
X B L I G P o s t m o r t e m E x p l o s i o n :
C t h u l u S a v e s t h e W o r l d , S h o o t
1 u p , E p i c D u n g e o n , Z P 2 K X ,
S o u l c a s t e r I I

G a m e E n g i n e S u r v e y 2 0 1 1

A S a l u t e t o R e a l G a m e D e v
H e r o e s

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E v o L 1 8 N o 5

M A Y 2 0 1 1 I N S I D E : B R o W S E R T E C H M E G A - R o U N D U P

mailto:blade@havok.com

WWW.GDMAG.COM 1

C
O

N
T

E
N

TS
.0

5
1

1
V
O

LU
M

E
 1

8
 N

U
M

B
E

R
 5

P O S T M O R T E M

20 XBOX LIVE INDIE GAMES
The Xbox Live Indie Games service began as an experiment to let
developers publish their games on consoles directly. Since then, a
number of standouts have emerged among the over 1,600 games. Here,
we feature five excellent examples of the XBLIG spirit; CTHULU SAVES THE
WORLD, SHOOT 1UP, EPIC DUNGEON, ZP2KX, and SOULCASTER II.
By Robert Boyd, Nathan Fouts, Michael Muir, James Silva, and Ian
Stocker

F E AT U R E S

7 GAME ENGINE SURVEY 2011
A lot has changed since our last engine survey in 2009, especially as
regards treatment of indies. Engine providers have seen the writing on
the wall, and now incorporate smaller platforms, while still supporting
large-scale companies. Through extensive surveys, we attempt to discern
what is most important to developers when choosing a new engine.
By Mark DeLoura

15 GAME DEV HEROES
In every game project, there are unsung heroes. There's the person that
fixes the "unfixable" legacy bug, or devises the concept that ultimately
makes the game fun, or finds the visual theme that ties everything
together. We set out to find these people, and to sing their praises.
By Brandon Sheffield

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Accepting Free-To-Play

 4 HEADS UP DISPLAY [N E W S]

The Video Game Crowdfunding Cheat Sheet, Silver Eddie Award,
Strong National Museum of Play, and Gamestorm celebrates Paper
Prototyping.

 31 TOOL BOX By Darius Kazemi [R E V I E W]

Dominic Szablewski: Impact Game Engine

 35 THE INNER PRODUCT By Vincent Scheib [P R O G R A M M I N G]

The Future of Browsers

 43 AURAL FIXATION By Jesse Harlin [S O U N D]

STACKING Overflow

 44 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

The End of Games?

 47 THE BUSINESS By John Graham [B U S I N E S S]

Build Your Own Buzz

 48 PIXEL PUSHER By Steve Theodore [A R T]

Legal Age: Photoshop Turns 21

51 GOOD JOB! By Brandon Sheffield [C A R E E R]

Michael Dashow Q&A, Who Went Where, and New Studios

53 EDUCATED PLAY By Tom Curtis [E D U C A T I O N]

OCTODAD

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Gamified!

C
O

N
T

E
N

TS
.0

5
1

1

P O S T M O R T E M

20 XBOX LIVE INDIE GAMES
The Xbox Live Indie Games service began as an experiment to let

By Darius Kazemi
Dominic Szablewski: Impact Game Engine

By Vincent Scheib
The Future of Browsers

[N E W S]

[R E V I E W]

56 ARRESTED DEVELOPMENT

WWW.GDMAG.COM

By Matthew Wasteland

 XBOX LIVE INDIE GAMES
The Xbox Live Indie Games service began as an experiment to let
developers publish their games on consoles directly. Since then, a
The Xbox Live Indie Games service began as an experiment to let

By Darius Kazemi
Dominic Szablewski: Impact Game Engine

 35 THE INNER PRODUCT By Vincent Scheib
The Future of Browsers

By Darius Kazemi
Dominic Szablewski: Impact Game Engine

 35 THE INNER PRODUCT By Vincent Scheib
The Future of Browsers

[R E V I E W]

[P R O G R A M M I N G]

[S O U N D]

[P R O G R A M M I N G]

V
O

LU
M

E
 1

8
 N

U
M

B
E

R
 5

C
O

N
T

E
N

TS
.0

5
1

1
C

O
N

T
E

N
TS

.0
5

1
1

C
O

N
T

E
N

TS
.0

5
1

1
C

O
N

T
E

N
TS

.0
5

1
1

C
O

N
T

E
N

TS
.0

5
1

1
C

O
N

T
E

N
TS

.0
5

1
1

C
O

N
T

E
N

TS
.0

5
1

1
C

O
N

T
E

N
TS

.0
5

1
1

C
O

N
T

E
N

TS
.0

5
1

1

CONTENTS.0511
VOLUME 18 NUMBER 5

The Xbox Live Indie Games service began as an experiment to let
developers publish their games on consoles directly. Since then, a
number of standouts have emerged among the over 1,600 games. Here,

CTHULU SAVES THE

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Accepting Free-To-Play

 4 HEADS UP DISPLAY [N E W S]

The Video Game Crowdfunding Cheat Sheet, Silver Eddie Award,
Strong National Museum of Play, and Gamestorm celebrates Paper
Prototyping.

 31 TOOL BOX By Darius Kazemi
Dominic Szablewski: Impact Game Engine

 35 THE INNER PRODUCT
The Future of Browsers

 43 AURAL FIXATION

 2 GAME PLAN

 4 HEADS UP DISPLAY

[E D I T O R I A L]

[N E W S]

The Xbox Live Indie Games service began as an experiment to let

 4 HEADS UP DISPLAY
The Video Game Crowdfunding Cheat Sheet, Silver Eddie Award,
Strong National Museum of Play, and Gamestorm celebrates Paper
Prototyping.

By Darius Kazemi
Dominic Szablewski: Impact Game Engine

The Xbox Live Indie Games service began as an experiment to let
developers publish their games on consoles directly. Since then, a
The Xbox Live Indie Games service began as an experiment to let

Prototyping.

 31 TOOL BOX
Dominic Szablewski: Impact Game Engine

 35 THE INNER PRODUCT
The Future of Browsers

 43 AURAL FIXATION

Prototyping.

 35 THE INNER PRODUCT

developers publish their games on consoles directly. Since then, a
number of standouts have emerged among the over 1,600 games. Here,
we feature five excellent examples of the XBLIG spirit; CTHULU SAVES THE
WORLD, SHOOT 1UP, EPIC DUNGEON, ZP2KX, and SOULCASTER II
By Robert Boyd, Nathan Fouts, Michael Muir, James Silva, and Ian
Stocker

F E AT U R E S

7 GAME ENGINE SURVEY 2011
A lot has changed since our last engine survey in 2009, especially as
regards treatment of indies. Engine providers have seen the writing on
the wall, and now incorporate smaller platforms, while still supporting
large-scale companies. Through extensive surveys, we attempt to discern
what is most important to developers when choosing a new engine.
By Mark DeLoura

15 GAME DEV HEROES
In every game project, there are unsung heroes. There's the person that
fixes the "unfixable" legacy bug, or devises the concept that ultimately
makes the game fun, or finds the visual theme that ties everything
together. We set out to find these people, and to sing their praises.
By Brandon Sheffield

 43 AURAL FIXATION
 Overflow

 44 DESIGN OF THE TIMES
The End of Games?

 47 THE BUSINESS By John Graham
Build Your Own Buzz

 48 PIXEL PUSHER By Steve Theodore
Legal Age: Photoshop Turns 21

51 GOOD JOB! By Brandon Sheffield
Michael Dashow Q&A, Who Went Where, and New Studios

53 EDUCATED PLAY
OCTODAD

56 ARRESTED DEVELOPMENT
Gamified!

15 GAME DEV HEROES
In every game project, there are unsung heroes. There's the person that
fixes the "unfixable" legacy bug, or devises the concept that ultimately
makes the game fun, or finds the visual theme that ties everything
together. We set out to find these people, and to sing their praises.
By Brandon Sheffield

In every game project, there are unsung heroes. There's the person that
fixes the "unfixable" legacy bug, or devises the concept that ultimately
makes the game fun, or finds the visual theme that ties everything
together. We set out to find these people, and to sing their praises.

56 ARRESTED DEVELOPMENT

developers publish their games on consoles directly. Since then, a
number of standouts have emerged among the over 1,600 games. Here,
we feature five excellent examples of the XBLIG spirit;

STACKING Overflow
developers publish their games on consoles directly. Since then, a
number of standouts have emerged among the over 1,600 games. Here,
we feature five excellent examples of the XBLIG spirit; CTHULU SAVES THE

SOULCASTER II.
By Robert Boyd, Nathan Fouts, Michael Muir, James Silva, and Ian

 43 AURAL FIXATION
STACKING Overflow

 44 DESIGN OF THE TIMES
The End of Games?

developers publish their games on consoles directly. Since then, a 43 AURAL FIXATION
STACKING Overflow

WWW.GDMAG.COMWWW.GDMAG.COM

CONTENTS.0511CONTENTS.0511CONTENTS.0511CONTENTS.0511CONTENTS.0511CONTENTS.0511CONTENTS.0511
VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5VOLUME 18 NUMBER 5

C
O

N
T

E
N

TS
.0

5
1

1
V
O

LU
M

E
 1

8
 N

U
M

B
E

R
 5

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEVELOPER | MAY 20112

ACCEPTING FREE-TO-PLAY
LEARNING TO FLOW WITH THE CHANGING TIDE

IN THIS MONTH’S DESIGN COLUMN,
you’ll find Soren Johnson talking
about free-to-play game design. He
recently completed work on DRAGON
AGE LEGENDS, an F2P realization of
the DRAGON AGE world for Facebook.
In the column he mentions several
successful implementations of
F2P design, wherein designers
must keep players interested and
engaged on a moment-to-moment
level, but also provide them with
compelling reasons to spend
money. The reason this topic is so
valid is that a lot of game industry
folks, myself included, just get plain
old queasy when we think about
creating games this way.

MONEY TALKS
>> There’s a perception that the
powerful metrics and feedback
provided by these platforms
turns designers into spreadsheet
managers. Though it may feel that
way on some level, it’s not totally
true, since you have to devise
the systems in the first place,
then test them extensively. It’s
like getting the ultimate feedback
loop, and if your goal is to please
players, there’s nothing better than
instantly knowing whether your
new system is a success.

More than that, one of the
stickier issues is the (perhaps
unfounded) idea of paying to unlock
the “fun” of the game. In LEAGUE OF
LEGENDS, for instance, the character
roster rotates weekly, and if you
want to specialize in one of them,
you have to either pay real money to
keep it unlocked, or play long enough
to save up in-game money to unlock
that character. There’s nothing
inherently bad about this! But just
thinking about it makes me feel like
it’s “wrong.” My gut tells me that all
characters should be available from
the get-go, and players should have
a choice of who to use. It makes me
even more uncomfortable to know
that you can buy an item with real
money that helps you gain in-game
money faster. But you know what?
I’m sort of wrong to feel this way.

First of all, a rotating roster
inspires players to try out
characters they might otherwise
never touch. When presented with
some 72 characters at once, it’s
difficult to know where to start, and
one is less inclined to experiment.
In that sense, the designers have
chosen to showcase all their
characters individually, because
otherwise a good percentage of
them may have gone unused.
The game also rolled out these
characters gradually over time,
making the rotation feel natural for
long-time players.

I think that some of us feel
designers of these games build
a complete experience, and then
decide what they can chop out to
make people pay for. That’s not how
the most successful games are
designed, necessarily. They take a
core experience that has the idea
of payment integrated into it as it’s
designed. The preceding sentence
made me uncomfortable even as I
typed it, but all commercial games
are paid experiences somehow
or other. Whereas many of us still
make a game and sell it once, these
games keep on selling—but the idea
of selling our games to customers
stands firm in both cases.

It’s important to remember that
the best among these games really
are free. You could play LEAGUE
OF LEGENDS for free forever, if you
had the time to invest. Almost
everything except the visual flair
items is purchasable with in-game
money, earned by playing over time.
This is just like the “unlocks” we’ve
been building in games for decades.
But the player never had to pay, and
they never pirated the software.

In most cases, paying enhances
the experience for players by
making it more convenient, and
that’s another troublesome point.
If the designers know how to make
a game more accessible, more fun,
and more convenient for players,
why should that be behind the pay
wall? The answer is that if you don’t,
nobody will pay. But there’s no way

around the queasiness some of
us feel knowing we’re withholding
convenience that could have been
built into the game natively.

GIVE THEM WHAT THEY WANT
>> I’ve been casually following the
F2P industry for nearly as long as
it’s been around. I started paying
attention to the Korean industry
back in 2001, and the seeds planted
then have taken fruit worldwide.
Free-to-play is quite simply one of
the most lucrative business models,
if not the most, in games today.
This has expanded to include much
greater Western appreciation, and
looks to become a dominant model
for online games here as well.

I mention all this because these
games aren’t just being forced
onto us by a bunch of executives.
I’ve watched the industry grow,
and these games are succeeding
because players are paying for them.
They’re voting with their wallets
and showing us that they like these
games. This is, in fact, something
they want to play, and a payment
method they feel good about. Those
who dissent and rail against this
change are a vocal minority.

I would love to see more artistry
and narrative design in the free-to-
play market, but we have to make
that happen. If you want to create
a narrative in a traditional setting,
there will continue to be a way for
you to make a comfortable living
doing so. But really, those of us who
don’t like this change, those of us
who want to preserve traditional
narrative and gameplay, it’s up to
us to make the F2P model work on
our terms. Customers want to play
this way. If we want to preserve
traditional design, we are going to
have to meet them halfway.

Not all games have to be
free-to-play, but likewise, not all
free-to-play games have to make us
uncomfortable. If we want to help
shape this industry, we've got to do
more than just complain about it!

—Brandon Sheffield
twitter: @necrosofty

United Business Media
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jade Kraus l jkraus@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
DESIGNER
Jessica Chan
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS

John Graham
Jesse Harlin
Soren Johnson
Vincent Scheib
Steve Theodore
Matthew Wasteland
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBM.COM

http://twofour54.com

HEADS-UP DISPLAY

GAME DEVELOPER | MAY 20114

The Video Game Crowdfunding Cheat Sheet
\\\ Crowdfunding is a natural fit for an
independent game developer who needs to
connect with an audience and secure funding
at the same time. Rather than having to “prove”
your game to a publisher, you're “proving”
it directly to your customers, and you don't
have to go out on a limb funding it yourself
with no idea of whether you'll sell enough
copies to recoup your investment. But not all
crowdfunding is the same.

An important distinction is the funding
model, which divides these services into two
different camps. “All or nothing” funding means
that you get the money raised only if you've
met your funding goal by the funding deadline;
otherwise, no money changes hands. This is a
good fit for projects where you have to raise a
specific amount of money to pay for an engine
or assets, and you'd rather get no funding at
all than get half the funding you need and try
to cobble together your game with that. “Keep
it all” funding means that you immediately
get any money your project raises as soon as
it's contributed (minus fees), regardless of
whether you've reach your funding goal. It's a
good fit for projects where you're committed
and able to make the game regardless of how
much money is raised, especially if cash is

needed right away to feed yourself and pay rent
while you work on the project.

Both funding models encourage projects to
re-apply if they don't reach their funding goal. A
failed “all or nothing” project can often succeed
by scaling down and re-applying with a smaller
funding goal, and a failed “keep it all” project can
re-apply with the same funding goal minus any

money that the project has raised in previous
“rounds” of funding. The chart that accompanies
this article shows the major crowdfunding
services, as well as their relevant details. A larger
version of this report, including comments from
the organizations themselves, will be available on
Gamasutra.com in April.

—R. HUNTER GOUGH

IL
LU

ST
RA

TI
ON

 B
Y

RO
BI

N
AL

LU
M

-C
OR

NF
OR

TH

 NAME KICKSTARTER
http://kickstarter.com

INDIEGOGO
http://indiegogo.com

ROCKETHUB
http://rockethub.com

ULULE
http://ulule.com

8-BIT FUNDING
http://8bitfunding.com

LAUNCHED April 2009 January 2008** January 2010 October 2010 January 2011

SUCCESSES 6,500+ 400 (22,000 total) 94 80 1

VG SUCCESSES 67 1 1 3 Same

FUNDING MODEL All or Nothing Keep It All All & More (Keep it All) All or Nothing Keep It All

SERVICE FEE 5% 4% (9%*) 4%(8%*) 0% 5%

PAYMENT FEE 3-5% 3% 4% 3% 3%

TOTAL FEE 8-10% 7%(12%*) 8%(12%*) 3% 8%

PAYMENT
METHOD

Amazon PayPal/credit card Credit Card PayPal PayPal

PERKS
Popularity and

Curated Packages
Partners

Badges and Oppor-
tunities

Low Fee and Message
Board

Video Games Only

INTERNATIONAL No Yes Yes Yes Yes

* HIGHER FEE FOR UNSUCCESSFUL PROJECTS **FILM PROJECTS ONLY UNTIL JANUARY 2010

http://Gamasutra.com
http://kickstarter.com
http://indiegogo.com
http://rockethub.com
http://ulule.com
http://8bitfunding.com

WWW.GDMAG.COM 5

Game Developer magazine
wins a Silver Eddie
\\\ The editors of Game Developer
are pleased to reveal that the
magazine has won a Silver Eddie
Award for our March 2010 issue
which featured an Uncharted 2
postmortem, as well as the second
edition of the "Dirty Coding Tricks"
article series. The Eddies are put
on yearly by Folio, which bills itself
as "the magazine for magazine
management," and celebrate the
best in editorial and design for the
magazine publishing industry.

In the B-to-B space,
Game Developer was a silver
winner in the category Media/
Entertainment/Publishing Full
Issue. The editors wish to thank

the contributors and authors that
made the award possible.

—STAFF

Gamestorm celebrates paper prototyping
\\\ A lot of developers sketch out their ideas, whether that sketch is a
bullet-point list of plot points or an entire level drawn out in meticulous
detail. Although prototyping in code is a great way to prove a concept,
many developers still choose to germinate their ideas with paper and pen
(or tablet and stylus, as the case may be). It’s this stage of development
that has aroused the interest of FlashPUnk creator Chevy Ray Johnston,
who created the Gamestorm blog to gather and showcase the thoughtful
sketches of game developers around the world.

“While developing games, almost all my ideas (whether they be art,
programming, math, or layouts) find their way onto paper before they
ever hit the computer screen,” Johnston told us. “I love looking back at
older pages, whether it be traveling back in time to the state of mind I
was in, or simply trying to decipher what each mess of scribbles, notes,

arrows, and doodles even mean. Brainstorming notes are amazing pieces
of art to me, especially where game developers are concerned, because
they deal with problems and designs of such fun and eclectic types.”

The genesis of the blog came from a Global Game Jam he participated
in this year, where brainstorming pages were in steady supply. It’s those
pages that were first featured, but the project soon grew. “I launched the
site initially planning to just keep uploading new doodles and sketches,”
he said. “I have a lot of developer friends, and also help teach students of
game development programs, so I was in no shortage of source material,
but I added a submissions page anyway.”

It turns out he’s not the only one with interest in both viewing and
sharing this information. “The idea really struck a chord, and just under 24
hours, I already had over 100 submissions from developers all over the
world,” Johnson said. While the site has only been up for a month and a half
as of this writing, well over 100 documents have been shared, from amateur
and professional game developers alike, with no signs of slowing down.
Why has this captured the interest of so many? Johnston says it best:
“Nowhere else can you see complex math equations next to an astronaut
riding a dinosaur, or grocery lists on world maps.” Visit and submit entries
to Gamestorm at http://gamestorm.tumblr.com.

—BRANDON SHEFFIELD

\\\ In the April 2011 issue, we misspelled Autodesk in our Tool Box
section. Additionally, we neglected to mention that a version of Joshua
Tippetts' article, "Creator of Worlds", originally ran on GameDev.net.
The editors regret the errors.

corrections

\\\ The National Museum of Play
is an exhibition devoted to all
types of play, from toys and
dolls to board games and video
games. The museum is hosted at
the Strong in Rochester, NY, and
already boasts a large archive of
video and computer games, design
documents, magazines, and more.

The video game division is
known as the International Center
for the History of Electronic
Games, which is already home to
over 25,000 video and electronic
games, including over 1,000 PC
games, and almost the entire run of
Computer Gaming World magazine,
which was recently donated by

Frank Cifaldi of 1up.com.
To aide the museum’s efforts,

Game Developer magazine has
donated a near-complete archive
of its back catalog, along with a
subscription going forward into
the future, so that the sharing of
game development knowledge
from throughout the ages can be
preserved for future generations.

Developers interested in
donating historical artifacts
or collections can contact the
International Center for the History
of Electronic Games and its director
Jon-Paul Dyson through its website
at www.icheg.org.

—STAFF

Game Developer donates to
Strong National Museum of Play

http://gamestorm.tumblr.com
http://WWW.GDMAG.COM
http://www.icheg.org
http://1up.com
http://GameDev.net

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

The Perforce Plug-in for Graphical Tools, P4GT, makes version control

painless by seamlessly integrating Perforce with leading graphical tools.

Drop-down menus allow access to Perforce from within 3ds Max, Maya,

Softimage XSI, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and

manage both source code and digital assets. Enhanced collaboration

during the design process helps teams to work together in real time to

release small patches or create whole new worlds.

P4GT is just one of the many productivity tools that comes with the

Perforce SCM System.

Introducing P4GT,
a productivity feature of Perforce SCM.

P4GT

Perforce Fast Software Configuration Management

All trademarks and registered trademarks are property of their respective owners. Adobe screen shot reprinted with permission from Adobe Systems Incorporated.

Perforce_SpaceS_GameDev_HI

http://www.perforce.com

With such huge changes in the
industry, it seemed like the
perfect time to revisit the game
engine survey. I was curious to
see how the change in the game
development ecosystem would
be reflected in the distribution
of survey responders, and
the information they shared
about their use of game engine
middleware.

When the survey was
complete, the change in the
make-up of responders was
quite telling. Compared to 2009,
a roughly equivalent number of
developers who responded were
working on big-budget titles,
but about three times that
number reported to be working
on smaller titles! I’ve split the
survey responders into two
groups, as in some cases their
survey answers differ in very
interesting ways. The needs of
a developer working on a social
or mobile title are somewhat

different than that of traditional
game developers, due to the
smaller size of games, shorter
production length, or need
for frequent updates. For the
purposes of this survey we will
refer to developers working on
larger-budget titles, those on
consoles and handhelds, as the
traditional developers, and we’ll
call those working on casual,

mobile, and social titles the
casual developers.

There’s quite a large number
of game engines available for
developers to use, from licensed
high end to free open source,
so the engines covered in this
survey are those most well
known or used. They are all also
multi-platform across PC/Mac
and consoles, all licensable (not
completely free for commercial
use), and are all available for
license without an agreement
with a platform manufacturer.
The full list is in the sidebar to
the right.

Sur vey Responders
/// The developers I’ll
concentrate on for most of this
survey make traditional big-
budget games. These games
largely target the PC and high-
end consoles (see Figure 1)
as most large-budget titles are
produced for the PC, PS3, and

WWW.GDMAG.COM 7

F I G U R E 1

PLATFORMS
/Traditional platforms/

PS3 ························· 75.7%
Xbox 360 ················73.9%
Wii ···························20.0%
PC ···························66.1%
Mac ·························14.8%
Linux ·························3.5%
NGP ··························· 7.0%
PSP ···························6.1%
3DS ·························10.4%
NDS ···························· 7.0%

M A R K D E L O U R A

One of the most remarkable changes in the game industry the past few years has been the
massive growth of casual, mobile, and social games. A few years ago I gave a presentation at
CoFesta in Tokyo lamenting how difficult it was for small independent developers to distribute
and sell their games—that’s certainly not the case anymore! Now, it’s more difficult to decide
which of the many, many platforms and marketplaces to create your game for, because
there is so much opportunity for independent developers, especially on iOS and Facebook.

ENGINES FEATURED

Blitz Games' BlitzTech
www.blitzgamesstudios.com/blitztech

Crytek's CryEngine
www.crytek.com/cryengine

Digital Extremes' Evolution Engine
www.digitalextremes.com/evolution

Gamebase's Gamebryo
www.gamebryo.com/en

Epic Games' Unreal Engine
www.unrealengine.com

GarageGames' Torque
www.garagegames.com

Stonetrip's ShiVa3D
www.stonetrip.com

Terminal Reality's Infernal Engine
www.infernalengine.com

Trinigy's Vision Game Engine
www.trinigy.net

Unity Technologies' Unity
http://unity3d.com

Valve's Source Engine
http://source.valvesoftware.com

Vicious Cycle Software's Vicious Engine
www.viciousengine.com

http://www.crytek.com/cryengine
http://www.digitalextremes.com/evolution
http://www.gamebryo.com/en
http://www.unrealengine.com
http://www.garagegames.com
http://www.stonetrip.com
http://www.infernalengine.com
http://www.trinigy.net
http://unity3d.com
http://source.valvesoftware.com
http://www.viciousengine.com
http://WWW.GDMAG.COM
http://www.blitzgamesstudios.com/blitztech

Xbox 360. These machines have
roughly the same technology
level, so the amount of art and
technology retargeting between
the platforms is minimized,
and the potential audience is
maximized. Most games at this
level ship on all three platforms,
though some go for just the
consoles, and generally first-party
platform-owned studios are the
only ones who can really afford to
specifically target just one of the
high-end platforms.

Development for the Mac
is slowly picking up, whether
that’s done through cooperation
with companies like Aspyr and
TransGaming or as part of an
in-house pipeline parallel to the PC
version’s development. In 2009, only
2% of these developers reported
working on a Mac version, versus
nearly 15% in this year’s survey.

Rough development costs for
games produced by the traditional
group have a broad range. Average
development costs for a title in
this group are between $15 and
$20 million, with 25.6% claiming
costs over $20 million, and 7.2%
over $40 million.

Use and Usefulness
/// What are the most popular
engines in use today? We asked
both the traditional and casual
developers what engines they’re
using on their current projects. Of
traditional developers, 58.7% are
using a licensed game engine, up
from 55% in 2009, with the largest
number of those using an engine
(27.8%) using Unreal. Among
casual developers, a substantially
larger number use a licensed game
engine (83.7%) with 26% of those
using Unity, the most popular

choice. (See Figure 2.)
Which engine they’re using

now doesn’t reflect all the engines
they’ve ever worked with. We
asked about that as well (See
Figure 3.), and among both
traditional and casual developers,
the engine most used is Unity:
61.8% of traditional developers
have used it, and 68.4% of casual
developers. This is a big shift
from two years ago, when Unreal
was the clear winner. Now Unreal
runs a close second for traditional
developers at 60.7%, and third
place is quite a distance away.
Unity’s business model, ease-of-
use, and multi-platform nature
are paying dividends here with
all developers, not just casual
developers, enabling people to try
out the engine for fun or for side
projects. It’s a smart strategy that
has resulted in a big boost to the

GAME DEVELOPER | MAY 20118

F I G U R E 2

ARE YOU USING A LICENSED
ENGINE ON YOUR CURRENT
PROJECT? WHICH?
T R A D I T I O N A L

Yes 58.7%
No 41.3%
Unreal ···························· 27.8%
Trinigy ···························· 19.6%
Unity ······························ 11.4%
CryEngine ························ 8.2%
Gamebryo ························ 6.5%
C A S U A L

Yes 83.7%
No 16.3%
Unity ······························26.0%
Trinigy ·····························17.8%
ShiVa ································ 8.8%
Torque/Unreal ·················· 3.0%

F I G U R E 3

GAME ENGINES USED
T R A D I T I O N A L

Unity ······························ 61.8%
Unreal ····························60.7%
Gamebryo ······················29.2%
CryEngine ······················20.2%
Torque ···························· 18.0%
C A S U A L

Unity ······························68.4%
Unreal ····························43.7%
Torque ····························38.9%
ShiVa ······························24.3%
Trinigy ····························23.2%

F I G U R E 4

ENGINE AWARENESS
/Ordered/

T R A D I T I O N A L

1 / Unreal
2 / Unity
3 / CryEngine
4 / Source
5 / Gamebryo
C A S U A L

1 / Unity
2 / Unreal
3 / Torque
4 / CryEngine
5 / ShiVa

BlitzTech.

Unreal.

Evolution.

www.gdmag.com 9

number of both traditional and
casual developers actively using
Unity on projects.

Unity and Unreal are the most
used engines, but I was also
curious to know which licensed
engines developers have heard
of, and which they think might be
valuable for their current projects.
In the traditional space, Unreal,
Unity, and CryEngine are believed
to be most valuable for current
projects, with Unity, Unreal, and
Torque making up the top three
among casual developers. (See
Figure 4.) In terms of perceived
usefulness, Trinigy emerged
among both groups of developers,
showing up third among traditional
developers and first among
casual developers. In 2009,
CryEngine had a similarly strong
showing in the survey results,
and we wondered why more
games weren’t being made with
it. Perhaps Trinigy’s embrace of
component middleware libraries
and their recent launch of
WebVision are helping them gain

mindshare among developers.
(See Figure 5.)

I have to note that a surprising
number of C4 Engine users wrote
into the survey comment fields
this year about how much they
like using that game engine. The
C4 Engine is created by Terathon
Software and founder Eric Lengyel,
creator of the Game Engine Gems
book series. C4 Engine wasn’t
covered by this survey since it
is exclusive to PCs and Macs.
However, if you need an engine for
just these platforms, you should
know that we received a lot of
feedback from happy users.

Engine Financials
/// In 2009, our survey asked
developers what they typically
expected to pay for a game engine,
and the responses varied widely.
The same is true this year. It’s

unclear whether this is due to a
lack of awareness of the price of
a licensed engine, or the growing
disparity between the price of
casual engines versus high-end
engines. That said, 41.2% of the
developers who responded to
our survey hoped to pay less
than $100K for a game engine,
for all platforms that their game
is shipping on. Certainly this is
limiting them to a very small
subset of available engines, as
there are just a few in that price
bracket—and even fewer that
target the high-end consoles.
Significantly fewer respondents
(21.9%) were looking to pay from
$100K to $500K, and 9.6% from

$500K to $1 million. Only a small
fraction of survey responders,
9.7%, expected they’d need to
spend greater than $1 million for
the engine they’re using for their
game. However, for the high-end
game engines, a three-platform
game (PC, PS3, and Xbox 360)
does typically cost more than $1
million. With a growing number
of strong and less-expensive
licensable game engines these
days, perhaps we’re all just hoping
to save a little money.

Of course, a flat-rate purchase
price up front isn’t the only way
to license a game engine. While
it is the most traditional way,
other possibilities have been

F i g u r E 5

pErciEvEd usEFulnEss
scale of 1 to 5

T r a d i T i o n a l

unreal ····························· 3.35
cryEngine ························3.15
Trinigy ······························3.12
Evolution ························ 2.56
unity ······························· 2.45
c a s u a l

Trinigy ····························· 3.46
unity ······························· 3.43
unreal ····························· 3.22
shiva ······························· 3.02
cryEngine ······················· 2.61

F i g u r E 6

prEFErrEd way To build gamE TEchnology
T r a d i T i o n a l

use our own engine framework and purchase
a suite of middleware ··· 38.0%
create all tech ourselves ·· 34.0%
purchase a complete game engine ·· 22.0%
purchase a game engine that uses other
middleware libraries ··6.0%
c a s u a l

purchase a complete game engine ·· 60.3%
purchase a game engine that uses other
middleware libraries ·· 17.2%
create all tech ourselves ···12.9%
use our own engine framework and purchase
a suite of middleware ··9.5%

gamEbryo.

vicious.

http://www.gdmag.com

GAME DEVELOPER | MAY 201110

created as the number of small
and independent developers has
grown. These developers are more
price-sensitive at the beginning
of a project, yet still need great
technology at a great price. Paying
back-end royalties is one way
to achieve this. Paying royalties
allows for a smaller cash outlay at
the initiation of a project, and then
a percentage of revenue from sales
of the game. However, royalties
are not an option many publishers
appreciate. Overall, 80.7% of
traditional developers prefer the
flat-rate model, compared to 74.5%
of casual developers. Survey
responders who commented on
this question encouraged game
engine manufacturers to move
toward a hybrid model: a free trial,
then a small flat-rate fee up front,
with either an adjustable royalty as
game sales pass certain revenue
targets or, if the game is picked
up by a publisher, an upgradable
license fee based on the game’s
budget.

What other costs are
developers looking at with licensed
game engines? Responders
reported that the biggest hidden
cost is in adapting engine features
to suit the particular game they’re
creating (86.8%), so flexibility
and ease of modification are
key qualities. Employee training
costs were also called out as
quite substantial (67.9%), in
terms of both time and money.
This definitely encourages
developers to go with the more
popular engines on the market,
so that hiring staff with previous
experience becomes easier.

Capabilities
/// Let’s step back a bit from
specific engines. Since game
technology has evolved over the
past two years, perhaps what
people expect of game engines has
also evolved. To start uncovering
some answers, the survey posed
the question: “How would you
optimally like to build your game

technology? Would you rather
buy an all-in-one engine, build all
your technology yourself, or do
something in between?” Back in
2009, we saw that just over 9%
of survey responders wanted to
use a full game engine; the most
popular choice among developers
was to create all the technology
themselves (46.5%). This year it’s
still true that licensing a full game
engine is not ideally what most
people want to do. (See Figure 6).
While a much larger percentage of
traditional developers now want
to purchase a complete game
engine (22%), what most are
still interested in is building the
engine framework themselves,
and plugging specific middleware
libraries into it based on the
particular needs of their game
(38%). Casual developers had a
quite different reaction: over 60%
wanted to purchase a complete
game engine.

Game engines are definitely
continuing to grow in acceptance,

but why are traditional developers
still wary? Developers using
game engines see some clear
benefits (see Figure 7), yet there
are undoubtedly things to watch
out for (as seen in Figure 8).
Worries over code quality and
architecture, a lack of support or
documentation, and dependencies
on other technologies that are
difficult to identify during the
vetting process are some common
concerns.

The most important thing
when looking for a game engine is
to do a thorough job examining all
of the potential candidates. Each
engine has its own plusses and
minuses, and they’re different for
different platforms and genres.
But developers in our survey were
clear about the most important
practices for all engine providers.
Out of a scale of one to five, with
five being the highest, these
were the highest voted practices:
provide source code (4.35), offer
live preview on target platforms
(3.98), and provide ongoing
access to builds in development
(3.77). The need to integrate easily
with other middleware libraries, as
mentioned previously, is also quite
important to developers (3.67).

As far as systems and tools
within an engine, multi-processor
/ multi-threading capability
popped up this year as the most
important (4.43), just as it did in
2009. The current generation of
consoles brought this technology
to the foreground, since to gain
maximum performance from those
machines it has been incredibly
important to master the art of
multi-threaded programming.
Other important systems for
engines include physics (4.15),
streaming (4), profiling (3.92),
and camera control (3.69). These
are all very sensible demands.

A newer technique that survey
responders found important to
include is deferred rendering
(3.34), as opposed to forward
rendering. Developers commented
that “...all these systems should
be easily replaceable with custom
[technology] / middleware.”
What if your game engine’s
physics system doesn’t have the

F I G U R E 7

ENGINE BENEFITS
/Scale of 1 to 5/

Our artists/designers can begin working right away without waiting for tech ··················4.20
Allows us to focus on game-specific code ·· 3.98
State-of-the-art tech from engine specialists ···3.72
We can develop our game more quickly with less tech to develop ·····································3.71
Time to first working version of game is significantly reduced ··3.71

Unity.

www.geomerics.com

Stay ahead of the game. Upgrade your engine’s
lighting pipeline with Enlighten.

This year the leading games you’ll be playing
will be built with Enlighten technology.

Enlighten delivers world class lighting in real time.

feature set I need for the game
I’m making, but everything else
is perfect? It’d be sad to have to
choose a different engine or do
a lot of heavy lifting to replace
the physics. Ideally, the engine
developer should provide simple
integration with Havok, PhysX, or
Bullet.

The tools our survey
responders found important are
also all fairly logical: a standalone
world editing tool (4.21) and a
particle system editor (4.02) got
top votes. Developers also look

for engines to provide a run-time
script debugger (3.6), shader
editor (3.56), and cinematics tool
(3.53). New to the list of priorities,
but still important, are an
animation blend tree editor (3.51)
and global illumination solver
(3.06). Clearly some of these
tools can be purchased separately
and integrated by the developer,
but the stronger engines should
provide most of them.

Back in 2009, 73.2% of survey
responders noted that they use a
standalone world editing tool, as

opposed to using their DCC tool
for world editing. This year that
number has increased to 84.8%
of traditional developers, so it’s
understandable that this would
be rated the most important tool
for a game engine to provide. In
the casual space though, using
a DCC tool is more common, and
only 64.2% are using a standalone
application. Leveraging your
DCC tool for world building is an
inexpensive way to go, for sure,
but as game level sizes or team
sizes increase, using the DCC tool
in this way can quickly become
unwieldy.

Another hot button issue
in this year’s survey was the
importance of having a runtime
script debugger. The use of
scripting languages in games has
continued to increase, and Lua
(44.7%) and visual scripting tools
(31.9%) are the popular leaders
in this regard. One of the most
important reasons to implement

scripting is to enable rapid
iteration, yet many game engines
don’t offer real-time script preview
or run-time debugging. Over 50%
of developers rated “live preview of
scripting” a 5, or “most important.”
As one developer commented, “It’s
a shame that almost no engine in
the industry fully supports this
yet. Fast iteration time is the most
important factor for any kind of
tool development we do in-house.”

Tool and Language Use
/// As part of the survey, I like
to find out what other tools,
languages, and processes game
developers are using in their
engine development. Through
this anonymous sharing we can
all learn about some of the more
esoteric tools available, and we
can showcase some solutions
that most developers might not be
aware of.

Respondents made clear
that they like being able to

www.gdmag.com 11

F i g U r e 8

eNgiNe coNcerNs
/scale of 1 to 5/

Availability of engine source code ·· 4.16
code quality and architecture ···4.09
Lack of support or documentation ··3.67
engine has dependencies on other assumed tech
so it is difficult to extend ··3.62
incomplete feature set across multiple platforms ···················3.62

http://www.geomerics.com
http://www.gdmag.com

GAME DEVELOPER | MAY 201112

select middleware libraries to
incorporate into their preferred
game engine. For traditional
developers, Scaleform and
Bink are the kings of runtime
middleware, both of which solve
particular problems extremely
well (user interface design and
video playback, respectively).
For casual developers, the most
popular middleware libraries
are both good and inexpensive,
or they are free: FMOD, Bullet,
and PhysX are the most popular
in this category. In general, far
fewer casual developers (48.6%)
use middleware libraries, versus
91.5% of traditional developers.
(See Figure 9.)

What about DCC tools? The
popular conception is that 3ds Max
and Maya are the most popular
3D tools out there, but there are
other options as well. Maya turns
out to clearly be the most widely
used DCC tool for traditional
developers (71.7% versus 3ds
Max’s 45.7%), yet for casual
developers 3ds Max (46.7%) is just
slightly more popular than Blender
(42.9%). A large variety of tools
exist in this space, with some of
the other frequently used tools
being ZBrush, Mudbox, SketchUp,
LightWave, Nevercenter Silo, and
Modo.

When developers make their
own tools, what languages do
they find themselves drawn to? I
was curious this year whether C#
was still the most popular. Sure
enough, 71.7% of our responders
attested to C# as being the
language they are most productive
in for tool development. C++ runs a

close second (69.6%), with Python,
Lua, and PHP filling out the top five
favorites.

How about in the early stages
of a project for prototyping? At
the beginning of a project the last
thing you want to do is spend
all your time knocking out tools.
You need a language or tool you
are very familiar with, that you
can use to quickly put together
demos to prove out your design.
Pencil and paper will always
rule for prototyping of course
(73.9%), although C++ apps follow
a close second (71.7%). Other
popular systems for prototyping
include previously used game
engines, Lua, C#, and Flash. For
casual developers, Unity is also
a noticeably strong choice for
prototyping.

Automation
/// One of the clearest differences
that showed up between
traditional developers and
casual developers in the survey
is the degree of automation
in their production process.
Among traditional developers
that responded to our survey,
67.4% now use continuous
integration systems like Jenkins
or CruiseControl, with 69.6% using
automated build systems of any
kind. These are less important
techniques for casual developer
teams, but are still valuable
practices.

Continuous integration
systems that kick off new builds
on a build farm each time someone
checks in code, and automated
overnight build systems that

ensure clean fresh builds are
available each morning are
systems which ease development
with complex codebases. Among
traditional developers that
responded to our survey, 69.6%
use automated build systems
and 67.4% now use continuous
integration systems, like Jenkins
or CruiseControl. Casual developers
use these types of systems much
less frequently, with only 12.4%
reporting use of automated build
systems.

Automated testing is
another way to make large-
scale development more
straightforward. Tests which run
automatically on each build, such
as unit tests, gameplay tests,
visual comparisons, and stress
tests, can quickly pinpoint the
introduction of a bug or other
undesired change in the codebase.
Automated tests are less popular
than automated builds among
traditional developers, but still
used fairly frequently (58.4%).
Casual developers, on the other
hand, use automated testing
more frequently than automated
builds (23.1%), but it is still fairly
uncommon.

Engines on the Rise
/// Licensed game engines
continue to increase in popularity,
especially among casual
developers. The increase in
popular of Unity over the past two
years has been remarkable, and
Trinigy is making strong gains in
mindshare among both traditional
and casual developers. Still, it’s
clear that using a licensed game

engine is not for everyone, as
many would rather build either
the technology framework or the
entire game engine themselves.
What’s important is to be aware
of the benefits and limitations of
using engine middleware, and to
thoroughly vet the engines you’re
considering. Ultimately, we’re
all trying to create better games
less expensively and with higher
fidelity. Licensed game engines
are an increasingly popular tool
for developers working hard to
realize their vision.

MARK DELOURA is VP of technology at

THQ, creator of the Game Programming

Gems series of books, and was formerly

editor-in-chief of Game Developer

magazine. Follow his tweets at @

markdeloura.

F I G U R E 9

TOP 5 MIDDLEWARE
LIBRARIES USED
/Ordered/

T R A D I T I O N A L

1 / Scaleform
2 / Bink
3 / FMOD
4 / PhysX
5 / Wwise
C A S U A L

1 / FMOD
2 / Bullet
3 / PhysX
4 / SpeedTree
5 / RakNet

Infernal.

CryEngine.

changing
THE GAME

DeVry University is accredited by The Higher Learning Commission of the North Central Association, www.ncahlc.org. In New York,
DeVry University operates as DeVry College of New York. DeVry University operates as DeVry Institute of Technology in Calgary, Alberta.
DeVry is certifi ed to operate by the State Council of Higher Education for Virginia. AC0060. DeVry University is authorized for operation
by the THEC. www.state.tn.us/thec. Nashville Campus – 3343 Perimeter Hill Dr., Nashville, TN 37211. Program availability varies by location.
©2011 DeVry Educational Development Corp. All rights reserved.

Preparing Students for 21st Century Careers

DeVry University’s bachelor’s degree program in Game & Simulation Programming (GSP)

positions students for success with an innovative experiential education.

Our graduates are well-rounded and ready to make an impact on today’s ever-changing,

demanding simulation and video game industries. The GSP curriculum includes training

in a broad range of programming languages and software applications. These courses

are integrated with a general education curriculum to reinforce essential critical

thinking skills.

Learn more at devry.edu

14722-01 DVU_GDC_Ad_7-75x10-5_0311.indd 1 3/10/11 3:31 PM

http://devry.edu
http://www.ncahlc.org
http://www.state.tn.us/thec

W W W . E P I C G A M E S . C O M

LEVERAGE THE
POWER OF
DIRECTX 11 WITH
UNREAL ENGINE 3
Epic recently presented what we would like to see in the
next generation of games with our Samaritan real-time
Unreal Engine 3 demonstration at the Game Developers
Conference in San Francisco.

To take Unreal Engine 3 to the next level, we
implemented DirectX 11 support along with NVIDIA’s
APEX physics technology, and these features were
made widely available in the March 2011 release of
the Unreal Development Kit (UDK).

Commercial UE3 licensees have source-level access to
these additions. Here’s a round-up of the DirectX 11
features accessible to anyone who downloads the latest
UDK build from www.udk.com.

Bokeh depth of � eld (DOF): Real world images
captured with a camera lens often depict scenes with
some parts more in focus than others. The out of focus
objects form shapes, such as circles or pentagons, called
Bokeh. Artists can control Bokeh shapes and textures in
the UE3 post-processing chain.

Doing DOF as a post process works quite well for opaque
objects, as each pixel has a depth associated with it.
Translucent rendering, however, cannot work well with
a post-processing method. Ignoring the problem can
result in translucent objects that are either too much in
focus or too blurry, depending on their background.

We solved the problem by giving control over which
translucent objects are a� ected by DOF within UE3’s
material settings. Additionally, we’ve implemented a
new material node that allows artists to adjust shading
by fading objects out or blending them to a blurry state.

Tessellation: Because the DirectX 11 tessellation pipeline
is programmable, it can be used to solve a large number
of graphics problems.

Tessellation works especially well for natural objects with
medium-scale details, and UE3’s material input enables

developers to adjust geometry tessellation on both the
edges and the insides of triangles. Tessellation amounts
can be controlled by distance from a camera or setup to
place more triangles along silhouettes.

A popular re� nement algorithm, PN-Triangles, softens
the look of coarse models. PN-Triangle tessellation
mode smoothes hard edges, converting low-resolution
models to curved surfaces, which are redrawn as a mesh
of � nely tessellated triangles. UE3 also has support for
crack-free tessellation and displacement.

Image-based re� ections: Image-based re� ections are a
part of UE3’s DirectX 11 rendering pipeline. This technique
is used to render real-time whole scene HDR re� ections
as seen in Samaritan. The technique works by re� ecting
an image which is an approximate version of a scene at
each pixel, which makes it more e� cient than previous
re� ection techniques, such as planar re� ections.

UE3 enables re� ections on any surface with varying
glossiness and blurriness. This is useful for visuals such
as wet roads where puddles mirror re� ections, while
other parts of the road appear glossy.

UE3 also supports anisotropic glossiness, where
re� ections are streaked more in one direction, and
dynamic components enable all parts of the re� ection
except for static shadowing to be changed at runtime.
UE3 supports dynamic object shadowing as well.

Deferred shading: Deferred shading allows dynamic
lights to be rendered much more e� ciently. Traditional
UE3 lighting is called forward shading because the dynamic
lighting is calculated while rendering a scene’s meshes.

With deferred shading, material properties such
as di� use color are stored in render targets, called
G-Bu� ers, while rendering the meshes in the absence
of lighting. Later, in a deferred pass, each light looks up
the material properties from the G-Bu� ers for a given
pixel and calculates lighting based on that.

Lights rendered with deferred shading are about 10
times faster than lights rendered with forward lighting.
In Samaritan, the opening scene had 123 dynamic
lights, and all lighting was done using deferred shading
except on character skin and hair.

Full scene anti-aliasing: UE3 supports full scene anti-
aliasing in DirectX 11 through multisample anti-aliasing.
MSAA is a hardware feature that shades pixels only once
but evaluates the depth test multiple times per pixel.

In UE3, deferred passes like lighting and shadowing work
correctly with MSAA by detecting geometry edges and
shading per-sample along those edges.

UE3 materials have a feature that multisamples the edges
of masked materials. This is especially useful for creating
realistic hair and foliage.

Screen-space subsurface scattering: Subsurface
scattering refers to light that penetrates the surface
of an object, scatters through its interior and exits at
a di� erent location. This is why subsurface scattering
makes skin appear more luminous.

UE3’s subsurface scattering is a screen-space e� ect that
blurs the light incident on the object’s surface to other
nearby points on the surface. The blur attenuates the
lighting based on the world-space distance between the
incident and exitant points to model absorption of light
by the interior of the object.

For help getting started with these features, visit http://
udn.epicgames.com/Three/DirectX11Rendering.html.

Mark Rein
Epic Games, Inc.

ADVERTISEMENT

Canadian-born Mark Rein
is vice president and co-
founder of Epic Games based
in Cary, North Carolina.

Epic’s Unreal Engine 3
has won Game Developer
magazine’s Best Engine
Front Line Award � ve times
along with entry into the

Hall of Fame. UE3 has won three consecutive Develop
Industry Excellence Awards.

Epic is the creator of the mega-hit “Unreal” series of
games and the blockbuster “Gears of War” franchise.

Follow @MarkRein on Twitter.

BY Mark Rein
Epic Games, Inc.

UPCOMING

EPIC ATTENDED

EVENTS

Develop
Brighton, UK
July 19-21, 2011

E3 Expo
Los Angeles
June 7-9, 2011

Comic-Con
San Diego, CA
July 21-24, 2011

GDC Europe
Cologne, Germany
August 15-17, 2011

Please email: mrein@epicgames.com for appointments.

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, Unreal, Unreal Engine, Unreal Kismet and Unreal Matinee are trademarks
or registered trademarks of Epic Game Games, Inc. in the United States and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

http://www.udk.com
http://udn.epicgames.com/Three/DirectX11Rendering.html
http://WWW.EPICGAMES.COM
mailto:mrein@epicgames.com
http://udn.epicgames.com/Three/DirectX11Rendering.html

WWW.GDMAG.COM 15

/ / / / / / / / / / W E ’ V E A L L H A D G A M E D E V E L O P M E N T P R O J E C T S
W H E R E S U D D E N LY E V E R Y T H I N G S E E M E D T O G O W R O N G —
N P C S A R E FA L L I N G T H R O U GH T H E F L O O R , B U L L E T S B O U N C E
O F F I N V I S I B L E B A R R I E R S , T H E S K Y B O X C O L O R S H A V E
I N V E R T E D — A N D N O B O D Y C A N F I G U R E O U T W H Y.

T H E N , S U D D E N LY, S O M E O N E S T E P S I N W I T H T H AT “A - H A ! ”
M O M E N T, T H E P R O B L E M S A R E S O LV E D , A N D T H E G A M E G O E S
O N TO M A K E I T S S H I P D AT E . O R P E R H A P S T H E G A M E WA S N ’ T
E M B A T T L E D B U T S I M P LY B L A N D , A N D T H E N A C L E V E R
D E S I GN E R R E A L I Z E D T H AT A D D I N G A T I M E L I M I T U P P E D T H E
T E N S I O N T W O - F O L D . O R P E R H A P S T H E R E ’ S S O M E O N E W H O ’ S
J U S T D A M N G O O D AT H I S O R H E R J O B ! I N T H E F O L L O W I N G
P A G E S , W E C E L E B R A T E H E R O I C M O M E N T S O F G A M E
D E V E L O P M E N T, W H E N A P R O J E C T WA S S AV E D , M I N D S W E R E
E N L I GH T E N E D , O R P R O C E S S WA S S T R E A M L I N E D .

S P L A T T E R E D H O U S E S
√ As they labored on SPLATTERHOUSE, the development team had been working
for months in a custom character-scripting tool that sat on top of Microsoft
Visio as a plug-in. While the interface looked slick, the team was plagued with

B R A N D O N S H E F F I E L D

http://www.gdmag.com

game developer | may 201116

general production woes whenever they worked in
the tool. Clicking on a graphical node would bring
up a scrollable list of parameters that could be
tuned, but the interface was extremely slow to the
point of absolute frustration. The tool would take
five seconds per mouse click to update. Scrolling
the parameter window would force the tool to
re-query the parameter list and force a full redraw.
Once you entered a value and pressed the Enter
key, you needed to wait three to five seconds for
the whole program to finish updating. For a game
that was meant to induce nightmares, none were
as frightening as attempting to work within the
character scripter.

Enter Justin Pease, an engineer who had been
recently assigned to the gameplay programming
team from the studio’s central tech group. After
getting up to speed in about a week, Justin worked
a couple of extra nights, unbeknownst to the
production team, focusing his efforts on improving
the scripting tool. Why, you ask? Probably because
he was going to have to use the tool to help
improve the main character, Rick!

Regardless, one evening Justin sends out
an email detailing that he has “improved” the
character scripter. The results were staggering...
suddenly the tool functioned as intended! No
more waiting for updates and refreshes. Not
only was the tool usable, but it actually allowed
for production gains in terms of overall velocity.
In trying to quantify the efficiency gains Justin
made in the tool the numbers were ridiculous ...
something like 3,000 percent or one man-year.
On the tight production schedule Namco faced
after taking the project internal, Justin Pease’s
tools improvements are truly the stuff of coding
heroism.

–Michael Boccieri

D O O D , W H E R E ’ S M Y D E S I G N
√	 DooD’s Big ADventure is a game we developed
at THQ Digital Studios Phoenix (formerly Rainbow
Studios) and was released in November 2010 as
one of the games for use with the Wii uDraw tablet.
But the published game that you see today on
store shelves is drastically different from the type
of product we originally began developing.

Game development is typically much more
about execution than singular ideas. In other
words, it’s the process of developing and refining
an initial idea over time that results in something
meaningful. Normally, the original idea itself is just
a kernel of a starting point, and often those ideas
are transformed enough during the development
process that the majority of weight and credit
should and does go to the process, as opposed to
the idea. However, during this particular project we
enjoyed one of those rare moments where a single
compact idea completely saved a game that was
in crisis by all accounts—resource-wise, morale-
wise, and direction-wise.

In January of 2009, we began work on what
would eventually become DooD’s Big ADventure

for the uDraw tablet (which we were also
simultaneously designing). Seven months later,
about halfway through the development cycle,
we were not quite out of pre-production, and
the extent of our accomplishments thus far was
contained within one side-scrolling “vertical slice”-
style demo level. At this point, the plan was to
build a story-based game with a linear progression
structure, lots of narrative, and some collection
of mechanics that utilized the tablet in hopefully
essential, interesting, and usable ways.

The demo level we had built thus far looked
great, but was completely unsatisfying on
numerous levels. Because the various control
mechanics we were developing were so different
from each other, the only way the player could
switch between them was to pass between
specific choke points in the level. In one section
of rooms the avatar was walking and jumping, in
another section he was contained in a bubble and
could float in any direction, in yet another section
you would connect points on the screen with the
pen to produce a physical object that would allow

further progress. The level was completely linear,
save for the standard “key and door” chicanery
that games sometimes use to trick people into
thinking they actually have a meaningful choice
about where to go.

Besides these design problems, the entire
level was wrapped around a “giant robot” narrative
where the player was moving through different
sections of the robot’s innards to activate it and
save a fictional planet from an evil alien invasion.
This fundamental dependence on narrative was
exceptionally risky on two big counts: it meant
that we still had to create a large volume of
non-interactive content in the first place, and it
cornered us in terms of development flexibility.
It meant certain parts had to come before others
in order to keep the narrative coherent, and if
something didn’t work, well, we would have had
to just re-do it or keep changing it around until
it did. On top of this, all the different mechanics
were sufficiently underdeveloped that none of
them were really fun to play, and we didn’t have an
adequate contingency plan in the event that any
or all these mechanics proved to be garbage.

As if that weren’t enough, our art style and
visual grammar for interactions was not yet
well defined. The original principal designer,
technical director, and senior producer each had
independently left the company by that time.
We were also working exclusively with tablet
emulators and had no idea about how the final
tablet product would ultimately affect playability.
Oh yeah, and we also had six months to finish the
game. Things were not looking good.

It was around this time that my lead designer,
Devin Knudsen, came up with a simple and brilliant
idea that ultimately proved to be the singular
project-saving decision. We called it a “refocus,”
and it was a fundamental structural change to the
game that allowed us to minimize all the big scary
risks by modularizing as many components of the
game as possible. In this way, if any part of the
design proved not to work, we could just scrap it
and the rest of the game would be unaffected. The
details went like this:

1. We cut out most of the non-
interactive narrative elements. This
way, we could focus all our remaining
development efforts on the actual
interactive game, which was more
important. This also guaranteed that
no portion of the game would have to
depend on a specific narrative element
to justify its existence.

2. We changed the level-structure
plan from nine long, linear and heavily
interdependent gameplay sequences
to (ultimately 60) short and totally
independent “challenge” style levels.
Each level would just use a single
input-control mechanic from start to

H A M M E R O F T H E G O D S
√	 I once had the pleasure of working with
a man named David Scott. David worked at
me on the WArHAmmer reckoning project
as an engineer (Software Engineer II to be
specific). During my time he discovered
a small flaw in the code that had existed
for years. It was buried deep within, and
had been passed over so many times that
all of us just assumed it was an inherent
fluke of the engine we could not overcome.
By correcting it, he had solved a mystery
that spanned years, eliminating the single
cause of client-to-server latency in the
game. WArHAmmer is a PvP (RvR)-oriented
game, so this bug was one of the single
most frustrating things about the player
experience. –Haley Chivers

Warhammer: age of reckoning.

end, and the game would score the
player in terms of how skillfully and
quickly they could navigate each level.
The time constraint was essential to
making otherwise boring interactions
interesting and replayable, and the new
structure allowed for a single designer
and artist to concentrate on one level at
a time without affecting anyone else’s
work.

Eventually, we decided to stick with four
particular gameplay mechanics that proved
themselves to be worthwhile. Our new modular
structure meant that we didn’t have to make
these systems work with each other, which was
a much simpler problem to solve. We ended up
with 60 total levels, across 4 different mechanics
(15 levels for each mechanic). The wide variety
of play modes, combined with the “short and
numerous” level structure made the game much
more accessible and lively than it would have
been otherwise. On top of that, it allowed us to
finish the game in a way that was satisfying to all
of us with the little resources we had left.

—Ara Shirinian (special thanks
to Scott Blinn and Trapper McFerron)

G A M E J A M M E D
√	 In May 2010 Wild Pockets hosted a 24-hour
game jam. We entered as a team of three with
hopes of taking home the $3,000 grand prize. Our
team had two designer-scripters (Daniel Bryner,
Brad Johnson), and one artist (Chris Webb). Chris
had the pleasure of doing all the art for two games
since both Dan and I wanted to work on separate
games. One of the requirements of the winning
game was to have an end screen listing the game
jam sponsors.

Chris actually finished all the art for both
games (including the sponsor screen textures)
with half an hour to spare, so he put his head down
on the table and started sleeping. This whole time
Dan and I were scrambling to put the finishing
touches on our games, such as making sure the
sponsor screen is displayed at the end. I had made
a UI script that would do various things, one of
them being the display of the sponsor screen. Dan
had already put a level complete screen in and was
waiting for me to help him implement the UI script,
but I kept telling him I didn’t have enough time to
finish my game and help him, so he was on his
own. Long story short, we had about five minutes
left, and Dan and I both start to panic because
we still have to finish our games and then post
a link to finalize our submission, which neither

of us have done, and Dan still doesn’t have the
sponsor screen in, which means the game will be
disqualified from competition. Things get heated
and talking turns to shouting.

I submit my game with three minutes left,
but what do we do for Dan? There’s absolutely no
way we can get his script working in time!

Chris pops his head up off the desk, renames
the sponsor screen texture so it overwrites
the level complete screen and hits upload with
about one minute left to spare. Our games end
up going on to tie for first place so we take home
not only the grand prize of $3,000, but the $600
for second place as well. Chris Webb saved the
day. It was definitely an Indiana Jones-saving-
his-hat-from-under-the-crushing-wall moment.

–Bradley Johnson

S P O R E D
√	 Game Developer’s original “call for heroes”
asked for people who saved the day during a
game’s development with a heroic effort, or who
had an “a-ha!” moment that turned the tides.
My personal game development hero did plenty
of day-saving and a-ha-ing when I worked with
him on Spore, but those aren’t the reasons he’s
my hero. Tom Bui (now at Valve Software) is my

www.gdmag.com 17

Restrictions apply. Call for details.

www.iBeta.com • sales@iBeta.com
303.627.1110

Game testing since 1999
Licensed for all game consoles

Functionality • Localization • Compatibility
Security • Mobile • Beta Test Management

Compliance • and more!

TRY US
FREE!

*Get $1,000 credit toward
your first project with us.

*ASSURANCE
QUALITY

iBeta_halfpage.pdf 1 4/1/2011 11:29:32 AM

http://www.iBeta.com
mailto:sales@iBeta.com
http://www.gdmag.com

game developer | may 2011 18

Far Cry 2.

Spore.

www.gdmag.com 19

game development hero because he’s the most
productive programmer I’ve ever met, and I find
that incredibly inspiring.

It must be said: I struggle with pretty bad
productivity problems. I realize this isn’t an
issue everybody has to face, so this may not
resonate with you personally. Some people
can just sit down in the morning and start
typing code, stop at lunchtime, and then do it
again in the afternoon. I am not one of those
people, unfortunately. But just being around
Tom made me more productive and focused.
Seeing the endless stream of his check-in
notices go across the team mailing list, taking a
break from a conversation with him to go to the
bathroom, only to find he’s fixed a bug during
the brief intermission while I was gone instead
of checking email or Facebook or Twitter, finding
he’s added a feature in an hour that people
thought would take a week—the man is just a
machine! Better yet, he’s incredibly kind and
self-deprecating, so instead of this amazing
productivity being intimidating or humiliating,
it’s completely inspirational. You want to work
harder and faster around Tom—not because
you have a prayer of working as hard and fast
as he does, but because you feel like you can
draft him a little bit, like cycling behind Lance
Armstrong or something. —Chris Hecker

A C R Y T O O F A R
√	 To provide some context, at the same time
that we were developing Far Cry 2, the technology
pipeline team was building the game’s engine,
which came to be called Dunia, in parallel.

The major technical challenge for the game
was to convincingly deliver a realistic open world
across 50 sq km of typically African terrain types,
including desert and savanna. In other words, the
engine was being asked to support large draw
distances in situations where natural features
like mountains couldn't be used credibly to
block sight lines. The old-gen solution of simply
cranking up fog effects wasn’t compatible with
the game’s next-gen environmental graphics. And
in a few regions, from readily accessible vantage
points, we discovered that it was theoretically
possible for players to see from one end of the
world to the other.

The problem lay in the way Dunia streamed
in chunks of the world. Each sector that was
rendered inflicted a performance burden on the
game. At the time, Dunia lacked a per-sector
LOD system (although individual game assets
had multiple LODs), so in order to protect the
framerate, the engine imposed caps on the
number of sectors that could be simultaneously
loaded, visible and active in the game.

We found ourselves confronted with the
prospect of needing to make fundamental
changes to large—we’re talking multiple
kilometer—swaths of the game world, late in

production. It was a potentially catastrophic
setback that could have easily derailed a title that
had already been delayed by several months.

After listening to the level design and art
technical teams debate the relative costs of
various fixes with the producers, FC2’s technical
architect, Philippe Gagnon, spoke up and
asked for a few hours to investigate a possible
solution. He came back with something that was
astonishingly elegant: he curved the world.

Or at least he created the illusion of a curved
world. Specifically, the game’s renderer was
modified to apply a curve function at runtime,
so that the sectors that were the furthest away
from the player’s POV fell below the game’s
virtual horizon, causing them to be culled
automatically. Once the solution was proven to

do the trick, Gagnon put in additional code that
raised and lowered any other visible non-terrain
entities in order to match the pseudo-curvature.

For players viewing their surroundings from
inside the game (and in the absence of any
powered aircraft, which FC2 didn’t feature), the
effect was too subtle to be noticed. Our level
designers still needed to restrict access to
some of the taller mountain vistas and obviously
hang gliders needed to be placed where they
weren’t going to suddenly give the player a
disconcertingly sub-orbital view of the world.

Philippe’s cognitive leap saved our collective
asses. It was one of those moments that
becomes immortalized in three and a half years’
worth of production lore. —Patrick Redding

T R I A L S , T R I B U L A T I O N S
√	 Although it’s not widely known, early in the development of Trials HD, the original design called
for a “Crash Mode” that was to be just as important as the timed obstacle course driving we have
all come to know and love ... or curse and throw our controllers because of, as the case may be.

Crash Mode was originally meant to be a BurnouT-style game. The goal was simply to gain points
by making as spectacular a crash as possible. Many on the team were excited by it, our partners
were enthusiastic, and all around, we thought it was a great idea, as it was believed that its simpler
mechanics would help bring the game to a much wider audience.

The problem was it just wasn’t very much fun in large doses. With our core action designed for a
2D plane, there simply weren’t enough ways to make the crashes varied enough on any particular
level. There were only so many routes we could create through any given warehouse.

Realizing how this limited the game’s potential, but not wanting to abandon the idea altogether,
project manager Jorma Sainio, lead programmer Sebbi Aaltonen, 3D guru Sami Saarinen, and
creative director Antti Ilvessuo, worked hard trying to find ways to somehow utilize the potential of
Crash Mode in small doses.

After many iterations and discussions, the core team came to the conclusion that Crash Mode
shouldn’t be in the actual game. However, some parts of the Crash Mode prototypes were a lot
of fun. So, they turned the question upside down: how could we take advantage of that small set
of fun, short gameplay moments and make Trials HD a better game overall? When Crash Mode
was abandoned, these small ideas didn’t have to be limited to fit Crash Mode anymore. After this
decision, the team came up with many small, fun ideas, that on their own would not have made a
game mode, but could be turned into a small, fun collection of events comprising the Skill Games
that many riders have come to love. —Jason Bates

Trials HD.

http://www.gdmag.com

CTHULHU
SAVES

THE
WORLD

On April 22nd, 2010, Zeboyd
Games released its first
title, BREATH OF DEATH VII: THE
BEGINNING. BOD was patterned
after the popular 8-bit RPGs of
old but also featured modern
elements, l ike branching
level-ups, a combo system,
and random encounter limits.
It was a big success for us.
The game skyrocketed up the
top-rated list on the Xbox Live
Indie Games U.S. Dashboard
(it ended up in the #2 spot
for several months) and sold
over 45,000 copies in its first
year. Admittedly, the game
only sells for $1, so it was not
making us rich, but it was a

very promising start for our
new team. It also raised the
question: what next?

We had a few promising
i d ea s f o r n e w ga m e s
already, but all of them felt
too ambitious for a second
project. We decided to do
something a bit simpler—a
spiritual sequel to our first
game. It wouldn't be a direct
sequel, since we wanted to
gain a reputation for good
games and not be labeled
"the BREATH OF DEATH guys."
Rather, it would build on the
foundation we had created
with our first game. This
idea eventually turned into
CTHULHU SAVES THE WORLD.

WHAT WENT RIGHT?
1 /// Concept. I had been playing
around with the idea of taking a
classic piece of literature from the
public domain and transforming
it into a comedy RPG. I also like
the horror genre. One day, the two

ideas mixed, and the concept of
Cthulhu losing his powers and
having to regain them through an
RPG quest was born.

When you have a strong
concept, it makes development so
much easier. We had a wealth of
material from Lovecraft's fiction to
work with, which gave us plenty of
great monsters and locations right
from the start. Writing amusing
dialogue was relatively easy since
the concept was so strong. And
since the internet is filled with

Lovecraft and Cthulhu fans, getting
people excited about the game
was easier than it might have been
otherwise.
2 /// Building on the past. If we
had decided to make CTHULHU SAVES

THE WORLD as our first game, I don't
think we would have ever finished
it. As our second game, however,
we had an existing RPG engine and
some experience with coding, art,
design, and writing. Since we could
focus on making the game better,
and not just on making it work, an

GAME DEVELOPER | MAY 201120

CTHULHU SAVES THE WORLD.

WWW.GDMAG.COM 21

otherwise insurmountable task
became much more manageable.
3 /// Presentation. Our artist
and musician really nailed the
nostalgic feel of a classic 16-bit
game while instilling their own
personality into the presentation.
Due to the small size of our team,
we had to cut some corners, so
we decided the game would have
very little animation in it. Still,
we did a lot with what resources
we had. Since we didn't have the
budget for big FMV sequences, we
patterned our cutscenes after the
non-animated comic book-style
scenes used in PHANTASY STAR IV.
This allowed us to have dozens
of scenes in the game that were
far more visually interesting than
they would have been if done in
the game engine. To make combat
more interesting, we gave each
enemy a unique "insane mode"
sprite. And to draw attention
away from the simplicity of our
animation frames, the animation
we did use was very quick.

4 /// Accessibility. I love really
complex games, but I 'm not
everyone. As a developer, I want my
games to appeal to a wide variety
of people. "Easy to learn, hard to
master" is our motto. We had done

some work with accessibility for
our first game, but we went even
further with CTHULHU SAVES THE

WORLD, adding a save-anywhere
feature, easy town-teleportation,
1-ups to retry battles, a new Easy
difficulty, and an unlockable
Overkill mode (in which the player
levels up very quickly at the start).
At the same time, we didn't want
to neglect the gamer in search of
a challenge, so we added a new
game mode (Highlander) where
you can only bring one character
into combat, in addition to the Hard
difficulty and Score Attack mode
from our first game.
5 /// Marketing. In addition to
our regular marketing efforts, we
also helped to organize a special
multi-game promotion called
Indie Games Winter Uprising.
I believe this promotion was a
big help to the game's visibility,
and is probably responsible for
the increase in reviews from
bigger and more prestigious
sites (Eurogamer, Joystiq, and

Ga mes Rada r a mong other s)
compared to our first game.

WHAT WENT WRONG?
1 /// Underestimating the amount
of work. We'll just take BREATH OF

DEATH VII and make everything
better—how much time could
that take? A whole lot, as we soon
found out. Our initial goal of three
to four months of development
time kept getting pushed back,
and our estimated release dates
became a joke. In the end, we
just narrowly managed to get the
game released before the end of
the year, after eight months of
work. I even ended up spending
a good chunk of Christmas day
working on the game. How's that
for self-inflicted crunch?

When you add an extra layer of
sophistication to one aspect of a
game, your workload increases a
bit. When you add an extra layer of
sophistication to several aspects of
a game, your workload increases
exponentially. More work in one area

G A M E D A T A

CTHULHU SAVES
THE WORLD
P U B LI S H E R

Zeboyd Games
D E V E LO P E R

Zeboyd Games
N U M B E R O F D E V E LO P E R S

Robert Boyd (Design, Code,
Story), William Stiernberg
(Graphics, Level Design), and
Gordon McNeil (Music)
L E N GT H O F D E V E LO P M E N T

8 months
R E L E A S E D AT E

December 29, 2010 (XBLIG),
Spring 2011 (PC)
PL AT FO R M

XBLIG, PC

The Xbox Live Indie Games service was launched
as part of the XNA Creators’ Club (as “Community
Games”) back in May of 2008. It was viewed as a
way for developers to release games directly on
the Xbox 360 without having to get a publishing
deal. Since then, the service has grown to include
some 1,600 titles, with a number of standouts.
We’ve compiled postmortems of f ive of the more
interesting games on the service to give curious
developers some idea of the XBLIG development
environment.

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 2011 22

would result in the need for more
work in another. It was a mess.

If we had planned the game out
better beforehand and limited our
improvements to a few key areas,
development would have gone
much smoother.
2 /// Lack of tools. With BREATH

OF DEATH VII, we did all the maps
directly in code. My artist would
make them using a free map
editing program, he'd convert them
into arrays, and then I'd plug them
directly into the game. This wasn't
ideal, but it worked.

With CTHULHU SAVES THE WORLD,
we upped the size and complexity
of our maps, and our old process
of making maps quickly proved
inadequate for the task. Rather
than stopping to make more
efficient tools, we just plowed
on. Creating maps was a time-
consuming process, and modifying
them was a pain.

 If we had just taken a month
or two at the start of the project to
make some efficient map-editing
tools, we could have made higher
quality, better-tuned maps in
drastically less time than it ended
up taking.
3 /// Lack of funds. This was
a direct result of our failure to
plan appropriately. We were
expecting a new source of income
once CTHULHU SAVES THE WORLD

came out after four months
of development, but since the
game's release date kept getting
pushed back, the new revenue
stream was delayed as well. I had
to borrow money and find work
elsewhere during development
just to keep things going.

Thanks to the game's eventual
release and a kickstarter fundraiser

that we did soon after, Zeboyd
Games has enough funds for the
time being. And hopefully, our PC
port of the game will help bring in
enough additional funds so that we
won't need to worry about running
out of money while we work on our
next game.
4 /// Not different enough. Although
we felt that CTHULHU SAVES THE WORLD

was a huge improvement over our
first game, we received complaints
that it wasn't different enough. Those
complaints weren't completely
without merit. Most of the changes
that we made to gameplay were
subtle, so that though everything
was bigger and better, the core
gameplay and interface weren't that
far off from our first game.

For our next game, we will be
making much more drastic changes
to overall style and gameplay, as well
as an overhaul of the interface.
5 /// Not enough iteration. We do
plenty of theoretical iteration at
Zeboyd Games. We spent weeks
coming up with different insanity
systems before finally choosing
the one that we used in the actual
game. However, we didn't do enough
iteration with actual playable
prototypes. CTHULHU SAVES THE

WORLD wasn't playable in any way
that resembled an actual game
until about a month or two before
completion. Had we worked faster on
getting out a playable prototype in
order to get feedback earlier, I think
the overall quality of the game would
have been much improved.

ELDER GODS
CTHULHU SAVES THE WORLD was an
excellent learning experience for
us. Although it was much harder
work than we had anticipated,

we are pleased with the results.
Despite the higher price tag ($3),
the game sold about 9,000 copies
in its first 30 days (though daily
sales have dropped off noticeably
since then). Reviews have been
over whelmingly positive, and
perhaps most important of all, the
game has unlocked future doors of
opportunity for us.

R O B E R T B O Y D was an English

teacher before he decided to go into game

development, starting up Zeboyd Games

with BREATH OF DEATH VII. He was the creator

of the Winter Indie Uprising in late 2010.

EPIC
DUNGEON

Original ly, EPI C DU NGEON
started off as a self-imposed
challenge to see if I could
create a classic roguelike
in two weeks. Those two
weeks quickly turned into
months (so I guess I failed
the challenge). But the result
was a successful twist on
the roguelike that combined
some of the genre's core
mechanics, such as perma-
death and random level
generation, with more modern
action-RPG elements—real-
time gameplay and the
development of stats and
skills—as well as a dash of
character. All of this was set
within a text-based encounter
system, wrapped up in a retro
8-bit package.

As a one-man development
shop, hav ing to sw itch
between coding, writing,
artwork, music and sound
effects, then on to marketing
was difficult, but ultimately
rewarding.

I am happy with the result,
and it has performed well for
an Xbox indie title, selling over
20,000 units in its first three
months.

WHAT WENT RIGHT?
1 /// Evolution. By starting out
as a turn-based roguelike, EPIC

DUNGEON retained a lot of the feel of
its classic inspiration. If it had been
planned as an action-RPG from the
beginning, it would have been a
very different, and, I suspect, less
successful game.

For example, even though
character movement is smooth,
it is still based on an underlying
grid system. Not only did this give
it some retro flavor, but it also
made it easy for players to quickly
see and understand all the action
quickly.
2 /// Playtesting. Playtesting
really helped with the final level of
polish. Beyond serving as a source
of inspiration and motivation, it
helped with the most important
aspect of EPIC DUNGEON, which was
gameplay balance. Most notable
was the amount of discussion
and work that went into balancing
the economy. Acquiring better
equipment is an important part of
the game, but finding the perfect
point where players can buy a few
things, but not everything, was a
real challenge given the random
nature of the game.
3 /// Accessibility. Nobody reads
instructions, and tutorials are boring.
So my basic approach was to provide
information on screen as it was
needed. Tips occasionally fade in to
highlight specific gameplay features
as the player moves deeper into the
dungeon. Thought bubbles are used
to communicate when a button can
be pressed to interact with an object.
Icons for the face buttons (A/B/X/Y)
are displayed on the HUD, and
behave contextually (e.g., if a skill is
on cooldown, the button will look like
a timer).

Beyond that, I also tried to reduce
useless, repetitive tasks. Giving
players the ability to “Sell Junk” with
a single click has been very popular.
It basically just looks at all items and
equipment in the inventory and does
stat comparisons automatically,
reducing the need to go through
every item in the inventory manually.

As a result of all this, players
get a pick-up-and-play experience
that still has depth.
4 /// Level of difficulty. It seems
like hard games are making a
comeback, particularly among
indie titles. The fact that EPIC

GAME DEVELOPER | MAY 201122

CTHULHU SAVES THE WORLD.

WWW.GDMAG.COM 23

DUNGEON embraced perma-death,
rather than providing some kind
of “respawn” mechanism was met
with much wider approval than I
anticipated. It was something that
I originally did out of principle, and
I think that people have responded
to that adrenaline rush you get
when you know you’ve invested
hours into a game only to see that
you're being swarmed by enemies,
your lantern is running out, and
you are low on health potions.
5 /// Marketing. EPIC DUNGEON

benefitted greatly from the Indie
Games Winter Uprising promotion,
a joint marketing effort by Xbox
indie developers. Only a small
percentage of the Xbox user base
visits the indie game section with
any regularity, so getting the word
out played a significant role in EPIC

DUNGEON’s sales.
EPIC DUNGEON was the first

title released during Indie Games
Winter Uprising and as a result got
early reviews and additional press,
which, unfortunately, some of the
other titles did not receive.

Not only did it generate early
sales, but it created a critical mass
of players referring EPIC DUNGEON

to their friends, giving the game
a much longer lifespan than I had
originally anticipated.

WHAT WENT WRONG?
1 /// Lack of planning . EPIC

DUNGEON was developed in an
iterative fashion, starting with a
quick prototype, and then quickly
moving into increasingly full-
fledged implementations. Very little
time was spent with a pencil and
paper, and ultimately that caused
problems.

First, ear ly assumptions
resulted in unnecessary limitations
later on in development. For
example, there are fundamentally
two types of tiles—walls and
floors—and later on, when I wanted
to implement water and cliffs, the
cost in time of doing so was just too
great. Unfortunately, the existing tile
concepts were just too integrated
in my AI and lighting to easily be
modified.

Secondly, I made a huge mistake
developing the shop and inventory
screens iteratively in code. It would

have been much more effective to
have spent some time sketching
out the screens with pencil and
paper first. Originally, there were
separate screens for a player’s
inventory and a player’s stats (DMG,
DEX, DEF, LCK). Unfortunately, after
getting everything pixel-perfect, I
realized that I had to combine both
screens, since (obviously!) it’s
important to see how equipment
affects stats. Similarly, it became
clear that it would be necessary to
toggle between the shop screen
and a player’s inventory. So, I
basically had to throw away the
original shop screen and create a
new shop screen that more closely

mimicked the inventory screen
to make the behaviors consistent
between the two.
2 /// Music. I have mixed emotions
about the music in EPIC DUNGEON.
I’m proud of what I created, but I
believe it could have been much
stronger. All the music loops are
roughly a minute long and change
every level. Unfortunately, I used
the same instruments for many of
the loops, and they're all in the same
key, so they can sound repetitive
after playing for a few hours. I will
definitely focus on having longer,
better, and more varied music in my
future releases.
3 /// Not having a deadline. During
its development, EPIC DUNGEON

didn’t have a real schedule or plan
for deliverables. This gave me the
time to explore a lot of different
ideas, but it ultimately just ended
up putting the game into a state of
unending development. If I hadn’t
participated in Indie Games Winter
Uprising, which finally gave me a
solid deadline, there’s a good chance
that EPIC DUNGEON would still be in
development.
4 /// Building everything from
scratch. A lot of development time
was wasted reinventing the wheel—
most notably, the amount of time
I spent creating custom font, text
layout, dialog box, storage, and
screen management classes.

The upside of having written
my own entire engine is that

it’s quite easy for me to debug
or optimize should the need
arise; however, research and
a b e tter u nder s ta nd i ng o f
existing technologies would have
significantly sped up the process
and probably improved my code.
5 /// “Epic” Dungeon. Using “Epic”
in the title generated a bit of initial
backlash, which really surprised
me. Using a superlative in the title
seems to suggest bad quality to
gamers. I thought I was giving
it a slightly ironic, but generally
descriptive title: it’s a dungeon, it’s
going to be big, it’s going to be hard.
Regardless, it literally is a player’s
first impression, so I wish I had
spent a little bit more time thinking
about the title.

ROGUE WAVE
I’m proud of what I accomplished
with EPIC DUNGEON. It was a lot
more work than I had planned
on, but I truly enjoyed creating
it and still enjoy playing it. So,
for me, it’s been a success. I’m
looking forward to leveraging the
knowledge I gained and libraries
I’ve written to make something
even bigger and better in the
future.

MIKE MUIR is the sole member of Eyehook

Games, a small independent game

development studio located in New York

City. You can follow Eyehook Games on

Twitter @eyehookgames.

WWW.GDMAG.COM 23

G A M E D A T A

EPIC DUNGEON
P U B LI S H E R

Eyehook
D E V E LO P E R

Evehook
N U M B E R O F D E V E LO P E R S

1
L E N GT H O F D E V E LO P M E N T

9 months
R E L E A S E D AT E

November 30, 2010
B U D GE T

$0
PL AT FO R M

Xbox (Indie Games)
LI N E S O F C O D E

30k

EPIC DUNGEON.

http://WWW.GDMAG.COM

SHOOT
1UP

There’s something extremely
satisfying about mowing
down tons of alien spacecraft
with your streamlined fighter
ship. I ’ve always loved
shoot’em ups, putting tons of
hours into LIFE FORCE, R-TYPE,
LIGHTENING FORCE (aka THUNDER
FORCE IV) and SUPER ALESTE,
and dreamed that one day I’d
make my own insane shoot
’em up with a unique twist.

SHOOT 1UP is a forced-
scrolling shoot’em up which
bends the convention of 1UPs
and allows players to control
all their ships simultaneously.
Any time they gain a new life,
they get it as an active ship,
which contributes to their
firepower. Players can risk
spreading out their ships,
and endangering them, for
the ability to fire a super laser.
There’s also giant spiders
being milked. And dead
whales. And a flying, naked
lady-bot.

WHAT WENT RIGHT?
1 /// Unknown, gut-reaction
design. My designs are usually
pretty freewheeling, but for SHOOT

1UP it was even more open than

normal. Fortunately, for a project
in which I was trying to out-crazy
Japan, or at least get close, this
approach worked. I would simply
brainstorm while running, in the
shower, driving, or wherever else,
and then write down any ideas
and accept or reject them based
on whether they were interesting,
and if they fit the general feel of
the game. I was careful not to
think them through too much,
which is what I think stifles some
of my designs.
2 /// Supporting disabled gamers.
I wor ked w ith access i bi l ity
organizations Able Gamers and
One Switch to hone the menus
and controls for the game to
suppor t as many options as
possible for handicapped and
non-handicapped gamers alike.
It was relatively easy to support
button remapping, and it greatly
increases the game's flexibility
and audience. We also gave
gamers the option to control the
overall gameplay speed, which
made it much easier for frightened
newbs or old-timers chastened by
brutal shooters of the past.
3 /// Critical prototype. I came
up with the core idea of “all your
ships at once” in response to a
challenge for the “Experimental
Gameplay Project” web site. I
quickly made a prototype of the
gameplay based on an existing
tutorial in XNA. Using existing

technology to prove the fun of the
idea was a massive benefit, and
helped get the gameplay up and
running quickly without getting
bogged down in low-level coding
issues.
4 /// The price was right. SHOOT

1UP was priced at 1 dollar, which
helped all the reviews and made
it easier for everyone to consider
checking it out. It’s likely the
game enjoyed more buzz and a
higher “critical mass,” leading
to more exposure than we could
have gotten at $3–5 price points.
5 /// Great playtesting sessions.
Although we had an original idea,
we weren’t shy about letting people
play early versions of the game and
integrating useful feedback. Lots of
aspects, such as an improved story
introduction (which now includes
animated pictures), more enemy
variation, and better play controls
came out of playtesting, and heavily
improved the final product.

WHAT WENT WRONG?
1 /// Didn’t know what we had.
SHO OT 1UP came together in
a weird period in which I was
“supposed” to be working on
GRAPPLE BUGGY , but was also
devoting time to a paying contract.
By the time the game shipped, I
realized it was pretty cool, and
people might like it. Turned out it
got some really good reviews and
a lot of attention, which left me

wishing I had done a better job
on the art and animation, and had
just generally added more content
to the game.
2 /// No design and no timeline.
W h i le hav i ng l i m ited i n itia l
designs in place for development
ultimately worked creatively, it
didn’t work well for the timeline.
We were trying to create the
game quickly in an effort to get
back to our “real” project. With an
open-ended design, it’s very hard
to call it done. That’s definitely a
benefit of concrete game design
documents and milestones.
3 /// The price was wrong. SHOOT

1UP is only a dol lar, which
undervalues the game and others
like it. I have no crystal ball to
see if we could have made the
same money, but I often wonder
if we should have priced it at the
next point ($3) instead. But our
success here does set us up to
release a new, more expensive
shooter of higher quality.
4 /// Poor underlying technology.
While using a starter-kit-style
codebase to get things going
is very good for jumpstarting
a project, at some point, it ’s
possible to diverge so far that you

GAME DEVELOPER | MAY 201124

G A M E D A T A

EPIC DUNGEON
P U B LI S H E R

Mommy’s Best
Games, Inc
D E V E LO P E R

Mommy’s Best Games, Inc
N U M B E R O F D E V E LO P E R S

Hamdija Ajanovic (music),
Amy Fouts (business and
producer), and Nathan Fouts
(all the game stuff)
L E N GT H O F D E V E LO P M E N T

4 months off and on
R E L E A S E D AT E

February 25, 2010
S O F T WA R E

XNA, Photoshop 7, tiny Wacom
tablet, SD and HD televisions,
tons of SNES/TG-16/Genesis
shooters, lots of robotics and
bug photos, and some porn
(for reference of course)
PL AT FO R M

Xbox LIVE Indie Games

SHOOT1UP.

WWW.GDMAG.COM 25

need to rewrite underlying code
to improve performance. I try not
to over-engineer my projects in
an effort to keep development
time down. This approach mostly
works, but here it started to hinder
per formance as the original
starter kit was never meant to
support so many moving objects
and interacting collisions. Taking
a few weeks to better optimize
underlying systems, such as
collision (for all the interactions
between bullets and enemies),
could have replaced cuts I had to
make to bullet and enemy counts.
5 /// Forgot my homework. This was
my first sprite animation game, as
our first game, WEAPON OF CHOICE,
was skeletally animated. It was very
exciting to get to start playing around
with traditional cell animation, and in
my excitement, I forgot the basics,
such as onion skinning to better line
up progression in an animation. Had
I taken a week or two to brush up on
traditional animation methods, the
final results would have been much
better. Fortunately, I made good
on the idea of studying traditional
animation when creating our next
game, EXPLOSIONADE, and the quality
obviously improved.

SHOT' EM UP
SHOOT 1UP was my first shoot
’em up, created after playing
and loving the genre for years.
At over 25k sales, we’ve had
lots of gamers, even lots of non-
shooting game players, write to
say they love the game, which
encourages me going forward. The
design was loose, and my primary
hope is that I can remain open
to more interesting ideas I may
have for new designs, rather than
analyzing them into vanilla.

N A T H A N F O U T S is president of

MBG and 8 Bit Horse. Read more about

his love of 2D games on Twitter @

MommysBestGames.

ZP2KX
Ever since broadband gave
us deathmatches without
LANs, I’ve dreamed of making
my own online multiplayer
shooter. I tried this in 2005
with ZP2K5, an ugly game
with terrible lag that basically
no one played. When XNA 2.0
nailed easily implementable

on l i ne mu lti player over
Xbox LIVE, I made ZP2K9,
which did pretty well, selling
25,000 copies. A little over
a year later, as part of my
XBLIG-for-fun development
methodology and just in time
for the Indie Winter Games
Uprising promotion I released
Z P 2 K X , w h i c h s p o r te d
a n over hau led g raph ics
engine, new maps, character
customization, new weapons,
classes, levels, and more.

WHAT WENT RIGHT
1 /// Recycled tools . ZP2K9
maps used a pretty old-school tile
system; tiles could be painted as
either empty, sloping up, sloping
down, or full, and the game would
then figure out which of about
16 tiles per palette (grass, wood,
metal, and so forth) to draw per tile
so that each would mesh with its
neighbors.

For ZP2KX, I rigged in the map
editor from the XBLA game I’ve
been working on for the past two
years, THE DISHWASHER: VAMPIRE

SMILE. The new format kept the
tile-based collision map but used
a multiple layer drag-and-drop

system and definable sprite
sheets, which allow the designer to
create far more organic, expressive
maps with stuff like sprite-based
animated lighting, swaying grass,
and flowing fog all on a bunch of
parallax layers.
2 /// Distributed development.
ZP2KX is, to date, the most
highly collaboration-oriented
game I ’ve released. About a
year ago, I brought on Dustin
Burg as marketing coordinator,
basically to organize for PAX,
handle community, work with
press, and things like that. After
a bit of THE DISHWASHER: VAMPIRE

SMILE development, I got him set
up to use the map editor so he
could create some arcade levels.
Since ZP2KX now used the same
map editor and format as THE

DISHWASHER: VS, I was able to draw
up some map sprites and then
let Dustin churn out some maps.
ZP2K9 had just 4 maps while
ZP2KX has 11, which is a far more
respectable amount of levels for a
multiplayer-only game.
3 /// Hobby mentality. Ever since
my earlier game THE DISHWASHER:
DEAD SAMURAI got the go-ahead
for XBLA, I’ve stuck with a system

WWW.GDMAG.COM 25

ZP2KX.

http://WWW.GDMAG.COM

for dividing my time and energy
over multiple outlets, all made
possible by Xbox, and it basically
goes like this: XBLA is my day
job, XBLIG is my hobby. ZP2KX is
the latest product of this system,
but it’s also yielded XBLIG games
ZSX4: GUITARPOCALYPSE, ZP2K9, and
I MAED A GAM3 W1TH Z0MB1ES
1N IT!!!1, as well as XBLA games
THE DISHWASHER: DEAD SAMURAI

and the soon-to-be-launched THE

DISHWASHER: VAMPIRE SMILE.
The aim of this system is to

keep momentum high and burnout
low. XBLA development during the
end of a cycle tends to alternate
between “hurry up and wait” and
“stare numbly at the bug tracking
database that is taunting you,” so
being able to pour some energy into
another creative outlet helps ease
frustration that otherwise would go
in the Nervous Breakdown Bank.
4 /// XBLIG promotion FTW. ZP2KX
was part of Indie Winter Games
Uprising, a somewhat experimental
and extremely good idea from
Robert Boyd. The idea behind IGWU
was that developers who had a
track record of quality and valuing
creativity over profitability (i.e., no
Avatar games) released Xbox Indie

games during the same window, so
that we could all benefit from the
promotion. Microsoft jumped on
the promo, giving us an awesome
chunk of dashboard space.
5 /// XNA Multiplayer is mostly
awesome. Before XNA, multiplayer
seemed like a totally unattainable
dream. I’d dabbled in Winsock and
DirectX 8 (oof!), but even without

the awful execution issues I ran
into, higher-level networking tasks,
like searching for active games and
just maintaining a server without
futzing with router settings (forget
about invites and friends lists!),
were a total pipe dream for an
inexperienced hobbyist developer.
XNA streamlined all of that to the
extent that, given my previous
failures, it was actually exciting.

WHAT WENT WRONG
1 /// Generosity isn’t always
the best policy. Because the
d r i v i ng p h i l o s o p h y b eh i n d
ZP2KX was more of a fun, hobby
mentality, whenever there was a
choice between generosity and
stinginess, I erred on the side of
generosity. However, generous
game design is not always (or even
typically) good game design.

Example: You kill enemies
to earn XP, which goes toward
increasing your level, which
unlocks new clothes, skills (perks),
jetpacks, and the like. XP earned
is multiplied by killstreaks. When
faced with the choice of letting
gamers earn XP by killing bots
(which, compared to human
players, aren’t exactly brimming

with strategy), I reasoned that
while killing real humans is the
most satisfying way to play (odd
how that comes out), I shouldn’t
punish gamers who want to
practice on bots a bit.

What ended up happening was
that someone was able to max out
his level within nine hours of the
game’s launch (I was only able to
get to 85 or so of 100 after about
two weeks of pretty heavy play).
By playing a certain gametype
with bots only, players are able
to rack up obscene killstreaks by
spamming nuke grenades into
the center of the map for hours on
end. While this didn’t bother me
too much at first, in time I realized
that, no matter how small an online
universe seems, every little exploit
that you leave in there goes a
huge way toward destroying the
perceived integrity of the universe
for everyone.
2 /// Time to rethink player
interaction . ZP2KX was new
ground for me in terms of giving
humans the ability to interact with
other humans, and I erroneously
went about it with the philosophy
of “everyone will be cool.” It turns
out that giving the host player the

GAME DEVELOPER | MAY 201126

G A M E D A T A

ZP2KX
P U B LI S H E R

Ska Studios
D E V E LO P E R

Ska Studios
N U M B E R O F D E V E LO P E R S

2.5
L E N GT H O F D E V E LO P M E N T

9 months
R E L E A S E D AT E

December 23, 2010
S O F T WA R E

XNA Framework, XACT,
FLStudio, Paint Shop Pro,
Photoshop, Zka Editor
PL AT FO R M

XBLIG
LI N E S O F C O D E

80k

ZP2KX.

WWW.GDMAG.COM 27

opportunity to change game type
and mutator or quit whenever he or
she wants can be pretty obnoxious
for other players. Giving the host
full control is fine for private
matches where everyone is friends,
but when your competitive edge
is at the mercy of what could be a
fickle dabbler who is also a sore
loser, your experience certainly
suffers.
3 /// XBLIG jail is no fun. I put three
titles on XBLIG before Microsoft
began implementing the “jail”
policy, where games that fail peer
review have to sit out for a week.
The policy is well meaning because
on a pre-jail peer review list,
developers had a tendency to use
peer review as a means of testing,
spamming resubmissions until it
got through. With jail, developers
get a week to iron out bugs, during
which time they could put their
game in playtest.

The three titles I got on XBLIG
pre-jail passed peer review with
no trouble. ZP2KX had to be pulled
twice, and each time it was over
bugs that were found several days
into review, so with jail time added,
the game spent nearly a month in
review. This wouldn’t have been
nearly as frustrating if I weren’t
trying to get the game up for a
meticulously planned promotion.
Fortunately, the game passed in
2010. Barely.
4 /// XBLIG competition is no fun.
ZP2KX is an incredibly deep game,
from a gigantic, dynamic weapon
roster to competent character
c us tom iz ation, ga mer s ca n
formulate any number of unique,
incredibly effective strategies
to dominate online. Yet we are
consistently outsold by AVATAR

PAINTBALL WARS, a game where
in the trial, every unused button
brings up the upsell screen.
5 /// XNA multiplayer is mostly
awesome... but not without its
problems. I used XNA 3.1 for
ZP2KX, and XNA 3.1 has a couple
of multiplayer engine flaws that
exist at a level where the best I can
do is catch an exception thrown at
NetworkGame.Update() when the
game enters a “things have gone
all wrong” state. What this means
for the gamer is that every time

someone leaves a game, there’s
a 0.3% chance that the game will
end. Sounds rare, but it seems
to happen just when things are
getting good. These issues have
been fixed in XNA 4.0, but I’ve been
a bit sidetracked...

HOW'D WE DO?
Overal l , ZP2KX was a great
experience. Commercial ly, it
did fairly well (at least on XBLIG
terms), selling over 19,000 copies
in the two and a half months it’s
been out. As a project, it was a
ton of fun to work on. After hours
of mind-numbing bug fixes on THE

DISHWASHER: VAMPIRE SMILE, it was
cathartic to just shut my brain
off and draw ZP2KX costumes.
And Dustin, who hai ls from
journalism land, can now say he
has thousands of people playing
ZP2KX levels that he designed
and built. At the end of the day, we
made a lot of people happy. I think
that’s a pretty good deal.

J A M E S S I L V A has been making

games for years, but is best known for his

Dishwasher series on XBLA, and the XBLIG

I MAED A GAM3 W1TH Z0MB1ES 1NIT!!!1.

SOULCASTER II
SOULCASTER II is the follow-up
to my March 2010 debut title
as an indie developer. Before
that, my industry experience

was mostly as a contract
musician/sound designer
for the Nintendo handheld
systems, a job I’ve had since
about 2002. I began work
on the first SOULCASTER in
October 2009 when a project
I was slated to work on was
canceled, and I suddenly had
some extra time. I had learned
C# programming to develop
my own audio processing
tools, so I figured it was time
to make a game of my own,
to be released on Xbox Live
Indie Games. Both SOULCASTER
games were built from scratch
in XNA with no ex ternal
libraries, and I did all design,
code, art, and music.

SOULCASTER was successful
beyond what I had imagined,
selling a few thousand copies
in the first couple months,
and holding a nice position in
the “top 20 highest rated” list.
So even though my contract
work started picking up, I set
out to make a sequel. This
postmortem reflects how
making a sequel may not be
as easy as making the first
game, even if you use most of
the same technology.

WHAT WENT RIGHT
1 /// Scope. My first design
move was to list the potential
new features, then slash that list

down to the few most important
things. While I had grand ideas
for features like a town, character
inventory, and a persistent world,
I knew these would take a lot of
time to implement and test. I stuck
with the core concepts of dungeon
exploration and summoning, and
just aimed to have a more high-
quality presentation of the same
system. The final task list included
a n i m p r o v e d e n v i r o n m e n t
graphics engine, better enemy AI,
and a few new enemy types and
scripting features. I didn’t risk
any time tampering with the core
mechanics that made the original
game fun.
2 /// Tools. Twenty percent of
development time for the first
SOULCASTER was devoted to making
the level editor. In working on the
sequel, I spent another month
polishing it and making it as easy
and fun as possible to design levels
with. This time investment paid off
big time: I was able to build about
60 levels, and then keep the best
30. I remade the final stage itself
five times from scratch. With an
editor that was anything less than
total slickness, this would have
been arduous.
3 /// Playtesting. I was afraid the
sequel was going to be a bit too
easy when I first had friends test
it. Boy, was I mistaken. It’s easy to
forget how good you get at your
own game when you are playing it

WWW.GDMAG.COM 27

SOULCASTER 2.

http://WWW.GDMAG.COM

constantly and know all its secrets.
Watching friends play levels for the
first time was eye-opening.

For example, the game opens
with the hero being ambushed in
a swamp by the undead. In the
original version of the game, the
skeletons waited menacingly on
the other side of a river, unable
to reach the player, but out of
range themselves. Players said
things like “How do I shoot them?”
while they spent their precious
demo time wandering around. So,
I put the archer spirit in the first
stage, and it made the goal a lot
more transparent. Fixes like this,
especially in the first few stages,
helped get the player right into the
action.
4 /// Music. My background is
in music composition, and the
soundtrack to any game is always
the most important thing for me.
I think I really delivered exactly
what the game needed, and many
critics have specifically mentioned
the soundtrack as a highlight of
SOULCASTER II. I also had the songs
professionally mastered, which
evened out the levels from song to
song and added a lot of clarity. You
don’t want the player reaching for
the volume control mid-game.
5 /// indie games winter uprising.
When it happened, IGWU was the
largest-scale grassroots marketing
coalition in the history of XBLIG. It
paid off in the vast amount of press

coverage we received. The extra
traffic to my web site almost made
up for my own lack of marketing
specific to the game, which I’ll get
into in the “wrong” section.

WHAT WENT WRONG
1 /// Scheduling. I started working
on SOULCASTER II about one month
after the first game was released. I
didn’t create a solid release schedule
because, hey, how long could this
really take? It’s just a sequel. I’ll just
spruce up the graphics engine, beef
up the editor, and then crank out
content. Let’s see, one level a day for
30 days, plus some time for graphics
and music... This should only take
three months, tops. Whoops! If I had
broken the project into stages and
set time limits, I would have saved
myself some time and focused on
what was important. But not as
much as I would have if I had done
more testing on the platform—which
leads us to...
2 /// Testing on target. Programmers
reading this, brace yourself for a
tale of terror. I spent one month
refactoring code (ironically, for
performance), testing on only the
Windows build, just assuming things
would work fine on the Xbox. When I
finally fired it up on the console, the
frame rate was through the floor.
To make a long story short, I spent
a month trying to track down the
problem, and ended up rolling back
in source control all the way to the

original SOULCASTER I code base.
(A couple weeks later I found the
problem, and it was one line in the
sound player initialization which
caused some sort of near-infinite
loop.) So please, test on target
frequently.
3 /// Work habits. I do my best work
when I put in three to five hours a
day consistently, and this practice
served me well in making the first
game. I lost touch with this in making
the sequel, and found myself stuck
in the cycle of crunch, recuperate,
repeat. I wasn’t getting as much
done, and it wasn’t until later in the
project that I found my footing again
with this “energy conservation”
model of game development.
4 /// Promotion. Being part of the
Winter Uprising promotion took care
of a lot of my marketing needs with
free press coverage, but I probably
relied on it too much. I could have
done more to rally the SOULCASTER fan
base in anticipation of the game, put
together a proper trailer, and so forth.
1 /// Self-doubt. Maybe this can get
me nominated for “Most Emo Bullet
Point.” As a lone wolf indie developer,
it’s easy for me to get derailed by
anxiety over how my game is going to
be received. This wasn’t a paralyzing
force, thankfully, but in a subtle,
pervasive way, I found myself judging
my work against what I assumed
others would say about it. While it
was helpful to make something fun
for other people, this should have

been saved for the playtesting phase.
Only when I reconnected with the fun
of making a game that I wanted to
play, first and foremost, did I get back
into full swing.

GOT SOME RARE THINGS
ON SALE...

I am very proud of how SOULCASTER

II turned out. Fans of the first game
liked it, critics gave it high marks,
and it sold reasonably well. Although
my original intention was to finish
the second game in less time than
it took to complete the first, this is
not how things turned out. My story
proves that a few pernicious things,
left unattended, can cost months.

My next project is an entirely
new franchise which I hope to
release in the first half of 2011. After
that, I intend to break ground on
SOULCASTER III.

IAN STOCKER is the creator of SOULCASTER

I & II. He has worked as a musician and

sound designer for Nintendo handheld

systems such as Nintendo DS, Game Boy

Advance, and Game Boy Color, and racked

up over 50 game credits in the past 8

years. The creation of an authentic 16-bit

style console game is the realization of his

lifelong dream.

GAME DEVELOPER | MAY 201128

G A M E D A T A

SOULCASTER 2
P U B LI S H E R

MagicalTimeBean
D E V E LO P E R

MagicalTimeBean
N U M B E R O F D E V E LO P E R S

1 full time, 2 contractors
L E N GT H O F D E V E LO P M E N T

7 months
R E L E A S E D AT E

December 10, 2010
S O F T WA R E

Visual Studio 2010,
Subversion, GraphicsGale,
Paint.NET, Impulse Tracker,
Sound Forge, Ableton Live
PL AT FO R M

Xbox Live Indie Games
B U D GE T

$600 + my time
LI N E S O F C O D E

20,561
P I Z Z A B E TA PA R T I E S

2

SOULCASTER 2.

http://www.siggraph.org/s5011

E3 Expo is a trade event and only qualified industry professionals may attend.
No one under 17 will be admitted, including infants. Visit www.E3Expo.com for registration guidelines.

© 2011 ENTERTAINMENT SOFTWARE ASSOCIATION

W W W .E3EXPO.COM

JUNE 7-9, 2011

EXPERIENCE ALL THAT E3 EXPO

HAS TO OFFER BY REGISTERING

TODAY AT WWW.E3EXPO.COM.

E3 Expo is the preeminent global
trade event for computer and video
games. It’s all about the innovation,
creativity, business, and imagination
of the most compelling sector of
the entertainment industry.

http://WWW.E3EXPO.COM
http://WWW.E3EXPO.COM
http://WWW.E3EXPO.COM

www.gdmag.com 31

Toolbox

R e v i e w b y D a R i u s K a z e m i

Dominic SzablewSki

impact Game engine
The Impact Game Engine
is one of the first professional
engines to run on the HTML5
Canvas element for making 2D
games in JavaScript. Games
created in Impact, like most
HTML5 games, will run on “any
modern browser,” which is code
for Firefox, Chrome, Safari,
Opera, and Internet Explorer 9.
Especially notable is that Impact
also supports iOS devices out of
the box.

The engine is targeted toward
everyone from serious hobbyists to
professionals.

The welTmeiSTer level eDiTor
)))) Impact’s most immediately
impressive feature is its level editor,
playfully dubbed Weltmeister.
Weltmeister itself is implemented
in HTML5, so it runs in your web
browser. As a tilemap editor, it’s
fairly simple but gets the job done.
It supports an arbitrary number of
tile layers. Each layer is associated
with one tileset, though at the
moment, tilesets are strictly limited
to square tiles. Although there is no
built-in support for custom brushes,
drawing maps feels natural, and

the overall UI is every bit as good as
you’d expect from a desktop map
editor. Levels are stored in JSON
format and are very easy to parse
programmatically if you need to do
on-the-fly level editing or procedural
level generation.

 Weltmeister is tightly coupled
with Impact, so while it would not
function well as a standalone editor,
it does a great job of fitting into the
Impact workflow—deploying levels
in your game is a matter of edit, save,
and run.

mobile Device SupporT
)))) One of the major benefits of
developing games in HTML5 is that
in addition to running on modern
browsers, your games will also run
on many mobile devices. Impact
supports iOS devices including the
iPhone 3GS, iPhone 4, iPod Touch (3rd
Generation), and the iPad. The engine
detects the device it is running on
and provides environment variables
that make it easy to do any device-
specific configurations you want.

The Impact website provides
an HTML template that will render
well on all iOS devices, as well as a
PHP file that will redirect to different

templates based on each browser/
device, if you prefer to use that
method. The website also provides a
fairly comprehensive guide, outlining
the kinds of optimizations you will
want to do to get an Impact game
running smoothly on as many kinds
of iOS devices as possible.

Starting with a test platforming
game I’d made in Impact, I was able
to use the provided templates and
guides to port the game to the iPad in
only a few hours’ time.

Impact does not provide official
support for Android or other mobile
HTML5-ready devices, although
many of its features do work on non-
iOS devices. An important note is that
audio support on iOS is limited to one
channel of sound, although that is a
limitation of the iOS platform and not
Impact itself.

moDule SySTem
)))) JavaScript does not understand
the concept of includes, so Impact
provides a module system that
allows you to organize your code.
Here’s an example of how a main
game file includes the necessary
sub-modules:

ig.module(
 'game.main'
)
.requires(
 'impact.game',
 'impact.font',
 'game.entities.
dynamicActor',
 'game.entities.
player',
 'game.entities.
enemy',
 'game.levels.main'
)
.defines(function(){

// main game code

});

So even though the game consists
of multiple modules in multiple files,
the HTML file for your game only
needs to include main.js. Seasoned
programmers unfamiliar with
JavaScript might take this kind of
thing for granted, but if you’ve ever
programmed a game in JavaScript
before, you’ll know that code
organization can be a big pain in
the neck. Impact’s module system
takes the focus off of housekeeping
and allows you to focus on actual
programming tasks.

baking your coDe for
performance anD
proTecTion
)))) Impact comes with a script that
“bakes” your game into one big
JS file and minifies (compresses)
the code. This reduces loading
time by decreasing the number
of HTTP requests and packing
things into smaller file sizes. In
addition to reducing load time,
the baking process serves the

price

› $99

SySTem reQuiremenTS

› internet connection

proS

1 very easy to make games that run on
both desktop and iOs

2 Great documentation and support
3 weltmeister level editor can greatly

speed up workflow

conS

1 No official android support
2 No trial license available
3 No online wiki or knowledge base;

useful information is sometimes
buried in a hard-to-search forum
system

Dominic SzablewSki
anwenDungSenTwicklung
impacT game engine

Georgenstr. 14 a
64572 büttelborn
Germany
http://impactjs.com/

impact integrates well with external libraries, including
the many JavaScript flavors of box2D.

http://www.gdmag.com
http://impactjs.com/

TOOLBOX

game deveLOper | may 201132

additional purpose of obfuscating your code. This
is especially important as many developers are
rightly concerned about anyone being able to
press Ctrl+U in their browser, which allows users
to view the source code of a game as they would
the HTML of a website.

Baking also happens to be required, in order
to comply with Impact’s license ; without it, you
will end up distributing the source code to Impact
along with your game.

Support and documentation
)))) The documentation for Impact is both
extensive and easy to use. On the Impact
website, the developer provides a reference for
each of the main classes and their functions,
and most functions are accompanied by helpful
example code. There are also articles covering
major topics such as collision, animation,
Box2D integration, and mobile porting, as well
as a pair of helpful video tutorials that can get
you started in a matter of minutes.

Support for the engine is also good. While
Impact is created and maintained by the one-
person “team” of Dominik Szablewski, he is
quick to respond on the forums and fix bugs,

and often incorporates customer feedback into
new builds of the engine.

There is also a fledgling community of
Impact users providing plugins, most notably
multiplayer support via NodeJS. At the time of
this writing, the concept of Impact plugins is
only two weeks old, but early contributions look
encouraging in both quantity and quality.

pricing and licenSe
)))) An Impact license costs $99, and is granted
on a per-developer basis, although bulk rates
do appear to be available if you wish to obtain
a license for a studio of more than a handful of
people. The license grants you unlimited use
of the engine, and a discounted upgrade to
future major engine releases. With a purchase,
you receive access to the latest stable build as
well as the git repository of the development
branch. There are no trial licenses available.

the bottom line
)))) While there are many free JavaScript game
frameworks available online, the Impact Game
Engine is clearly worth its license fee. The
combination of orderly code, iOS support, and

great documentation puts Impact head and
shoulders above the competition.

Beyond all that is something a little more
intangible: I’ve tried four other JavaScript game
engines, and this is the first one I’ve used that
makes sense and feels like it was developed by
someone who understands game development,
as opposed to a web developer who is dabbling
in games. A programmer should be able to
quickly and easily transition to Impact from
something like pyGame or XNA. In particular,
indie game developers who currently use Flixel
to make games in Flash/AS3 will find Impact
extremely familiar.

I’m willing to go out on a limb and say that
Impact is the first truly professional-grade
JavaScript and HTML5 game engine to hit
the market. It has set the bar high for future
competitors, who will undoubtedly be releasing
their own engines.

d a r i u S K a z e m i is lead analyst at Blue Fang Games,

located just outside of Boston. He serves on the board of

directors of the International Game Developers Association

and blogs at Tiny Subversions.

the impact game engine's flagship demo, biolab disaster, is as impressive as any high-end Flash-based platformer.

www.gdmag.com 33

Morpheme 3, FMOD, Vision Engine, Wwise Add NGP Support
www.naturalmotion.com

NaturalMotion says its Morpheme animation middleware will include support
for Sony's Next Generation Portable, as the company suggests it's a natural
shift from supporting PlayStation 3 to supporting the high-fidelity handheld.

"We are excited by the possibilities that SCE is opening up with NGP,"
said NaturalMotion CEO Torsten Reil.

"With Morpheme already powering numerous PlayStation 3 titles, it is
amazing to now have the performance to run our technology at the same
fidelity on a handheld device."

NaturalMotion released version 3.0 of Morpheme in December of 2010
with support for Kinect and Move games. The middleware is designed
to allow for real-time graphical authoring and animation previews, asset
management, and other features for animators.

It's currently licensed by Ubisoft, THQ, BioWare, and numerous others,
the company said. Because NaturalMotion had access to NGP prototype
hardware, it says that the NGP version of its middleware is available
immediately.

In addition to NaturalMotion, Eningen, Germany-based Trinigy said its
Vision Game Engine will support Sony's upcoming handheld. New features
for the NGP version of the Vision engine include an "optimized" character
skinning system, and full support for hardware features including touch
controls, improved multithreading, and an optimized renderer.

Also confirming NGP support is Australian audio middleware firm
Firelight Technologies, which said its FMOD audio suite is authorized for NGP
development. In late November, Vision and Firelight announced that FMOD
will be bundled with Trinigy's Vision Engine 8.

Separately, Montreal's Audiokinetic said the NGP is the first portable
console supported by the company's Wwise audio solution, which is already
available for NGP development.

–leigh alexander, Kris graft

Latest EKI One A.I. Middleware Integrates With Unity3D
http://unity3d.com

The Puchheim, Germany-based Artificial Technology announced that the
latest version of its EKI One A.I. middleware will be integrated into Unity
Technologies' widely used Unity3D game engine.

EKI One 2.6 connects with Unity in the runtime environment as a natural
part of game design workflow, Artificial Technology said. Developers can
make changes that are automatically applied when running the game and
while designing in Unity, according to the middleware provider.

The company said it has also improved user-friendliness with the
EKI One Configurator graphical interface, and now offers wide-ranging
extensions for online game behavior solution EKI One Server.

–Kris graft

Scoreloop Adds Windows Phone 7 Support
www.scoreloop.com

Scoreloop, provider of social networking and in-game monetization tools
for mobile game developers, has launched a beta version of its SDK for
Windows Phone 7, adding Microsoft's new platform to a list of Scoreloop-
supported operating systems including Android, Bada, Airplay, and iOS.

"Windows Phone 7 is an important step in our goal to encourage
and support connected gaming across the entire mobile landscape,"
explained Scoreloop CEO Mark Gumpinger. He said that the company
aims to support as many mobile platforms as possible to help
developers expand their reach and revenue opportunity.

Scoreloop, which lets developers add in-game purchases and implement
virtual currencies as well as social features, will now be usable with Windows
7 games so that players can "compete and compare" cross-platform in a
similar fashion, the company said.

–leigh alexander

OpenFeint Launching Cross-Platform Social Gaming API
www.openfeint.com

Gamers on Apple's iDevices who want to compare scores can already do so
through the company's GameCenter. And cross-platform data is just starting
to take off. But what happens when their friends are playing the same game
on an Android phone, or on the PC, or on many more diverse platforms?

OpenFeint is hoping to build a bridge to address that issue. The company
has announced the private beta launch for OpenFeint Connect, an API
solution that will allow developers to use OpenFeint's features on any app
store, for any device, and incorporate its game data much more easily.

While the system, based on RESTful APIs, will not support cross-platform
play, users will be able to compare scores on a centralized leaderboard and
find new friends regardless of the system they use. Developers, meanwhile,
will be able to send a single widespread message to players of their games to
alert them to updates.

"We believe games should connect people, regardless of what device or
mobile OS they own," said Jason Citron, founder and CEO of OpenFeint. "With
the release of OpenFeint Connect, we give game developers the flexibility
they need to take their games and game data to players everywhere."

Since the API is more universal, it will allow OpenFeint to support a
number of devices beyond iOS and Android, including Windows Phone 7, PCs,
and the Mac App Store. Through OpenFeint Connect, developers can access
the platform's biggest features without having to use an OpenFeint-built
client, the company said.

– chris morris

Zong Expands Mobile Account Payment System To PC,
Consoles, Android Tablets
www.zong.com

In-app mobile payment provider Zong has announced a massive expansion
of its system, allowing payments linked to mobile phone accounts to be
included in "nearly any [application] environment," including game consoles
and PCs.

Previously available only on Android and through HTML pages,
Zong's new system boasts compatibility with games made in Unity and
Flash, as well as titles for interactive TVs, Android tablets, and consoles.

Zong's system streamlines payments on these platforms, the company
says, by linking them to a text-message-confirmed phone number provided
by the user. Rather than requiring the user to dig out a credit card or sign up
for a separate payment account, Zong-enabled payments are billed directly
to the player's mobile phone bill with minimum hassle.

It's unclear whether games on console services like Xbox Live
Arcade and WiiWare will be allowed to accept such in-game payments,
rather than payments through those platforms' exclusive currencies.

Zong faces competition from digital account services like PayPal, as
well as other mobile-account-based payment providers including Boku.
Last December, Angry Birds maker Rovio announced plans for its own
cross-platform payment solution run through mobile phone bills, dubbed
Bad Piggy Bank.

–Kyle orland

p r o d u c t n e w s

http://www.naturalmotion.com
http://unity3d.com
http://www.scoreloop.com
http://www.openfeint.com
http://www.zong.com
http://www.gdmag.com

HEROES WANTED

Technical | Creative | Digital | Analysis | Project Management

Our website: www.us.playstation.com/jobs
Visit us at our E3 booth in June 2011

HEROES WANTED

http://www.us.playstation.com/jobs

www.gdmag.com 35

THE INNER PRodUcT // VINcENT ScHEIb

Step 1. See a link for a game.
Step 2. Click it... click it with desire.
Step 3. ...

Well, let’s think about Step 3. What would you like
to have happen? My answer: I’d like to be playing
the game. No marketing page, no overview page,
no screenshots or videos, no download page, no
installation, no plug-ins, nothing but the game. I
came to play the game. Put anything between me
and the game and, well, I might not make it there.

Step 3, you’re playing the game. The only
way this happens is with browser tech. Browsers
are ubiquitous—everyone uses them—and over
time having your game run right from a link will
become increasingly essential as other services
and games all work that way.

Now, I’m an old school dev. My first code
shipped on PlayStation. We worried about
sorting triangles since there was no Z buffer,
and splitting them as there was no perspective-
correct texturing. Until a year ago, I shrugged off
web tech with arrogant disdain. I’ve caught wind
of this change, and now it’s only too clear how
things will pan out. It won’t be sudden, mind you,
but it's coming.

This article is for me a year ago. It’s a heads-

up on a whole range of technologies relevant for
games, all built right into browsers. Most of them
are still being standardized and implemented,
and a few are still in the R&D phase. It’s an
interesting time, too, as the developers who push
them now will influence the next generation of
browser game engines.

Let’s get some things out of the way before
diving into the tech.

I won’t be discussing plug-ins, or web tech
that’s been widely known for a while. Plug-ins are
out for a few reasons: they’re a known quantity,
they can be a major security issue, and they lose
potential game players by requiring installation.
Sure, Flash has a great install base... except on
iPhone and iPad.

Mobile and handheld devices will drive the
markets. Worldwide sales of mobile devices are
skyrocketing, outpacing desktops. They’re where
a lot of the energy and innovation are going. And,
for significant parts of the world’s population, the
only computer a person will have will be mobile.

And finally, what is HTML5? What’s with
the “Other” in the title of this article? Well, in
the end, it’s not terribly important. I’m covering
technology that is relevant for game developers.
Much of it happens to be covered by industry

specifications, some of
which are part of the
HTML5 specification.
Each specification
is at varying levels
of finalization,
implementation, and

adoption. It’s really best to just treat each tech
independently. So, do let’s dive in.

The TeCh
» I’ll be giving an overview of each, offering
code samples and images.

Web GL
Excitement around WebGL has been growing
over the last year. Chrome shipped with it in
February, and the 1.0 Specification was ratified
at the Game Developers Conference in March.
Firefox 4, Safari, and Opera have also announced
implementations.

WebGL is essentially Open GL ES 2.0 as a
JavaScript API, and is notable in the long history
of attempted 3D in the browser because it is
not a plug-in; it is natively supported. The API
consists primarily of GLSL vertex and fragment
shaders, textures, frame buffers, and context
states such as blending.

There are many libraries available, ranging
from simple matrix and utility code up to 3D
engines supporting data loading, animation,
shadows, portals, and more. Here’s a starter list
of libraries: GLGE, C3DL, Copperlicht, SpiderGL,
SceneJS, three.js, O3D, Processing.js and XB
PointStream, and WebGLU.

WebGL Inspector deserves a special call out.
It’s your PIX/nvPerfHUD/gDEBugger equivalent, all
implemented in JavaScript, and is easy to snap in
place with only a few lines of code. It enables you to
replay a frame, get the history of a pixel, view data
buffers, textures, GL state, shaders, and constants.

WebGL Sample Google Body explores 3D layers of the body. Canvas 2D Sample of retro game Onslaught.

The fuTure of BroWSerS
a PRIMeR foR htMl5 and otheR ModeRn bRowseR gaMe technologIes

http://www.gdmag.com

game developer | may 201136

THe INNer prodUCT // vINCeNT SCHeIb

WebGL code looks similar to normal Open GL ES code.

matrix.makeIdentity();
matrix.rotate(currentAngle, 0,1,0);
gl.uniformMatrix4fv(uniformLocation, false, matrix.array);
gl.drawElements(gl.TRIANGLES, numIndices, gl.UNSIGNED_BYTE, 0);

Canvas 2D
Canvas 2D saw a spike in popularity in 2010, due to its simplicity and broad

availability. Many Flash-like games have been created with this immediate-
mode API, which handles images, vector shapes, and text.

Sprite-based games are common. Performance ranges from dozens
of sprites on low-end smart phones, to hundreds on software-rendering
desktops, to thousands on GPU-accelerated desktop browsers.

GPU acceleration is new in browsers, though. Expect particulars to change
over time. Also, Canvas 2D is an immediate-mode API, meaning all data for
each draw call must be specified every time. There will be performance limits
that retained APIs would alleviate due to the difficulty of caching primitives.

The Canvas 2D API supports several operations, such as rectangles, circle
arcs, lines, Bézier curves, text, and images; fills and strokes; effects such as
gradients, shadows, line styles, and pattern fills; and transformation stacks. The
features are an interesting mix, owing their heritage to Apple’s Mac OS APIs. While

Canvas 2D can also be used for 3D rendering, as in Tankworld.

Canvas 2D CoDe samples
an example of the vector apIs (adapted from an Internet explorer 9 sample):

// Draw eyes
ctx.fillRect(160, 130, 20, 80);
ctx.fillRect(220, 130, 20, 80);

// Draw mouth
ctx.beginPath();
ctx.moveTo(100, 230); // Start smile
ctx.bezierCurveTo(100, 230, 200, 380, 300, 230);

ctx.moveTo(219, 298); // Start tongue
ctx.bezierCurveTo(278, 351, 315, 315, 277, 258);

ctx.lineWidth = 20;
ctx.stroke();

a simple example of loading an image of a cat and rendering it to a canvas:

<canvas id="e" width="200" height="100"></canvas>
<script>
 var context2d = document.getElementById("e").getContext("2d");

 var cat = new Image();
 cat.src = "images/cat.png";
 cat.onload = function() {
 context2d.drawImage(cat, 0, 0);
 };
</script>

WebGl Inspector offers debugging and analysis of your WebGl application.

www.gdmag.com 37

it’s mostly immediate mode with state stored on the context, gradients and
patterns are objects. drawFocusRing() is for visual accessibility. isPointInPath()
requires re-submitting a path, a structure that can only be defined in the context
state. Compositing is specified globally with Porter-Duff operations (film full
frame compositing), but most implementations only affect pixels modified
by a draw operation similar to GPU APIs using src-dst ops. That said, most of
this can be ignored and you can use the subset most useful to you.

Scalable Vector GraphicS
» SVG is a retained mode, declarative technology that has a longer history
than Canvas 2D. While currently less popular, it has many good features.

Being declarative, there is an asset format in XML that tools such as
Illustrator and Inkscape can export to. HTML5 standardizes the ability to
place SVG inline with HTML, which is nice, though larger files are typically
loaded as separate resources.

Being retained has pros and cons. Implementations can be more
efficient by caching much of the data, and rendering the set of data can
be faster in native code. There is also a bonus of mouse picking being
implemented for you. However, the API can be more work when you’re

heavily manipulating objects frequently, and can be computationally
expensive too. Modifying SVG DOM elements also causes the browser to
refresh page layout unless you use suspendRedraw/unsuspendRedraw.

SVG is a larger and complicated specification compared to Canvas 2D,
and implementations have different levels of support for e.g. filter effects
and other features (Gaussian blurs, color matrices, displacement maps, and
that sort of thing).

Declarative code is fairly straightforward, as shown below.

<!DOCTYPE html><html><body>
 <svg id=“mySVG”>
 <circle id="circle0"
 cx="100" cy="75" r="50"
 fill="grey"
 stroke="black"
 stroke-width="5“
 onmousedown="alert('clicked');"\>
 <text x="60" y="155">Hello World</text>
 </svg>

WebGl Sample Nine point Five, showing rich 3D visualization nested in classic 2D htMl.

http://www.gdmag.com

game developer | may 201138

THe INNer prodUCT // vINCeNT SCHeIb

Procedural code is similar to manipulating HTML DOM:

<script>
 var circle = document.createElementNS(
"http://www.w3.org/2000/svg", "circle");
 circle.setAttribute('cx', 90);
 circle.setAttribute('cy', 90);
 circle.setAttribute('r', 30);
 circle.setAttribute('onmousedown', "alert('no, me!');");
 document.getElementById("svg0").appendChild(circle);
 </script>

window.RequestAnimAtionFRAme
» We’ve covered several drawing technologies, but let’s make sure you’re
playing friendly. Users can open a lot of windows and tabs with plenty of
content. If everyone is drawing as much and as fast as they can, things
won’t pan out well. The old method of drawing in a webpage is to set a timer
and blindly draw away.

Trying to draw at 60 frames per second looked like this:

setInterval(drawFunction, 1000/60) ;

What if the GPU is bogged down from other workloads? What if you’re in a
background tab? Who cares!?

The user does, and a better way is being released by browsers as this
article is written. Here’s how to let the browser call you as fast as it can
render everything on the page.

function drawFunction() {
 //... Do Drawing Work, then ask to be called again:
 window.requestAnimationFrame(drawFunction);
}
// kick off first frame:
window.requestAnimationFrame(drawFunction);

If you’re in a background tab, the browser can intelligently know not to call
you. If you’d prefer a lower frame rate (because users prefer consistent FPS
over unsteady but occasionally higher FPS) you can early out of your draw
call by checking elapsed time.

Worried about some browsers not supporting this functionality yet?
Make your app future compatible with this code from Paul Irish.

window.requestAnimFrame = (function(){
 return window.requestAnimationFrame ||

window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
function(callbackFunc, element){

 window.setTimeout(callbackFunc, 1000 / 60);
 };})();

CAsCAding style sheets 3d tRAnsFoRms
» There’s another method to get 3D in your web page: CSS3 3D Transforms.
I bring this up because it might be useful for a game’s heads-up display
(HUD) or other user interface (UI).

With HTML, it’s easy to mix many components together and layer them
on top of each other. Why build out a 2D HUD or UI and implement it in WebGL
when you can just use HTML? Traditional games not in a browser have
announced using HTML engines instead of implementing their own UI. If
your game is in the browser, it’s an obvious choice.

CSS3 offers 3D transformations on any web content. This can be
declarative via CSS files, or controlled procedurally from your JavaScript.
Items can be animated as well. Here’s a simple example of applying a
perspective tilt on a web page.

<!DOCTYPE html><html><body>
<div style="-webkit-perspective: 400;">
<iframe
 src="http://www.gdconf.com/" width = 1024 height = 768
 style="-webkit-transform: rotate3d(1,0,0, 15deg)">
</iframe>
</div>
</body></html>

That’s a simple example, but with each element able to receive an arbitrary
transform, more complicated effects are possible.

The transformed content preserves its HTML behavior. Mouse clicks, text
selections, buttons, and input fields all still work just as in 2D.

Audio
» Audio in HTML5 can be inserted with an HTML tag, or controlled with
JavaScript. Here’s a simple example of loading a sound effect, detecting
when it's fully loaded, and playing it later.

var audio = new Audio();
audio.addEventListener("canplaythrough", function () { audio.loaded =
true; });
audio.src = “treasure.ogg”;
// (later...) Hey, I found treasure!:
if (audio.loaded) audio.play();

There are still some rough edges across all the implementations, however.
Some browsers still have some latency issues, and some bugs remain.
Additionally, on iOS devices version 4 and up only one sample can be played
at a time.

Also, no one codec is supported across all browsers. You must pick
two formats to serve out of MP3, Vorbis, and WAV. Multiple sources can be
specified, or you can detect compatibility with code like this:

(new Audio()).canPlayType(“audio/ogg”));

Libraries such as SoundManager 2 help by detecting compatibility and
implementing fallbacks.

The future is definitely interesting, though. Mozilla has an experimental
Audio Data API which provides audio sample buffer read & write access. They
have demonstrations of DSP effects and visualizations that process the
audio with Discreet and Fast Fourier transforms (DFT and FFT, respectively)
(see image on page 39).

There is also the proposed Web Audio API, a more holistic API focused on
high-performance implementation of features by the browsers, controllable
via JavaScript. It provides for modular node graphs, allowing many
applications to be described. Node capabilities include gain, delay, panning,
convolution, FFT, 3D spatialization, and JavaScript processing.

Video
» Video is now available as a first-class element in HTML—just add <video>.
But it’s also available for your Canvas 2D and WebGL games. The process
is quite straightforward—what follows is an example of using video as a
texture in WebGL.

www.gdmag.com 39

 videoElement.play();
 videoElement.addEventListener("timeupdate", function () {
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, gl.RGB, gl.UNSIGNED_BYTE,
videoElement);
 gl.generateMipmap(gl.TEXTURE_2D);
 }

Unfortunately, there is no single codec supported by all browsers. There’s an
evolving level of support in browsers for H.264, WebM, and Theora. Additional
installations offer support via plug-in or OS component for missing H.264
and WebM support on some browsers (Chrome, Firefox, IE9). But these
suffer from plug-in install friction. How many users will be lost if you expect
them to install more software? The solution for the foreseeable future is to
host video in multiple formats, most likely H.264 and WebM.

WebSocketS
» Networked communication isn’t new for web browsers, but it has always
been a pull model. Techniques exist to simulate a server push model, but they
have not had low latency or high-quality connections. They’ve been sufficient
for instant-messaging-type communication, but not rich multiplayer games.

WebSockets enable low latency, full duplex, persistent connections. They
upgrade from an HTTP handshake. Today, implementations support UTF8
data (everything serialized to a string), but binary is coming. And it’s very
simple, as below.

var socket = new WebSocket(“ws://server.com”);
socket.onopen = function(event) { socket.send(“Hello Server”); }
socket.onmessage = function(event) { alert(“Server says: “ + event.
data);

 At the time of this writing, Firefox and Opera are putting their support
behind development flags. The specification is still being stabilized, which
will potentially require servers to update for protocol adjustments.

There are also interesting topics still at the discussion level and not
yet part of a specification, such as peer to peer connections and unreliable
transport (vs. TCP).

WebSockets will be important, though, for bringing about much richer
and more intimate multiplayer game experiences, as opposed to the fairly
asynchronous or laggy experience of previous multiplayer web games.

I have two library recommendations as well: Socket.IO is a higher-level
library, which includes transport fallbacks onto older techniques (Ajax,
Flash, and the like) and more utility. Then there’s web-socket-js, a shim
implementation using Flash.

Node.jS
» On the topic of networking, I should mention the server technology Node.
js. It runs JavaScript via the V8 engine (the one used by Chrome), which
means that you can use the same language in your client and server code.

There are many modules available to add features or bridge to other
technologies, such as databases, authentication and crypto, server-side
graphics, routing, and so forth. WebSockets can be supported by several Node.
JS modules, including Socket.IO, which I mentioned for client-side as well.

Visual debugging is also available, using the Eclipse V8 debugging tool,
or the node-inspector tool, for example. The latter uses the same WebKit Web
Inspector user interface you’re likely to use client-side.

GeoLocatioN
» Player location has interesting applications for games. It’s easy to think
of this when developing a mobile game, but it’s relevant for desktop games
too. The browser API to query location is simple:

Mozilla demonstrates dSP effects and FFt visualizations in javaScript with its audio data aPi.

http://www.gdmag.com

navigator.geolocation.getCurrentPosition(
 function (location) {
 doSomething(location.coords.latitude,
 location.coords.longitude); });

To protect users’ privacy, browsers will only provide a location after
prompting the user for permission.

DeviceOrientatiOn & DeviceMOtiOnevent
» Though not as widely supported as location, orientation and motion
events are increasingly available on phones, tablets, and some laptops.
The orientation event enables you to orient your UI based on how a device
is being held (landscape vs portrait). Using motion events, you can react to
the linear and rotational acceleration of the device, meaning you can detect
whether the user is tilting or shaking the device.

Web WOrkers
» Workers offer multithreading for your JavaScript. Without them, all page
structure updates and JavaScript executions are performed serially. They’re
simple to use.

// File main.js (main thread):
var worker = new Worker('doWork.js');
worker.addEventListener('message',
 function(e) { console.log('Worker said: ', e.data); });

worker.postMessage('Hello World'); // Send data to our worker.

// File doWork.js (the worker):
self.addEventListener('message', function(e) {
 self.postMessage(e.data + “? ” + e.data + “!”); });

// Output “Worker said: Hello World? Hello World!”

Communication between workers is handled with messages. There are no
shared objects, so all data passes through messages. This offers a simple
programming model, but there is a fairly high cost to move data between
workers. For high compute-to-data transfer ratios, workers can be a big win.
They also offload the main thread, which is a bottleneck for page rendering.

A shared worker is a special worker that will not be created more than
once, even if multiple instances of a web page are opened. With this, you can
coordinate between tabs and detect whether a user has accidentally opened
tabs more than once.

a series Of client-siDe stOrage OptiOns
» There are several methods to save state and resources on the client. In
the next few sections, I’ll go into some detail on the most relevant. Since
these can be confusing, here’s a summary:

• Web storage Widely available, easy to use key value pairs, but with
limits.

• WebsQl A database API which has stalled due to the intractability of
capturing SQL in a specification. It’s supported in Chrome, Opera, Safari,
iOS and Android. But as it’s dying, I won’t discuss further.

• indexed Database The solution to the WebSQL problem, though few
implementations available.

• file api Directories & System: Application-managed file system, which
will cache your big resources.

• application cache Enables your game to run offline by controlling how
the browser caches resources.

Web stOrage
This is strikingly easy to use for small amounts of data:

localStorage["PlayerName"] = name;

You can store up to 5MB of string data via this simple key/value API. The Web
Storage specification includes Local Storage and Session Storage, which
differ only in that session storage clears the data after a browsing session
is closed.

Being widely supported and simple, it’s hard to not use this API for any
simple small game. It’s advantageous over cookies, as those are sent to the
server on every request.

There are downsides, however. It is a blocking, serial API. Also, it is not
transactional, which exposes race conditions if multiple tabs are open with
your game in them. That can likely be worked around by coordinating via
a shared worker, but it’s ugly. There is also nothing but an exception when
you run out of your 5MB storage space. Support from all major desktop and
mobile browsers is hard to overlook, though.

inDexeD Database
» Web Storage offers only the most basic key/value interface. The Indexed
Database API has several notable features. Indexed records allow efficient
search for records, and enable higher-level query languages to be built.
Asynchronous calls provide better responsiveness by not blocking, and
enable transactions. Transactions remove issues of mixed writing and
reading operations from multiple instances of a page. In-order traversal and
multiple values per key are also available.

This is clearly an important API moving forward, but the implementations
are only ready for developer R&D at this point.

file api: DirectOries & systeM
» I expect many games to have significantly more content worth caching
as compared with general web applications, especially WebGL games. An
ideal scenario is to be able to prefetch assets needed for a game's later
stages while running earlier content.

The File API D&S provides for an application-managed file system. A
server can provide archives of many data files, which the client code may
then unpack and manage. Loading of models, textures, and other arbitrary
binary data can be made efficient, even as game asset patches are released.
The specification and implementations are at a point where developers can
start R&D with them.

On a related note, there is also the “File API,” which is different but
useful. It allows web apps to ask the user for a local file, and then read and
manipulate it. For example, a game could allow custom logos to be selected.

Offline applicatiOns & applicatiOn cache
» Games are some of the best applications to have when you’ve lost your
internet connection. Thankfully, HTML5 gives you a way to make your
game available offline via an Application Cache manifest file. In this simple
example, some key resources are specified to be cached for offline use.

CACHE MANIFEST
 index.html
 stylesheet.css
 images/logo.png
 scripts/main.js

In script, the state of connectivity can be detected with an event, or by
checking window.navigator.onLine. The state of the cache can also be
queried and request an update from code.

THE INNER PRODUCT // VINCENT SCHEIb

gamE DEVElOPER | may 201140

www.gdmag.com 41

More control is possible with the manifest
file as well. Resources that require the user to
be online can be listed, and fallbacks can be
specified for server resources when the user
is offline. That means instead of just caching
a resource, an alternative resource can be
provided when offline.

Native ClieNt
» All right C/C++ programmers, how did you
make it this far? Sure, you’re impressed that
JavaScript can run FFT music visualizers
and Box2D scenes, but you want “real” code
running the browser. Is all this blah blah blah
about JavaScript just not convincing you?

Well, fine. You can have C or C++, compile
it down to machine code, and run it on any
web page without even mentioning it to the
user. You can run it as securely as you run
JavaScript, and it’ll run nearly as efficiently as
a stand-alone application.

The key ingredient is that Native Client
(NaCl) performs a static validation of your
compiled code as it is loaded into memory
and set for execution. It can do this by
defining a subset of instructions and call
patterns that can be efficiently validated. You
generate this particular flavor of assembly
by using a modified compiler, which the NaCl
SDK provides.

Standard operating system libraries
aren’t available, for security reasons.
Instead, a plug-in interface is provided
that has a very POSIX feel to it—not too
much work if you’ve already ported to
systems such as the PlayStation 3. Low
level 2D, OpenGL ES 2, audio, and HTML (like
networking and storage APIs) are available as well.

Unity games are the highest profile demos running to date. The engine
has been demonstrated as ported to NaCl, which includes running C# code
on Mono under the hood. So, if you love Unity but have a hard time getting
users to install the player plug-in, look forward to a future where you can
run the game plug-in free. Quake and the open source FPS Nexuiz have also
been shown. That includes running C# code on Mono under the hood. Quake
and the open source FPS Nexuiz have also been demonstrated.

Google Chrome is the only browser currently supporting NaCl, though
it is an open source project, and available for other browsers to adopt. It
is also still being stabilized—it’s suitable for R&D, but not quite ready for
final games.

WrappiNg thiNgs Up
» So, we just plowed through graphics, audio, video, networking, location,
orientation, multithreading, storage, offline, and C/C++ code. That’s a lot of
tech coming online, all directly supported by the browser.

Popular technologies will be supported well by the different browsers,
and the more you bang on them the more they’ll fix issues. In this space,
standards and competing implementations are held accountable by early
R&D on your part, and public benchmarks.

Then there’s the span across desktop and mobile. Many HTML5
technologies have appeared rapidly on mobile devices. Perhaps that’s

because most mobile browsers are based on WebKit, the foundation for
Chrome, Safari, and others. The benefit is that cross-device development is
that much easier, though not painless.

Distribution and monetization are interesting topics, too. On mobile devices,
users have engaged well with Apple’s App Store and Android Market. You
should know that Chrome launched the Chrome Web Store, with similar
benefits. Check it out as another option for getting your game in front of
people.

viNCeNt sCheib works on Chrome like it's a game engine. Earlier he worked on Gamebryo

and a few console games. Find him online with your favorite search engine, or the cheat

code http://scheib.net.

Native Client sandboxes C++ code, allowing it to run as freely as Javascript on web pages, with the
same level of security. previous methods of running C++ code, that is to say plug-ins, are not secure,
and are the primary source of computer viruses and malware.

Compiled
Native Client

Module

Decode & validate

Binary fails
Native Client validation

Module attempts
unsafe activity

Module passes validation

Module functions within bounds

Do not run
module

Run module Terminate

Exit successfully

r e f e r e N C e s

a feW of the best sites available for iNforMatioN aboUt broWser teCh:

www.html5rocks.com

http://caniuse.com

(This site in particular has a lot of useful compatibility charts, which are frequently updated.)

http://diveintohtml5.org

http://developer.mozilla.org

http://gamedev.stackexchange.com

http://scheib.net
http://www.html5rocks.com
http://caniuse.com
http://diveintohtml5.org
http://developer.mozilla.org
http://gamedev.stackexchange.com
http://www.gdmag.com

Supported by

Game Developers Conference™ Europe
August 15–17, 2011 | Cologne Congress-Centrum Ost | Cologne, Germany

Visit www.gdceurope.com for more information.

Conference™ Europe

http://www.gdceurope.com

jesse harlin // aural fixation

www.gdmag.com 43

Stacking OverflOw
The musical magic of Double fine’s laTesT

few developers are as identified with unbridled creativity as Tim schafer's Double fine
Productions. Whether running through a summer camp for psychics or diving devil horns
first into the world of an iron maiden album jacket, players have come to expect the
unexpected from schafer and Double fine.

in february, Double fine's art director lee Petty gave players the Psn/Xbla title
Stacking, which put them into the wooden shoes of charlie, a micro matryoshka doll on a
quest to rescue his family from a cabal of industrial Revolution robber barons. stacking
is a smaller, download-only title, but is still jammed full of content. The game's audio
balances its strengths between two pillars: a musical score that defines the game's
setting, and a rich voice system that manages to express diverse characterization. all
this is done without a single word of intelligible recorded dialogue. To see how Double
fine's audio team tackled the task of crafting detailed sound in a world inspired by silent
films, i spoke with lead sound designer brian min and sound designer camden stoddard.

MatrYOSHka MUrMUrS
» As a pastiche of silent films, the world of Stacking sits at the confluence of Victorian Era luxury and
Industrial Era grime, and is populated by a diverse cast of animated Russian stacking dolls. "When I
first saw Lee's pitch," said Min, "it hit me that this world really needed a unique voice." Gameplay in
Stacking is centered around solving puzzles by stacking Charlie inside of other dolls. Each doll has
its own special ability, and abilities run the gamut from floating to flirting to farting. One of Stacking's
stand-out features is its use of audio icons in a system by which the unique doll abilities each have
immediately recognizable audio feedback.

"If there is one thing we needed to get right, it was the dolls’ abilities," said Min. "In the
advertisement world, they called it 'sound logos.'" These sound logos function as the game's main
source of characterization, since Stacking has no recorded dialogue. Stoddard explained, "We felt that
the sound for these abilities had to be concise yet solidly illustrate each doll's ability. If a sound was
grating or boring, [there was a greater] chance that the player would avoid using that ability."

These sound logos, though, function within an interactive and reactive world. The diversity for the
system is rooted in the notion that each sound logo "required a unique set of reaction effects,” said
Min. “The abilities don't work nearly as well without other dolls reacting to them. If you smoke a pipe,
for example, all the other dolls around you start coughing. If you burp, the dolls run away in disgust.
We have every kind of permutation for male, female, kids, and so forth, for every type of doll ability.
We also have a dizzying array of custom doll chatter for every locale, and even various game states.
Dolls will grumble during the workers' strike, but when the strike is over, they are nice and cheery."

According to Stoddard, a dynamic walla system was the second piece of the voice characterization
puzzle. "We knew there would be no dialogue,” he said, “but when we first started seeing the Train
Station mock-ups, we realized that train stations have a ton of background chatter—lots of people
on their way somewhere, reading things, conversing—but you're never fully aware of what they are
saying. Without that chatter, it just felt empty. We would have scripts with scenes, but no text, just
themes: 'This is the train car full of really rich, evil industrialists. They are doing under-the-table, shady
deals, as well as commenting on the rather good buffet dinner.'"

MatrYOSHka MUSic
» "When you think about it," said Stoddard, "most silent films were not silent. When presented to
the public, there was piano accompaniment, and it was actually a very interactive audio experience.
The pianist had to really convey story and emotion through the voice of the piano. The piano became
a very illustrative and emotive character." For Stacking, it became very important for the team to
include this same "invisible character" through the use of a mixture of licensed and original classical
underscore.

"I wanted Stacking to have all live acoustic instruments and players," explained Min. "Ninety
percent of Stacking's score was either licensed or re-edited versions that I constructed in Pro Tools. I
didn't have stems, alt takes, or different mic perspectives, so the first step was a convolution reverb

il
lU

St
r

at
iO

n
 B

Y
k

el
Se

Y
k

r
aU

S

and EQ pass to make sure all the recordings
sounded like they were done in the same room."
In order to help sell the time period while making
the music editing tasks easier, Min specifically
focused on a number of solo piano pieces by
Chopin. The rest of the licensed score uses
music by Brahms, Tchaikovsky, Mozart, and
Vivaldi, meaning that the game's original music—
composed by both Min and Peter McConnell—was
faced with the daunting task of creating original
cues that fit seamlessly amongst music by some
of history's greatest composers.

"Our soundtrack influenced the set pieces,
abilities, and puzzles that would be in-game,”
Min concluded. “Even the dolls were inspired
by our piano score. Stacking will always have a
special place in my heart as the project that saw
the realization of true collaboration between art,
design, and audio."

jeSSe Harlin has been composing music for games since

1999. He is currently the staff composer for LucasArts.You

can email him at jharlin@gdmag.com.

mailto:jharlin@gdmag.com
http://www.gdmag.com

game developer | may 201144

The end of Games?
Or, Will Free-tO-Play SWallOW the induStry?

In a GdC speeCh from marCh 2010, nGmoCo’s
founder Neil Young described the advent of
free-to-play gaming in the West as “the most
significant shift and opportunity for [game
developers] since the birth of this business.”
Since then, more and more game developers
have been making this transition.

In June, Turbine announced that its
profitable, subscription-based MMO Lord of the
rings onLine would adopt a free-to-play model,
based on the success of a similar change with
their MMO dungeon and dragons onLine, which
increased the game’s revenues fivefold. In
November, EA announced BattLefieLd PLay4free,
a downloadable, free-to-play shooter built on the
BattLefieLd 2 engine, meant to improve on the
success of the similar WW2-based BattLefieLd
heroes. In February of this year, Riot Games,
developer of the popular free-to-play strategy
arena-combat game League of Legends, was
purchased by Chinese games behemoth Tencent
for $400 million, signifying the massive revenue
potential of the format.

Indeed, few major franchises are not being
considered as raw material for a transition to
free-to-play; the revenue potential is simply
too large to ignore. In March of this year, at the
Bank of America Merrill Lynch 2011 Consumer
Conference, Activision CFO Thomas Tippl stated
that, shockingly, starCraft 2 was not worth the
effort from a financial perspective. Although the
game sold very well, grossing over $250 million
dollars, the lack of any ongoing revenue streams
coupled with the high development costs meant
that the final return on investment was simply
not high enough. Ultimately, publicly traded
companies, like Activision, must invest their
money in projects with the highest potential
profit margins and, increasingly, free-to-play
games are dwarfing single-purchase games in
that regard.

Neil Young’s own ngmoco provides an
interesting example of how this shift can
change a company’s priorities. The smartphone
developer’s first major hit was roLando for the
iPhone, providing the young startup with its first
major revenue stream. However, the company
soon discovered that, although they could
make modest profits on single-purchase mobile
games, their most profitable releases were free-
to-play games built with in-app purchases. Their
kingdom-builder We ruLe became the highest-

grossing “free” game on iOS devices within a
month of release.

Understanding that free-to-play games would
be the only way to scale their business, ngmoco
cancelled single-purchase games, including the
guaranteed moneymaker roLando 3, in favor of
games which fit the freemium model. In Young’s
words, “If we can’t make the game free-to-play,
we’re not going to release it.” The strategy
worked, as his young company was purchased
by the Japanese social gaming giant DeNA in late
2010 for an impressive $400 million.

a new desIGn
» Today’s game designers will increasingly hear
similar mandates from their own management
teams. However, shifting to free-to-play design is
not a straightforward process. Indeed, designers
of single-purchase games have a much easier
job, as they only have to focus on one thing:
making the player’s experience as much fun
as possible. In contrast, designers of free-to-
play games must make the game engaging
enough to attract and retain players while also
holding back enough of the experience to drive
microtransactions.

The energy model is a proven mechanic
that maintains this balance for many free-to-
play games, including my own Facebook-based
RPG dragon age Legends. Under this model,
certain player actions, such as starting a battle
in Legends, consume a set amount of energy.
Once a player uses up all of her available energy,
these actions are unavailable until the energy
regenerates, commonly at the rate of one point
every five minutes.

Thus, with a full energy bar, the player can
typically fight four or five battles before getting
stuck. At that point, they can decide to either let
the energy recharge naturally, which might take
two hours for an empty bar, or purchase an instant
refill with real money. While they still have energy
remaining, free players have access to the full
game experience —the battles in Legends do not
work differently for paying players—but they have
to deal with some impatience after they hit the
energy gate.

In single-purchase games, designers rarely
build a game mechanic that intentionally tests
the player’s patience; in fact, that is a hallmark
of bad game design. Thus, free-to-play games
upend many of the assumptions that designers

bring to the table from traditional single-purchase
design. Indeed, this break is creating a great deal
of anxiety within the game design community, as
many developers feel that their original motive for
making games—to bring players as much fun as
possible—is now in danger. Noted independent
designer/programmer Chris Hecker recently voiced
his own concerns in a post online:

"The problem I have with free-to-play
is business types rarely talk about what
you're giving up by going to that model.
Microtransactions warp game designs, not
necessarily for the better or for the worse, but
they certainly make the designs different. If
the profitability of microtransactions makes it
so most companies go toward this model with
their big-budget titles, then that is a shame and
a loss, because there are lots of designs that
are interesting and important to the art form
to explore, but that don't lend themselves to
microtransactions and free-to-play. I hope single-
purchase, "complete experience" games don't go
away; not because I'm old and curmudgeonly—
although I am—but because there is an entire
subspace of game design there that still needs to
be explored."

a new hope
» League of Legends, one of last year’s most
successful strategy games, provides an
interesting case study which ultimately shows
that Hecker’s primary concern—that the design
space explored by single-purchase games could
be lost—is valid. The game is commonly held up
as the best example of free-to-play design done
right. Not only has League of Legends been both
wildly popular and commercially successful (see
the $400 million purchase earlier), the game
has also garnered critical acclaim, sweeping
the first-ever Game Developers Choice Online
Awards. Most importantly, the game’s business
model has been accepted peacefully by the core
gamer community, one which typically views
microtransactions with suspicion.

Because Leagues of Legends is a highly
competitive, team-vs-team arena-combat game,
microtransactions which could give one side
an advantage over another would be wholly
unpalatable to a large portion of the Western
audience. Instead, the game only hands out
bonuses to players who have invested large
amounts of time in battle.

design of the times // soren Johnson

www.gdmag.com 45

The meta-economy employs a dual-currency
model common to many free-to-play games, with
a time currency (Influence Points/IP) which is
earned through play, and a cash currency (Riot
Points/RP) which is bought with real money. Items
which can boost a player’s abilities (Runes) can
only be purchased with the time currency (IP),
providing players a strong incentive to keep playing
to earn more IP. Cosmetic items, which only change
the player’s appearance, can only be purchased
with the cash currency (RP), which simply appeals
to a player’s pride or vanity.

The player can also buy a temporary boost
with RP which increases the rate at which IP is
earned. This microtransaction presents a time-vs-
money question to the player: he can spend some
money now to earn Runes faster, or he can simply
play some more games to earn the extra amount
of IP required.

Still, the most interesting microtransaction is
the character unlocks. League of Legends descends
directly from the popular Warcraft 3 mod Defense
of the Ancients, in which the player gives up control
of an army of units for control of a single hero. The
mod’s depth came from the different combination
of hero types—103 in the current version.
League of Legends has a similarly large stable of
“champions”—72 as of March 2011.

These 72 champions are not all available at all
times. Instead, a rotating selection of around 10
are available each week, which means that players
have only limited control over which champion they
can use. This cycle can greatly upset a player who
has become quite good with a specific champion
but who must now learn a new one. Some players
enjoy the challenge of mastering a new set of skills
and attributes, but many others prefer to keep
winning with a champion that works for them.

Accordingly, League of Legends gives players
the option to unlock champions permanently,
with either IP or RP. Like the energy mechanic
common in social games, the character unlocks
are charging players for their impatience. Can
they wait weeks until their favorite champion is
again available for free or days until they earn
enough IP to buy the unlock, or will they just
spend some real money right now to get back
into the action with their favorite character?
This model works well for both gamers, who are
getting an incredible experience for free, and for
the developer, who can rely on player impatience
to generate revenue.

Nonetheless, single-purchase games would
never be designed this way, with players limited
to a small sub-set of possible characters each
week. (Indeed, the single-purchase strategy
game command and conquer 4 was roundly
criticized for forcing players to “earn” the
right to build certain units over multiple play
sessions.) Although League of Legends could
make the transition to a single-purchase game
by simply unlocking the majority of champions

immediately, not all single-purchase games could
just as easily make the transition to free-to-play.

For example, starcraft 2 is not so easy to
imagine as a free-to-play game. The franchise is
the very model of a tight, elegant ruleset, with no
extraneous parts or redundant options to muddy
the design. Even with the new units added for the
sequel, Blizzard removed enough old elements
to keep the unit count down near the original
12 per race. Indeed, few reviewers even felt the
need to comment on the lack of a fourth race to
differentiate the two versions.

Could starcraft 2 follow the League of Legends
model? Perhaps Blizzard could allow everyone to
play the Terrans for free but only offer the Zerg and
the Protoss to paying players? This model would
probably fail both for business reasons (not enough
opportunity for repeatable purchases) and for
design reasons (having 90% of the players forced to
use Terrans would destroy the balance). Anything
more aggressive—like actually selling extra siege
tanks during battles —would violate the concept of
a fair playing field, a core tenet for strategy games.

An Old lessOn
» Thus, if Activision believes that making a game
of starcraft 2’s scope is not worth the effort,
will this type of tight, intricate design simply
disappear? Although microtransactions are still
relatively new in Western video games, they
are not new for physical games in the West. The
emergence of Magic and other collectible card
games (CCGs) in the 1990s showed the power
of microtransactions by encouraging players to
make recurring purchases within the same game
system over many years. The makers of CCGs
have been dealing with this new world, which
necessarily mixes business and game design, at
least a decade before us.

However, the wild success of CCGs—Magic
still regularly grosses over $200 million yearly,
which dwarfs non-collectible card games—
did not send single-purchase, “complete
experience” physical games into extinction.

Indeed, the card and board game industry is
more diverse and innovative than ever before.

In fact, two of the most successful card
games of the last few years have taken a
mechanic directly from Magic, adapted it to
fit the format of a single-purchase game, and
found commercial and critical success. Dominion
turned the meta-game of a CCG into a traditional
card game by having players build and play a
deck of cards during the game. 7 Wonders turned
drafting, a folk method for distributing CCG cards,
into a game by conducting a single draft after
each individual card play.

These examples of successful single-
purchase games emerging from the shadow of
Magic prove this format can still thrive in a world
with microtransactions. These designers brought
some of the gameplay of Magic to a new audience
simply because not everyone is ready to buy only
a small part of a card game, which will never be
complete. Many gamers will never be ready for
CCGs, just as many gamers will never be ready to
spend money on a free-to-play game.

Thus, if every video game adopts
microtransactions, many players will be left
behind who are looking for a different type of
experience. Microtransactions do warp the game
design toward a model that supports recurring
purchases. But this shift leaves a great deal of
space behind as a vacuum ready to be filled
by smaller publishers and developers who are
looking for great opportunities. The profits from
single-purchase games can easily justify the
development costs for teams that take their
budgets seriously, and these profits can only go
up as more and more big publishers abandon this
still fertile design space.

s O r e n j O h n s O n is a designer/programmer at Ea2D,

working on web-based gaming with strategystation.

com and Dragon age LegenDs. He was the lead designer of

CiviLization iv and the co-designer of CiviLization iii. Read

more of this thoughts on game design at www.designer-

notes.com

League of Legends

http://www.designer-notes.com
http://www.designer-notes.com
http://www.gdmag.com
http://strategystation.com
http://strategystation.com

www........gggggggggggggggggggggggggggggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaaaaaaaaaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssssssssssssssssssuuuttrrrrrrrrrrrrrrrrrrrrrrraaa.............................ccooooooooooooooooooooooooooooooooommm

the art and business of making games

http://www.gamasutra.com

www.gdmag.com 47

The TradiTional game developmenT pr sTraTegy is To crafT your game
in a secret cave where no one can steal your ideas or get a premature glimpse
of your work. Then, just before your masterpiece is complete, you scramble to
make trailers and get some previews and reviews lined up, pray to your deity
of choice, and launch the game.

This may sound somewhat reasonable, but for an indie developer, it’s
actually pretty dangerous. You can't assume that the world will discover and
care about your game when it's ready. By putting PR off to the very end of
your development cycle, you are making the success of your game highly
dependent on forces outside of your control.

The philosophy of open developmenT
Instead of making excuses to close yourself off from the outside world, you
should be doing whatever you can to reach out to it. At Wolfire Games, we
have been using what we call "open development" for our upcoming ninja-
rabbit fighting game, OvergrOwth. From day one, we have been publicly
showing off our development process, and this has allowed us to make
noise, make friends, and build a community around our game—even before
we had any gameplay!

Making Noise. Many developers assume that they don't have anything
interesting to share with the world before their game is finished. But how
many people out there have the courage to make a living by creating video
games? By even attempting to make a game, you already have a lot of
interesting things to talk about. You can share your thoughts about game
design, creating art assets, building the tech for your engine, or even about
other games that have inspired you.

It's hard to predict what will and won't be hot. So the sooner you start,
the more things you can try, and the more likely you are to discover
something that the outside world is really interested in.

Making Friends. With a traditional mindset, you might view your peers
as competitors. You might think that blogging about someone else's game
would dilute your brand and risk cannibalizing your sales. But that is not
how the Internet works—it's not a zero-sum game. Cross-pollination is
mutually beneficial. One of the most successful Wolfire blog posts was
David Rosen's "design tour" video of wOrld Of gOO, in which he explained in
great detail why it was such a great game. Not only was it a fun way to reach
out to the awesome guys at 2DBoy, it also ended up bringing positive press
to both of our studios.

Building A Community. At the core of every community is communication,
which is a two-way street. It's nice to think that you can just beam out
information to the internet and everyone will care, but it's also important to
listen to feedback. If you share the progress of your game along the way and
continue to make people happy, chances are you’re on the right track.

sTraTegies ThaT enhance open developmenT
Mod Support. Even before we started putting the ninja-rabbit combat into
OvergrOwth, fans had fun making their own custom levels and cities in our
map editor. You’ll find yourself surprised with the creative things fans come
up with that you didn’t even think about, if you make your tools available.

Supporting Mac and Linux. The personal computer space is the last
place an independent developer can sell games directly to fans. So if you
want to maximize your independence, you owe it to yourself to reach out to
Mac and Linux users.

We have found that these communities tend to be noisy and very happy
that we’ve made the effort to reach out to them. The sales data for Wolfire’s

original ninja-rabbit fighter, lugaru, and more recently the sales data for the two
Humble Indie Bundles, suggest that supporting Mac and Linux as an indie can
actually double your revenue.

Early Preorders. If you’re serious about making your game, you should
allow fans to offer you early support. Early preorders give you something
tangible to direct your PR efforts toward, and having more financial
resources early in development increases your runway and allows you to
stay indie.

Preorders work best if you can offer your fans something in return.
Wolfire’s approach has been to offer weekly alpha builds to anyone who has
preordered.

The mechanics of open developmenT
Once you understand the appeal of open development, you still have to
figure out how to implement it. Here are some tools we’ve found useful for
expanding outreach.

Onsite Tools. The two must-haves are a blog and a forum. Your blog is one
of the best tools for sending out information to the world, and the forum is the
easiest place for your community to grow. These may be ghost towns when
you first implement them, but don’t be discouraged—they all start out that
way. The sooner you have your blog and forum in place, the sooner you can
begin accumulating visitors. When Wolfire first started work on OvergrOwth,
we were getting about 500 daily visitors to our blog. Two years later, our
smallest posts get 5–10K visits.

Embedded live chat on your site can also be helpful. Olark is a great
solution for real-time customer support. Wolfire even maintains a public IRC
channel where people can hang out to chat with our team.

Finally, don’t forget this all requires building a scalable, robust web
site. Prepare for success so that the day your blog post goes viral and
you're getting thousands of page views, everyone can still access your
content. Nothing hurts more than doing everything right and having your
big moment, only to watch your site crash. Google App Engine and Amazon
Cloud Front have been integral in allowing Wolfire to maintain a scalable site.

Social Media. Social media is very useful for increasing the world’s
exposure to the fun activity on your site. As with your blog and forums, it’s a
good idea to stake a claim early so that you can grow your web presence over
time. Traditionally, the Wolfire Blog has been the center of our PR efforts, and
we’ve mainly used Facebook, YouTube, Twitter, and ModDB to echo our news.

What we’ve seen recently is that there is something inherently viral
about videos. In general, people are more interested in watching videos
about game development than they are in reading lengthy posts with static
pictures. In the wake of David and Aubrey’s weekly development update
videos, Wolfire’s YouTube channel has taken the lead as the largest and
fastest-growing method of communication for us.

The big picTure
If you think about it, what’s more interesting to look at: a static finished
piece of concept art or a time-lapse video showing the creation of the
finished art from the first few strokes to the finishing lighting and shading?
If you can perceive the appeal of the time-lapse, I think it’s easy to see the
appeal of open development. Instead of putting PR off to the last minute,
you can turn your development process itself into a form of PR.

john graham is a Grower of Beards, the co-founder of Humble-Bumble, and founding-member

of Wolfire Games

build your own buzz
Open DevelOpment, InDIe pR, anD yOu

John graham // ThE BUSInESS

http://www.gdmag.com

pixel pusher // steve theodore

game developer | maY 201148

legal age
PhotoshoP turns 21. It's tIme to grow uP.

We like to think We're a cutting-edge business that defines neW
technological frontiers, which makes it kind of jarring to realize that one of
our key tools is now old enough to drink.

Photoshop may not literally be the mother of all bitmap editors, but it's
definitely older than many of the people reading this article. Released in
1990, Photoshop turned 21 in February, a pretty remarkable milestone for a
piece of software in a business where almost everything is obsolete in less
time than it takes to ship an installment of Gran Turismo.

Remarkably, the core of the Photoshop UI is still recognizable 21 years after
the product first shipped. (In the interest of full disclosure: as a pre-1.0 beta tester
in 1989, I complained that a valuable icon slot was given up to the "Hand" tool for
a job that could be done with a hotkey or scrollbars ... Apparently I was wrong,
since it's still there. See Figure 1.) Of course, there have been some very important
improvements since then, particularly the introduction of layers in Photoshop 4
(1996), vector tools in version 6 (2000), and Smart Objects in CS2. On the whole,
though, a Photoshop artist from the mid-1990s could be productive with the
modern version of Photoshop in a day, and a modern artist would find a 10- or even
15-year-old version somewhat spartan, but still usable (see Figure 2).

So, take a moment to thank the Knoll brothers, Thomas and John, who
built an impressively solid foundation for the product all those years ago.
(You might also want to check out the two articles mentioned in Resources
for a little more history of how the bitmap behemoth was born.) Having given
some respect where it's due, let's return to a more natural, game-artist-
friendly posture. In other words, it's back to the usual kvetching.

off the script
Photoshop does a great job pumping out pixels. The constant churn of game
development, though, is continually imposing new needs and demands on
us, and the steady, majestic pace of Photoshop's evolution doesn't always
keep up with our problems.

Pretty much every studio supports Max, Mel, or Python scripts to smooth
artists' workflows and clean up their data to suit the needs of a game. Although
scripting was created mostly to simplify workflows, it has evolved into the

glue that holds our pipelines
together. Scripts aren't just for
reducing button-clicks anymore;
we use them to do everything
from checking files out of source
control, to submitting jobs to
render farms, to formatting data
for export to the game. Scripts
are a vital way to cut down on the
drudgery and clerical work that
gets in the way of making art.

Strangely, though, few teams
devote even a fraction of their
scripting efforts to supporting
texture artists and Photoshop
users. Part of this, of course,
is that the technical side of
texturing is comparatively
simple. We have to maintain
squads of tech artists to support
our 3D artists because the whole
business is still embarrassingly
clunky. In the texturing
business, by contrast, things
are rarely quite bad enough to
stimulate a serious investment in tools. A
bitmap is just a bitmap, the thinking goes, so
it's not worth any energy from the tools team.

slackers
This is a common idea, but it's also a mistake. Without scripting,
the texturing side of art inevitably involves a ton of slow, boring,
error-prone manual steps. If you ask a texture artist what hoops
they have to jump through to get their pixels into the right
places, they'll typically say something like "Oh, I just ..." and
then launch into a three-minute verbal odyssey describing the
myriad little operations they have to do to make sure that their
working file produces the correct set of textures in the right
formats, with the right names, using the right data.

Individually, these steps are all trivial—hide a layer here,
save with a special name there—but collectively, this kind of
song and dance slows down iteration enormously. It's also
an easy way to create bugs when files are misnamed, the wrong layers are
included, or some complex packing operation needed by a shader is botched.
The fact that these steps are stupidly simple doesn't stop them from being
an unnecessary and dangerous annoyance.

This is a perfect example of the kind of thing that 3D artists expect to be
handled by scripts. We all know that 3D scenes are full of information that
serves different purposes. Some of that information is for the game, but a
lot of it is there for the convenience of the working artist, whether it's scale
reference, template objects, or variant copies that help us visualize different
alternatives. We use scripts and exporters to make sure we can filter out
these private elements when sending data to the game while keeping them
handy for our workflow.

figure 1: the evolution of the photoshop toolbar, from 1.07 to
5.5 to cs5. that hand tool is still around.

integrating photoshop With Max and Maya
If having to write batch files just to do simple commands seems too
limiting, JavaScript does allow you to write extension DLLs that can
do more complex tasks using C or C++. Unfortunately, that's hardly
“scripting” at that point.

 A slightly less daunting form of rocket science is to get into
Photoshop's automation system using COM. COM is a standard
automation technology that older Windows applications use to talk
to each other, and you can use Python, C#, or even MaxScript to
communicate with Photoshop from the outside.

Not only does this give you all the features of those languages,
it also means you can talk to Photoshop directly from inside Maya
with Python or inside Max using C# or Maxscript. Volition's Adam
Pletcher has a good introduction to Python-based Photoshop
scripting on his blog at http://techarttiki.blogspot.com/2008/08/
Photoshop-scripting-with-python.html, and there's a great
Maxscript introduction at http://lonerobot.net/?p=374. Most of
the documentation for the standard JavaScript-based Photoshop
tools translates very naturally to any of these options. The only real
drawback is the difficulty of communicating from Photoshop back
to Max or Maya. In COM terminology, Photoshop acts as a “server”
while Max and Maya are the “clients,” meaning the communications
originate in the 3D tools rather than in Photoshop.

http://techarttiki.blogspot.com/2008/08/Photoshop-scripting-with-python.html
http://techarttiki.blogspot.com/2008/08/Photoshop-scripting-with-python.html
http://lonerobot.net/?p=374

www.gdmag.com 49

The typical Photoshop pipeline, on the other hand, offers no support
for this kind of organization and filtering. Moreover, turning layers on
and off is the least of our problems. As shaders get more sophisticated,
graphics engineers are constantly looking for ways to pack more data
into bitmaps, which means they must do things like decree that artists
pack extra information into the top 4 bits of an alpha channel, or create
a texture where the red channel is a per-pixel subsurface scattering
coefficient, or employ other equally esoteric methods of stuffing more and
more data into the same limited amount of GPU memory. It's hard enough
for artists to understand many of these requirements at all. Making them
pack the textures by hand (or worse, re-pack them when the shader
changes) is like adding insult to injury.

Time To graduaTe
For all these reasons, then, it's high time that studios start looking into
extending the same kind of tech-art support to Photoshop users that
Max and Maya artists have enjoyed for the last decade. Fortunately,
Photoshop does support scripting. Since Photoshop CS debuted in
2003, Photoshop has supported scripting using JavaScript, AppleScript,
and VBScript. Although the Photoshop scripting environment will feel
constraining to a TA who is used to the power of Python or MaxScript,
there's still a lot of power there to streamline artists’ workflows and make
for cleaner, more reliable data.

Although Photoshop supports three different languages, the most
common choice among scripters is JavaScript. As a bonus, it's also the
language of Adobe's ExtendScript toolkit, allowing you to write scripts
for Illustrator and other Adobe products as like Illustrator (something
that may come in especially handy for vector-art oriented developers).
JavaScript is both a blessing and a curse. There are more JavaScript
tutorials and references available than you can ever use in a lifetime,
but they're usually focused on web-specific problems, or bogged down in
HTML parsing.

JavaScript looks like a cross between MaxScript and Mel; it has Mel's
C-style syntax (with curly braces and semicolons galore) but behaves
more like MaxScript. It's a typeless language, meaning you can stick
any kind of value into any variable. It's also object oriented, so you can
write clean code with nested properties and functions — a huge boon for
readability, as you can see in this snippet:

// set the current document to 256 x 256 pixels
// where 'app' is the Photoshop application
app.preferences.rulerUnits = Units.PIXELS;
app.activeDocument.resizeImage (256, 256);
//create and assign variables for document settings

Figure 2: Photoshop turns 21 this year. it's still remarkably familiar, as this 1990 screenshot shows (photo credit: www.flickr.com/photos/jcapaldi)

http://www.flickr.com/photos/jcapaldi
http://www.gdmag.com

game developer | may 201150

pixel pusher // steve theodore

Another nice feature, shared by both MaxScript and Python, is that
JavaScript allows you to put functions themselves (and not just their results)
right into variables. This is an elegant mechanism for handling program flow.

Entry LEvEL
On the whole, Photoshop scripting is not too intimidating. Unfortunately
for the novice scripter, the JavaScript language comes with a few quirks.
The most noticeable one is that it’s too easy to make your variables
into globals, which can lead to you shooting yourself in the foot by
innocently reusing a variable name. There are a number of lesser
gotchas as well: Much like MaxScript, JavaScript supports multiple
alternative ways of specifying things like the beginning and ending
of a code block, which can lead to code that's hard to read if you don't
develop a style and stick with it aggressively.

It's a bit tricky to find good guidance on the web, since the
overwhelming majority of JavaScript info on the internet addresses web
developers rather than general-purpose scripting. Douglas Crockford's
book JavaScript: The Good Parts is a fast way for experienced scripters
to spot and avoid the worst pitfalls. Novices, however, will probably find
it a bit intimidating. A newbie might want to start with something like
David McFarland's JavaScript: The Missing Manual, which assumes less
programming knowledge.

However you get your scripting chops on, you'll quickly find that
Photoshop scripting is a mixed bag. It's possible to do very complex
operations—if you really want to, you can paint individual pixels by
scripting—but the overall experience is a bit like Maxscript was 10
years ago. You can feel the fact that you're basically automating a lot of
UI actions, rather than “programming” Photoshop directly, a fact that's
reinforced strongly by the way you can see the UI update for every
command you send along. If you're familiar with Photoshop's "Actions"
macro system, then you know the feeling well. It should be stressed that,
unlike actions, Photoshop scripts are capable of analyzing and reacting
to complex data. Nevertheless, that's a small price to pay for a goodly
amount of image processing power and workflow cleanup.

rEsumE BuiLding
Once you've got some scripts running, you might start
wanting to put together some UI for your users. A neat
new tool that even a lot of experienced Photoshoppers
don't know about debuted in CS4. The "Configurator"
utility (available for free download at http://labs.adobe.
com/downloads/configurator.html) allows you to
create custom toolbars and dialogs, known as "Panels"
(see Figure 3). Panels can host buttons for standard
Photoshop tools, actions (as you'd usually see in the
Actions palette), and most importantly, scripts. This
allows you to create custom toolboxes or "shelves" in the
familiar Max / Maya mode. While the panels have to be
installed directly into your Photoshop plugins directory,
which is a hassle for maintenance and versioning, this
is a powerful tool for helping streamline Photoshop
operations in a user-friendly way.

You can even go beyond that, if you've got a lot of
Flash experience. Under the hood, panels are actually
Flash SWF files, so they can theoretically contain
animations, video, and all sorts of other interactive
effects. However, getting beyond the basic button-and-
field level of UI requires some serious Flash chops, both
for creating the panels and also for communicating
between Flash's ActionScript and Photoshop's
JavaScript. If you've got experienced Flash developers
in-house, this could be a very powerful tool. On the other

hand, it may be a bit much for TAs with a background in MaxScript or Python
rather than web development.

The biggest weakness of Photoshop scripting is the fact that JavaScript,
as a web-oriented language, has few of the tools that Python or MaxScript
offer for interacting with the world outside of the application. JavaScript is
designed to be a safe client-side web tool that can't, for example, wipe your
hard drive at the behest of a malicious web page. This means that vanilla
JavaScript can't create or delete folders on your hard drive either, even if you
want it to. Likewise, calling external programs (for example, to check a file
out of source control or update a game database) is hard to achieve without
some clunky workarounds, like saving DOS commands to disk and executing
them as a batch file. So, if you do have heavy-duty pipeline needs that
can't be met without more horsepower, you should check out the sidebar
on integrating Photoshop with Max and Maya. In any case, JavaScripts do
provide a lightweight way to take control of your Photoshop workflows and
automate boring, repetitive tasks.

thErE is nothing impossiBLE to him who wiLL try
History relates that Alexander the Great, having smashed the Persian
Empire and united the known world before his 33rd birthday, wept
because he had no more worlds to conquer. If you're a technically-inclined
artist and you've been wondering where your next adventure lies, perhaps
you'll find it in that most familiar of all art tools—the one that probably
pre-dates your career in games.

s t E v E t h E o d o r E has been pushing pixels for more than a dozen years. His credits

include Mech coMMander, half-life, TeaM forTress, counTer-sTrike, and halo 3. He's

been a modeler, animator, and technical artist, as well as a frequent speaker at industry

conferences. He’s currently the technical art director at Seattle's Undead Labs.

Figure 3: Adobe Configurator allows you to create custom palettes and dialogs for
photoshop, including scripts and even Flash content.

r E F E r E n C E s

history oF photoshop:

www.storyphoto.com/multimedia_photoshop.html

www.webdesignerdepot.com/2010/02/20-years-of-adobe-photoshop/

http://labs.adobe.com/downloads/configurator.html
http://labs.adobe.com/downloads/configurator.html
http://www.storyphoto.com/multimedia_photoshop.html
http://www.webdesignerdepot.com/2010/02/20-years-of-adobe-photoshop/

WWW.GDMAG.COM 51

GOOD JOBHired someone interesting? Let us know at editors@gdmag.com!

H I R I N G N E W S A N D I N T E R V I E W S

¤ After 20 years with UK-based
WORMS and ALIEN BREED developer
Team17, studio head and
co-founder Martyn Brown is
leaving the company to become an
independent game consultant.

¤ Nintendo of America announced
it has hired Cynthia Gordon, a public
relations veteran with over 20
years of experience in consumer
brands, as its new vice president of
corporate affairs.

¤ Following his departure as CEO
from Atari's Cryptic Studios, John
Needham has taken the chief
executive position at another
online gaming firm, Gazillion
Entertainment.

¤ PC game designer Doug Church,
whose credits include titles in the
ULTIMA, THIEF, and SYSTEM SHOCK
series, has taken a position with
Seattle-based HALF-LIFE and PORTAL
developer Valve.

whowentwhere

EX-BLIZZARD ARTIST MICHAEL DASHOW
JOINS KABAM

Michael Dashow worked for seven years at Blizzard, on
DIABLO II and III. Several years ago he got an early start in
the social/casual industries, working with hi5 Networks,
and meez.com. Now he’s taken a job as art director
for Kabam, and we caught up with him to see how his
fantasy art background works in the social space.

new studios

¤ German company Idea Fabrik
quietly purchased the HeroEngine
development platform and
technology from Simutronics late
in 2010, and now the company
has founded a new game
development studio in northern
Virginia called Second Star
Interactive.

¤ While Bethesda Softworks
sibling ZeniMax Online Studios has
yet to reveal any of its MMORPGs,
it is already making preparations
for future launches with its new
customer support facility in
Galway, Ireland.

¤ RATCHET & CLANK and RESISTANCE
developer Insomniac Games has
revealed that it is looking to enter
the web and mobile social gaming
space with its newly formed
division Insomniac Click.

BRANDON SHEFFIELD: You have a painterly style,
but that sort of talent is not often showcased
in social games, though it seems like Kabam is
finding ways. How do you reconcile ability versus
the often lower artistic demands of the medium?
MICHAEL DASHOW: Social games are in many
ways a better place to showcase the abilities of
2D artists than console or PC games: 2D artists
get to realize beautiful final art that will actually
be seen by our users instead of having their
concept art recreated by 3D artists. While many
console and PC games strive for a high degree
of realism, our medium lets us explore a wide
range of visual styles, whether it’s painterly,
stylized, cartoony, or thoroughly realistic.
Rather than make all Kabam games match a
singular company aesthetic, I feel that it’s really
important for each game team to find its own
voice. Art leads at Kabam have a lot of latitude
to explore what they feel works best for a given
game. Producing so many titles as original IP
gives us a very open canvas to work on!

BS: I’ve heard your work will be visible in DIABLO
III. How do the art challenges differ from the
Blizzard team to the Kabam team?
MD: The tools and engines vary from game to
game—DIABLO III is being created with a 3D
engine while we are currently using 2D – but
the approach to making art for Kabam games
is overall pretty similar. Many of our strategy
games feature a pulled-back camera view
which lets you see the buildings and resource-
gathering structures you’re constructing, which
is pretty much the same view that we used
on DIABLO or in other Blizzard strategy games
like STARCRAFT. Any of these games require the
same sort of artistry and attention to form and
silhouette to ensure clarity and attractiveness
at that size.

The biggest difference between PC titles and
social games is the speed to market. You can
spend years on a single title—to your point, I last
worked at Blizzard five years ago and they’re still
working on DIABLO III—but in social gaming you
have a much shorter time to get the initial game
out. We need short development times because

this part of the industry is moving so quickly.
In social games we get to keep adding content to
a game after it releases, so in that respect, they’re
much more like working on an MMO.

BS: This is a large question, but what to you
represents the “next generation” of social
games?
MD: [For us this means] focusing on games with
more depth and more authentic gameplay than
a lot of what we’ve seen in the marketplace thus
far. We call our new games Massively Multiplayer
Social Games (MMSG) because they are both
deeper and more social than the vast array of
“casual games.”

We started by focusing on a different
audience—not the casual crowd but core
gamers like ourselves—and are building our
games to really appeal to this audience. Kabam
MMSGs are more like “traditional” strategy
games and RPGs, but we’ve also added a
whole social layer which adds connectivity and
interaction with friends and other users. This
way, we’re building deeper, more immersive
games that feature synchronous play with and
against other players in real time, greater social
interaction via alliances, and more engaging,
longer-lasting play sessions (as opposed to the
brief gameplay of many casual games).

These are still early days for the social gaming
industry, and there’s lots of room for innovation.
Going forward, I think the next advancements will
be in the fidelity level of social games. Better art,
increasing use of 3D, and even more animation
and sound ... we’ve seen the same advancement
in the games industry in the past on PCs and
consoles, and now we’re seeing it happen again
with online and mobile gaming. There’s every
reason to believe that this trend toward better
looking, more in-depth, and more fun games will
play out in social gaming as well. As a long-time
industry vet, it’s exciting to be starting over
with this new segment of gaming, and it’s really
rewarding to be part of a studio that’s helping push
growth in social gaming forward.

dashing to social

mailto:editors@gdmag.com
http://WWW.GDMAG.COM
http://meez.com

GDC 2011 CONFIRMS RECORD ATTENDANCE, GDC
2012 DATES ANNOUNCED

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

GAME DEVELOPER | MAY 201152

\\\ Organizers of the Game Developers Conference announced that the 25th
edition of the event hosted a record 19,000 game industry professionals at
San Francisco's Moscone Convention Center.

The weeklong anniversary event offered more than 450 lectures,
panels, summits, tutorials, and roundtable discussions across a full five
days of content, with GDC references trending on Twitter in San Francisco.
It also saw unprecedented media coverage from outlets like the Los Angeles
Times, the Associated Press, USA Today, and beyond, with GDC sister site
Gamasutra including full coverage on its site.

Lecture highlights from Monday and Tuesday's GDC: includes more
than 15 tutorials and summits with Rovio's Peter Vesterbacka discussing
the ANGRY BIRDS phenomenon, Zynga's Mark Skaggs on going from
FARMVILLE to CITYVILLE, game designer and author Jane McGonigal on
“gamefulness,” and SUPER MEAT BOY's creators on their rough route to
success.

GDC 2011 also played host to the 13th Annual Independent Games
Festival and the 11th Annual Game Developers Choice Awards. Swedish
independent developer Mojang's acclaimed 3D world-building sandbox
title, MINECRAFT, won the Seumas McNally Grand Prize and Audience Award
during the IGF, as well as three awards at the GDCAs, becoming the first
title ever to win awards in both ceremonies in the same year.

Some other highlights from this year's GDC included an all-star line-up of
“classic postmortems,” discussing the making of some of the most seminal
video games of all time. Eric Chahi's talk on OUT OF THIS WORLD/ANOTHER WORLD
received a standing ovation for its inspirational story. Other postmortems
included Mark Cerny on MARBLE MADNESS, John Romero and Tom Hall
discussing DOOM, and Will Wright on RAID ON BUNGELING BAY, featuring bonus
“Russian Space Minute” diversions.

Other major talking points at the show were a keynote from Satoru Iwata,
President of Nintendo, titled "Video Games Turn 25: A Historical Perspective
and Vision for the Future," a social game-centric Rant, and the Game Design
Challenge won by Jason Rohrer with an innovative MINECRAFT mod.

Standout talks from STARCRAFT II's Dustin Browder, LucasArts' Clint Hocking,
and key lectures from GDC veterans Chris Crawford on “days of yore” and
Brian Moriarty on Roger Ebert and “sublime art” were also among the most
buzzed-about talks at the show this year.

Finally, a packed GDC Expo floor included multiple demo units for
Nintendo's 3DS handheld, major showcases for game tools companies,
spectacular 3D stereoscopic gaming showcases, busy Career Pavilion and
Business Center areas, as well as the always popular IGF Pavilion.

"The week of GDC truly embodied the passion and spirit of the video
game community," said event director Meggan Scavio. "From seasoned
game veterans to aspiring game professionals in areas spanning social
and online games through major console titles and beyond, we are
honored to continue to serve the industry—and hope to see you all
next year."

Following the success of the show, Game Developers Conference
organizers have announced that GDC 2012 will return to the Moscone
Convention Center in San Francisco from Monday, March 5 to Friday, March
9, 2012, with a call for lecture submissions to open this summer.

\\\ Organizers of GDC Europe
2011 have revealed a host
of focused Summits for
this August's conference in
Cologne, Germany.

Taking place Monday
through Wednesday,
August 15–17, 2011, at
the Cologne Congress-
Centrum Ost, GDC Europe
2011 will again provide
the essential pan-
European perspective
of game development
and business trends
happening throughout the
continent today.

Now in its third
iteration and taking place
alongside the European-
leading Gamescom trade
fair, GDC Europe will
continue to serve the
European game industry
by gathering the world's
leading speakers in
areas specific to current
game development
across platforms and
development disciplines.

GDC Europe 2011
plans to expand the
breadth of its conference
by offering four Summits

to be held concurrently
with the main conference.

Reflective of the
growing development
and activity within the
continent, GDC Europe will
introduce the Social Games
Summit, Smartphone &
Tablet Games Summit,
Independent Games
Summit, and Community
Management Summit to its
roster this year.

"It is our goal to support
growth of the European
games community by
providing a venue for

collaboration and business
opportunity, as well
as a valuable learning
experience featuring
leading industry tools and
techniques," said Frank
Sliwka, event director of
GDC Europe.

"This year, the addition
of Summits will provide
strategic, dedicated content
focused on emerging and
innovation-driven topics
in the industry. We are
pleased GDC Europe is
returning to Cologne, and
are proud to continue

providing the forum for
innovation and networking
for the European game
development community."

In 2011, in conjunction
with its new conference
content lineup, GDC Europe
will offer even more
business and networking
opportunities for attendees,
with a developer-focused
Expo Floor area, a host
of day and evening
networking events, and the
return of the GDC Europe
Business Lounge within
Gamescom itself.

GDC EUROPE 2011 DEBUTS NEW SUMMITS

GDC 2011

HIGHLIGHTS AND 2012 DATES REVEALED

TEAM PLANS TO FOCUS ON EMERGING MARKETS

http://WWW.GDCONF.COM

S T U D E N T g a m E P R O F I L E S

www.gdmag.com 53

EducatEd Play!

Tom Curtis: The most immediately
striking aspect of OctOdad is its
ridiculous premise. How did you
settle on such a silly concept?
John murphy (Executive
Producer): We spent a few weeks
pitching ideas and got to a point
where we almost decided to go
with one of a couple of “platformer
with a physics-based twist”
ideas. We did one more round of
brainstorming in small groups to
either flesh out earlier pitches or
to come up with something totally
new. Nick, our sound designer
Seth, and I were becoming
frustrated with our inability to
make these platformer ideas
interesting enough. We started
throwing around joke ideas. I said,
“How about a person driving a
person with horribly complicated
controls?” Then Nick responded,
“What if it were an OCTOPUS
driving a person?” We pulled up
a YouTube video of ‘Jurassic Park:
Trespasser,’ which we thought
was unintentionally hilarious but
also strangely compelling. So we
brought this ridiculous idea of an
octopus driving a person back
to the team, and it eventually
morphed into the player controlling
an octopus with a human family.

TC: How was the decision made
to emphasize unwieldy controls?
Did the gameplay arise from the
appealing premise?
Jake anderson (Lead Designer):
The concept and the game controls
really went hand-in-tentacle with
one another. Our goal was set for
us when John gave his live demo
during the pitch, flailing his arms
and acting out how OctOdad might
stumble around. The comedy in
the concept was what really drove
the game forward. We started
development with that target,
and recognized that in order to
create the slapstick destruction
we wanted we could limit the

control the player had over the
character by giving them the
ability to micromanage tentacles.
Balancing the frustration and
the accessibility became a task
that we tweaked throughout
development.

TC: Any favorite features that
were left on the cutting room
floor during development?
Kevin Zuhn (Project Lead, Writer):
We had some ideas for more
octopus-themed mechanics: For
instance, OctOdad's suspicion
gauge was not only how much
his family was suspecting him,
but how much ink he had built up
in his body due to nervousness.
When the bar was high, he could
either subtly dispose of his ink
to reduce the gauge, or go crazy
and spray ink all over the room.
We also discussed having OctOdad
change his skin color to show his
mood or to camouflage himself.
Nick Esparza (Lead artist): One
early idea was for OctOdad to have
a tape recorder under his suit,
so that part of fitting in was to
use a few pre-recorded phrases
to converse with people. I think
having to communicate with
people while only using phrases
like "Hello," "Thank you" and "It's
four o'clock!" would have been
hugely funny.
Ja: Our early prototypes included
banana peels and other "slippable
objects" which would send OctOdad
flying and landing in a heap on the
ground. We included this in our
GDC Kinect demo, so I'm pretty
excited to see these making their
way back into the game.

TC: How long did it take to settle
in on the final control method?
Did you look at input methods
other than the mouse?
KZ: We spent a few weeks
prototyping different control
schemes for OctOdad's movement,

and that was after coming up with
an exhaustive list of possible ways
to represent his uncontrollable
body. We tried out using WASD
and arrow keys to keep his body
from falling over as you walked.
Our very first tentacle prototype
was built for the 360 controller,
using the right trigger to lift and
the joystick to navigate. At one
point we were considering more
than one mouse! We also recently
implemented Kinect controls that
track your arm movements.
Ja: Even after developing the initial
system, the control and input
mechanics were not finalized.
We were constantly trying to
make improvements throughout
production by adding features
such as the assisted grab, or
setting the body on a pivot to allow
for greater reach distance.

TC: How did you ensure that the
game's loose and unpredictable
controls didn't frustrate players?
majdi Badri (Designer): A lot of
playtesting and level design. We
learned early that players did
not like to climb up stairs with
OctOdad's wobbly legs. This led us
to put only one pair of stairs in
the game, and save another for
our "unique" final boss. We didn't
want to keep the player in one
mode for too long, either. You can

only jam your tentacle around so
much in a kitchen before you want
to move on. We kind of developed
a rhythm of foot, hand, foot. As
I said before, playtesting was
also very important. In some of
OctOdad's early iterations, we had
him fall over if he stretched his
legs out too far. Needless to say,
players became very annoyed
when OctOdad tumbled over,
making walking around even more
difficult. So that was nixed and
we brought in the banana peels,
which were similar, but kept with
the game's humor and made more
sense to players.

TC: You have quite a big team for
a student game. How did you all
end up working together?
Jm: A couple of DePaul professors
interviewed about 50 students
to pick out a team of 20 to create
a game to win the IGF Student
Showcase. It was a six-month
extracurricular project starting
in June. While we didn’t decide to
work together, Patrick Curry and
Scott Roberts, our advisers, did
an incredible job of picking a team
full of people with complementary
personalities, so it pretty much felt
like we all had come together on
our own.

—Tom Curtis

OCTODAD
IGF Student ShowcaSe FInalISt octodad putS playerS In control oF a clumSy Invertebrate maSqueradInG aS the Father oF an unaSSumInG
Suburban FamIly. we Spoke wIth the Game'S larGe team From depaul unIverSIty to FInd out how thIS Surreal adventure tItle came toGether.

w w w . o c t o d a d g a m e . c o m

http://www.octodadgame.com
http://www.gdmag.com

©
 2

01
1

Fu
ll

Sa
il,

 L
LC

Game Art
Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

fullsail.edu
Winter Park, FL

Campus Degrees
Master’s

Bachelor’s

Associate’s

Online Degrees
Master’s

Bachelor’s

>>
GE

T
ED

UC
AT

ED

54 M A Y 2 0 1 1 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE_GD 306 MKT.V5 4/1/11 10:52 AM Page 54

http://fullsail.edu
http://mdm.gnwc.ca

Devry University .13

Epic Games .14

Full Sail Real World Education 54

IDG World Expo . 40

Geometrics LTD . 11

Havok . C2

iBeta Quality Assurance .17

IDG World Expo . 30

Masters of Digital Media . 54

NaturalMotion . C3

Perforce Software .6

Rad Game Tools . C4

Siggraph . 29

Sony Computer . 34

TwoFour54 .3

Vancouver Film School . 55

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415) 947-
6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057,
Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S.
bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing
offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call
toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274,
Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to
indicate gd Game Developer on any correspondence. All content, copyright gd Game Developer magazine/United Business Media LLC, unless otherwise indicated. Don’t steal
any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

GDP GE RHP TEMPLATE_GD 306 MKT.V5 4/6/11 2:55 PM Page 55

http://WWW.GDMAG.COM
http://vfs.com/enemies

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | MAy 201156

Gamified!
Gamification comes to arrested development

dear readers,
Welcome to the new gamification
column here in Game Developer
magazine! Just by reading that last
sentence, you’ve already earned
a “Novice Reader” badge for your
profile and 100 Magic Beenz™!
Congratulations! You can spend
your Magic Beenz™ inside the Magic
Beenz Store™ to unlock different
themes and fonts to customize
your experience with this column!

Now that you’re already on
board, let’s begin this column about
the art and science of gamification!
While you’re reading, think about
how many of your friends would
enjoy reading this, too! Send them
a note to check it out, and you’ll
earn 300 Magic Beenz™! Or, if they
don’t have a subscription to Game
Developer magazine, sign them up
and you’ll earn 1,000 Magic Beenz™
while they earn a bonus 500 Magic
Beenz™!

Notice how engrossed you
are in this reading experience!
In today’s “attention economy,”
where sources of distraction are
seemingly infinite, my ability to
keep your attention focused on
this page and reading this article
is worth literally billions of dollars!
Gamification takes the principles
of game design and behavioral
economics and combines them into
concrete, actionable tactics that
increase user engagement! You’re
now 25% through the column!
Good work! You’ve earned the
“Experienced Reader” badge for
your profile!

[Hey, we just noticed your friends
are also reading this column this
very second, and they’re all ahead
of you! Don’t let them beat you
to finishing this column! Keep
reading!]

The natural desire of all human
beings is to be at play for 100%
of the time. So why should we
relegate our time playing only to
specific periods? In the future,

game mechanics will be tied to all
important areas of life. We’ll shed
pounds and tone our abs by playing
World of Warcraft! We’ll encourage
healthy debate on public policy
through angry Birds! Instead of
being asked to pay your insurance
bill, you’ll be sent on a quest to pay
your insurance bill!

Now you’re almost 50% through
the column! Just a little more and
you’ll get to the halfway point!
When you do, you’ll earn the
“Veteran Reader” badge on your
profile! You will also level up and
unlock the last half of this column!

ding! You did it! You can now
read the rest of the column!

It’s crazy, but there are some
people who criticize “gamification.”
Now why would anybody want to do
that? There’s no Magic Beenz™ to be
earned by making a sad face about
the exciting world of gamification!
Let’s take a look at their criticisms
anyway! We can do it just for fun!
Fun is what gamification is all
about!

“Gamification is actually just a new
term for old sales techniques, such
as loyalty programs.”
[Press here to “dislike” this
criticism of gamification!]

WronG! Gamification is entirely
new! There was no conception
of the principles of gamification
before Dr. Frédéric Gamific, the
inventor of gamification, was struck
with a vision after collapsing on his
hedonic treadmill one evening! We
all know this story! Don’t you?

“Gamification fundamentally
misinterprets why people do
things.”
[Press here to “dislike” this
criticism of gamification!]

I’ve read about this one! It’s got
something to do with “intrinsic”
versus “extrinsic” motivation,
doesn’t it? Well, what if I were to
tell you that there were over TEN

THOUSAND Magic Beenz™ in it for
you to hit that “dislike” button right
up there? That makes the issue go
away real fast, doesn’t it? Look at
you go!

“Gamification is not real game
design.”
[Press here to “dislike” this
criticism of gamification!]

Oh, now what? Did the International
Congress of Game Design decide
what’s game design and what isn’t?
Well excuse me, but I’m increasing
customer loyalty and boosting ROI
here! If that isn’t “game design,” I
don’t know what is! Keep this up
and I’m going to ban you!

And there we go! I hope that
answers some of the critics of
gamification! Honestly, though,
I think those sad sacks are just
jealous that they aren’t having a
mega-fun gamified experience
like you are! Which reminds me,
enable auto-Tweeting about your
badges and you’ll earn an additional
4,500 Magic Beenz™ per tweet!

Or you could share it on your
Facebook page! Your friends are all
going to want to know about your
accomplishments!

[Hey, we just noticed that all of
your friends liked this column so
much that they’re already planning
on reading next month’s column
when it comes out! You should
probably join them and do the
same! Reserve your copy of next
month’s Game Developer magazine
right now and get an additional
50,000 Magic Beenz™!]

You’re now 100% through the
column! Excellent work! You’ve
earned the “Amazing Person,”
“Genius Reader,” and “Gamification
Expert” badges for your profile!
Here’s 1,000,000 Magic Beenz™!

m a t t h e W W a s t e l a n d writes

about games and game development

at his blog, Magical Wasteland (www.

magicalwasteland.com). Email him at

mwasteland@gdmag.com.

il
lu

st
ra

ti
on

 b
y

ja
ce

k
W

oo

the beans! they tempt you!

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

http://www.naturalmotion.com

http://www.radgametools.com

	Contents
	POSTMORTEM
	XBOX LIVE INDIE GAMES

	FEATURES
	GAME ENGINE SURVEY 2011
	GAME DEV HEROES

	DEPARTMENTS
	EDITORIAL - GAME PLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOL BOX
	PROGRAMMING - THE INNER PRODUCT
	SOUND - AURAL FIXATION
	DESIGN - DESIGN OF THE TIMES
	BUSINESS - THE BUSINESS
	ART - PIXEL PUSHER
	CAREER - GOOD JOB!
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT

