting and the like. To define the sur-
face of the object in the field, I can set
an arbitrary threshold giving the object
its final shape.

The threshold value defines the
boundary between the area inside and

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

13

The Blobs Go Marching

Two by Two

T his may come as a shock to some, but the world is not made up of corridors

composed of completely planar surfaces. We live in a wildly organic place.

Hills roll, muscles bulge and fountains splash. The world around you is

filled with organic shapes which cannot easily be created out of triangles.

When not splashing gloop around his kitchen floor, Jeff can be found creating real-
time graphics applications at Darwin 3D. Fling some bits of your own his way at
jeffl@darwin3d.com.

typedel tMetaGoop

{

tVector position;

float radiusSquared;

float strength;

};

L I S T I N G 1 . A meta-goop particle.

The "meta-goop" seen here produces

results that are difficult to create with

traditional modeling techniques.

the area outside the shell of the object.
Figure 2 shows how an example thresh-
old value creates a boundary in a 2D
energy field created by three meta-goop
entities.

By adjusting this threshold value for
the energy field, as well as adjusting
the strength, position, and effective
radius of individual entities, a great
variety of objects can be created. But I
still need to talk about how.

Walking on Eggshells

B y creating a few meta-goop parti-
cles and setting some values for

them, I have created my meta-goop
system. Run that goop through a func-
tion that evaluates the energy field,
apply a surface threshold, and I have
the surface shell for the meta-goop
object defined. But the problem
remains, how do I draw it?

I could step across the entire 3D
space defined by entity radii and eval-
uate the field. Anywhere the returned
value is equal to the threshold, I could
draw a solid cube the size of the steps
taken. This sounds pretty good.
Sounds like it would work. Actually, it
sounds kind of familiar. It sounds
kind of like volume rendering of vox-
els for applications such as viewing
CAT scan data. In fact, that is exactly

G R A P H I C C O N T E N T

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

14

F I G U R E 1 . Our goal is to make our three particles visually grow together as they get closer to one another.

what I would be doing if I took this
approach.

However, rendering the energy field
this way can lead to pretty chunky look-
ing images unless the step size is fairly
small. This is because the energy field is
continuous over the entire range of the
model world. However, the steps I took
walking across the field are in discrete
steps. If the steps are too big, the image
can look chunky. This is analogous to
drawing a line on a computer graphics
screen. If the resolution of the screen is
too low, the line can look very jagged.
This unfortunate condition is known as
“the jaggies” and requires some form of
smoothing or antialiasing to make the
lines look better.

Unfortunately, decreasing the step
size in my energy field will greatly
increase the amount of calculations
that must be made. Therefore, it is nec-
essary to find a way to smooth out the
voxel image — sort of antialias the
meta-surface.

CAT Scans and Game Development

F ortunately for me, the graphic
visualization and medical imaging

industries have been dealing with this
issue for quite some time. Wyvill and
McPheeters in 1986 and Lorenson and
Cline in 1987 independently devel-
oped a system called “marching
cubes” which enables you to render a
polygonal approximation of a voxel
field. One possible unfortunate cir-
cumstance is that this algorithm may
be tainted by a software patent and I
am investigating how this will affect

the issue (see Sidebar).
That aside, the way marching cubes

works is pretty simple. Divide the
region you wish to render into a regu-
lar 3D grid. Evaluate the energy field at
each position on this grid. Now, con-
sider the grid cube by cube. If the ener-
gy function at all eight corners of the
cube are less than the threshold level,
the entire cube is outside the meta-

object and the cube can be ignored
completely. Likewise, if the corners are
all greater than the threshold, the cube
is completely inside the object and can
also be ignored. The only cubes that
need further consideration are those
that have corners both inside and out-
side the meta-object. These cubes are
on the object surface and will be part
of the final render.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

15

F I G U R E 2 . Creating a boundary threshold in a

2D energy field.

A s many of you who have met

me and heard me rant on

the topic know, I believe

algorithmic software

patents are totally wrong. I feel they

completely halt continued development

down interesting research pathways by

shrouding a topic with legal pitfalls.

Graphics researchers create progress by

building on the work done by others

before them. I like to imagine the state of

the industry if Bresenham had patented

his method for drawing a line on a graph-

ic display and then charged a licensing

fee for every line drawn.

The topic of volume rendering is an

interesting case in point. As an obvious

next step in the visualization of volume

data, it was reported by researchers in

several publications. However, General

Electric apparently owns a patent on the

technique via the Lorenson and Cline

implementation (U.S. patent

#4,710,876). As an actual apparatus to

display medical imaging data, I can

understand it. However, the patenting of

a “method for displaying three-dimen-

sional surface images” seems pretty

broad to me.

I have been told by someone via e-mail

that GE aggressively enforces this patent.

However, it is not clear to me how this

would apply to the rendering of an isosur-

face in a game. Does this mean that any

modeling program using these tech-

niques must pay a license to GE? If I cre-

ate a game using a derivative of marching

cubes and it is a big hit, am I going to

receive a stealth patent letter in the mail

demanding a percentage? How derivative

does it need to be? The prior art on this

topic seems limitless, but what can I use

as a reference and still be safe?

With the record number of software

patents being filed, this is going to

become an increasingly difficult issue for

game developers in the future. I am

actively researching the issue and hope

to report on the results in a later column.

Anyone with information on the topic,

please let me know. In the meantime,

always document your research from

public journals as best you can. Igno-

rance is not bliss in this situation.

The Marching Cubes Patent Question

void FindIntersection(tVector *a, tVector *b,

float aVal, float bVal,

float thresh, tVector *result)

{

/// Local Variables ///

tVector diff;

float ratio;

///

VectorSubtract(a, b, &diff);

ratio = (thresh - aVal) / (bVal - aVal);

VectorMultiply(&diff, ratio);

VectorSubtract(a,&diff,result);

if (aVal > bVal)

}

L I S T I N G 2 . Finding the intersection point.

A cube has eight vertices. That
means that there are 256 possible com-
binations of how a surface can intersect
with the cube. If you consider symme-
try, the number of possibilities reduces
to 14. Much of the literature on surface
generation using the marching cubes
routine deals with optimizing for those
14 special cases.

However, there is an easier way I
have seen termed “marching pyramid.”
If you consider a cube of eight vertices
as being composed of five tetrahedrons
with four vertices each, the problem is
greatly simplified. There are now only
three very simple cases to deal with.
The cases are the following:

1. One vertex is inside the surface
and the rest outside.

2. One vertex outside the surface
and the rest inside.

3. Two vertices outside and two
inside.

That is all I need to consider. In cases
1 and 2, a single triangle is generated.
In case 3, two triangles are generated.
You can see the three cases represented
in Figures 3a–c.

Once the vertices of the pyramid are
classified, the actual vertex positions
of the triangles created are obtained
by linear interpolation of the corner
values along each edge. You can see
the code for this in Listing 2. As there
are five tetrahedrons making up each
cube, the number of triangles generat-
ed with the marching pyramid tech-
nique is greater than what would be
created from simple marching cubes.
However, the classification and cre-
ation step is much simpler and the
resultant surface is a more accurate
approximation of the surface. On cur-

rent 3D graphics hardware, the extra
triangles shouldn’t affect performance
too much.

Goopy Games

Ihope it is now clear that these meta-
goop techniques can be used to cre-

ate interesting organic objects suitable
for real-time display. However, there
are several aspects that actually make
them ideal for use in games. For one,
they are procedurally created. Complex
structures can be generated from sim-
ple data structures consisting of the
location and attributes of each particle
in the system. There is no need to store
a complete mesh.

In addition, the meta-object can be
tessellated to different levels depend-
ing on the initial grid size of the voxel
space. This gives the game a dynamic
level-of-detail component that is
needed in these days of varying hard-
ware performance.

You can attempt generation of the
objects in real time through efficient
optimization of the surface approxima-
tion routine. You could also simply
decide to create the objects at load time
and display them as traditional polygo-
nal objects during the actual game, or
evaluate the mesh only when the state
of the goop elements changes. This
kind of flexibility makes for easy inte-
gration into a variety of applications.

I didn’t even discuss how the sur-
faces could be rendered. One obvious
choice would be to apply environ-
ment-mapping techniques to create
the chrome creature from Terminator 2.
Likewise, you could apply bump-map-

ping techniques to bring a water crea-
ture to life. I think an interesting
application would be to combine
meta-surface techniques to a particle
system like the one I described last
summer (“Spray in Your Face,”
Graphic Content, July 1998).

For more fun, get my demo applica-
tion off the Game Developer web site
(http://www.gdmag.com). This will
allow you to play with the creation of
meta-goop and start spreading some
slop around your games. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

• Greene, Ned. “Voxel Space Automata:

Modeling with Stochastic Growth Pro-

cesses in Voxel Space (Proceedings of

Siggraph 89).” Computer Graphics,

Vol. 23, No. 4 (Aug. 1989): pp. 175–184.

• Lorensen, William, and Harvey Cline.

“Marching Cubes: A High Resolution

3D Surface Construction Algorithm

(Proceedings of Siggraph 87).” Com-

puter Graphics Vol. 21, No. 4 (Aug.

1987): pp. 163–169.

• Watt, Alan, and Mark Watt. Advanced

Animation and Rendering Techniques.

Reading, Mass: Addison-Wesley, 1993.

• Wyvill, Geoff, Craig McPheeters, and

Brian Wyvill. “Data Structure for Soft

Objects.” The Visual Computer Vol. 2,

No. 4 (Aug. 1986): pp. 227–234.

Web Resources
• http://www.students.cs.ruu.nl/

people/jedik/Methods/

Surface_fitting/Marching_cubes.htm

• http://www.swin.edu.au/astronomy/

pbourke/modelling

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 3 C . Two vertices outside

and two inside create two tringles.

F I G U R E 3 B . One vertex outside and

the rest inside also make one triangle.

F I G U R E 3 A . One vertex inside and

the rest outside create one triangle.

b y P a u l S t e e d A R T I S T ’ S V I E W

debate when it comes to character ani-
mation: keyframing vs. motion capture.

Analogous to the classic Luddite/
Promethean struggle that occurs still in
the scientific community, animators
tend to divide themselves into two
camps. On one side you have the purists
who believe mo-cap is the evil product
of technology run by marketing blow-
hards. On the other you have the strate-
gist artist who is constantly looking for
the better, faster way to get the job
done. Because in the end if your artwork
is featured in a computer game and not
a gallery in New York City, it boils down
simply to getting the job done.

Mo-cap can and will help get the job

done faster and better. Like any other
tool available to the computer artist/ani-
mator today, it can be used in various
ways to various degrees. What I’m going
to do is demonstrate a situation in
which motion capture and keyframing
can be married — no, have to be married
together — to form a solution for one
instance of character animation.

I’ve Got My Eye on You

M eet Orbb. He’s cool. He’s a charac-
ter we created for QUAKE 3: ARENA

(with textures by Kenneth Scott) solely
for the weirdness of making him run

around on his hands (Figure 1). Because
of the animation system of the game,
affording or even showing off any type
of complex finger animations is impos-
sible. However, using a little bit of prob-
lem solving Orbb becomes a great exper-
iment in evenly combining motion
capture and keyframed animation.

I’ll explain. Figure 2 shows a more
orthographic view of our ocular, podi-
atrically-challenged little friend. In the
Q3A game engine, each character must
be divided into three distinct parts:
head, torso and legs. The parts are tied
together using a simple triangle tag sys-
tem (match tab a to tab b). The head
and torso basically move around when

you move your mouse
around (free look) with the
head motions slightly lead-
ing those of the torso. The
legs are purely locomotive
and couldn’t care less what
the upper body does. Of
course, death animations are
all-body inclusive.

So in Orbb’s case his hands
have essentially become his
legs, his body casing became
his torso and his eyeball
became his head. Setting up
and attaching him to a biped
in Character Studio turns out
looking something like what
we have in Figure 3.

Notice that I didn’t give
him arms and that the head
and torso aren’t linked to an

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

19

Mo-Cap and Keyframing,

Sittin’ in a Tree

A s an artist, you’ve heard at one time or another some pretty common

arguments: photo reference vs. “from memory,” tracing vs. hand-

drawing, or scanned images vs. hand-painted ones done in Photoshop.

However, for animators working on computer games today, there’s a new

Still a form of computer game artist concentrate (just add imported beer) nearly 35 years in the making, Paul Steed (simply labeled
“Steed” for easier marketability) will hopefully be applied to a new project by the time you read this. As usual, product information
can be attained by dropping a line to psteed@idsoftware.com.

F I G U R E 2 . An orthographic view of Orbb’s pecu-

liar anatomy.

F I G U R E 1 . Q3A’s Orbb marches to

the beat of a different drummer.

underlying skeleton. The reason for this
is that I intend to apply mo-cap data in
the form of death animations and loco-
motive animations mainly to the legs
(arms), but I’m going to keyframe the
fingers (toes), body and head anima-
tions. I won’t even concern myself with
what the unused skeletal parts of the
biped do at this point since, given
Orbb’s unique anatomy, they don’t
matter (and I can’t delete them).

So, taking a motion-captured run
cycle I plug it into the character’s skele-
ton (Figure 4). Something doesn’t quite
look right here. If indeed those are sup-

posed to be arms, the elbows aren’t
quite bending right, now are they? And
those toes sure don’t look like prehen-
sile digits. So my dilemma is how to
make the legs act like legs while bend-
ing like arms. I wonder if I can turn the
leg around in the up axis? First I’ll
detach the mesh from the skeleton,
then select the upper thigh and rotate
it so the knee faces the opposite direc-
tion (Figure 5).

Cool. Now we can apply the same
mo-cap run data to the now-reversed
legs and see what it looks like (Figure
6). This looks better. Next we reattach
the mesh to the skeleton and keyframe
those fingers...er, toes, doing some-
thing cool like pushing off, flicking out
as they push off, and so on. Doing this
keyframe work on the hands results in
poses like the ones shown in Figure 7.

In adding keyframes to the fingers I
try to exaggerate the motions a little.
Just as a stage actor wears tons of make-
up in order to be visible from the back
row, amplifying animations is just as
important in real-time games. Charac-
ters running around in a game like
Q3A usually don’t appear very large as
you’re trying to stuff rockets down
their throat from afar.

So after applying the mo-cap data to
the arms and keyframing the hands
and fingers, Orbb runs like he’s sup-
posed to (Figure 8). I basically get to
utilize all my animation files such as
deaths, jumps, backpedals, walks, shuf-
fles, or whatever, for Orbb’s animation
set as it pertains to his legs and center
of gravity. I have to make some gross
adjustments to make sure his weight
distribution appears correct, but overall

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 8 . Mo-cap and keyframe data combined to produce our finished run cycle.

F I G U R E 7. Keyframing offers us the precision to devise some cool hand poses.

F I G U R E 6 . Adding the mo-cap data to the reversed legs gives better results.

F I G U R E 5 . Rotating the legs will

make them act more like arms.

F I G U R E 4 . Orbb’s run cycle still needs work after plugging in the mo-cap data.

F I G U R E 3 . Orbb has been attached

to a regular biped skeleton.

they work out pretty well. Once the
locomotive animations are in, I
keyframe the head and body casing to
react accordingly.

This is just one of many possible situ-
ations that can support both motion
capture and keyframing. However you
look at it, mo-cap is just as useful as
keyframing if you have a basic under-
standing of character animation and
experience with keyframes. Rather than
turning your nose up at an animation
aid such as mo-cap, it behooves you at
least to explore the potential benefit of
the technology. After all, it’s just...

...A Tool Like Any Other

A long time ago when I first started
weight-training, I voiced my frus-

tration at being so weak. This old bald
guy from the monastery on base who
was spotting me said, “Always remem-
ber, Grasshopper, the weights are a
tool, not a measurement.” The same
applies to the methods and tools we
use to create character animation with
the computer. The character animator
today no more becomes a talentless
hack because he uses mo-cap than a
master illustrator shows his inadequa-
cies because he uses photographic ref-
erence for his painting.

I did my first animations back in
high school when I’d have little stick
people dancing along the edges of my
textbooks running, fighting, somer-
saulting or just plain being lewd. Then
I got into comic books and began
telling stories with splash pages and
sequential story art (panels) à la Kirby,
Buscema, Byrne, Golden and Miller.
Comic art or comic strips are the most
basic example of keyframes. While not
as literal as flipping a page and watch-
ing a little stick man come to life, each
panel in a superhero comic is a static
representation of a continuing dialog
and dynamic flow for which your brain
(instead of the computer) provides the
“tween” frames.

Learning to draw and portray char-
acters in this fashion is perfect basic
training for character animation, since
it forces you to see things in your
mind clearly enough to put them
down on paper. This translation of
thought to media and, more impor-
tantly, the ability to recognize a suc-
cessful translation is the key to better

character animation because it gives
you “the eye.”

Simply put, having the eye means
you can look at something and see it
to be either one of two ways: right or
wrong. If it’s right then you can move
on to the next task. If it’s wrong, you
keep working on it until you make it
right. So many times someone shows
me something or e-mails me some
animation sequence and asks my
opinion. When it’s so bad that I don’t
know where to start with a meaning-
ful critique I simply ask, “Does it look
right to you?”

QUAKE 3: ARENA marks the first time
I’ve personally dealt with mo-cap out-
side of the annual obligatory dog-and-
pony shows at Siggraph and other trade
events. I decided to try the mo-cap
route because it’s dead easy in
Character Studio and for the simple rea-
son our frame rate went from 10 FPS in
QUAKE 2 to 15–25 FPS (depending on
the animation). Turning to mo-cap
makes sense as frame rates increase,
since keyframing the subtle and nearly
imperceptible nuances of humanoid
character animation, if not difficult, is
at least time-consuming. The difference
between a six-frame run cycle and a 13-
frame run cycle is obvious to say the
least. Another reason is that my fellow
animator Kevin Cloud decided to con-
centrate on other art aspects and leave
me to do all the models and animations
(nice of him, wasn’t it?), so finding
ways to save time became a priority.

However, to say that I find myself
forgetting how to keyframe because
I’ve implemented mo-cap into the
workflow is just plain ludicrous. Mo-
cap is a start and, if anything, a rough
timing guide to assist your keyframing.
I have yet to implement any motion-
captured animation without at least
some keyframed adjustment. This is
not a problem for me.

The Mo-Cap Experience

T he first session I did was with Greg
Pyros and his crew at Pyros Pic-

tures. An amazing martial artist and
actor, T.J. Storm, and a fellow actress,
Bobbi, were the talent for my first run
at making animations for the characters
in Q3A. I learned a lot from the session,
but since it was my first time I came up
a little short in preplanning and accu-

rately predicting the implementation of
the data in my animations. I also didn’t
know Character Studio very well at the
time and failed to exploit its strengths
and allow for its shortcomings. Know-
ing your pipeline and knowing all your
software is crucial to successful mo-cap
implementations.

When I did my next session I went to
House of Moves. The crew at HOM defi-
nitely know their stuff and they were
great to work with. I was quickly
allowed to review the motions captured
in crude wireframe playback to see if it
was what I wanted. HOM also gave me
videotape that matched the captured
moves for both review and reference.
There were differences dealing with
House of Moves, but the most over-
whelming difference was that I suited
up to do most of the motions myself.

I consider myself to be in reasonably
good shape so I wasn’t afraid of the
physicality of the shoot. Since I’m a
ham at heart I knew I could act well
enough to get reasonably expressive
motions based on what I’d seen T.J. do
at the earlier shoot, and more impor-
tantly, to get what I wanted from the
characters I had already created. How-
ever, I fully realize that I’m in a unique
position to have more freedom than
most artists at most companies. It’s
great being the modeler, animator,
mo-cap director and mo-cap actor. I
get to make sure I get exactly what I
want and need to get the animations
right. I enjoyed the HOM shoot so
much that when I did my third session
just recently I decided to be the “tal-
ent” once again.

This time however, I decided to try
yet another company a whole lot closer
to home. Located in the idyllic, rolling
hills and fauna of Wimberly, Tex., near
Austin, Kei and the crew at Locomotion
Studios provided a comfortable, relaxed
and professional atmosphere (except
they didn’t have any beer stocked).

The animations I went for this time
were more scripted than the animations
I did at the other two studios, so it was
more important for me to give a better
performance. Instead being pieced
together and used by the characters
during real-time game play, these ani-
mations would be plugged into the
characters mostly as-is to be used for
rendered cutscenes. This is a great
example of mo-cap saving you time on
a project since the amount of work it

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

would take to make the subtle, expres-
sive, realistic nuances I wanted in the
animations would have taken far longer
than I have to do them. Even in a
worst-case scenario where the anima-
tion is too wooden, keyframe augmen-
tation can still save the day utilizing
accurate timing if nothing else.

In addition to offering immediate
playback of the captured animation to
see if it was what I wanted, Locomotion
took the process one step further by
filming the captures in MPEG format,
giving me a digital movie of the perfor-
mance. This proved extremely conve-
nient, more so than videotape.

Extremely accommodating like the
other studios, they were tolerant
when I got wacky. For example, one
thing I did for a particular character
with a three-jointed leg was to walk
backwards in order to give it a creepy
quality when it walked forward. To
support this, the guys at Locomotion
quickly and easily played back the ani-
mation in reverse, which allowed me
to adjust my performance until I got it
right. Oh, and do you want to know
the best thing about the session at

Locomotion? Soft reflector balls. Trust
me, when you’re covered with the
hard ones, your potential for lots of
pain while doing mo-cap is high.

Just Where Do I Go for Mo-Cap?

A s I’ve said, time-saving is another
attractive quality of motion cap-

ture, but one that gets argued by artists
because of the heavy cleanup required.
That’s what mo-cap service houses
such as Pyros Pictures, House of Moves
and Locomotion are for. You can let
them do the clean up instead. By the
time you’ve made the space, spent the
money and trained the artists to sup-
port your own motion capture facility,
the overall cost will be hard to beat by
simply going to an expert. Having dealt
with three of these companies that pro-
vide such a service in the past year has
given me a fast and comprehensive
understanding of the motion capture
process. Understanding this process
from start to finish is a necessity if you
plan on using mo-cap.

Therefore, consider the following as

you tread down the motion-capture
studio path. It could mean the differ-
ence between success or failure:
PREPLAN. By preplanning I mean story-
board, either literally or in your mind,
each move you plan on getting. Ensure
there are one or two people who track
and manage the process from start to
finish (you, the artist, being one of
them). Also, come up with good file
names for your motions. I usually stick
to a six-character naming convention
because it leaves room for different ver-
sions (takes) later on. Calculate the
amount of time in seconds you esti-
mate each motion will last and then a
total for the shoot. Use that number of
finished seconds as a starting point
when you negotiate a price.
GET A BID. Once your list is formed, start
shopping around. Just be sure you
have a very clear idea of what you
want before presenting it to a mo-cap
studio. Don’t be afraid to start a bid-
ding war. These guys know how
important patronage and word of
mouth are in our industry.
GET GOOD TALENT. Although I really enjoy
doing my own capture sessions, next

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

23

time I’ll go back to paying some-
one else to hit the ground and
writhe around in real...er, mock
pain. I’ve found the key to get-
ting a good performance is to
find actors who are almost
mime-like in their expressions
and motions. Also remind your
actor to go full speed and not
slow down during performance.
This may not be something
readily apparent, but overacting
or being overly conscious of
devices tracking your every
movement can be very obvious
in the finished data. I’ve had to
cut up to ten percent of the
keyframes in any given mo-cap
file due to the actor being too
measured in his or her move-
ments, or make substantial
tweaks because hands were used
to break a fall (or to remove other glar-
ing forms of anticipation). If you have
the inclination and the ability, I highly
recommend doing your own motions at
least once. It makes you appreciate what
you ask the talent to do in all those hard
reflector balls.
GET THE MOTION YOU WANT. Not much else I
can say here. You’re the client. You’re
plopping down the cash (usually 30
percent or so up front when you show
up at the studio). You decide when the
captured motion is right. Insist on a
video or MPEG of the performance to
review and just have around. If any-
thing, it’s something to show your boss
and co-workers.
CHOOSE YOUR IN AND OUT TIMES. Basically,
the in and out times are the points at
which you want the motions you see
on video to start and stop recording.
This is obviously just so the mo-cap
studio can calculate your total number
of seconds captured, giving you exactly
what you want when it happens. But
never underestimate that little hitch or
movement right at the beginning or
end of a motion. While it’s prudent not
to pay for useless seconds of idle move-
ment, you might be able to take a part
of one motion and use it in combina-
tion with keyframes somewhere else.
IMPLEMENT THE CLEANED DATA. Once the
data is delivered, plug it into your char-
acter and see how it works. I did cap-
tures for a character and decided I didn’t
like the implementation and just cut it
from the list. Occasionally, some things
really do just look better on paper.

PAY THE GUY. Guess this is the bottom
line, isn’t it? Rates vary, but if you
shop around, like I’ve already suggest-
ed, you’ll get the fairest price. The
price of motion capture seems to keep
dropping every time I get it done. This
trend will no doubt continue as tech-
nology advances.

Speaking of cost, it is something to
consider. For a small developer, using
a mo-cap studio may be cost-prohibi-
tive, but I’d encourage you to check it
out anyway. All the people I’ve
worked with have been extremely
accommodating and flexible when
trying to get my business. If you pre-
plan appropriately and know exactly
what kind of motions you want, the
end cost will reflect your degree of
organization.

Another key to making a mo-cap ses-
sion successful is to involve the anima-
tor who will be using the data. Sure,
those clipboard-carrying, coffee-cup-
toting producer types have their uses
and can baby-sit the fiscally irresponsi-
ble artist if they like, but at least one of
the artists who will be working with
the fruit of the session needs to be pre-
sent during the shoot.

Can’t We All Just Get Along?

Not too long ago, I read a couple
negative commentaries on

motion capture in a telephone-book-
sized tome dedicated solely to charac-
ter animation. This was the first time I

ever heard mo-cap referred to
as “Satan’s Rotoscope.” What a
load of crap.

I hear statements like this
and I think of that e-word —
ego. Teams of people are
responsible for games today,
not individuals. Not to explore
the possibilities and benefits of
a new technology because you
want the pleasure of proclaim-
ing you did it all from scratch is
part of the inanity that results
in very late products being
shipped. Sure, given all the
time in the world, any anima-
tor worth his salt can create
convincing and supremely real-
istic character animation. Well,
we all know how much time we
have to do our animations,
don’t we?

But, what the hey. Let’s just say for a
second that mo-cap is evil. The bane of
the real artiste. If that’s the case, then
why not just toss that computer alto-
gether and go back to traditional cel
art animation and just scan the art in?
Oh, but that would mean you’d have
to use a scanner. Since that evil con-
traption digitally captures images that
could be used in game art, such as tex-
ture maps, we should probably get rid
of that bit of demonic technology as
well. While you’re at it, what about
digital cameras, model digitizers,
heck...even photographic reference of
any sort? Maybe all example of mod-
ern techniques or technologies that
assist the artist in his ability to meet
his deadlines with work that (gasp) is
sometimes better than he could have
achieved on his own should be con-
signed as products of the nether realm.

The purists would secretly be not too
unhappy about this because then they
could weed out the real artists from
those pretentious wannabe keyboard
jocks. Then they could beat their chests
in pride and reaffirm their prodigious
training and stature.

Technophobia has no place in
today’s world of computer game devel-
opment. Motion capture is here to stay
and will antiquate keyframing about as
quickly as electronic documents have
turned our work environment into a
“paperless” office. In the right hands,
mo-cap is the perfect way to aid and
enhance the keyframe animator, not
replace him. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

Steed knows the importance of wearing many hats dur-

ing the motion-capture process, including this one cov-

ered with reflector balls at Texas’s Locomotion Studios.

b y O m i d R a h m a t H A R D T A R G E T S

Even Nintendo’s Game Boy has shown
phenomenal growth in 1999 and is
attracting new titles and developers to
the color version, while the next-
generation, 32-bit Game Boy “Advance”
is slated for release late next year. All
these comparisons of platform tech-
nologies aside, the biggest obstacle to
success in the PC gaming market is the
structure of the PC business, which is
built around the sales of PC hardware to
businesses and education outlets.
Games may be ubiquitous, but the PC
industry still sees the game industry as a
marginal interest, and sometimes solely
as a means to sell the latest CPU.
Examining the market of console game
users and the channels for console prod-
ucts is a sobering lesson in how far the
PC industry has to go to become con-
sumer-savvy.

The PC game business has always
been hampered by a lack of shelf space
and sufficient sales outlets. This situa-
tion is unlikely to be resolved while the
market remains driven by the upgrade
cycles of Microsoft and Intel. In the
meantime, the console gaming market
is benefiting from penetration into
both traditional retailing channels and
existing PC sales channels.

Channels Young and Old

W hile online sales of PC products
is considered to be a hot area of

growth, the vast majority of sales still
come from third-party retailers and dis-
tributors who rely on their expertise
with applications to serve a desired
market. It’s rare to find a reseller or sys-
tem integrator that is focused on
games. In contrast, console products are
predominantly retail-based and require
no third-party support or intervention.
For PCs, there are more than 100,000

companies in the U.S. alone that act as
middlemen for computer manufactur-
ers, and who supply systems, upgrades
and services to users. In such a large,
competitive market, specializing in
hardware sales to game players would
make little sense, and trying to compete
in the arena of PC gaming software is
unlikely to enliven any reseller’s bot-
tom line.

By contrast, a fully configured net-
work of systems for a small business or
corporate customer has potential for
lucrative service and support contracts,
or may be solely beneficial in selling a
reseller’s software expertise. So, while
the $125 billion in sales that the PC
channels produce is an impressive
number, it’s spread across a vast mix of
dealers and resellers. These consist of
value-added resellers (VARs), retailers,
distributors, systems integrators (SIs),
mom-and-pop stores, and everything
from a single-person consultancy to big
service companies such as EDS. Stacked
up against these hardware-driven dis-
tribution channels is a console business
driven by cute game characters and
mass-market promotions.

Simply put, PC channels are relative-
ly young compared to the retail chan-
nels that console games have penetrat-
ed. PC channels are as old as the PC,
while retail channels date back to
before the electronic age. This points
out the gaping chasm of consumer
savvy between traditional PC sales
channels, and the retailers that thrive
on N64, PSX, and Game Boy products.
Furthermore, the next generation of
console products promises to constrict
the PC gaming market by providing

powerful platforms with multimedia
and online capabilities. Next-genera-
tion consoles may not be PCs, but they
don’t aim to sit on someone’s office
LAN, either.

The Console Player’s Choice

A t the third annual Electronic
Gaming Summit this past August,

Ziff-Davis announced the results of the
Video Gaming in America research
report. This report found that purchase
impact is influenced more by brand
power of a character or game than by
the knowledge of the publisher or
developer. Surprisingly, the buying
habits of game players, according to the
report’s findings shown in Chart 1,
point out their preference for discount
stores where impulse buying and pric-
ing play a key role. Console games seem
to have better branding and get into
the places where the most buying
occurs. This is despite the fact that at
places like Wal-Mart, PC games have to
be priced below $20 to qualify for sig-
nificant sales. If that weren’t bad
enough, the reputation of consoles as
high-technology products, which is
reflected in the sales of console games
through computer superstores.

The other advantage that the console
market has is rentals. “Core” game play-
ers (defined in the report as those con-
sumers who purchase two or more
games per month) are averaging more
than three rentals per month, while
“casual” players (defined as those who
purchase fewer than two games per
month and play fewer than four times

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

27

A Tale of Two Channels

P C gaming appears to be the technological peak of game development.

However, the advent of Sega’s Dreamcast, Sony’s marketing of Playstation

2 technology, and the intriguing prospects of Nintendo’s Dolphin system

have helped to promote greater anticipation for the console.

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting
firm. He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

per week) average about 1.4
rentals per month. The real
kicker is purchase rates after
rental are 84 percent and 65
percent respectively for core
and casual players. Video
rental outlets can devote any-
where from 10 to 20 percent
of their shelf space to games,
but generate in excess of
those figures in percentage of
revenues from rentals. There
is really no mechanism in
place, or likely to be put in
place, to create the same
rental opportunity for PCs.
The PC always has the benefit
of the limited demo software
package bundled with game
magazines and available for
download, but these options
pale in comparison to being
able to take a game home to
play in full for three days.

Another interesting find-
ing in the report is the influences on
players’ purchasing choices across core
players, casual players, and “average”
players (defined as consumers who pur-
chase fewer than two games per month
but play four or more times per week),
shown in Chart 2. Friends, television,
and in-store game demos played a key
role here. In-store demos of PC games
are unlikely to happen anytime soon,
unless you have a publisher with a very

significant marketing budget to spend,
or PCs end up costing $100, and you
can load 10 games within 60 seconds.

The PC Branding Problem

PC games, with some exceptions,
tend to be more sophisticated sim-

ulations and immersive environments.
As a result, PC games lack some of the

“cute” character brands of console
games. At a more specialist level, the PC
has programmers like John Carmack
and designers like Sid Meier, but the
console industry has Shigeru Miyamoto
and David Perry.

To reconcile these two worlds, PC
game channels have to get closer to
the console market in terms of mar-
keting sophistication and audience
appeal. PC gaming will not ultimately

die, but it will become cor-
nered, and that will affect
the flow of new talent into
the industry. That in turn
would affect innovations in
technology and titles. It
looks like the console mar-
ket has finally grown up,
and now it’s time for the PC
market to do the same. But
it won’t happen until the
gaming industry figures out
how to break the infrastruc-
ture of PC sales channels.

Recently, the Good Guys
chain of electronics stores
announced it was ceasing PC
sales, CompUSA said it would
close some of its stores, and
OfficeMax has felt the drain
of lower PC prices and prof-
its. Meanwhile, displays of
console games and hardware
in CompUSA stores continue
to grow. ■

H A R D T A R G E T S

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

0%

20%

40%

60%

80%

Fr
ie

n
d

s

T
V

In
-S

to
re

G

a
m

e
 D

e
m

o
s

V
id

e
o

g
a

m
e

M

a
g

a
zi

n
e

s

In
-S

to
re

 D
is

p
la

y
s

G

e
n

e
ra

l

M

a
g

a
zi

n
e

s

G
a

m
e

P
a

ck
a

g
in

g

S
to

re

S
a

le
s

p
e

o
p

le
’s

 A

d
v

ic
e

In
te

rn
e

t

P
u

b
li

s
h

e
r

/
R

e
ta

il

 S
a

m
p

le
 D

is
k

s

N
e

w
s

p
a

p
e

r

R
a

d
io

O
u

td
o

o
r

B
il

lb
o

a
rd

s

"Core"

 Players

"Average"

 Players

"Casual"

 Players

C H A R T 2 . Consumers’ sources for videogame purchasing information (source: Ziff-Davis).

D
is

co
u

n
t

S
to

re
s

To
y

S
to

re
s

E
le

ct
ro

n
ic

s

S
to

re
s

V
id

e
o

 S

to
re

s

C
o

m
p

u
te

r

S
to

re
s

D
e

p
a

rt
m

e
n

t

S
to

re
s

W
a

re
h

o
u

s
e

S
to

re
s

S
p

e
ci

a
lt

y

S
to

re
s

In
te

rn
e

t

M
a

il
 O

rd
e

r

B
o

o
k

s
to

re
s

O
th

e
r

1998 1999

0%

20%

40%

60%

80%

100%

N/A

C H A R T 1 . Game players are shopping across all outlets (source: Ziff-Davis).

ame console programming is largely a secret

art. The technology and APIs are kept hidden

by nondisclosure agreements, and you won’t

find development kits for game consoles at

your local software store. As a result, pro-

gramming for game consoles is something

you just don’t hear much about.

While specific techniques for program-

ming Nintendo’s current game console are well-known within that particular devel-

oper community, they are virtually unknown among PC developers, or developers

looking to do cross-platform titles. This article will give you some insight into the

inner workings of the Nintendo 64 (N64). Much of what I’ll discuss in this article

hasn’t even been released to authorized N64 developers. Nintendo has chosen to

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

P R O G R A M M I N GN 6 4

Mark A. DeLoura (markde01@noa.nintendo.com) is the software engineering lead for the Product Support Group at Nintendo. He’s
been working on the Nintendo 64 since the first hardware dev kits showed up, and he damn near cried the first time he booted up
SUPER MARIO 64. Now he’s working on high-tech wizardry for Nintendo’s next-generation console, Dolphin.

Putting Curved Surfaces to
Work on the Nintendo 64

b y M a r k A . D e L o u r a

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

pull back the covers to help
developers squeeze the last
ounce of performance out of the
machine. We hope that this arti-
cle will help N64 developers do
just that, and encourage other
developers to explore N64 pro-
gramming.

After a quick discussion of the
N64 architecture, we’ll dig
down deep and design some
custom Reality Signal Processor
(RSP) microcode, which tessel-
lates a Bézier surface as shown
in Figure 1. The RSP is a very
powerful custom chip in the
N64, and until now the details
of programming this chip have
been kept secret. In a sense, we
at Nintendo have decided to let
the cat out of the bag. You’ll get
a feel for the incredible power of this
chip and see why N64 is capable of
great 3D graphics with features that
still aren’t available in consumer 3D
cards.

Nintendo 64 Architecture

The Nintendo 64 is designed around
two main processing components

(Figure 2). These two elements are a
MIPS R4300i CPU, and the Reality Co-
Processor (RCP), which is a custom chip.
The simplicity of this architecture
makes N64 programming very straight-
forward. In addition to these processors,
the N64 contains 4MB of Rambus
DRAM (RDRAM), four controller ports,
and a cartridge port. The memory is
expandable and a 4MB Expansion Pak is
currently available.

The N64’s custom RCP runs at
62.5MHz. It is pri-
marily composed
of two parts: the
Reality Signal
Processor (RSP)
and the Reality
Display Processor
(RDP). The RSP
processes display
lists which are sent
from the CPU. It
performs all
matrix and vertex
computations and
outputs triangle
commands to the
RDP. The RDP

takes this information, loads the tex-
ture cache from RDRAM, and renders
fully MIP-mapped, anti-aliased, Z-
buffered triangles to the frame buffer.
This design leaves the CPU free to per-
form physics calculations, advanced
artificial intelligence, sound process-
ing, and other game functions.

RSP Architecture

The RSP is modeled on a general-
purpose 32-bit RISC processor. It

includes 4KB of memory for code
(IMEM) and 4KB of memory for data
(DMEM). Programs which execute on
the RSP are known as microcode.
Nintendo provides a standard suite of
microcode to all N64 developers,
including 3D transformation and light-
ing code, line-drawing code, sprite rou-
tines, and audio processing. Due to

special features of the RSP, it is
very well-suited for computa-
tionally heavy tasks such as 3D
graphics calculation and audio
mixing.

In addition to 32 32-bit
scalar registers, the RSP
includes 32 128-bit vector reg-
isters. These vector registers
can be addressed in a variety of
ways, but they are ideally used
as eight shorts (also called vec-
tor slices). Each slice has a 48-
bit accumulator associated
with it that can be used to
store intermediate results.
Using the vector registers and
accumulators, a vector opera-
tion can be performed which
multiplies two vectors and
adds the result to the current

accumulators, giving 16 calculations in
one cycle.

The RSP can actually execute a vector
operation and a scalar operation each
cycle. This means that it’s possible to
do 17 calculations per cycle. With care-
fully tuned microcode, it is possible to
reach a maximum of just over one bil-
lion operations per second.

The Microcode

This high-speed programmable
architecture was very forward-

thinking at the time the Nintendo 64
was designed. It has enabled Nintendo
to provide a set of standard microcode
libraries which make 3D programming
easier for the novice. At the same time,
elite programmers are able to code up
special routines which are optimized
for their own games or enable unique

functionality.
During the life span
of the N64, the 3D
performance has
nearly doubled as a
result of microcode
optimizations.

Microcode
Execution

F irst let’s talk a
little about the

structure of microc-
ode and how to use
it. Microcode is exe-

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

N 6 4 P R O G R A M M I N G

F I G U R E 1 . This Bézier surface has been tessellated by

the microcode we develop in this article, and rendered

by a Nintendo 64.

F I G U R E 3 . An example command

from the standard N64 3D graphics

microcode. This command turns on

texture mapping using a specific tex-

ture tile.

F I G U R E 2 . The Nintendo 64 architec-

ture is simple and elegant.

cuted through the use of an RSP
task. Tasks are command lists
(graphics display lists or audio
commands) which indicate a
series of operations for the
microcode to perform. They are
executed in parallel with the
CPU. In order to start an RSP
task, you create the command
list and pass it to the RSP along
with pointers to the microcode
and various buffers that the
microcode needs. Then you call
a simple function to start RSP
execution and control is imme-
diately returned to the main pro-
gram while the RSP begins pro-
cessing commands.

The RSP can communicate
with the RDP or CPU during
execution if necessary. For
example, most versions of the 3D
microcode communicate with the
RDP, feeding it triangles and other
data to render to the frame buffer.
Other versions of microcode commu-
nicate with the CPU when data is
ready. For example, the Z-Sort microc-
ode can be set up to alert the CPU
after a number of objects have been
processed so that the CPU can work
on these objects in parallel. When the
RSP completes the task, it signals the
CPU so that the user program can
send the next RSP task or use this
information for synchronization.

The Command Loop

T he microcode command loop
sequentially goes through com-

mands which have been DMA’d into
DMEM from the command list. Simi-
lar to assembly language instructions,
the commands have bitfields which
indicate the RSP function desired. In
the microcode command loop, the
opcode and subopcode bitfields are
masked off and used as an offset into
the function jump tables (also stored
in DMEM) to determine the IMEM
function location.

In the standard graphics microco-
des, each command is a 64-bit double-
word. The opcode and subopcode are
contained in the upper bits, and lower
bits are reserved for data being passed
as function parameters as shown in
the example in Figure 3. The data bit-
fields are masked off in the main loop

and stored in separate registers before
jumping to the function requested.

The DMA Engine

The RSP includes a set of registers
which control the DMA engine.

Since there may be multiple requests
for DMA pending, the microcode must
check the DMA Busy register before
submitting its request. If a request is
being processed and there is already
another request pending, the micro-
code must wait
before sub-
mitting a
request. A
request is
made by
altering the
DMA Source,
DMA Destination,
and DMA Length
registers. Once the
length is written to the
DMA Length register, the
DMA engine queues the
request and begins the
transfer if no requests
are pending. The
transfer executes in
parallel with the
RSP so control
is immedi-
ately
returned
to the
micro-
code.

Using Curved Surfaces

W ith this basic under-
standing of the N64’s

workings behind us, let’s move
on to the main focus of this
article, using curved surfaces.
Curved surfaces are not sup-
ported in the standard N64
microcodes. But if you want to
render curved surfaces, it makes
a lot of sense to do the heavy
computations required on the
vector processor. Now, we’re
not actually going to render
curved surfaces. We’ll take a
curved surface representation
and tessellate the surface into
polygons which the N64 then
renders.

For our purposes here, we are
going to use Bézier surfaces. A Bézier
surface is a curved bicubic surface, sim-
ilar to Hermite surfaces, B-spline sur-
faces, and NURBS. The Bézier is mathe-
matically complex enough for us to be
able to create interesting surfaces,
while not being so difficult to compute
that we’re only going to be able to do a
couple per frame. If you need to brush
up on curved surface technology,
check out the list of references at the
end of this article.

There are a number of algorithms
we could use to tessellate a Bézier sur-

face. First, let’s quickly look at the
standard equation and

the algorithm
we’ll use in

the micro-
code.

If
you’re

inter-
ested in

the back-
ground of

Bézier surface
algorithms and

want to learn more about why I’ve
chosen this one, please see the

expanded version of this article (with
Bézier surface derivation) on
Gamasutra.com.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

N 6 4 P R O G R A M M I N G

F I G U R E 4 . Bézier surfaces are defined in a biparamet-

ric space. Sixteen control points are used to define the

surface completely.

Bézier Surface Equation

A Bézier surface is a parametric sur-
face (u,v = [0,1], [0,1]) defined by

its 16 control points pij which form a
4×4 grid, as shown in Figure 4. The
common form for representing this
surface is:

The functions Bi(u) and Bj(v) are the
Bernstein polynomials which are also
used for Bézier curves.

The edges of a Bézier surface are each
Bézier curves. Since only the end con-
trol points of Bézier curves lie on the
curve, we can extrapolate that the cor-
ner points of the surface are the only
control points which lie on the surface.
All twelve of the other control points
influence the shape of the surface, but
are not on the surface itself. For this
article, we’ll create a microcode that
tessellates a Bézier surface into an
8×8 grid of quadrilaterals.

Tessellation by Evaluation

The most direct way to slice a
Bézier surface into polygons

is by calculating the above Q(u,v)
double summation on a regular
grid. Performing this in a very
optimized way, each surface
vertex we calculate requires 54
additions and 108 multiplies.
That’s a lot of work to do
when we’re planning to create
a 9×9 grid of vertices.

Central Differencing

The way we’re going to generate
points on the Bézier surface in

this article is through the use of central
differencing. Central differencing gives
us an easy way to find the midpoint of
a Bézier curve without having to keep
track of control points for each sub-
curve. We can split the edge curves at
their midpoints, and then split the sur-
face across these midpoints to create
four subsurfaces. This process can be
repeated recursively to create an arbi-
trarily fine mesh. (For details on this
algorithm please see the previously-
mentioned article on Gamasutra.com,
or Brian Sharp’s series of articles on

curved surfaces, June–July 1999.)
The central differencing algorithm

has a hefty initialization cost due to
the computation of second partial
derivatives (Quu, Qvv, Quuvv) at each
corner control point. But every curve
subdivision after that will only cost us
18 additions and 18 multiplies. The
memory footprint is 24 bytes per subdi-
vision, and there are 77 subdivisions
necessary to create our mesh. This will
fit in our 4KB DMEM nicely.

Writing the Tessellation Microcode

Now that we’ve chosen the algo-
rithm to tessellate the surface,

let’s get back to work on the microcode
itself. The first things

we need to fig-
ure out are the

commands
we need
and the
com-
mand
struc-
ture.
We’re

going to
use a

64-bit
double

word for our
command size.
That will give us
plenty of

room to store the data for each com-
mand inside the instruction. The com-
mands and parameters necessary for
our tessellation microcode are:

1. Set RSP segment (segment number,
physical address).

2. Load control points (segment
address).

3. Perform tessellation.

4. Save surface vertices (segment
address).

5. End display list.
I’ll describe these commands further in
a moment.

Since we only have five commands,
we can just use a 3-bit field for the
opcode. Fortunately, the standard
graphics microcodes all use a 3-bit
opcode field and 6-bit subopcode field,
so we’ll use that. But we’ll just wedge all
our instructions into the subopcodes for
one primary opcode. Then we can reuse
a lot of the main command loop rou-
tines from the standard microcodes,
including the display list DMA routine
that loads commands into the DMEM
buffer for us. The low bit of the opcode
field and subopcode field are not used.
Since microcode function addresses
stored in DMEM take up two bytes
(address range 0–4095), our jump table
should be indexed on even bytes only.
Not using these low bits ensures that we
have an even index without performing
a shift or multiply for every command.

The parameters for our commands are
pretty straight-forward. The most com-
plicated command sets a segment regis-
ter for address computations. It requires
a segment number and physical address.
We’re using a 16-address segment table
in the RSP, so it’ll take four bits to hold
the segment number. The addresses are
32 bits, so we’ll use the second half of
the 64-bit double word for the address.
Then we’ll use the upper nine bits for

the opcode and sub-
opcode fields

and follow
it with

four bits
for the

segment
address.

You can see
our command

structure in Figure 5.

Getting Data In and Out

B efore we code up the tessellation
algorithm, let’s figure out how to

get data in and out of DMEM. The “set
RSP segment” command fills an entry
of our 16-entry segment/offset table,
which is stored in DMEM. This table
makes some programming tasks easier,
such as swapping the frame buffer each
frame. The segment table stores 24-bit

Q u v p B u B vij i j
ji

,() = () ()
==
∑∑

0

3

0

3

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

N 6 4 P R O G R A M M I N G

offsets which are added to any address
sent to the RSP. The segment table
index is stored in bits 24–27 of the
addresses passed in. The low 24 bits of
the segment address are added to the
24 bits stored in the segment table.
Since our physical address range is
0–0x007fffff (8MB), 24 bits is enough.

Prior to tessellation we need to load
the control points into DMEM. Our
“load control points” command simply
takes an address as a parameter. The
address is passed to the segment
address translation routine, which uses
the segment table to convert the
address to a physical address. The DMA
engine is called to bring the 16 control
points into DMEM from this physical
address.

After tessellation, we need to save
the surface vertices we’ve computed,
using the “save surface vertices” com-
mand. We’ll pass in an address and the
segment address translation routine
will convert it to a physical address.
That physical address is used to pro-
gram the DMA engine to copy our 81
surface vertices to RDRAM.

The “end display list” command sim-
ply flags the RSP to quit. It executes a
break, which signals the CPU, and
alerts our main program.

Data Formats

T he first thing our “perform tessella-
tion” command does is perform a

simple translation from control point
format to surface vertex format. So let’s
talk about these formats.

The Nintendo 64’s standard vertex
format uses 16-bit coordinate ranges,
which are s15 quantities (one sign bit
and 15 integer bits). This gives vertex

coordinates an effective range
of +/– 32KB. It makes sense for
us to use this same format for
control points, but since we’re
just tessellating, we really only
need the point position. Rather
than wasting the extra space
for colors and texture coordi-
nates when we DMA the con-
trol points into DMEM, our for-
mat will only represent the x, y,
and z position as signed shorts.

The surface vertex format is
more complicated. The central
difference algorithm describes
four sets of values that each ver-

tex needs to track. These are:
1. Q(u,v): Position
2. Quu(u,v): Second partial derivative

in u at this vertex.
3. Qvv(u,v): Second partial derivative

in v at this vertex.
4. Quuvv(u,v): Second partial derivative

in u of the second partial deriva-
tive in v at this vertex.

All of these values are vectors of x, y,
and z. Since the vector slice size of the
RSP is 16 bits, and the control point
coordinates are 16 bits, we’re going to
stick with 16 bits for these coordinate

values as well. We’ll have to tweak our
math to minimize overflow and under-
flow, but it will pay off in performance.

One final note on formats. Each vec-
tor register contains eight vector slices.
But each of our points contains three
values (x, y, and z). We’re really just
going to make things confusing if we try
to stuff two of three coordinates from
one vertex into a vector register, along
with two other vertices. So let’s insert a
junk (we’ll call it j) field at the end of
each of these vertices. This will also give
us much better alignment in DMEM.

Now that we have our formats
defined as in Listing 1, it’s a simple task
to convert from one to the other. Actu-
ally, all we need to do is copy the 64
bits from each corner control point (x,
y, z, and j) into the beginning of each
corner surface vertex.

Corner Initialization

Now we need to compute the sec-
ond partial derivatives described

above for each corner of the surface.
Fortunately, the second partial in u
and the second partial in v at each

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

N 6 4 P R O G R A M M I N G

F I G U R E 5 . Our command structure is similar to

the structure of standard N64 microcode com-

mands. We use this structure for all of our com-

mands.

struct ControlPoint {

s15 x, y, z, j;

};

struct SurfaceVertex {

s15 qx, qy, qz, qj;

s15 quux, quuy, quuz, quuj;

s15 qvvx, qvvy, qvvz, qvvj;

s15 quuvvx, quuvvy, quuvvz, quuvvj;

};

L I S T I N G 1 . Formats for data storage in DMEM. The j fields are unused, we

include them for data alignment.

Load the vector registers with point data

vload vectora, P[0,0], P[0,0] # = x y z j, x y z j

vload vectorb, P[1,0], P[0,1]

vload vectorc, P[2,0], P[0,2]

Do vector computations to simultaneously compute quu and qvv.

vadd vectord, vectora, vectorc # D = A+C

vmul vectore, vectorb, vconst[5] # E = B*(-2)

vadd vinter, vectord, vectore # inter = A-2B+C

vmul v00, vinter, vconst[3] # v00 = 6*(A-2B+C)

vstore2 v00, v00uu, v00vv # Store results to uu and vv fields

L I S T I N G 2 . Pseudocode for computing Quu(0,0) and Qvv(0,0) using vector

processing.

corner control point can be computed with similar equa-
tions that use different points. Here are the equations to
perform at control point (0, 0):

We need to do this computation in x, y, and z for each
equation. This is a great place to take advantage of vector
processing. We’ll do this operation in parallel, computing
both equations for x, y, and z simultaneously. First, we load
both sets of control point positions into the vectors, as
shown in pseudocode in Listing 2. Then just a few vector
computations are performed and all coordinates are simul-
taneously calculated.

Note that we have the constants –2 and 6 stored in a vec-
tor constants (vconst) register, which makes it easy to multi-
ply each slice in another vector by each
scalar. Using vector processing we’ve
reduced two additions and two
multiplies for each of six coordi-
nates to just two additions and
two multiplies total.

We can perform this same
process to compute Quuvv.
But we’ll have to pair up
the operations. We have
four control points, the
corner points, which we
need in order to calcu-
late Quuvv. We can com-
pute two separate con-
trol points
simultaneously by jam-
ming them into the same vector and doing
vector operations. So we’ll perform this
process twice in order to compute Quuvv for
all four points.

Surface Subdivision

For code simplicity, we’re going to subdivide
the surface iteratively, not recursively. We’re going to

subdivide many times, so let’s make a function out of it.
What do we need to pass to this function? Well, we’ll need
the data for the endpoints of the curve we’re splitting, and a
du value which is the distance in parametric space from the
midpoint to the endpoint. This is 0.5 for our first subdivi-
sion. For simplicity, we’ll pass in the value (du)2/2 so we
don’t have to compute the square and multiply by one-half
each time we use the function. We’ll also stuff this value in a
vector slice so that we can use it in vector computations.
We’ll call the vector which contains this value vecdusqhalf.
Our function ends up looking like this (there will be one for
u-curve splits, and one for v-curves):
void tesselSubdivide[U|V](Vertex v0, Vertex v1, Vector vecdusqhalf)

The microcode for the tesselSubdivideU function appears in
Listing 3. The function tesselSubdivideV will be very similar.

The first thing you’ll notice in this code is that we block
together the Quu and Quuvv computations. We also block

together the Q and Qvv computations. That’s because both of
these are very similar computations. For Quu and Quuvv we’re
doing this:

The computations for Q and Qvv depend on the prior com-
putations, so we do them second. They look like this:

Most of the opcodes you see in the microcode
listing make intuitive sense. But one that

bears explaining is vmudm. The RSP pro-
vides many multiplication opera-

tions. They vary depending on the
sign of the operands and whether

the operands are fractions or
integers. The vmudm opera-

tion performs multiplica-
tion of signed integers
by unsigned fractions.
The resulting integer
part of each vector slice
computation is stored in

the destination vector reg-
ister (first operand), and

the 32-bit integer/fraction
results are stored in the

accumulator slices.
This microcode currently is

not optimized for dual process-
ing, nor for accumulator storage

of intermediate results. Vector
loads and stores are scalar opera-

tions, so we could easily tighten this
microcode up by executing loads and stores in parallel with
vector operations.

Performance Figures

C alculating a regular grid of points on the Bézier surface
using the standard double sum equation is a not a very

efficient way to tessellate. Using floating-point arithmetic on
the CPU, this process took 272,500 CPU cycles. While cen-
tral differencing has a large performance cost at initializa-
tion, the subdivision step is very fast. Implemented on the
CPU, it takes 70,400 CPU cycles to tessellate our surface.

When we moved this algorithm to the RSP, we made some
sacrifices. We used 16-bit fixed-point arithmetic and took a
hit for DMA-ing data to and from the RSP. But our algo-
rithm, including RSP load and save time, runs in just 16,600
CPU cycles. And the CPU itself is free during this process to
do other computations.

Q u
Q u Q u

dusqhalf Q u

Q u
Q u Q u

dusqhalf Q u

mid uu mid

vv mid
vv vv

uuvv mid

() = () + () − ∗ ()()
() = () + () − ∗ ()()

0 1

0 1

2

2

Q u
Q u Q u

Q u
Q u Q u

uu mid
uu uu

uuvv mid
uuvv uuvv

() = () + ()

() = () + ()

0 1

0 1

2

2

Q P P P

Q P P P

uu

vv

0 0 6 2

0 0 6 2

00 10 20

00 01 02

,

,

() = − +()
() = − +()

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

N 6 4 P R O G R A M M I N G

N64 Optimizations Keep the
Platform Fresh

W e’ve examined how Bézier sur-
faces can be implemented on

the N64 using a central difference tes-
sellation algorithm in microcode. The
payback we got for choosing a more
efficient surface tessellation algorithm
and pushing it onto the RSP was sub-
stantial.

Technically, the N64 is still a power-
house. Programming the microcode
and taking advantage of vector pro-
cessing gives developers the ability to
implement algorithms that aren’t fea-
sible on much bigger and faster CPUs.
In addition, learning to program the
N64 now will give developers a big
advantage when it comes to next-gen-
eration console development (includ-
ing Nintendo’s upcoming system, cur-
rently known as Dolphin), many of
which use vector processing. If you’re
interested in becoming an N64 devel-
oper, or if you are an N64 developer
and you want to know about microc-
ode development kits, please contact
Nintendo by sending e-mail to
support@noa.com. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

41

###

tesselSubdivideU

#

Subdivide this curve in the U direction

#

Surface Vertex structure offsets

.symbol VERTEX_POS, 0

.symbol VERTEX_UU, 8

.symbol VERTEX_VV, 16

.symbol VERTEX_UUVV, 24

Register aliases

.name pnew, $10 # Position of output surface vertex (u)

.name pminus, $11 # Position of input left surface vertex (u-du)

.name pplus, $12 # Position of input right surface vertex (u+du)

.name vecdusqhalf, $v6 # Vector which contains 0.5*du*du in slice 0

.name vecminus, $v7 # Vector for storing left surface vertex info

.name vecplus, $v8 # Vector for storing right surface vertex info

.name vecuus, $v9 # Temp vector for UU and UUVV computation

.name vecuushalf, $v10 # Final results of UU and UUVV computation

.name vecposvvsinter, $v11 # Temp vector for POS and VV computation

.name vecposvvshalf, $v12 # Temp vector for POS and VV computation

.name vecmulleduus, $v13 # Temp vector for POS and VV computation

.name vecposvvs, $v14 # Final results of POS and VV computation

.ent tesselSubdivideU

tesselSubdivideU:

Do quu and quuvv computations together

ldv vecminus[0], VERTEX_UU(pminus)

ldv vecminus[8], VERTEX_UUVV(pminus)

ldv vecplus[0], VERTEX_UU(pplus)

ldv vecplus[8], VERTEX_UUVV(pplus)

vadd vecuus, vecminus, vecplus # Add endpoints

vmudm vecuushalf, vecuus, vecconst[1] # Mul by one-half

Do qpos and qvv computations together

ldv vecminus[0], VERTEX_POS(pminus)

ldv vecminus[8], VERTEX_VV(pminus)

ldv vecplus[0], VERTEX_POS(pplus)

ldv vecplus[8], VERTEX_VV(pplus)

vadd vecposvvsinter, vecminus, vecplus # Add endpoints

vmudm vecposvvshalf, vecposvvsinter, vecconst[1] # Mul by one-half

vmudm vecmulleduus, vecuushalf, vecdusqhalf[0] # uus/2 *(du^2)/2

vsub vecposvvs, vecposvvshalf, vecmulleduus # Subtract...

Store everything

sdv vecuushalf[0], VERTEX_UU(pnew)

sdv vecuushalf[8], VERTEX_UUVV(pnew)

sdv vecposvvs[0], VERTEX_POS(pnew)

jr return

sdv vecposvvs[8], VERTEX_VV(pnew)

.end tesselSubdivideU

L I S T I N G 3 . Microcode for the tesselSubdivideU routine.

Books
Watt, Alan, and Watt, Mark. Advanced

Animation and Rendering Techniques:

Theory and Practice. New York: ACM

Press, 1992.

Periodicals
Clark, J. H. “A Fast Scan-Line Algorithm

for Rendering Parametric Surfaces.”

Computer Graphics Vol. 13 No. 2: pp.

289–299.

Game Developer
Sharp, Brian. “Implementing Curved

Surface Geometry” (June 1999) and

“Optimizing Curved Surface Geometry”

(July 1999).

Gamasutra
For a detailed derivation and compari-

son of Bézier surface algorithms, see

the expanded version of this article at

http://www.gamasutra.com.

Bézier Surface Microcode Source
If you're a Nintendo 64 developer, log

on to Nintendo’s developer web site at

https://www.warioworld.com.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

But resource management is much
more than just dealing with size con-
straints. You also have to properly allo-
cate and free resources, which, if
ignored, can quickly turn into hiding
places for numerous bugs. Fortunately,
there are ways to deal with these prob-
lems. It just requires planning and
implementing some helpful tools.

First, let’s see what we’re getting our-
selves into when we start talking about
developing for a console. For this article,
my focus is on the main memory, so
we’ll ignore video and sound memory.

The current champ of the console
wars is the Sony Playstation, which

means that if you’re thinking about
developing for consoles, you’re proba-
bly considering this system. The
Playstation’s massive consumer market
is the good news, but the bad news is
that its market is the only big thing
about it — the system itself is very lim-
ited when it comes to resources. The
Playstation is a small system with only
2MB of primary memory. The
Nintendo 64 isn’t much better at 4MB.
The newest kid on the block, the Sega
Dreamcast, comes to the table with a
more impressive 16MB of memory but
it will sometimes have Windows CE
taking a slice of that space. (Also, the

recently-released specifications for the
Sony Playstation 2 reveal that the sys-
tem will have 32MB of main memory.
But since it’s currently in development,
that might change.) In other words,
the PC has a huge leg up on consoles as
far as main memory goes and it doesn’t
look as if that will end anytime soon.

Keeping these restrictions in mind
when developing a game is critically
important, especially if you want to do
simultaneous PC/console development
(or worse yet, if you decide partially
through your PC development to try
porting it to a console). Many of the
newest PC games require 24 or 32MB

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

M A N A G E M E N TR E S O U R C E

The Big Squeeze:
Resource Management
During Your Console Port

b y M i c h a e l S a l a d i n o

eveloping games for consoles often requires tight

resource management. Trying to fit all your

textures, sounds, and polygons onto the

machine is difficult enough, but then

consider that your monsters, explosions,

and bullets must live in this same place

along with your program code. It’s a tight fit.

Michael Saladino is currently the lead programmer on STAR TREK: HIDDEN EVIL at Presto Studios Inc. His previous work has found him
at Volition Inc. during the development of DESCENT: FREESPACE and at Mobeus Designs Inc. Contact him at michaels@presto.com or
just drop by his office for a late afternoon cocktail where he can be found exploring improved living through crushed velvet.

DD

of loaded resources, so trying to fit
that into a console is a daunting task.
It’s comparable to trying to fit an ele-
phant into a Volkswagen. And don’t
expect consoles ever to catch up. PCs
and consoles both use the same mem-
ory components and therefore on-
board memory sizes for each are
increasing at the same rate of approxi-
mately four times every three years. As
long as PCs cost many times more
than consoles, they will always have
more memory.

So, you have a game that barely fits
onto a PC, and then the producer starts
talking about porting to a console.
What do you do? Well, it’s an old story
in game development: A group of pro-
grammers just start building a game
and before they know it, they’re at
80MB of resources with no idea how
they got there. Then they end up
spending many man-months trying to
shrink the game to fit on a consumer
PC. At that stage, the idea to port the
game to a console has to remain exact-
ly that — an idea. You could never get
it on a Playstation at that stage.

It’s all too easy to allow this scenario
to occur because most game program-
mers use systems with at least 128MB
of memory, and many games can go
well into their second half of develop-
ment without anyone ever seriously
looking at their memory footprint.
Code, much like a gas, expands in vol-
ume to fill its container. Therefore it’s
up to the responsible programmer to
set a clear goal for the size of the code
base, know where it’s going, and make
sure that it stays on course. The basic
ideas about memory management that
I will explore are ones common to con-
soles and PCs. It’s just more important
to consider them while producing on a
console game because the environment
is so restrictive. Let’s begin by looking
at some useful coding techniques.

Memory Pools

Most data in a computer game con-
sists of large numbers of com-

mon data types. Examples of this are
the monsters in your world, bullets fly-
ing around them, polygons that make
them up, the execute buffers that ren-
der them, and so on. You need to
maintain lists of these data structures
so they can be accessed quickly and

efficiently. A good
way to handle this
data is with a mem-
ory pool manager.
A memory pool
manager is a piece
of code that han-
dles large collec-
tions of dynamical-
ly created data of a
common type.
With this layer of
code, we can han-
dle the allocation,
de-allocation, and
usage of these data
elements. We can
also keep track of
important statistics
about the data such
as the greatest
number of bullets that was ever in exis-
tence at one time during an execution
of the game. Knowing these statistics
can be very helpful in setting maxi-
mums that help compress your game’s
footprint onto a given system. I divide
my memory pools into two separate
versions. The first is responsible for
handling data types which cannot
have a maximum number of elements
forced onto them. However, they must
share the common trait that they are
always allocated and de-allocated in
two independent stages. The second
type of memory pool handles data
types that have a limited number in
existence at any given time, which
lends itself well to a temporal caching
system.

Cyclic Memory Pools

L et’s consider the first style of mem-
ory pool. To give you a clear idea

of what type of data elements fall into
the above description of this pool, it’s
any data list that is allocated element
by element until it reaches its maxi-
mum growth for that cycle and is then
completely destroyed so the process
can begin again. Many data types in
games actually fall into this category,
and most involve frame-specific data
because the frame is a convenient
cycle. Examples of this data type
include Direct3D execute buffers, poly-
gons generated from 3D clipping,
spans for scanline hidden surface
removal, and AI transversal lists; all of

which happen to be tied to the frame
cycle. You build the data fresh every
frame, and at the end of the frame you
dispose of all that you created. Looking
through a game’s code base will most
likely reveal many more algorithms
that use this type of data.

One way to manage this data is to use
a linked list that grows dynamically
along with the data. This is easy but not
very fast. First, you must call malloc (or
new) for every element you create. For
some data types this could easily be
thousands of times per frame. But since
these data elements need to be truly
dynamic, a pre-allocated array will not
work. Therefore, combining these two
choices into a hybrid is what is called
for. This is the first type of memory
pool.

This memory pool allocates large
numbers of elements with a single call
to malloc. As new elements are needed,
the memory pool system hands out
pointers to memory blocks that have
already been allocated as part of a previ-
ous chunk. If you run out, the memory
pool will allocate another large block of
elements for the next n requests for new
elements. This keeps the number of sys-
tem-level allocations to a minimum.
The trick is maintaining the balance
between saving time by creating more
elements with each real allocation and
losing memory with allocated space that
goes unused. Each type of data element
will probably work best with its own
block size, which is determined by
examining the data type’s usage during
an average game.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

43

Hungry common data types. These monsters’ polygons are

part of a cyclic memory pool.

To reach this balance, you can cus-
tomize the memory pool so that it
grows and shrinks intelligently. For
instance, if the data type tends to allo-
cate the same number of elements
every cycle, then there is no need to
de-allocate the space every frame —
just empty it and use it again. This
results in even fewer system-level
memory allocations. If the data type
tends to spike up every few seconds,
you can have the memory pool
“prune” itself back to the average num-
ber of elements per cycle, thereby using
far less memory.

Caching Memory Pools

T he secondary form of memory
pools manage data elements that

are dynamic and cannot be allocated
and de-allocated in two independent
stages. Although this describes nearly
every type of data list, there is one
other restriction that this pool places
on data types. The data must be able to
handle an arbitrary maximum of ele-
ments to be enforced when a new ele-
ment is requested. This memory pool is
useful for “eye candy” — data elements
such as bullets, explosions, and particle
effects. Because console memory
resources are very limited, wasting
space on hundreds of bloody chunks is
just not good. Therefore, a memory
pool that keeps usage under control
can be very helpful. Basically, this
memory pool is a caching system. But
many programmers only seem to use
caches in reference to textures, when
in fact they can be very useful
with any number of data types.

Let’s look at an example of
what happens in my latest game,
STAR TREK: HIDDEN EVIL. When an
enemy drone is destroyed by a
phaser blast, an explosion sprite
is generated, a couple of smoke
puffs are released, and a dozen
spark particles are emitted. First,
you don’t want to allocate and
delete every one of these ele-
ments each time a drone is
destroyed. Take a quick look at
some hyperactive console games
and you can see that hundreds
of these eye-candy objects are
created every second. A good
solution to this problem is to
create a set number of each type

of data element, say 100 debris parti-
cles, 30 smoke puffs, and so on, and
then allow the memory pool to hand
out new elements whenever they are
needed without ever going over the set
limit. This means that no system-level
memory management occurs, which
speeds up our code. We also know
exactly how much memory each type
of data takes up throughout the game.

What happens when we run out of
elements of a given type? A simple age-
based caching system can be used to
destroy old instances in favor of new
ones. While this could conceivably
degrade image quality or even game
play, it will usually go completely
unnoticed if you carefully balance
resource savings vs. game-play costs. An
old bullet that has been flying for three
seconds and still hasn’t hit anything
(such as one flying towards the sky) is
probably not going to be missed if it
disappears unnaturally. Smoke puffs
and debris particles are also not going
to be missed if they disappear a little
too soon, especially since the player is
most likely focusing on the area where
new particles are being generated.

Memory Pools Integration

T he integration of these pools into
our code base should be simple

enough since they are a very general
class. For example, I wrote a cyclic
memory pool type recently for han-
dling dirty scanline updating in STAR

TREK: HIDDEN EVIL. I had thousands of
data elements, each of which repre-

sented a region on a scanline that
needed to be refreshed. I created a
memory pool of these data elements to
request from when I needed them.
Since I had multiple dirty scanline
screens working simultaneously, I
ended up saving tens of thousands of
new and delete calls on peak frames. And
by using very large chunks of a thou-
sand data elements per pool, I had
excellent cache locality coherency
when walking the lists.

The integration of the caching mem-
ory pool might not be quite as obvious.
All data elements that belong to these
types of pools must derive from a com-
mon class. This common class contains
one item: the field on which to base
the caching algorithm. Earlier in the
article, I implied that this caching
scheme had to be based on the age of
the object, but it can really be based on
anything. Any heuristic that deter-
mines which element in the pool
should be expunged in favor of a new
element will do. Once you have all
data elements deriving from the base
class, the rest of the integration is the
same as the other memory pool. Just
stop allocating and deleting elements
and instead request them from the
appropriate memory pool system.

Once most objects in our game are
based on the memory pool classes, we
can expand their usefulness by turning
them into statistic recorders to monitor
memory use. Pools can keep track of
how many of a given data element
have been allocated, how many have
been used, measure the peaks, and
determine the averages. All this infor-

mation can be gathered easily by
the memory pool system and
easily retrieved to help reduce
your game’s memory footprint.
This data is also very useful for
customizing the actions of each
memory pool used by your
game. For instance, you might
find that you are requesting sig-
nificantly more bullets per sec-
ond than you first guessed and
it’s causing them to expire too
early. Therefore, you raise your
allowance for bullets.

An example of the real-world
usefulness of these statistics can
be seen in our memory reduction
work on BENEATH. Our memory
footprint was much too large at
the end of the project, so we sent

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

R E S O U R C E M A N A G E M E N T

Ensign Sovak is demonstrating caching memory pools

by destroying an enemy drone. Sparks are great can-

didates for caching pools.

one of our programmers
into the code to determine
where we could cut. By
breaking the memory usage
down to the object level, we
saw a tall spike at the data
object “flare shards.” Flare
shards are pieces that fly off
when a flare object
explodes in the game. (A
flare is shot from a flare
gun, an object that many
creatures use.) We discov-
ered that the spike was
caused by the fact that mul-
tiple creatures had flare
guns, each flare gun had a
pre-allocated clip of ten
flares, and each flare had a pre-allocat-
ed clip of twelve flare shards. The result
was thousands of flare shards just sit-
ting in memory waiting to be used.

Our solution was to create a flare
shard pool in which we allocated a set
number of flare shards at the beginning
of the game. Then, whenever a new
flare shard was needed, it requested
one from a memory pool. If the memo-
ry pool was full, the oldest flare shard
was retired early and became the new
flare shard. We ended up saving
megabytes of data space. Something
that small had actually gone unnoticed
by us.

Memory Manager

A s any experienced programmer
can attest, memory errors can be

some of the most difficult bugs to track
down. And when you consider that
consoles are often weak in terms of
development tools, having your own
code to help track down memory bugs
can be quite a time saver. This is where
a memory manager can be useful (see
Figure 1). Normally, programs use the
standard malloc and free (or their C++
equivalents, new and delete) when deal-
ing with memory allocation; however,
these functions do not help us track
down memory leaks, prevent us from
overwriting our memory bounds, or
handle other common memory errors.
So, let’s look at a simple layer that we
can wrap around new and delete in order
to help us debug our code.

Let’s examine how this layer will
work. The meat of the code marks each
memory allocation with a header and

trailer containing very specific data
that allows us to track the blocks. In
the header we place a pointer to the
source code file-name string that the
block was allocated in and the line
number it was allocated on. This lets us
identify memory errors by generating
useful debugging messages that lead
the programmer straight to the prob-
lem. We also include a marker in both
the header and trailer that allows us to
track its current state and watch for
boundary overwrites.

When an allocation occurs, our cus-
tom routine allocates memory using a
malloc call with enough additional space
to hold the header and trailer. The data
portion of the block is cleared out to an
uninitialized value. The header and
trailer are initialized correctly with the
file name, line number, and overwrite
markers. This memory block is then
put into a hash table to give us better
searching performance when we need
to find blocks in later stages, such as
validation or freeing. The memory
block is then returned with the appro-
priate adjustment for the header and
the rest of the program is none the
wiser that this has taken place behind
the scenes.

Let’s look at what happens when we
free memory. First, check to see if the
memory block has already been freed
by looking at its header state. Also
check the header and trailer markers to
see if an unrecognized value has been
placed there, implying that a boundary
overwrite has occurred. This does not
catch all memory overwrites because
obviously the overwrite could have
written our marker, and it would
appear untouched. However, in all my

years of using memory man-
agers such as this, I’ve never
seen that happen. If this
memory block passes these
initial tests, we make sure
that the block is in our hash
table. If we find it, then we
have a legitimate free on a
legitimate block. We free the
data block by marking it as
freed in its header state and
then filling the block with a
“freed value.” The memory
block is then removed from
our hash table and we finally
call free() to actually free the
block on a system level.

Using these two functions,
we can catch many memory errors
when they are first introduced and not
weeks later when we’re trying to track
down some very obscure, difficult-to-
reproduce bug. We can also use these
functions to track our total memory
allocation, peak memory allocation,
average memory allocation, and other
useful code statistics.

Finding memory leaks is another big
advantage to this code layer. At the
end of your program, you can call the
FindMemoryLeaks() function to find all
memory leaks. The code to handle this
is quite simple. By the time you call
this function, a free should have been
called for every malloc you made; there-
fore, any memory blocks that still exist
in the hash table are memory leaks.
Just walk the table, printing out every
block along with its file name and line
number information. You now have a
printed list of every memory leak in
your game.

With this layer written, how do we
integrate this system into our code
base? We could overload new and delete,
or we could replace all our standard C
memory calls with our own personal
functions if we didn’t want to use C++.
The path I usually take is to use
defines, such as this:
#ifdef _DEBUG

#define Allocate(x) \

MemoryManager->Allocate(__FILE__,__LINE__,x)

#define Deallocate(x) \

MemoryManager->Deallocate(x)

#else

#define Allocate(x) malloc(x)

#define Deallocate(x) free(x)

#endif

This method keeps you from having
to type the file and line parameters for

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

R E S O U R C E M A N A G E M E N T

F I G U R E 1 . Our memory manager's block structure.

every allocate function call. Also
notice that the entire memory
manager layer is skipped when
not in a debug build, thereby
speeding up the code base in the
final release build. (And by that
time, all the memory bugs should
be gone, right?)

Resource Wrapping

The memory manager that we
just looked at should save

time when tracking down memo-
ry bugs. But what is the code real-
ly all about? It is just wrapper
code; a custom high-level library
that encloses a low-level library, such
as the C memory manager, which pro-
vides improved functionality. By mak-
ing sure that our wrapper is the only
entry into the system, we can receive
customized records that the low-level
system was never designed to give.

Let’s take this idea of the wrapper
even further. There are many other
resources that we can surround with
wrappers. Why not wrap the file IO sys-
tem? Or write a custom library instead
of using fopen() and fclose()? This layer
can be used to abstract packed files
(many files merged into one for faster
disk access) or keep endian switching
straight between Macs, PCs, and con-
soles. You can also use it to track down
unclosed files that can cause quite a bit
of trouble, as a recent incident at Presto
showed us.

Windows gives each application a
maximum number of file handles,
which when used up, can no longer be
opened using standard C file access
conventions. If you’re opening files
without closing them, you eventually
use up these file handles and run out. A
recent bug in our load/save system on
STAR TREK ended up being a section of
code that was not closing its files, and
after five or six mission loads, we
would run out of handles. We wasted a
considerable amount of time on a bug
that could have easily been avoided
with a wrapper library reporting
unclosed files. That’s what wrapping
systems are all about — adding more
functionality to already-written
systems.

Another benefit of writing wrapper
code is that it helps us achieve our
overall goal: porting between multiple

platforms. By maintaining a custom
application interface to a system, you
avoid having to rewrite code through-
out a project, and instead update only
one library. For instance, if you had a
game that used Windows-specific timer
devices, you would have to track down
all instances of such timer devices
throughout your code base when port-
ing to a console. Instead, write a wrap-
per class around the device that’s used
by the entire code base. Then, when
it’s time to port your game to another
platform, you only have to touch one
file by rewriting the timer wrapper. All
other code in the game remains the
same because it all uses your custom
timer interface.

Specific Porting Issues

L et’s take a moment to think about
some specific issues when porting

from a PC to a console. First, when
developing for a console (especially a
new console for which the develop-
ment environments are not mature),
you’re often developing with DOS-
prompt linkers and no support pro-
grams outside a basic C compiler.
So when doing a port, take advantage
of the PC’s enormous library of devel-
opment support before actually mov-
ing the code to the new platform.
For instance, using NuMega’s Bounds-
Checker is good place to start. For
those who have never used it,
BoundsChecker helps programmers
find memory bugs similar to those dis-
cussed above, such as double frees,
overwriting boundaries, and memory
leaks. This program can help you

remove memory errors before
you even move the code base
over to the console.

Another issue to think about is
the difference between the
Windows operating system and
whatever operating system exists
on the console you are porting
to. (Or lack of operating system,
as the case may be.) Windows is
significantly more complex than
anything you’ll find on a con-
sole. (With the obvious excep-
tion of the Sega Dreamcast,
which has Windows CE, but
even that is a very stripped-down
version of what you use every
day on a PC.) As with all

advanced operating systems, Windows
can be quite forgiving of mistakes —
sometimes too forgiving. Because if
you make a mistake that Windows can
survive, chances are your console
won’t. For instance, I’ve seen program-
mers not clean up after their memory
allocation because they know that
when they shut down their program,
Windows will clean up their memory
space. This is a horrible habit to get
into, but from my experience, it seems
common. Always work off the assump-
tion that you do not have a safety net.
When you type a new, match it with a
delete immediately. When you open a
file, make sure that you close it.

Other issues to consider, which I do
not have the space to get into here, are
problems associated with other
resources, such as video space. Just as
PCs will always have more main mem-
ory than consoles, they will also
always have more video memory,
because PCs owners are willing to
spend more. The same problem exists
for sound memory. Consoles don’t yet
have hard drives for high-speed data
spooling or massive state saves, and
the CD-ROMs they do have are usually
considerably slower than what is com-
mon on PCs. In short, consoles are
amazingly limited compared to PCs.
But if you know what you’re doing,
you can make a game that’s just as
incredible as anything on a PC —
sometimes even more so. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

R E S O U R C E M A N A G E M E N T

Jack confronts his arachnophobia to squash bugs. Of

course, our memory manager can do that for him.

Code for the memory pool system

and memory management wrapper

can be found on the Game Developer

web site, http://www.gdmag.com.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

his is the story of a young and inexperienced

company that was given the chance to develop

the sequel to one of the top ten games of all time. The

sequel was allotted roughly one year of development with

its full team. To make up for the short development cycle

and correspondingly small budget, the project was sup-

posed to reuse technology. Not technology in the sense of a stand-alone

engine from another game, but individual components that were spun

off from yet another game, THIEF: THE DARK PROJECT. The THIEF technol-

ogy was still under development and months away from completion

when our team started working with it. To cap everything off, the pro-

ject was a collaborative effort between two companies based on a con-

tract that only loosely defined the responsibilities of each organization.

B y J o n a t h a n C h e y

Irrational GamesÕ
SYSTEM SHOCK 2

P O S T M O R T E M

Jonathan Chey was the project manager and a programmer on SYSTEM SHOCK 2. He is also one of the co-
founders of Irrational Games. Prior to founding Irrational Games, he worked at Looking Glass Studios and
prior to that he received his Ph.D. in Cognitive Science from Boston University. He is currently working on
his tan back in his hometown of Sydney, Australia. He can be reached at jon@irrational-games.com.

TT

53

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

Add to these gloomy initial conditions
the fact that the game from which our
shared technology was derived slipped more
than six months from the initially estimated
date, that several developers quit during the
project, that we didn’t bring the full team
up to strength until six months from the
final ship date, and that we struggled with
financial and business problems during the
entire project. Having learned this, you
might anticipate the worst. Strangely,
SYSTEM SHOCK 2 shipped within two months
of its targeted date and will, I hope, be rec-
ognized as a sequel worthy of its esteemed
ancestor.

Let’s step back and trace the origins of the
companies and the project. Looking Glass
Studios is familiar to many as the creator of a
series of highly innovative titles including
the original SYSTEM SHOCK, the ULTIMA

UNDERWORLD series, the FLIGHT UNLIMITED

line and TERRA NOVA, among others. Three
years ago, Ken Levine, Rob Fermier and I
were developers at Looking Glass, struggling
with the aftermath of VOYAGER, an aborted
Star Trek: Voyager–licensed project. At the time, Looking Glass
was in financial and creative disarray after a series of titles
that, though critically acclaimed, had failed to meet sales
expectations, the latest being TERRA NOVA and BRITISH OPEN

CHAMPIONSHIP GOLF. Frustration with the 18 months wasted
on VOYAGER and a certain amount of hubris prompted three
of us to strike out on our own to test our game design and
management ideas. We wanted to nail down a rigorous and
technologically feasible design, focus on game play, and force
ourselves to make decisions rather than allow ourselves to
stagnate in indecision. We wanted to run a project.

So we formed Irrational Games. After some misadventures
with other development contracts, we unexpectedly found
ourselves back at work with Looking Glass as a company
rather than as employees. Initially, our brief was to prepare a
prototype based on the still-in-development THIEF technology
recast as a science-fiction game. The scope of the project was
very wide, but we quickly decided to follow in the footsteps of
the original SYSTEM SHOCK. Our initial design problem was
how to construct such a game without the luxury of the actu-
al SYSTEM SHOCK license, since no publisher had yet been
signed.

Our initial prototype was developed by the three of us
working with a series of contract artists. Our focus was on
the core game-play elements: an object-rich world contain-
ing lots of interactive items, a story conveyed through
recorded logs (not interaction with living NPCs), and game
play realized through simple, reusable elements. This focus
enticed Electronic Arts into signing on as our publisher early
in 1998 — a fantastic break for us. It meant we could now
utilize the real SYSTEM SHOCK name and characters.

Immediately, we went back to our original design, threw
away some of the crazier ideas that had been percolating and
began integrating more of the rich SYSTEM SHOCK universe
into the title. That was the point at which the real develop-
ment began.

It’s the Engine, Stupid

Nothing impacted the development of SYSTEM SHOCK as
much as the existing technology we got from Looking

Glass. This fact cannot be classified monolithically under the
heading of “what went wrong” or “what went right,” how-
ever, because it went both wrong and right. The technology
we used was the so-called “Dark Engine,” which was essen-
tially technology developed as a result of Looking Glass’s
THIEF: THE DARK PROJECT (for more about its development,

Irrational Games LLC
Cambridge, Mass.
(617) 441-6333

http://www.irrational-games.com
Looking Glass Studios Inc.

Cambridge, Mass.
(617) 441-6333

http://www.lglass.com
Release date: August 1999
Intended platform: Windows 95/98
Project budget: $1.7 million
Project length: 18 months
Team size: 15 full-time developers, 10–15 part-time developers
Critical development hardware: Pentium II machines, 200MHz

to 450MHz with 64MB to 128MB RAM, Nvidia Riva 128,
Voodoo, Voodoo 2, TNT cards, Creative Labs’ sound cards,
Wacom tablets, Windows 95/98. Also used SGI Indigo work-
stations.

Critical development software: Microsoft Visual C++ 5.0, Opus
Make, 3D Studio Max, Adobe Photoshop, Alias|Wavefront
Power Animator, DeBabelizer Pro, RCS, Filemaker Pro, and
Adaptive Optics motion capture software

SYSTEM SHOCK 2

The team at Irrational Games, from left to right: First row: Steve Kimura/Artist,

Jonathan Chey/Project Director, Justin Waks/Multiplayer Programmer,

Mauricio Tejerina/Artist, Rob "Xemu" Fermier/Lead Programmer, Dorian

Hart/Designer, Lulu Lamer/QA Lead. Second row: Ian Vogel/Level Designer,

Scott Blinn/Level Designer, Michael Swiderek/Artist, Rob Caminos/Motion

Editor, Nate Wells/Artist. Third row: Mike Ryan/Level Designer, Ken

Levine/Lead Designer, Mathias Boynton/Level Designer. Not shown: Gareth

Hinds/Lead Artist.

see “Looking Glass’s THIEF: THE DARK

PROJECT,” Postmortem, July 1999).
The THIEF technology was developed

with an eye toward reuse, and I will
refer to it in this article as an “engine.”
However, it is not an engine in the
same sense as QUAKE’s, UNREAL’s, and
LithTech. The Dark Engine was never
delivered to the SYSTEM SHOCK team as
a finished piece of code, nor were
we ever presented with a final set
of APIs that the engine was to
implement. Instead, we worked
with the same code base as the
THIEF team for most of the project
(excluding a brief window of time
when we made a copy of the
source code while the THIEF team
prepared to ship the game).
Remarkably, it is still possible to
compile a hybrid executable out of this
tree that can play both THIEF and
SYSTEM SHOCK 2 based on a variable in a
configuration file.

This intimate sharing of code both
helped and hurt us. We had direct
access to the ongoing bug-fixes and
engine enhancements flowing from the
THIEF team. It exposed us to bugs that
the THIEF team introduced, but it also
gave us the ability to fix bugs and add
new features to the engine. Because we
had this power, we were sometimes
expected to fix engine problems our-
selves rather than turning them over to
Looking Glass programmers, which
wasn’t always to our benefit. At times
we longed for a finished and frozen
engine with an unalterable API that
was rigidly defined and implemented
— the perfect black box. But being able
to tamper with the engine allowed us
to change it to support SYSTEM

SHOCK–specific features in ways that a
general engine never could.

What Went Right

1.THE IRRATIONAL DEVELOPMENT MODEL.
In our hubris after leaving

Looking Glass, we formulated several
informal approaches to development
that we intended to test out on our
projects. Most of these approaches
proved to be successful and, I think,
formed the basis of our ability to com-
plete the project to our satisfaction.

First, we designed to our technology
rather than building technology to fit
our design. Under this model, we first

analyzed our technological capabilities
and then decided on a design that
would work with it. This process is
almost mandatory when reusing an
engine. Sometimes it can be difficult to
stick with this when a great design idea
doesn’t fit the technology, but we
applied the principal pretty ruthlessly.
And many of the times we did deviate
we had problems.

Another feature of our development
philosophy is that everyone partici-
pates in game design. Why? Because all
three of the Irrational founders wanted
to set the design direction of our prod-
ucts, programmers were able to resolve
design issues without having to stick to
a design spec, and we strongly empha-
sized game design skills when hiring all
of our employees and contractors. In
all our interviews, one of our most
pressing questions to ourselves was
“Does this person get games?” Failure
to “get” them was a definite strike
against any prospective employee.
Ultimately, the team’s passion for and
understanding of games was a major
contributor to the design of the final
product.

The final goal of our development
process was to make decisions and hit
deadlines. We focused on moving for-
ward, and we didn’t allow ourselves to
be bogged down. We desperately want-
ed to ship a game and believed that the
discipline imposed by the rule of for-
ward motion would ultimately pay off
in terms of the final product quality as

well as delivery date. While there are
features in SYSTEM SHOCK 2 that could
have been better if we had not rushed
them (the character portraits for exam-
ple), we still firmly believe that the
game as a whole was made better by
our resolve to finish it on time.

2.USE OF SIMPLE, REUSABLE GAME-PLAY

ELEMENTS. The field of compa-
nies developing first-person shooters
like id and Valve, among others, is
impressive. From the outset we realized
that we would have to work smarter,
not harder, to make a game that could
stand up in this market. It would be a
futile attempt to create scarier mon-
sters, bigger guns, or higher-polygon
environments. Additionally, we real-
ized that our design time and budget
were very tight and that we would not
have time to carefully hand-script com-
plicated game-play sequences in the
engine. Instead, in an attempt to shift
the battlefield, we chose to focus on
simple, reusable game-play elements.
The success of HALF-LIFE, which
launched while we were in the middle
of SYSTEM SHOCK 2 confirmed our intu-
itions in this respect. We simply didn’t
have the time, resources or technology
to develop the scripted cinematic
sequences used by HALF-LIFE. We con-
soled ourselves with the knowledge
that we were not even trying to do so.

This strategy melded very well with
our acquisition of the SYSTEM SHOCK

license, as the original SYSTEM SHOCK

had already been down this road. We
decided to expand on elements that we
liked in SYSTEM SHOCK and then add
similar new systems. Each such new
system was evaluated rigorously in
terms of game-play benefits, underly-
ing technology, and design-time
requirements.

For example, take the ship’s security
system. Early on we decided that we
wanted to continue the surveillance
theme from SYSTEM SHOCK, which we
could leverage throughout the game to
provide lots of game play for very little
implementation cost. We realized that
security cameras would be trivial to
implement using existing AI systems
(they are just AIs pruned of many of
their normal abilities) and that once
we had cameras that could spot and
track the player, we would be able to
build several game-play elements out
of them. Cameras could summon mon-
sters to the player, so much of the

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

Concept Sketch of the Psi Reaver.

game play consisted of avoiding detec-
tion by security cameras and destroy-
ing cameras before you were seen.
Because cameras scan fixed arcs, the
player can utilize timing to sneak by
cameras, pop out and shoot them at
the right moment, or get underneath
them and bash them with a melee
weapon. Once a player is spotted, mon-
sters flood the area until the player is
able to shut off the security system
somehow or the system times out. This
introduces the need to deactivate secu-
rity systems via security computers that
are scattered throughout the level.

This type of system was technologi-
cally simple to implement and required
minimal design effort. While not com-
pletely formulaic, the basic procedure
to set up a camera and security system
could be shown to designers quickly
using a few simple rules. From this one
system and a couple of associated sub-
systems, we derived a large amount of
game play without having designers
create and implement complicated
scripted sequences and story elements.
When you throw together many such
systems (as we did), you end up with a
lot of game play.

3.COOPERATIVE DEVELOPMENT. SYSTEM

SHOCK 2 was truly a cooperative
development between Irrational and
Looking Glass. Looking Glass provided
the engine and a lot of infrastructure
support (such as quality assurance),
while Irrational handled the design,
project leadership, and the responsibil-
ity for marshaling resources into the
final product. Both entities
contributed personnel to the
development team.
Inevitably, some friction
arose from this process while
we sorted out who was
responsible for what.
However, this cooperation
was ultimately successful
because both sides were inter-
ested in developing a great
product, and we were able to
compromise on most issues.
(On the most mundane level,
Irrational ended up providing
late-night, weekend meals for
its development team and for
Looking Glass on some days
during the week.)

Our cooperative arrange-
ment was founded on a con-
tractual agreement, but we

avoided falling back on this contract in
most cases. We preferred to resolve
issues through informal discussions.
Conceptually, Irrational was to be
responsible for the development of the
product and Looking Glass was to pro-
vide A/V content and quality assurance
services.

During the early stages of the pro-
ject, a deal was worked out whereby a
small number of Looking Glass person-
nel were subcontracted to Irrational
when it was determined that

Irrational’s development budget could
not cover all the SYSTEM SHOCK 2 devel-
opment costs, and as compensation for
the late delivery of the THIEF technolo-
gy. Unfortunately, these personnel
were not always available on time — a
situation which caused us much con-
cern. We knew that this “resource
debt” could never really be paid off
until THIEF shipped — nothing is so dif-
ficult as prying resources away from a
team that is trying to ship a product
before Christmas. It wasn’t until
December 1998 that we first began to
see some of these promised resources.
However, these “resources” — real peo-
ple — had just finished up THIEF and
were totally fried following the gruel-
ing crunch to ship THIEF. The saving
grace and reason that this arrangement
was ultimately successful was that
these developers were all talented and
experienced and already knew the
technology. Their addition to the team
gave us a solid boost during the final
months in our ship cycle.

The other benefit of the cooperative
development agreement between
Irrational and Looking Glass was that
our respective engine programmers
could share knowledge. The ability to
walk over and quiz engine program-
mers about systems proved to be an
invaluable benefit that more than com-
pensated for the lack of a rigorously
specified and documented engine.
Without a formal understanding of the
engine, we had to resolve engine issues
in a personal and informal manner.

This process relied on the
personalities of the respon-
sible individuals on the
engine team. Thus, the
Irrational programmers bal-
anced their time not only
according to the complexity
of their tasks but also
according to how much
support was available from
the engine side.

Overall, Irrational’s rela-
tionship with Looking Glass
was an unusually close one
and ultimately successful as
a result of our mutual
respect and willingness to
work with each other.
Despite our partnership
being based on a formal
contractual arrangement, it
was our ability to work flex-

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

55

Concept sketches of the Cyborg

Midwife.

A psi-attack against a Hybrid in Engineering.

ibly above this legal level that
enabled the development to
proceed smoothly.

4.DESIGN LESSONS FROM

SYSTEM SHOCK. Though
the SYSTEM SHOCK license was
wonderful, there were some
problems. The biggest was sim-
ply the challenge of living up to
the original. Fortunately, we
had the freedom to pay homage
to SYSTEM SHOCK legitimately by
reusing elements from it.
Additionally, we had access to
some of the original developers,
including our own lead pro-
grammer Rob Fermier.

As with most sequels, we
faced the challenge of keeping
the good elements of the original
game while not blindly copying them.
We knew that most players would
want a new story set in the same
world, with the same basic flavor as
the original game, yet we also wanted
to reach out to a broader audience. We
resolved these issues by identifying the
key elements that made SYSTEM SHOCK

so good and reinterpreting those ele-
ments using current technology. Some
elements made it through largely
unchanged (for example, the story-
telling logs and e-mails, the über vil-
lain Shodan and her close involve-
ment with the player throughout the
game, and the complexity of the
world). Other elements were reinter-
preted (such as the look of the envi-
ronment, player interface, and tech-
niques for interacting with the world).
A small number of items were simply
cut, most notably the cyberspace
sequences — we were fairly united in
our opinion that these just didn’t work
well in the original.

Notably, as with the original SYSTEM

SHOCK, we opted to omit interactive
NPCs in the game. SYSTEM SHOCK

eschewed living NPCs because the
technology of the day was simply inad-
equate to support believable and enjoy-
able interactions with them. It’s been
four years, and that technology is still
not available. So we continued the tra-
dition of SYSTEM SHOCK and provided
players with background information
using personal logs and e-mails gleaned
from the bodies of dead NPCs.

Perhaps our biggest deviation from
the original revolved around the play-
er interface. It’s commonly accepted

that SYSTEM SHOCK’s interface, while
elegant and powerful once under-
stood, presented a significant barrier to
entry. Our primary goal was to simpli-
fy this interface without dumbing it
down. We devoted more design effort
to this task than to any other system
in the game, and it required many iter-
ations before we were happy with it.
We adopted a bi-modal interface in
which there are two distinct modes
(inventory management and
combat/exploration) between which
the player can toggle. This was a risky
decision. This bi-modal model was
mandated by our desire to keep the
familiar and powerful mouse-look
metaphor common to first-person
shooters while retaining cursor-based
inventory management. How we
switched between modes became our
biggest design challenge. Sometimes
these mode changes are explicitly
requested through a mode change key,
and sometimes they are invoked auto-
matically by attempting to pick up an
object in the world. So far this system
seems to be working well, though only
time and user feedback will tell
whether we really got it right.

5.WORKING WITH A YOUNG TEAM. The
SYSTEM SHOCK team was fright-

eningly young and inexperienced,
especially for such a high-profile title.
Many of our team members were new
to the industry or had only a few
months’ experience, including the
majority of artists and all the level
builders. Of the three principals, only
Rob had previous experience in his role
as lead programmer. Neither Ken, the
lead designer, nor I, the project manag-

er, had previously worked in
these roles.

It’s not totally clear how
we pulled off our project
with our limited experience.
Partially, it must have been
due to our ability to bond as
a team and share knowledge
in our communal work envi-
ronment (“the pit”). To a cer-
tain extent, inexperience also
bred enthusiasm and com-
mitment that might not have
been present with a more
jaded set of developers. We
also worked hard to transfer
knowledge from the more
experienced developers to
the less seasoned individuals.

Rob worked on an extremely compre-
hensive set of documentation for the
functional object tools, as well as a set
of exercises (“object school”) to be
worked on each week. These kinds of
efforts paid back their investment
many times over.

This is not to say that our progress
was all sweetness and light. The art
team, for example, floundered for a
long time as we tried to integrate the
junior artists and imbue a common art
look in the team’s psyche. We had a lot
of very mediocre art midway through
our project and the art team was stag-
nating. Ultimately, management had
little to do with the art team’s success
— they were largely able to organize
themselves and create a solid, original
look.

On the management front, our inex-
perience was apparent. We blundered
through the early stages of develop-
ment with scheduling and manage-
ment issues. A large problem was our
failure to assign specific areas of
responsibility and authority early on.
Bad feelings arose as a result, which
could have been avoided if we had
clearly delineated areas of responsibili-
ty from the start.

What Went Wrong

1.POOR LEVEL DESIGN PROCESS. Level
design is a clearly defined pro-

fessional activity in the game industry.
It’s a profession that mixes artistic and
technical skills in equal measure, and
the bar is raised on both fronts every
year. Despite our understanding from

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

Cold comfort in Hydroponics.

the very beginning that the
level building would be a
problematic part of the
SYSTEM SHOCK development
process, we didn’t quite
grasp how difficult and time
consuming it would be, nor
did we expect that it would
eventually block the ship-
ment of the game.

In hindsight, our failure
to understand the amount
of work needed to design
levels is reprehensible given
that we had seen the same
problems emerge on THIEF,
and that SYSTEM SHOCK 2 lev-
els involved substantially
more complex object place-
ment than THIEF. I attribute this error
mostly to our denial of the problem —
we had a limited budget for level
designers and there is a long training
time required to get designers familiar
with the complex Dark Editor. So we
locked ourselves into working with the
resources we had. Since each individ-
ual task required from the designer
(apart from initial architectural work)
was relatively simple, it was easy to
believe that the sum total of work was
also relatively small. What we over-
looked was the fact that SYSTEM SHOCK

2 involves so many objects, scripts and
parameters. As such, the work load on
level designers was excessively large. In
addition, we made a classic beginner’s
mistake and failed to provide adequate
time for tuning in response to play-
testing feedback. In SYSTEM SHOCK 2
this was particularly important
because the ability of the player to re-
enter levels means that the difficulty
of a level cannot be adjusted in isola-
tion from the rest of the game. Often
we had to impose global changes
across all levels, which could be very
expensive even when the change was
relatively minor.

We took a novel approach to the
level building process by attempting to
apply design levels using a production-
line method. Using this metaphor, we
attempted to divorce the different
stages of work on the level: rough
architecture, decorative and functional
objects, architectural polish, and light-
ing. It was not considered necessary for
the same individual to be involved in
all stages of this production process.
This approach had positive and nega-

tive consequences. The advantages
were that we could track progress on
levels, we could “bootstrap” levels fair-
ly quickly, and we could (in theory)
swap individuals in and out of differ-
ent tasks. The disadvantages are fairly
obvious, and most stem from the fact
that the various stages of level design
are clearly not independent (for exam-
ple, architecture is ideally built with an
understanding of the functional
objects that are to be used in the level).
Although I think our process was nec-
essary in order to get the game out on
time, it probably detracted from the
quality of some of the levels. In addi-
tion, psychological factors, such as lack
of ownership and training issues (stem-
ming from unfamiliarity with levels)
speak very strongly against transferring
people from one task or level to anoth-
er. Nevertheless, there were several
benefits of our procedure — mostly the
ability to employ particularly talented
individuals to pinch hit on particular
levels, and the psychological benefits
of completing architectural work early
in the schedule.

Perhaps the rudest shock in our level
building process came from our misun-
derstanding of what part of the process
would prove to be most difficult.
Architectural work was actually fairly
simple, because we intentionally kept
our spaces fairly clean and did not
attempt anything too unusual.
However, placing and implementing
our objects was far more complex and
involved than we expected. One diffi-
culty that we encountered was educat-
ing our designers in what was expected
from them in terms of game-play

implementation. Most of our
level builders had previously
built QUAKE or UNREAL levels
and were not familiar with the
style of game play that we
were trying to build in SYSTEM

SHOCK 2. Partially this was
because we were simply
exploring a style of game play
that we did not entirely under-
stand ourselves. But it reflect-
ed a failure on our part to
properly educate the design-
ers. Building prototypical
spaces, looking at past games
and conducting more inten-
sive discussions about game
play will all be part of our
future projects.

Our other major design hurdle was
the instability and inscrutability of
Dromed, the Dark Engine editor.
Dromed is a cantankerous beast and
many man-months were spent strug-
gling with its idiosyncrasies. Perhaps
our biggest problem stemmed from the
lack of support in one crucial area —
the part of the engine concerned with
translating the designer-placed brushes
into the basic world representation.
Like many complex 3D engines, the
Dark Engine suffers from troubling
epsilon issues (data errors caused by
rounding inaccuracies) and other
glitches that crop up during level com-
pilation. Because the programmer who
implemented the basic renderer and
world representation was not available
during the majority of the SYSTEM

SHOCK 2 development cycle, we had to
work around these problems. It was
often a frustrating process when the
fundamental cause of the problems was
not even known. Over time we devel-
oped a set of heuristics to avoid the
majority of the glitches, but we were
forced to lock down much of the level
architecture before we wanted to in
order to ensure stability.

2.MOTION CAPTURE DIFFICULTIES. The
Dark Engine has a complex

creature animation playback system
and deformable mesh renderer. We
encountered many problems with this
piece of technology along our data
integration path, and found quirks in
the playback systems as well. Primarily,
the system was hampered by the fact
that data frequently had to be modified
by hand, that mysterious bugs would
appear in motions during playback

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

57

Xerxes, central computer of the Von Braun.

which had not been present in the
source data, and that few tools were
available for debugging and analysis.
We were ill-equipped to deal with these
kinds of problems, having devoted few
resources to dealing with the technolo-
gy problems.

Our primary animation source was
motion capture data. We were nervous
about the technology from the start
and attempted to minimize our risk by
concentrating primarily on humanoid
creatures with a small number of
interesting variants such as spiders
and floating boss monsters. In retro-
spect, this was a very wise decision, as
we had a lot of trouble even with this
simple set of creatures. Motion cap-
ture technology and capture services
were contracted from a local compa-
ny, but unfortunately this company
viewed its motion capture work pri-
marily as a side business and did not
display much interest in it. In fact,
they cancelled this sector of their
business during our project, and we
had to fight hard to complete the ses-
sions that we had already scheduled
with them.

Our capture sessions were hampered
by our inexperience with the technolo-

gy and by the fact that we did not plan
properly for the sessions. We hadn’t
defined key poses, rehearsed the
motions, or ensured that our motions
were compatible with the technology.
Optical capture technology, the tech-
nology that we used, can be glitchy
and has difficulty with motions that
have obscured markers, as in the death
motions that were necessary for SYSTEM

SHOCK 2. Over the course of three ses-
sions, we gradually refined our
motions, but we spent a lot of time
reshooting failed captures from earlier
sessions.

Even in the best cases, most of our
captures exhibit strange artifacts (feet
pointing down through the ground,
hands improperly aligned, and so on),
whose causes are still unknown to us.
In future projects we will hand-ani-
mate almost all of the data, and we will
need to understand better what aspect
of the conversion process introduced
these artifacts into our final game ani-
mations, although the irregularities
never appeared in our raw data.
Motion capture technology, while
highly efficient compared to hand ani-
mation, must be approached carefully
to obtain good results.

3.IMPLEMENTING SCRIPTED SEQUENCES.
Motivated by the dramatic

scripted sequences in HALF-LIFE, we
attempted to introduce similar ele-
ments into SYSTEM SHOCK 2. In doing
so, we broke one of our rules: we tried
to step outside the bounds of our tech-
nology. Although we attempted rela-
tively simple sequences and ultimately
got them working, they were time
sinks, and the payback was relatively
slight. For example, we scripted a hal-
lucinatory sequence in which the play-
er character rides through the interior
of the alien boss-monster, known as
the Many. This so-called “Many ride”
was the source of innumerable bugs —
the player would be thrown off the
moving platform, manage to kill his
projected self, bump into walls, and so
on. We confirmed our intuition that
the Dark Engine does not support com-
plex scripted sequences well because
the toolset (AI, moving terrain, and
animation) is not optimized for this
sort of behavior. The moral is, once
again, to work with your technology,
not against it.

4.INEXPERIENCE WITH MULTIPLAYER

GAME DEVELOPMENT. Early in the
project we were asked to identify the
major risks associated with the project.
Our number one candidate by far was
the multiplayer component. This was
the only new substantial engine fea-
ture that was to be added and it was a
complicated piece of work. We were
particularly nervous about this tech-
nology for a couple of reasons. First, it
is usually much harder to make this
kind of pervasive change to an existing
piece of software than it is to build it
in from scratch. Second, Looking Glass
had no track record in shipping multi-
player technology and we were not
confident that the development was
fully understood.

Irrational did not want to introduce
multiplayer support into SYSTEM SHOCK

2 because we considered it a tangential
feature that did not contribute to our
core strengths. However, marketing
concerns dictated it, so ultimately we
acquiesced. Our lack of enthusiasm for
this feature contributed to its develop-
mental problems because we failed to
monitor its progress adequately or raise
concerns when that progress fell
behind schedule.

Because this was the first multiplay-
er product developed by Irrational or

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Looking Glass, we did not properly
estimate the time required for the
multiplayer testing. We did not
devote adequate quality assurance
resources to this feature. Too much
time was spent testing the multiplayer
features over the LAN and not enough
over the more demanding modem
connections.

Given the difficulties posed by the
multiplayer technologies, the engine
developers working on the task made
great efforts, and their early results
were promising. However, the early
departure of one of the programmers,
and the fact that he was not replaced,
ultimately doomed any possibility of
shipping the multiplayer technology
with the initial SKU. Reluctantly, we
opted for a patch that would be avail-
able at the same time as the single-
player box reached shelves. Our coop-
erative multiplayer game will
undoubtedly be fun and will probably
be enjoyed immensely by a relatively
small number of our customers.
However, we wonder whether our fail-
ure to deliver a promised feature in the
box will ultimately hurt us more than
the absence of that feature from the
start would have.

5.RUNNING A COMPANY WHILE BUILDING

A GAME. As the principals of the
company, Ken, Rob and I didn’t really
understand what it took to run a busi-
ness and simultaneously work in that
business. None of the Irrational
founders started the company to be
businessmen, and we have always
believed that the ultimate health of the
company depended on us all staying
involved in the development process,
which is, after all, what each of us
enjoys and wants to do. Unfortunately,
as anyone who has run a business
knows, there is a lot more to starting
and maintaining a company than sit-

ting around at board meetings smoking
cigars. From the mundane matters of
making payroll, organizing taxes and
expense reports to business negotia-
tions and contract disputes, there is
substantial overhead involved in run-
ning even a small company such as
Irrational. In our naïveté, we did not
factor these tasks into our schedules
and the result was that they mostly
became extra tasks that kept us in the
office late at night and on weekends.

As a result of our misjudgment, we
just had to work harder. Rather than
enduring a crunch period of a few
months, the entire last year of the
project was our crunch time, as we
struggled desperately to fulfill our jobs
as programmers, designers, and man-
agers as well as keep the money flow-
ing in (and out) of the company. Our
tasks were complicated further by the
need to reincorporate the company
from an S-corporation to an LLC dur-
ing the final two months of the pro-
ject (a legal maneuver designed to
allow me, an Australian national, to
be allocated company stock).

As well as destroying our personal
lives, our failure to judge the magni-
tude of our task meant that we had to

devote less time than we desired to
every aspect of our work. My program-
ming time was severely curtailed and I
was able to spend far less time on
SYSTEM SHOCK 2’s AI than I wished.
Simultaneously, I was unable to pro-
vide the level of direct management
that I wanted, and I was forced to post-
pone company financial work until the
end of the project or hurry it through.
The results were less than optimal all
around.

Ultimately, SYSTEM SHOCK 2 turned
out better than I ever hoped it would.
The final vindication for me was sitting
in my office and playing the game in
the final couple of weeks of the project,
while waiting for EA to approve our
final build. Despite the lack of sleep,
the near-complete breakdown of my
nervous system and the 18 months of
time I spent working on the project, it
was still fun to play. I like to think that
we have managed to capture the feel of
the original game by putting more
game play into what initially looks like
a fairly straightforward first-person
shooter. It’s been a great first project
for Irrational Games and we look for-
ward to doing even better the next
time around. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

59

Hacking the security system.

It’s not owned by Sony or Time Warner
or BMG. Hersh doesn’t get the kind of
promo that major-label artists do —
but she has more control over what
gets released. Hersh is probably never
going to chart — but she makes
enough to live quite well, and reaches
an audience of enthusiasts.

Tonight, I’m going down to the
Angelika with my sweetie. It’s New
York’s primary venue for independent
films. The movies they show are
never going to appear at your
local Odeon or Sony theater;
they’ll be lucky to reach
500 screens in the
States. But there are
enough theaters
like the Angelika
to support a
whole market
for indepen-
dent films —
films that
will never gross as
much as a Hollywood blockbuster, but
reach an audience of enthusiasts and
earn enough to let many people live
quite well.

At times, the music and movie
industries look dull and played out and
repetitive. You get the same damn for-
mulas over and over, the same artists,
the same directors. But that never lasts,
and for one single reason: there’s a
venue for independent work. Indie

labels and indie film companies experi-
ment, at lower budgets, with the off-
beat and original. And sometimes, they
hit a nerve, build an audience, and ulti-
mately rejuvenate the field. It happens
continually in the music business, and
it happened in film this past summer

with The Blair Witch
Project.

Right now, the game industry looks
dull and played out and repetitive. We
get the same damn formulas over and
over again. Yet another shooter. Yet
another RTS game. Yet another racer.

A title as original or offbeat as SIMCITY

or BALANCE OF POWER or M.U.L.E. —
hell, or FROGGER — could not get funded

today. Gaming needs a venue for inde-
pendent work.

Last year, Miller Freeman did the
industry a service by launching the
Independent Games Festival. It’s a place
for “garage” developers to showcase
product, get exposure, and maybe land
a publisher. That’s great, but it’s not
enough — because they’re dealing with
the same publishers as everyone else:
EA, Interplay, GT, and others of their
ilk. The majors will fund the tried and
true, another shooter or RTS or racer.
They’ll happily exploit low-budget new-
bies who develop something that fits
into slots they know how to sell — but
they’re not going to experiment with
something new, something offbeat,
something that will probably fail but
just might rejuvenate the field.

The problem? There’s no way to dis-
tribute an independent game. Yes, with

a little effort, you can
land a meeting
with the buyer
for CompUSA or
Electronics Bou-
tique or Software

Etc., but they’re
not going to buy
your game with-
out the high-bud-

get graphic glitz they
expect from the majors, six

figures in placement bucks, and a com-
mitment to a major marketing cam-
paign. The typical mall software outlet
still has only 40 facings for computer
games, and there are at least 1,500
entertainment titles published annually.
Anything that doesn’t fit the mold isn’t
going to get exposure.

Indie films work because there’s a sep-
arate distribution channel parallel to the
one for conventional film. Indie music
works because there are a million record
stores that cater to a million different
tastes and a million small clubs where
you can play to build an audience.

We’ve got nothing similar. We’ve

G A M E D E V E L O P E R N O V E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y G r e g C o s t i k y a nS O A P B O X

A Platform for New Ideas:

Why We Need an Indie Label Now

L ast night, I went to see Kristin Hersh play at

the Knitting Factory. You may not have heard

of her, but the club was packed. Hersh releas-

es her music on 4AD, an independent label.

Greg Costikyan is a freelance game designer and writer. He has published 27 online,
CD-ROM, board, and role-playing games, three novels, and a slew of short stories. He
writes about games for a variety of web and print publications including Salon and
Happy Puppy, and recently completed an analyst’s report on the future of online
games for Goodreports.com. Visit his web site at http://www.costik.com.

continued on page 63.

illustration by Jackie Urbanovic

got to build it.
How? As recently as 1991, a typical

computer game cost around $250,000
to develop. Graphics and sound have
improved a lot since then, but comput-
er games haven’t gotten any better as
games. You don’t need $1.5 million in
development funding to develop a first-
rate game; you can do it on a $250,000
to $400,000 budget. You just can’t get
shelf space for a low-budget game.

But at that level, you don’t need
100,000 unit sales. You can make
money if you can get rid of 20,000
copies. And how tough can that be?
Hell, 12 years ago, I sold more than

20,000 copies of a wonky little paper
game called Paranoia through a wonky
little distribution chain cobbled
together out of specialty hobby game
stores and comic shops. I doubt I had
500 points of sale in North America.

It can be done.
Some people are trying; Firaxis will

be selling SID MEIER’S ANTIETAM! direct
to consumers — no retail distribution.
Michael Berlyn is bravely struggling to
keep the text adventure alive through
direct sales (see http://www.cascade
publishing.com).

But we need more. We need a com-
pany committed to publishing truly

original, offbeat, cool product and
building the channel for its distribu-
tion — instead of shoveling the same
old crap to the same old stores.

Gaming needs an indie label — for
the sake of its own health, to act as
basic R&D for the entire field, and to
find new gaming styles that can
attract a large audience. Because
development costs continue to spiral
upward faster than unit sales and we
have to find a way to break that iron
cycle. But most importantly, because
I’m tired of the same old same old and
want to play something really cool
and new. Don’t you? ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 9 G A M E D E V E L O P E R

63

continued from page 64.

	back:

