
MAY 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

O .K., so I’ve got to come
clean on this whole vio-
lence thing. I don’t like
violent videogames. I don’t
like violent movies much

either. My personal definition of violence
includes gratuitous use of blood and gore.
I don’t care if the blood is green, and I
don’t care if they are zombies, aliens, or
space marines — I’m just not interested in
killing things or seeing things killed. But I
respect that there are people out there
who do enjoy violent themes in games and
movies, and I don’t want to limit their
right to experience that. On the other
hand, when the focus is on competition
such as in COUNTER-STRIKE, I’m willing to
wave away my concerns.

But does playing violent games make
people violent? I certainly don’t think so,
not at our current stage of technology.
However, every experience people have in
life has the potential to teach them some-
thing. It’s part of being human: we try to
generalize every experience into a lesson or
rule we can apply to life. So every experi-
ence you have during the day has the
potential to educate.

One thing that a violent game can teach a
person is how to be a sharpshooter. Those
arcade games with the guns — they’re great
training devices for learning how to hit tar-
gets quickly and accurately. But does this
mean that they’re training you to be vio-
lent? This is a very fine distinction. If vio-
lent games really trained people to act vio-
lently, wouldn’t John Carmack or Thresh
have gone postal by now?

Given that games can teach people, why
aren’t there more fun educational games
available? Do you remember what it was
like to learn history, or physics? I remem-
ber my experience, sitting in an uncomfort-
able desk for hours at a time listening to
an uninspired teacher drone on and on. As
an industry, we could be making games
which take the boredom out of school for
the next generation of students. Can you
imagine playing a QUAKE 3–quality game
which has been designed specifically to
teach you chemistry? Or art history?

I keep thinking about a good friend of
mine who is an incredible DANCE DANCE

REVOLUTION (DDR) player. Now, I never
would have imagined this fellow bopping
around on a dance floor, but he recently
won a Seattle-area DDR competition. As a
result of his excitement about DDR, he’s
gotten into better shape, gained a large
social circle, and improved his self-esteem.
I doubt that DDR was specifically designed
to produce these results, but it is a very
pleasant side effect. Given that it is possi-
ble for games to affect people in this man-
ner, what kind of games could we create
with these potential results in mind?

Most of us think of games solely as a
form of entertainment. But they are also a
form of education. What is your game
teaching your players?

This Month

I ’m sure you’ve heard the statistics before:
current top-selling PC games don’t even

utilize the bandwidth of the standard AGP
bus, let alone get anywhere near AGP 4x
performance. This month, Dean Macri of
Intel shares some techniques you can use to
optimize your AGP bus utilization.

Gavin Dodd from Insomniac Games
spent many cycles working out a unique
crack protection scheme for Insomniac’s
title SPYRO: YEAR OF THE DRAGON. His
results? Preventing a fully cracked version
of SPYRO from spreading around the
Internet for two months. If you’ve pub-
lished CD-based titles, you know that this
is quite an accomplishment. Gavin shares
his techniques this month with the hope
that you too will be able to benefit from
his research.

The movie Chicken Run was an animated
sensation. The game CHICKEN RUN was one
of the most elaborate cross-platform proj-
ects yet, appearing on Dreamcast, Play-
station, PC, and Game Boy Color. Dave
Flynn and Dave Manuel from Blitz Games
share their experiences building a game on
this unique license in our Postmortem.

We hope you enjoy this month’s Game
Developer!

Violence and Education

600 Harrison Street, San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager & Western Region, Silicon Valley & Asia
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMANETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Strategic Marketing Manager Darrielle Ruff
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz
Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Corporate President/COO John Russell
CFO John Day
Group President, Business Technology Group Adam K. Marder
Group President, Specialized Technologies Group Regina Starr Ridley
Group President, Channel Group Pam Watkins
Group President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
magazine is

BPA approved

W W W . G A M A N E T W O R K . C O M6

A D I V I S I O N O F C M P M E D I A I N C .

✎

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Author Stresses Story
over Style

I nspired by the Game Plan column
“Telling Stories” (February 2001), I

decided to write about an incident that
contributes to thediscussion of games as
an art form discussion.

I’m a game designer at Satama in
Tampere, Finland. In the last 20 years,
I’ve witnessed the uprise of ever more
visually stunning graphics engines and the
downfall of story — I don’t necessarily
mean an absence of story, but badly writ-
ten dialogue, lame characterization, and a
lack of literary values. There is a complex
and twisted story line in FINAL FANTASY

VII, but the dialogue is appalling.
My mission as a game designer has been

twofold: to write an adventure game in
Finnish for the Finnish-speaking audience
and to write it in a rich and elaborate way.
For 20 months our team of four artists
(myself, a graphic artist, an animator, and
a sound designer) forged a very non-state-
of-the-art, non-real-time-3D, non-force-
feedback, sprite-based, top-down-view
role-playing adventure game in the tradi-
tion of Super Nintendo’s ZELDA. I don’t
want to stress the low-tech aspect of the
game — it’s not the thing that made this
game any good. We wish we could have
made this game in glorious real-time-3D,
but we did not have that know-how or
resources at our disposal. The game was
written in Lingo (on Director), as that was

the programming language I was fluent in.
Only a few weeks after our finished

game, GALILEI 2: ISLAND OF ADVENTURE,
went public, the Finnish Ministry of
Education awarded us with the annual
Suomi award, given for a distinguished
career in arts, a notable artistic achieve-
ment, or a promising breakthrough. It was
a great honor to be awarded, not so much
for the personal glory, but as an acknowl-
edgement for the whole industry. It was
the first ever cultural award for a game in
Finland. Personally, I’ve always seen games
as an art form, but here was recognition
clear and strong that they could be elevat-
ed to that status in the public eye. It has
been heartwarming to see that reviewers
and the game players themselves have
noted and valued the game’s emphasis on
storytelling and clever dialogue. From the
feedback we’ve received, I’ve noted anoth-
er interesting aspect: a majority of our
game’s players are women. Apparently you
don’t have to make “games for girls,” just
a game that’s intellectual and nonviolent.
The rest will follow.

Thank you for your attention. I hope
this was good news to you too. I just had
to use this opportunity to tell about this
achievement as there has been so much
talk about story and whether games will
ever be an art form of their own.

Henri Roth

Satama Interactive

via e-mail

Reader Questions NPR

I ’m a master’s student at Johns Hopkins
University, doing my thesis in the area of

real-time non-photorealistic rendering
(NPR). Since research in NPR is still new,
it’s difficult for me to evaluate the potential
and usefulness of NPR in games, especially
techniques such as painterly, pen-and-ink,
and watercolor, although cartoon rendering
does seem to be gaining popularity. I read
Jeff Lander’s article “Graphics Program-
ming and the Tower of Babel” (Graphic
Content, March 2001), and I had some
questions. Are these “other” NPR tech-
niques being used in games? I find it disap-
pointing that “interactive frame rates” usu-
ally means a few frames per second. Jeff
described methods of using Direct3D’s new
vertex shaders as a means of achieving car-
toonlike shading. Can this be extended
towards other techniques? Since most NPR
techniques are basically texture-mapping
techniques, I don’t know if having this type
of hardware support will help much. I’m
very interested in real-time graphics in
games and would very much like to con-
tribute something in this new and seeming-
ly hot area.

David Ko

The Johns Hopkins University

via e-mail

C
Send e-mail to editors@gdmag.com, or

write to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

8 m a y 2 0 0 1 | g a m e d e v e l o p e r

Kludge by Tiger Byrd and Daniel Huebner

There’s
no way any-
body’s going to

believe this.

Tell me
about it.

Especially this
part right here -- now
that's just way too
over the top!

You guys checking
out the concept art?

No -- The
production schedule.

Playable
demo by E3?
Whatever!

You have to
suspend disbelief in this
business, but this is too

much.

10 m a y 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
J

Sega restructuring.
Sega president Isao
Okawa has helped to ease
some of his company’s
recent financial pain by
giving his stake in Sega
back to the company as a
gift. Okawa gave up his
12.5 percent stake in Sega
on January 31, totalling
19.87 million shares
worth more than $280
million at the time of the
transaction. Okawa also
gave up stakes in compa-
nies associated with Sega, including a 4.8
percent share of CSK Corp. and a 3 percent
stake in ASCII Corp., for a total stock gift to
Sega worth $566.3 million.

Sega is looking to save costs by making
job cuts and will accept voluntary retire-
ment from 300 employees as part of a
downsizing plan related to its departure
from the console business. The company
said it will post a $11.2 million special loss
for these retirement allowances but adds
that in the long run the retirements will
result in $16.4 million in annual savings.

Sega’s decision to exit the hardware
market has also translated to layoffs for
Sega of America. The company has cut
jobs in departments tied to the Dreamcast
console, largely in the marketing and
quality assurance areas.

Positive financial forecast. Things are
looking up for a number of the industry’s
biggest players. Activision reported income
of $20.5 million on revenues of $264.5 mil-
lion in the third quarter, slightly down from
last year’s third-quarter result of $22.3 mil-
lion in income on $268.9 million in rev-
enue. Meanwhile, mergers and reorganiza-
tion are starting to pay dividends for Info-
grames. The company’s second-quarter rev-
enues increased to $127.5 million from last
year’s second-quarter revenues of $109.7
million. Changes in income were impres-
sive, as the company exchanged last year’s
second-quarter loss of $118 million for this
year’s net income of $16.5 million for the
same period. Infogrames’ second-quarter
results include its October 2 merger with
Infogrames North America. For its part,
THQ announced earnings results for its fis-
cal fourth quarter which show net income
improving 45 percent to a record $21.5

million. Revenue for the fourth quarter also
broke a company record, increasing 50 per-
cent to $190.9 million. Ubi Soft’s fiscal
third-quarter results show consolidated
sales of $100.7 million, an improvement of
nearly 50 percent from last year.

Negative financials. Midway released its
results for the fiscal second quarter, posting
lower-than-expected earnings. The Chicago-
based company lost $3 million on revenue
of $76.9 million, down a whopping 48 per-
cent from the $147.6 million in revenue for
the same period last year. 3DO is also feel-
ing the pinch, revealing a fiscal third-quarter
loss of $12.3 million on revenues of $29.9
million, compared to a profit of $1.4 mil-
lion on revenues of $41.2 million for last
year’s third quarter. Both companies cited
the current slump in game sales as the cause
for their losses and expect larger returns in
the coming quarters.

Game makers file suit against online
pirates. Twelve game companies are
bringing civil lawsuits against the operators
of web sites alleged to be offering illegal
game downloads. The game companies
(Activision, Capcom, Eidos, EA, Havas,
LucasArts, Interplay, Midway, Microsoft,
3DO, Sierra, and Nintendo) allege that the
defendants offered pirated copies of hun-
dreds of titles on various “warez” sites on
the Internet. The suits seek court assistance
to shut down the offending sites and to
bring monetary penalties that could range
as high as $150,000 for each copyright vio-
lated. “These cases target Internet warez
and ROM sites where games can be down-
loaded,” explained Doug Lowenstein, presi-
dent of the Interactive Digital Software
Association, the trade group which repre-

sents game publishers. “Those
engaged in piracy need to under-
stand that they will be targeted for
legal action and that they will pay
a price for their illegal conduct.”

Ubi Soft acquires Blue Byte.
Ubi Soft has acquired German
developer and publisher Blue Byte
Software. Privately held Blue Byte,
which has 64 employees, is the
maker of the SETTLERS and BATTLE

ISLE game series. The company
was founded in 1988 by the cur-
rent head of the company, Thomas

Hertzler, and has operations in Germany,
the United States, and the United Kingdom.
The acquisition was consolidated into the
Ubi Soft accounts as of February 6, 2001,
and Ubi Soft reports that it will have a pos-
itive impact on its results in 2001.

Blizzard files Diablo movie suit. Bliz-
zard Entertainment has filed suit to prevent
New Line Cinema from releasing a movie
under the “Diablo” name. Blizzard con-
tends that New Line is trying to use the
popularity of the DIABLO videogame fran-
chise to promote its film, which is unrelated
to Blizzard’s game of the same name. Fur-
thermore, Blizzard has plans to produce a
movie of its own based on the DIABLO fran-
chise and using the DIABLO brand. Blizzard
was granted a DIABLO movie trademark in
2000, though New Line contests its validity.
New Line’s Diablo film, which began pro-
duction last December, features Vin Diesel
and revolves around a drug lord known as
Diablo. Blizzard is seeking an injunction to
prevent the release or promotion of the film
under the Diablo name. q

d a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

M E D P I 2 0 0 1 S O F T WA R E
GRIMALDI FORUM

Monte Carlo, Monaco
June 26–29, 2001
Cost: variable
www.reedexpo.fr/anglais/
factsheet.html?salon=28

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Activision’s TONY HAWK 2 (left), Infogrames’ UNREAL TOURNAMENT (top right), and Ubi
Soft’s RAYMAN (bottom right). All three companies have posted impressive earnings
despite an overall slump in the market.

C ubase VST/32 5 is German
developer Steinberg’s flag-
ship entry into the important
digital audio sequencer mar-
ket. It offers competitive

functionality (deep and robust MIDI editing
alongside a high-resolution multi-track
audio system) and some unique extras.
Introduced in 1989, Cubase is certainly one
of the established players in the segment.
Steinberg’s Virtual Studio Technology (VST)
has become popular as a cross-platform
foundation for digital audio, with countless
compatible effects plug-ins and virtual
instruments on offer from a number of
developers. Cubase VST/32 5 claims an
impressive feature set including audio reso-
lutions up to 32-bit, Apogee UV22 dither-
ing, four bands of parametric EQ, a dynam-
ics processor, four insert effects, and eight
aux sends per channel. It is available for PC
and Mac; I looked at the PC version.

Now, there are certain problems with
reviewing popular, mature, full-featured

products like Cubase. How does one delve
deep enough into such a huge application
to give meaningful advice to prospective
buyers? How does one secure the credibili-
ty to critique an application used regularly
by professionals for high-end work? How
does one distinguish raw prejudice from
thoughtful analysis? Here’s how I solve
these problems: Cubase VST/32 5 is a fine,
well-made application capable of solving
just about any MIDI or audio recording,
editing, mixing, or processing task it’s put
to. It’s extremely powerful, sounds great,
and is rock stable. Whether you actually
like it and find it useful is a mostly person-
al matter. Whatever you need, Cubase can
do it, and do it very well. Go online
(www.steinberg.net) and download the
fully functional demo.

Cubase starts with a deficit — it uses a
dongle for copy protection. I know, musi-
cians are criminals, and without a brutish
and despotic lockdown the application
would be copied ruthlessly. This is exceed-

ingly unfortunate, but it’s hard to deny
that it’s probably true. Otherwise, instal-
lation was smooth and quick. Lots of
good electronic documentation installs
along with the application, and so do a
couple of useful demonstration and tutori-
al songs. A well-written Quick Start guide
is included in the package, beginning with
chapters called “What is MIDI?” and
“What is Digital Audio?” and running
through nicely organized examples of
most major features of the software.
Beginners are in good hands, and more
experienced users moving over from other
applications will find a handy reference to
the particulars of Cubase.

I tested Cubase in Windows 2000 run-
ning on a 700MHz Pentium III with
256MB RAM and a 30GB hard drive,
decent, if not cutting-edge, computer
hardware. But I had trouble getting my
pro-level audio hardware to work under
Windows 2000, so I finally decided to run
Cubase with a trusty Sound Blaster Live!
doing MIDI and audio duty. This was
lower-end than I would have preferred,
but worked well. I was unable to assess
Cubase’s high-end audio features, but I
certainly believe they work as advertised. I
did several projects in Cubase: I edited the
demo songs, imported a video and its SFX
tracks in order to work on MIDI music
tracks, and created a loop-based piece
with lots of audio tracks. In each case, my
results aligned well with my expectations.
The MIDI power is formidable. As for
audio, basic mixing processes sound great,
the EQ and dynamics are clean and effec-
tive, and other included effects (reverbs
and such) are more than acceptable, if less
than spectacular. The included analog-
modeling synthesizer is a nice touch and
great fun. But then, who cares about
included effects when there’s an almost
limitless supply of VST-compatible effects
available? Cubase also supports DirectX
format plug-ins, so third-party support
will not be a problem.

The meat of the work you do in Cubase
takes place in the Arrange window, and
this window works very well indeed.
Track names are aligned down the left
side, their contents graphically across the
right. MIDI and audio coexist happily
here on the right side, and editing is easy
with grid lines that can be turned on and

w w w . g d m a g . c o m 13

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

Cubase VST/32 5
by andrew boyd

The Cubase VST/32 5 interface.

XP R O D U C T R E V I E W S

14 m a y 2 0 0 1 | g a m e d e v e l o p e r

off, snap-to values that are quickly
changed, and easy color coding. Sliders in
the lower-right corner adjust the overall
horizontal and vertical zoom levels, and
horizontal zoom can also be adjusted
independently and arbitrarily per track.
Expander buttons on the far left of the
window open a section with functional
details of the selected track. Dragging a
file from Windows Explorer imports it as
an event. Right-clicking on an event opens
a toolbar menu, and double-clicking
opens the event in a specialized editor.
This is all intuitive, informative, and con-
textually appropriate.

And on the whole, using Cubase makes
sense enough. It didn’t take me long to
feel competent — but I never really settled
in and got comfortable. It’s not the best-
looking application for one thing (garish
and busy to my eyes), and its operation is
often illogical, even inconsistent. Some-
times a display window is a display win-
dow, sometimes it’s an edit box, and
sometimes it’s a drop-down list. There’s
no consistent way to tell which. Why is
the Create Track command in the Struc-
ture menu, while the Delete Track com-
mand is in the Edit menu? Why are win-
dows called Panels some times and Win-
dows other times, and why are some
things that in most ways seem like Panels
called Modules? There are probably rea-
sonable explanations for all of these, but I
was unable to discover them.

When a large number of windows are
open at once, the screen can get very clut-
tered and confusing, and Cubase opens a
new window for virtually every operation.
For example, the mixer window has four
LED-style indicators labeled INS, DYN,
FX, and EQ. Clicking on any of the four
indicators opens a channel-specific win-
dow called the VST Channel Settings win-

dow. This is like a “fat channel,” or an
exploded view, dedicated to the operation
of a single channel. Here, an apparently
identical set of the indicators appears
again, but now clicking on them generates
different results. For instance, clicking on
the INS and FX indicators here has no
effect. But immediately to their right are
two columns of buttons and knobs and
drop-down lists labeled Inserts and Sends.
In the Inserts column, clicking on an
effect name drop-down list opens a win-
dow where you choose your desired insert
effect. Clicking the On button illuminates
the INS indicators in this window and on
the mixer. To adjust the parameters of the
effect, you click on the Edit button, which
opens another window. And so on.

For me, the flexibility this represents is
overshadowed by the resultant visual chaos
and the constant danger of adjusting the
wrong parameters. A fat channel display
that always and only shows the currently
selected channel would be more useful
than a screen full of them, all looking
almost exactly alike. The title bar of each
VST Channel Settings window does con-
tain the name of the channel it represents,
but it’s easy to imagine naming two chan-
nels the same thing — say, “guitar” — and
then really screwing up the settings on one
because both VST Channel Settings win-
dows are open and it isn’t clear upon
which you are working.

I found it hard to create a workspace
wherein I could easily glance at important
information. The INS indicator in the
mixer can show that one or more inserts
are active on a channel but not how many
or which ones. The VST Channel Settings
window can show which and how many
inserts are active and the effects assigned
but not any of the effects’ settings. The
effects settings windows can show the set-
tings for that particular effect but nothing
else about the channel. In a large mix with
dozens of channels, each with EQ, dynam-
ics processing, and three or four insert
effects, finding immediately relevant mix
information becomes very frustrating.

Of course, a program like this has so
much to communicate that there will
always be particulars and idiosyncrasies in
any scheme it uses. And it’s possible that I
missed things — it can take months to
really get into an application like this.

Nonetheless, I believe the inconsistencies
in the interface detract from Cubase’s
usability. Whether or not these are a prob-
lem for you is, well, for you to decide.

If you’re a pro happily using one of the
other digital audio sequencing packages,
there may not be a compelling reason to
switch to Cubase. If you’re a beginner just
getting into large-scale digital music pro-
duction, Cubase absolutely has a lot to
offer. It’s so powerful that you’re not likely
to push its limits anytime soon, and its
helpful documentation will speed you on
your way. Once you are accustomed to its
interface, you might learn to love it, and
the support offered to its VST engine is
phenomenal. If you’re a seasoned pro with
reason to switch applications, Cubase is
worth a look. It’s got the quality to run
with anything, and its depth of features is
outstanding. q

Cubase’s VST channel settings.

CUBASE VST/32 5 XXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

STATS
STEINBERG MEDIA TECHNOLOGIES AG

Eiffestr. 596

20537 Hamburg, Germany

www.steinberg.net

PRICE

$799

SYSTEM REQUIREMENTS

PC: 200MHz Pentium, 64MB RAM,

Windows 95/98/2000; Mac: Power PC

200MHz, 64MB RAM, MAC OS 8.5 or

greater

PROS
1. Incredibly deep and powerful MIDI and

audio functionality runs with the best.
2. VST architecture guarantees huge

palette of after-market goodies.

3. Arrange window is a powerful way to
envision MIDI and audio data.

CONS
1. Odd inconsistencies in interface slow

down workflow.

2. Bright and garish visuals cause
fatigue, confusion.

3. Dongle copy protection.

16 m a y 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

THE CHAOS GROUP’S
PHOENIX 1.5

by steven thompson

C reating realistic fire effects in 3D has
always been a challenge. The Chaos

Group stepped up to this challenge by cre-
ating Phoenix, a 3DS Max plug-in distrib-
uted by Digimation.
Phoenix produces real-
istic, natural fire effects
that react to the move-
ments and modifica-
tions of their emitters.
A single candle flame,
a campfire, or a raging
fireball can be generat-
ed quickly and easily
while giving the user an
astounding amount of
control over the fire’s
color, shape, movement,
and interaction with
objects in the scene. The latest version,
Phoenix 1.5, adds some powerful new fea-
tures to its already sophisticated toolset.
Phoenix Lights, Phoenix Render Effect,
and Phoenix Fractal Map give users more
editing power and reduce production
time. The new version boasts improve-
ments in speed and stability, better inter-
active controls, and greater flexibility for
emitters and deflector objects.

The most significant addition to
Phoenix 1.5 is the Phoenix Light. Adding
a single Phoenix Light to a scene creates a
series of lights for each flame object, or
Shapenode, within a Phoenix atmospheric
effect. The light can be attached to multi-
ple atmospheres and can affect multiple
emitters within each atmosphere. For
example, let’s say you have two Phoenix
atmospherics in a Max scene, one with
two orange-colored torch flames and
another with two blue-colored torch
flames. Adding one Phoenix Light to the
scene and attaching it to both atmospher-
ics enables all of the torch flames to emit
light based on the color of the flames.
Because Phoenix Lights derive their color
from the parent flame, the intensity and
color of the light emitted are based on a
dynamic fractal, which automatically pro-
duces natural flickers from the flame
source. Need to tweak the color of a
Phoenix Light? No problem. A color-cor-

rection swatch enables you to add color
correction to the light emitted from the
flames. You can also choose whether the
color is additive, subtractive, or a combi-
nation of these.

A Phoenix Light works by automatical-
ly placing a large number of lights along
the splines that define the shape of the

flames. The num-
ber and intensity
of lights added to
the splines can be
controlled, so you
can balance render
speed and quality.
The huge advan-
tage gained from
Phoenix Lights is
that users no
longer have to cre-
ate scores of ani-
mated lights to
mimic the natural

light emitted from the fire effect. As you
might expect, render times for scenes con-
taining Phoenix Lights can be a bit long,
particularly if cast shadows are active.
This can be remedied simply by reducing
the number of lights per spline and dis-
abling the Cast Shadow parameter during
test renders.

An important addition to Phoenix 1.5 is
the Phoenix Render Effect. The Render
Effect copies Phoenix render information
into the appropriate G-buffer channel for
use in postproduction or with other Max
plug-ins such as Lens Effects. Material
Effects ID, G-buffer ID, non-clamped
color, Z-buffer, RGB color, UV, and cover-
age channels are supported. Each channel
also has a number of common controls
that can be flagged, such as brightness
and/or density, raytrace output (RT), and
channel clearing (CLR).

Want to make a fire that won’t take a
long time to render? Enter the Phoenix
Fractal Map. This new feature takes
Phoenix’s Color Fractal and routes it to a
procedural map that can be applied to any
material mapping channel in Max. The
purpose of this feature is to create quick,
relatively distant, or small fires procedu-
rally, without having to create a proces-
sor-intensive 3D volumetric fire.

If you’re considering upgrading from
Phoenix 1.0, the Phoenix Light feature

alone is well worth the $50 upgrade cost.
Tweaking the plethora of controls can be
tedious at times, but this comes with the
territory when you have so many editing
options. Phoenix 1.5 is available for 3DS
Max 3 at a list price of $395. Digimation
promises registered Phoenix users a free
upgrade for 3DS Max 4 when available.

XXXX | PHOENIX 1.5
The Chaos Group (distributed by Digimation)

www.digimation.com

CODEPLAY’S VECTORC
by brian sharp

C odeplay promotes VectorC as “a stan-
dard C compiler that can automatically

create highly optimized code for PCs that
make use of MMX, AMD 3DNow! and
Intel Streaming SIMD extensions.” It sup-
ports the specific instruction sets of a large
variety of processors, including the Pentium
III, Pentium 4, and Athlon. Its target market
is development where optimization is essen-
tial, and games fall neatly into that domain.

VectorC is specifically designed to vec-
torize generated code — to make use of
SIMD-style instructions on processors —
which few other standard compilers pur-
port to do as effectively. For game develop-
ers who need a few more percentage points
out of their code, VectorC could be a god-
send if it performs as promised.

When I first read over the information
on Codeplay’s web site, I had some appre-
hensions. The lack of a troubleshooting
section in the documentation was a bit
concerning. As it turned out, it wasn’t nec-
essary. Installation of the compiler was
trivial, and configuring it to run within
Microsoft’s Visual C++ was also a snap.
Choosing compiler options was simple
enough, thanks to the great documenta-
tion, which is written in a very straightfor-
ward, readable style.

I started out with a C++ application and
pulled hotspots out as C code and used the
VectorC compiler on them. Unfortunately,
the act of porting small sections of my
C++ code to C proved harder than I’d
anticipated, which leads me to my main
concern about VectorC: if you write in
C++, it may be tricky to isolate sections of
your code after you’ve written them and

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

A scene lit with a single Phoenix Light.
Natural-looking flickers are emitted as the
flame moves.

18 m a y 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

apply this compiler to them. However,
Codeplay claims that work on C++ sup-
port is under way, so it may be that my
concern is short-lived.

I then decided that the most efficient
way to test VectorC’s capabilities would
be with an existing, computationally
intensive application that was already pure
C. I downloaded the source code to QUAKE

1 (ftp://ftp.idsoftware.com/idstuff/source/
q1source.zip) and built it using the pure C
versions of functions — none of the hand-
written assembly — with relative ease
under Visual C++ 6. In release mode, it
ran fairly correctly, with only a few minor
rendering artifacts.

The real test, then, was to build QUAKE 1
with VectorC. I was impressed: it generated
four errors, but other than that, it built cor-
rectly. It took five minutes to move from
the Visual C++ compiler to the VectorC
compiler and address all the resulting
issues. While QUAKE had some artifacts at
high optimization levels, at lower levels it
ran correctly on the first shot.

My end test was to pit my Visual C++ 6
executable against my VectorC executable
built at optimization level 3 (on a scale
from 0 to 10, 10 being the most robustly
optimized). I recorded a quick demo. The
results were 59.7 frames per second from
the Visual C++ executable, to 63.3 frames
per second from the VectorC executable, a
not-insignificant speed gain from a rela-
tively low optimization level. I was pleased
with how quickly I was able to produce
good results.

A potential drawback of VectorC is that
the Professional Edition is rather expen-
sive at $750. However, there is a Special
Edition (which lacks Pentium 4 and
Athlon optimizations) available for only
$80. Overall, VectorC is a novel and
promising compiler. If your game could
stand to be faster, it’s almost certainly
worth trying out the Special Edition of
VectorC and perhaps then upgrading if
your results are good. Games written
entirely in heavily object-oriented C++
might not be able to benefit quite as easily
from VectorC, but with a C++ version of
the compiler in the works, even that prob-
lem will hopefully be resolved soon.

XXX | VECTORC | Codeplay |
www.codeplay.com

AVID’S SOFTIMAGE XSI 1.5
by david stripinis

S oftimage is back. That’s my reaction
to Softimage XSI 1.5. Rich with new

features and refinements to existing ones,
this is a major release of Avid’s 3D produc-
tion tool. My only logical assumption is
that all these features were originally
intended for version 1.0, before market
forces hastened its release.

Most significant in this release is the
addition of a complete suite of polygon
and subdivision surface tools. XSI 1.0 had
virtually no polygonal modeling support,
short of simple primitives and imported
models. This has been rectified in a most
impressive manner. Artists have the ability
to modify existing geometry or build it ver-
tex by vertex. Whenever a component
object (an edge, point, or polygonal face) is
selected, right-clicking will bring up a con-
text-sensitive set of operations, speeding up
modeling quite a bit. The toolset seems
very similar to those offered by Winged
Edge Technologies’ products, including
powerful beveling, extrusion, and polygon-
bridging. XSI is not restricted to closed
shells, however, which is of great benefit to
game artists trying to optimize every single
polygon of a model.

Refinement of detail within a model is a
breeze, with an impressive edge-splitting
tool and multiple methods of subdividing
components. One fault was the lack of any
kind of automated symmetry tool, which
enhances the modeling of polygonal charac-
ters. This addition, as well as a way to select
edge loops, would put XSI in a position to
honestly claim the role as the premier polyg-
onal modeling tool available to artists today.

All these pretty polygons would be use-
less without textures, and XSI’s ability to
apply texture coordinates to polygonal
models is nearly as powerful as its facility
at creating the models themselves. Many of
the same hotkeys and transformation tools
work in the texture editor, although I was
quite disheartened to see the powerful pro-
portional modification tool did not. XSI
also handles multiple UV channels, which
some next-generation consoles and PC
products support.

The other major modeling addition is
subdivision surfaces. Support for both
Catmull-Clark and Doo-Sabin surfaces are

included and can be changed via the
Property Editor at any point. Subdivision
surfaces are created by selecting a polygo-
nal object and pressing a button. XSI
retains a connection between the two
objects, so editing the original alters the
resulting surface. XSI also provides fully
variable creasing of both vertices and
edges. One major pitfall is the apparent
inability to work with a wireframe control
object and a shaded resultant surface.

Other additions to the modeling func-
tions of XSI include the capability to do
more precise modeling, with the addition
of snapping tools and reference. Many of
the NURBS tools have been expanded, par-
ticularly in the area of curve editing. Inci-
dentally, NURBS geometry can also be
converted to polygons.

One interesting addition is the head gener-
ator. Along with bipedal skeletons of varying
complexity and full-body models of both
male and female forms, there are simple
polygonal heads. The quality is that of a
stock model collection but with the capabili-
ty to edit parameters such as the cheekbones
or the muscle tension of the neck. While not
suitable for a main character, it does provide
a simple and adequate method for adding
variety to background characters.

After polygons, the most glaring absence
from version 1.0 was a dopesheet. A dope-
sheet allows easy access to keyframes, and
thankfully, Avid has included one in this
release. Also included is a spreadsheet pro-
viding access to channel data for any num-
ber of objects at the same time.

One other nice addition to the interface
is the ability to launch a web browser
within a viewport. Being able to have a
web tutorial available without toggling
between applications is a really nice fea-
ture. In fact, in everything from the new
tutorial book, which lies flat even while
open, to the video walkthroughs of fea-
tures, Avid has gone out of its way to make
XSI approachable to users of every level.

With powerful polygonal tools, strong
support for subdivision surfaces, enhance-
ments to the user interface, and user-inspired
tweaks, this is a worthy successor to the her-
itage of the Softimage product line. Softim-
age is back, and I couldn’t be happier.

XXXX | SOFTIMAGE XSI 1.5 | Avid |
www.softimage.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

20

P R O F I L E S
m a r k d e l o u r a | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

fter working with game developers for years at
Nichimen Graphics, Dave Aronson recently stepped

into the role of program manager for Direct3D and
OpenGL at Microsoft. We caught up with him in

Seattle to talk about the future of these two APIs.
Game Developer. So, what do you do at Microsoft?
Dave Aronson. I’m a program manager in the D3DX team, doing

work with content creation tool companies and input from our
graphics advisory board. My background has been dealing with cus-
tomers and trying to make that pipeline work. We’re finding that
users’ expectations for OpenGL are much different from those for
Direct3D, which is kind of shocking, but there are different levels of
expectations and desires.

GD. In the game community, there is a perception that the
OpenGL Architectural Review Board moves at a glacial pace, and
people are frustrated that new graphics features aren’t being incor-
porated into the core OpenGL quickly enough.

DA. I’d say probably the majority of people who use OpenGL
aren’t game people. I’m just pulling these numbers out of the air, but
I would guess 90 percent of the Direct3D customers are game com-
panies. With OpenGL, it’s probably more like 30 percent.

GD. Are you worried at all about cross-platform compatibility or
are you just concentrating on Win32?

DA. On the Direct3D side or the OpenGL side? On the Direct3D
side there are some issues with it being cross-platform. As we move
forward into things like .NET, things change. For cross-platform
titles people use OpenGL, and that’s one of the major reasons why
people use OpenGL versus Direct3D. It’s our concern to make the
Windows platform experience better, but as Microsoft’s business
grows outside of the Windows platform, anything is a possibility.

GD. Which game platforms have you worked on?
DA. I did 3DO for about a week. Part of the Game Exchange 1

libraries would take data and convert to Saturn, N64, Playstation,
3DO, or PC. So you could have the same animation playing on all
of them. I did a little Playstation 2 work before I left Nichimen —
right now I’m not doing anything with Playstation 2 or Gamecube,
but I still talk to people who are doing that stuff. I don’t think cross-
platform game development is going to go away right now.

GD. It’s more important now than ever. With so many platforms,
you have to do multiple SKUs in order to recoup your costs.

DA. It’s difficult moneywise and development-time-wise. Games
take longer and longer to create. You can no longer sit in your
garage, just two of you cranking out a game, one guy doing art and
one guy doing programming. I’m sure that games are going to be
coming out on every platform, but it will require significant work —
it’ll be interesting to see what types of trade-offs people make.
Obviously PC and Xbox games will be an easier transition than
going from PC to PS2 or Gamecube.

GD. There’s so much built into Direct3D now, things like
N-meshes and progressive meshes, that if you do a PC title with

Direct3D, and you
want to port to a
console besides
Xbox, it’s going to
be trouble.

DA. I think you
will end up having
lots of differences between systems, where some systems can paint a
lot of polygons really fast so they can do more polygons, whereas
some systems can do cooler things with each polygon. I vote for the
systems that can do cooler things with the polygons versus more
polygons in general. It’s kind of like the multi-texturing trade-off
that happened a few years ago, you can either precombine the tex-
tures or just have lots of textures going on at the same time.

GD. You mentioned D3DX. What’s that?
DA. I don’t think a lot of people have known about D3DX, but

it’s something that makes a huge difference between Direct3D and
other APIs. Basically it’s a set of utilities that help the gaming experi-
ence, like single-skinning functions, shader helpers, font utilities, and
so on. There haven’t been any other toolsets that I know of that
partner along with the API. D3DX will be a huge factor in making
PC games look awesome.

GD. All of Direct3D and D3DX are used for Xbox, right?
DA. I can’t comment too much on what they have specifically, but

they certainly started off with Direct3D and they have access to the
D3DX stuff, so hopefully what they choose is pretty close to what
we have, because we think that it’s pretty clean.

GD. But you guys basically split the tree?
DA. Basically we work with them, and hopefully Xbox will be in

the DirectX space, so a lot of the same stuff could be used. Whether
or not they choose to use it is up to them.

GD. Is it hard to support both Direct3D and OpenGL?
DA. In my mind I see it as pretty clear, because they’re different

markets. Game developers involved with OpenGL have work to
do if they really want it to be a game API. The hardware and soft-
ware vendors that are traditionally in the OpenGL market can’t
really do what they need to do using Direct3D right now. As
Direct3D gets more features, those delineations are disappearing.
I think you’re probably looking at very few things now that
Direct3D can’t do, and a lot more things that Direct3D can do on
top of OpenGL.

GD. Where do you think graphics are going from here? Graphics
hardware is getting very advanced.

DA. You’re going to see more programmability — but it’s going
to be the same phenomenon as with console games. In the first
year, the games are pretty good but they’re only a little different
from what came before. Then developers figure it out and do some
amazing stuff. We’ll see things that are completely programmable,
then people will go, “It’s not as good because they didn’t use the
traditional ways.” So we need to find that happy medium. q

Dave Aronson
Directing Direct3D

ABOVE. Microsoft’s Dave Aronson.

m a y 2 0 0 1 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 23

L ong before the first human
used mathematics to calcu-
late the area of a circle or the
speed of a falling rock, peo-
ple recorded their experiences

and feelings through artistic expression.
Early man used the materials in his sur-
roundings for utilitarian purposes as well
as to express his developing humanity.
History was recorded with ornate carv-
ings on stone and wood. Elaborate paint-
ings deep within caves told of both signif-
icant conquests and the frustrations of
everyday life.

Like many programmers, I often find
myself digging deep into my forebrain, try-
ing to get in touch with this primitive artis-
tic aptitude. I want to get beyond my rather
utilitarian duties and express more basic
artistic emotions. My artistic friends often
claim I must have had that part of my brain

removed early in my life. At that point I
grab my big caveman club and go do some
artist-bashing of my own.

Still, the urge to create persists. This
month, I am going to try to re-create images
in the style of these early cave paintings.
The dominant feature of this type of draw-
ing is the charcoal sketch lines that define
the outline of the object. We have run into
this before in the cartoon rendering system
that I described in this column last year
(“Return to Cartoon Central,” August
2000). When implementing the ink lines for

the cartoon system, I simply rendered all of
the back-facing edges of the mesh and relied
on the Z-buffer to sort the rendering out.
That gave adequate though not particularly
flexible or stylistic results. In order to create
the more random, hand-drawn look, I will
need to calculate the actual edges that make
up the silhouette of the object.

Tracing the Outline

L et me recap what makes up a silhou-
ette edge. A triangular mesh is obvi-

j e f f l a n d e r G R A P H I C C O N T E N T

J E F F L A N D E R | When not trying to make fire in his cave on the

hill, Jeff can be found trying to evolve into someone more artistic at

Darwin 3D. Send him your evolutionary accomplishments at

jeffl@darwin3d.com.

Images from Deep in the
Programmer’s Cave

Images from Deep in the
Programmer’s Cave

ously composed of
triangles. Each tri-
angle is made of
three edges which
connect the three
vertices of the tri-
angle. In a closed,
regular mesh, each
edge of the trian-
gle is shared with
another triangle.
For an edge to be
on the silhouette
of the object, one
of the triangles
that share the edge
must be facing the
viewer and the other must be facing away.
Once I have determined the two faces that
share an edge, I can calculate whether it is
on the silhouette easily by looking at the
face normals.

So the first step is to create an edge
database that contains all the edges in the
mesh that could possibly make up the sil-
houette. I will need to store two indices
into the model vertex list. These indices
will point to the two endpoints of the
edge. In addition, I want to store the nor-
mals for each of the two faces to which
the edge is connected.

Given a triangular mesh, I can go
through each triangle and generate this
edge database. I want to make sure that
each edge is only represented in the data-
base once. That means I need to be aware
that the order of vertices is most likely
reversed in the second connected triangle.

Once I have collected all the edges into
the database, I have the complete poten-
tial silhouette edge pool for the model. As
you can see in the clock in Figure 1, there
are quite a few edges in the model. In this
particular image, there are 444 edges. It
should be apparent, however, that many
of them couldn’t possibly be part of the
silhouette. For example, some of the edges
on the front face of the model are clearly
never part of the silhouette, so I don’t
want to consider them. If the normals of
the two triangles that share an edge are
equal, the two triangles are planar, and
that edge cannot be part of the silhouette.

I still may actually want to draw that
edge in some cases. For example, if the
edge makes up a boundary between two

different textures or materials, I may
want to always draw the edge if it is
within view. However, most of the time,
this is not the case.

So, I now have established my first rule
that will reduce the number of edges I
have under consideration. If the adjoining
triangles are planar, the edge is rejected. I
can test for this condition by seeing if the
dot product between the two triangles is
equal to one. If they are, the edge can be
dumped. On the clock model, this simple
test drops the edge count from 444 edges
down to 256.

You might be tempted to reject the
edge if the angle between the adjacent
triangles is very small, say two or three
degrees. That seems pretty close to pla-
nar. However, let me use an example to
explain why that will not work. Let’s
assume we have a model of a cylinder
with five divisions along its length. Now
scale the vertices at the center of the
cylinder so that they are slightly larger
than the two ends. Scale the vertices at
every other division along the cylinder so
they smoothly interpolate to the two end
caps. This should give you an object that
is roughly cigar shaped. If the scaling is
not great, the connected angle between
triangles along the length will not be
greater than two degrees. As you can see
in Figure 2, the problem is that if you
view the cylinder along its length, even
this slight angle will create the need for a
silhouette edge along the length. It’s clear
that even the slightest change in angle
greater than zero degrees could potential-
ly create the need for a silhouette. So it is

probably better to eliminate only com-
pletely planar edges.

To Draw or Not to Draw

N ow that I have my database of edges, I
need to decide what should be drawn

for a given view. As I said earlier, I can use
the edge-triangle normals to determine if an
edge is on the silhouette.

I can find the angle between the viewer
and the triangle face by using the dot prod-
uct. The dot product of the triangle normal
and the view vector is equal to the cosine
of the angle between them. You may be
tempted simply to use the Z-axis as the
view vector. However, due to the perspec-
tive projection normally used in 3D view,
this will yield visual problems as the object
goes to the edges of the display. To coun-
teract this problem, the view vector is usu-
ally defined as the vector from a point on
the edge in question to the eye vector.

This gives me a couple of mathematic
equations:

where N1 and N2 are the shared triangle
normals, E is the eye point, and V is a
point on the edge in question.

As a trivial test, I know that I probably
always want to draw “hard” edges if they
are facing the view. A hard edge is an edge
where the angle between the adjacent tri-
angle, or “crease angle,” is greater than a
defined amount. I usually find that 60
degrees works pretty well for defining hard

dot N E V

dot N E V

1 1

2 2

= • −()()
= • −()()

m a y 2 0 0 1 | g a m e d e v e l o p e r24

G R A P H I C C O N T E N T

FIGURE 1 (left). A mesh clock and its edge database. FIGURE 2 (right). Slightly nonplanar edges rejected (A); Completely
planar edges rejected only (B).

edges; however, this value can be set for
each model. For nondeforming models,
this test can also be done ahead of time
and the edge flagged if it is a hard edge.

This gives me three tests to determine if
I should draw an edge. I should do so if:
• dot1 > 0 and dot2 < 0 (the edge is on the

silhouette),
• dot2 > 0 and dot1 < 0 (the edge is also on

the silhouette), or
• The edge is “hard” and dot1 < 0 or dot2

< 0 (at least one of the connected trian-
gles is facing forward).
That will render the set of edges which

are hard or make up the silhouette. The
next step is to give the lines a form of ran-
dom, sketched feel.

Wiggle It Just a
Little Bit

T o create the look of someone sketch-
ing in a more natural manner, I want

to vary the lines a bit. The first step to
creating more natural-looking lines is to
draw the edges multiple times, randomly
offsetting the end positions slightly each
time. Just this simple step helps a great
deal. However, it also adds another prob-
lem. Since each edge is considered sepa-
rately, these random offsets are applied
to each edge. The result is a slightly ran-
dom but very chaotic effect, as each edge
may no longer be connected to the next
one. That is not generally how people
sketch objects, though it creates a pretty
interesting look that may be useful in
some applications.

In order to re-create a look more similar
to human sketches, I need to consider more
than the single edge. I need to look for a
long series of edges combined to create a
larger stroke that I can draw all at once.

To create organized strokes from a set
of unorganized edge data is going to take
some data shuffling. I could look for con-
nected edges and start drawing them
together; however, that method would
create unorganized strokes that wander
all over the model. The look I am trying
to achieve is much more organized. An
artist would probably not sketch lines
that start at random and wander.

In order to organize the strokes in some
manner, I made some assumptions. My
virtual artist will tend to draw strokes

from top to bottom
and from left to
right. That seems a
valid assumption
given the western
style of writing. So,
the first step is to
organize all the
edges in this manner.
If the dominant
direction of an edge
is top to bottom, I
will then organize
the index pointers so
the vertex indices go
top to bottom. Like-
wise, if the dominant edge direction is side
to side, I will then organize the indices left
to right.

Now I begin the automatic search for
strokes — you can think of each edge as
having a head and a tail which correspond
to the first and second vertex index. I start
at any point in the edge database and look
at an edge. I then attempt to move back-
ward up the stroke to find a potential
starting point. This is accomplished by
searching the edge database for an edge
with a tail index value that is equal to the
head index value of my current edge. If I
find the edge that is ahead of the current
one, I need to make sure it should be part
of the same stroke.

The dot product is used once again to
see if a candidate edge should be part of
the same stroke. The test determines the
angles between the two edges. If the angle
between them is less then a given value (I
have found that 36 degrees works well), it
should be considered part of the current
stroke. At this point, the search for the
head of the stroke continues until either
no other edges can be found or the angle
between them is too severe. The current
edge is then marked as the head of the
current stroke.

Once the head of a stroke is deter-
mined, the system works its way down
the stroke looking for the end using the
same method of finding the next edge and
seeing if it qualifies. Once this is finished,
I have a complete stroke. I should note
that this routine could be easily modified
to limit the maximum stroke length to a
defined value. For example, a certain
artistic style may limit the length of a sin-

gle stroke to a few edge segments. My
current implementation allows strokes of
arbitrary length as long as the stroke
steps obey the angle rules.

Stroke results for meshes vary greatly
depending on the mesh layout. However,
fairly long strokes of more than eight
edges are typically achieved. In Figure 3,
you can see a typical model with a stroke
that has been identified along the back of
the buffalo object.

Stroke Man, Stroke Man

O nce I have built my list of possible
strokes from the edge database, I can

start drawing. Now I can use the random
jitter that I discussed earlier on each ver-
tex along the length of a stroke. This will
give the random look to each pass but still
keep the strokes as one continuous move-
ment. I can compute a new random jitter
each frame or precompute it and store it
in the edge structure. Both methods have
interesting properties. If I compute the jit-
ter randomly each frame, the strokes will
look different every frame. While this cre-
ates an interesting “constantly being
drawn” type of effect, there is a real prob-
lem with frame-to-frame coherence. The
constant movement is a bit distracting. If
the jitter is precomputed, the model looks
correct as it moves and turns; however,
the random effect is less noticeable. Since
it is easy to do, it makes sense to have
both methods available.

I should say another word about frame-
to-frame coherence. This is an important
issue with regards to artistic rendering
techniques. It is quite easy to come up

m a y 2 0 0 1 | g a m e d e v e l o p e r26

G R A P H I C C O N T E N T

FIGURE 3. The stroke on the back of the buffalo.

with a technique that creates a very inter-
esting style when viewing a static scene.
However, when the model or the view
changes, the effect can be overwhelmed by
the frame-to-frame changes. It is impor-
tant to deal with this issue when working
on a technique.

When researching this idea, I looked at a
couple of papers that calculated the stroke
lines by doing image processing computa-
tions on the 2D rendered frame buffer (see
For More Information). This method limits
potential overdraw issues and allows for
longer stroke lengths that don’t follow the
actual topology of the model. However,
frame-to-frame artifacts are particularly
noticeable using this technique.

Rendering the strokes allows for a
great deal of opportunity to create differ-
ent forms of effects. The most direct and
simple method is to draw the strokes with
simple line primitives. I found that it is
interesting to change the color and the
transparency value for the line at various
points along the stroke. This gives a more
natural look to the drawn line.

Another improvement is to go beyond
simple line primitives and actually draw
polygon primitives along the length of the
stroke. Using this method, it’s possible to
vary the stroke width along its length. The
stroke polygons are created by building a
triangle strip whose vertices are offset from
the mesh vertices in the plane of the screen.
This displacement vector can be determined
by taking the cross product of the edge and
the view vector. This is very similar to the
billboard method used to create textured
sprites that always face the viewer in a 3D
game. The amount of displacement along
the length of the stroke can then be varied,
and a “stroke texture” can even be applied
to the object. Since we have already deter-
mined that the edge is in view at this point,
very few additional polygons are added to
the render using this method.

Listen Up,
You Degenerate

I said earlier that this system works for
closed, regular meshes. That means

that each triangle edge is connected to
exactly one other triangle. There are no
edges that are only connected to one tri-
angle and no edges connected to more

than two triangles. In most cases, this is a
good thing to create for a variety of rea-
sons. It is just good 3D modeling, and
you should encourage all 3D artists to
create models this way. However, devel-
opers live in the real world. Not all mod-
els are created equal. You will run into
degenerate triangles in models.

How do you deal with this? The easy
answer is to identify where the problem is
and have the artist fix it. This may not
always be possible, so we should deal with
the problem. If an edge has only one tri-
angle attached, what should I do? It is
likely that this is something we would like
to draw if it is visible. So, one approach is
to mark it as “draw if seen,” just as I did
with the hard edges. The other approach
is never to draw those edges. Whatever
looks best for your model will work fine.

For edges that connect to more than
two triangles, the easiest solution is to
add a second entry in the edge database
for the extra triangle and connect it to
one of the other triangles. Or, to be more
thorough, you could have three entries in
the edge database to cover all possibili-
ties. It will all work out, so don’t sweat it
too much. While degenerate triangles may
be a bigger problem in other algorithms
that use silhouettes, such as shadowing,
for this application it shouldn’t matter.

Adding Some
More Detail

I can still combine the stroke rendering
system with another system for filling

in the details of the model. In fact, I real-
ly need to draw the object to some extent
if I want it to look exactly correct. The
silhouette algorithm detects edges even if
they are behind or covered by other parts
of the object. As long as they are silhou-
ettes relative to the viewer, the system will
draw them. Since everything is drawn
with its correct Z information, I can use
the Z-buffer to cover up the parts that
should be covered.

I can simply render the triangles of the
object first, writing into the Z-buffer but
not writing any color information. Or,
another option is to actually draw the fill
colors. For a cartoon system with this
type of stroke line, you will want to draw
the paint colors.

For the cave painting example in Figure
3, I used my cartoon painting system to
draw shading slightly translucent on only
the highlights. I then set the rest of the
paint to render completely transparent.
This writes to the Z-buffer but doesn’t
change the colors, and the stroke comes
out correct.

Climbing Out of the
Dark

N ow we have a nice system for render-
ing artistic-style drawings with multi-

ple ink strokes. There are some places where
we can do some more work. The current
system looks at all the potential edges every
frame. This could be a bit costly for a large
detailed model. A better approach would be
to store the results from the previous frame
and test those edges first.

Another optimization method would be
to precompute which edges are visible from
various angles and store them in index lists.
Then, by comparing the current view angle
with the precomputed lists, the amount of
testing needed could be greatly reduced.

Once an optimized method for comput-
ing silhouette edges is created, it can be
used for things other than artistic rendering
styles. The computation of an accurate sil-
houette is also very helpful when trying to
shadow objects in a 3D environment — but
that will have to be the topic for another
day. Until then, explore the sketch render-
ing system by grabbing the demo and
source code off the Game Developer web
site at www.gdmag.com. q

28 m a y 2 0 0 1 | g a m e d e v e l o p e r

G R A P H I C C O N T E N T

B Northrup, J.D., and Lee Markosian. “Artistic

Silhouettes: A Hybrid Approach.” Proceed-

ings of the First International Symposium

on Non-Photorealistic Animation and

Rendering (NPAR 2000). pp. 31–37.

See www.cs.brown.edu/research/

graphics/research/art/artistic-sils.

B Curtis, Cassidy. “Loose and Sketchy Anima-

tion.” SIGGRAPH 98 Technical Sketch. See

www.cs.washington.edu/homes/cassidy/

loose.

FOR MORE INFORMATION

O hhh, the pain . . . O.K., it’s not that bad, but
building a game font isn’t usually at the top of
most game artists’ “favorite things to do” list. It is
something that will certainly take up a portion of
time in the development cycle. Depending upon

the complexity of the user interface and the requirements of the
game, it can balloon into one of those tasks which seems to eat up
days of your production schedule. A logical approach to determin-
ing the needs of your game and a good production plan can make
the process much more palatable.

So what is a game font? Well, it loosely describes a set of cels
that translate to a specific set of keyboard inputs, allowing for text
or keyboard-based input and display in a game environment. Some
games will bypass the use of cels by utilizing a TrueType font for
in-game interfaces. TrueType is a digital font format that was origi-
nally designed by Apple Computer. It is a vector-based file that is
efficient in storage and processing. One of the key things it con-
tains is “hinting” information, allowing the designer to give hints
on defining which pixels are used to create the letter form at very
small sizes and create the best character bitmap shape. (I’ll talk
more about hinting later in the column.)

One of the things that a TrueType font doesn’t do is give you the
ability to have a multi-colored font, or a font with a drop shadow
or any number of bitmap tricks that can be created in a paint pro-
gram. In order to explore this, let’s take a closer look at TrueType
fonts and some of the ramifications you might need to think about
before choosing them for your game.

I Found It . . . It’s Free!

W hy wouldn’t you simply choose or build a good TrueType
font for your game and be done with it? Well, there are

several things to consider before going down that path. One of the
first issues to become familiar with is the copyright on the font.
While it is easy to download hundreds and hundreds of TrueType
fonts off the Internet in a matter of an hour or two, that doesn’t
constitute legal ownership.

Many of the fonts available on the Internet are specifically copy-
righted, and the owners want a piece of the action. The last thing
any developer wants is to have a suit leveled against them for using
a custom font that they were sure was a freebie based upon the
information they got off of “www.these_fonts_are_free.com.” One
of the big problems with these readily accessible fonts is that their
origins may be difficult to track. Don’t assume that a font is free,

even if you’ve found it on several font web sites under the free sec-
tion. While some sites make an effort to be legal and fair, some do
not. I discovered in one case, after some research, that a font I was
interested in had originated from a company whose sole business
was to create, copyright, and sell custom fonts. None of the sites I
visited indicated the font was anything other than free.

Another problem with a large percentage of the “free” fonts on
the Internet is that they don’t really do you much good when it
comes to localization. Many of those that are available are simply
display type fonts which contain the numbers and upper- and low-
ercase letters, but not much else. The characters needed for localiza-
tion in other languages are oftentimes left out. You may find that
your free font needs to have a large number of characters added.

Localization Considerations: Those
Pesky Umlauts and Other Doohickeys

O ne of the primary goals of a game font is to allow the prod-
uct to be localized or converted to a foreign language with

as little pain as possible. Sure, it’s easy enough to make the text fit
in the right spots in English, but what happens in the German
translation? How about French? Italian?

The other big advantage of a text-driven font is flexibility.
Imagine a game GUI where you’ve made 30 custom-sized but-
tons with the word “accept” embedded into the artwork. If the
designer decides to change the word to “O.K.,” you’ve got some
Photoshop work to do. If, on the other hand, the text is code-
driven and placed over the background artwork, then a 15-sec-
ond search and replace in a text file is all that is needed to
update the design.

One thing you should consider avoiding is text that is incorpo-
rated or embedded into the art. The main reason is that each asset
that contains text will need to be tracked and touched for every
language conversion. This may not seem to be that big of a deal
at first, but if your game ends up being a big hit, you can bet that

w w w . g d m a g . c o m 31

m a r k p e a s l e y A R T I S T ’ S V I E W

M A R K P E A S L E Y | Mark hangs his hel-

met at Gas Powered Games, where he’s the

art director on a real-time 3D RPG called

DUNGEON SIEGE. Drop him a line at

mp@pixelman.com or visit his web site at

www.pixelman.com.

the marketing department will want to leverage it into
every possible country. This generally means that as soon
as the game is released to market, the localization process
will begin in earnest. The more custom rework there is to
be done, the longer each language conversion takes, and
the more chance there is for errors to be introduced into
your artwork. As someone who once converted an entire
interface to Japanese (I don’t speak or write the language),
I can assure you that this is not a pleasant task.

As a rule, try to keep most of the interface and game
graphics free of embedded text. In some cases, however,
it is unavoidable. If you limit such occurrences as much
as possible, you will be better off. If you do embed the
text, keep an up-to-date spreadsheet of which assets con-
tain text. This will make tracking down those pesky files
much easier. Also, keep your base Photoshop files in lay-
ers, with the text separated in its own layer. This will
make it easier for the artist involved with converting the
files to the new language. As an added bonus, it allows
you just a bit more control over how much alteration
occurs to the art. If all someone is doing is replacing a
text layer, then they won’t have much of a chance to
degrade or alter your textures.

Character Sets, Single-Bytes,
and All That Technical Stuff

I n order to explain a little about what’s going on under
the hood of a game font, we need to understand some

of the basics. So what exactly is a character set? In tech-
nical terms, it is a set of glyphs or shapes that represent
the letters which make up a font. Certain languages have
specific glyphs that make up the necessary shapes for that
font to be read.

Characters are represented by what are known as character
codes. These codes are generated and stored when a user inputs
(using the keyboard) a document. Most of the Western European
translations can be covered by the use of a single-byte character
set which provides 256 character codes (see Figure 1). This set
generally contains the Latin letters, Arabic numerals, punctuation,
and some drawing characters.

However, 256 characters falls well short of what is necessary
for users of a single font for the Far East, which may need as
many as 12,000 characters. In order to provide the necessary
character codes, double-byte or multi-byte character sets
(DBCS/MBCS) are used. These sets are a mixture of single-byte
and double-byte character encoding and provide more than
65,000 character codes.

Unicode is a 16-bit encoding method which covers many of the
characters used in general text interchange throughout the world.
All Unicode values are double-byte, which simplifies the way a
Unicode-based system reads a string of text. While it is easier to
deal with than the multi-byte character sets (according to a pro-
grammer I know), it is incompatible with the APIs of Windows
95 and Windows 98. Because of this, it may be a few years
before a 100 percent Unicode game will come out.

Building Your Own TrueType Font

A fter determining that you will be using a single-byte char-
acter set, you will most likely consider creating your own

TrueType font. After all, that would solve your copyright issue
and give you the creative freedom to customize your font as
needed, right? (Insert dramatic pause here.) Well, you will want
to consider this carefully.

Creating a useful TrueType font is no small undertaking. Font
design is an art in itself and requires a lot of attention to detail as
well as a firm understanding of good design principles. Rather
than mathematical precision, a well-designed font relies on visual
equality. Each letterform is considered for its balance, and subtle
alterations are made to create a visual equality among the letters.
In addition, for the font to be usable and, more importantly, read-
able at the lower resolutions common in game interfaces, it will
need to have hinting.

All of these subtleties take time and a keen eye in graphic design.
In addition, you will need to get a font-specific program such as
Macromedia Fontographer in order to create the font easily. Once
you have it, you will need to spend some serious time not only
familiarizing yourself with the various specialized glyphs in your

m a y 2 0 0 1 | g a m e d e v e l o p e r32

A R T I S T ’ S V I E W

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

`
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

cc
ƒ
„

…
†
‡
ˆ

‰

‹
Œ

‘
’
“
”
•
–

—
˜

™

›
œ

Ÿ

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

¡
¢
£
¤
¥
§

¨
©
ª
«
¬

®
-
º
±

´
µ
¶
˙
¸

˚
»

¿

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Á
À
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ñ
Ò
Ó
Ô
Õ
Ö

Ø
Ù
Ú
Û
Ü

ß

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
247
249
250
251
252
253
254
255

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü

ÿ

FIGURE 1. An example of an ANSI character code chart that contains the characters
used for Western European translation.

m a y 2 0 0 1 | g a m e d e v e l o p e r34

A R T I S T ’ S V I E W

character set, but also getting a firm control of the program. Once
you’ve gotten to the stage of actually creating the letterforms, you
will then need to start considering kerned pairs and hinting.

Hinting

S o what exactly is hinting and what does it do? The easiest
way to think about it is to consider what happens to a font

when it is rasterized or converted to a bitmap for display on your
screen. The vector information is converted to a bitmap and anti-
aliased to provide a smooth line that defines the letter. This is a
fairly straightforward process until the font size is reduced down
to a small size. Once you get into the 10- to 14-point range, the
definition of where the lines go is more difficult for the program
to determine when it converts the vector information to a bitmap.
At a certain point, a choice needs to be made concerning where
the pixel is placed on the underlying rasterization grid. This is
where hinting comes into play.

A hint is technically a mathematical instruction added to the font
that distorts the character’s outline before it is converted to a
bitmap. These modification hints allow the designer to have a fairly
high level of control over the resultant bitmap shape of the letter.

Without this type of control, features that define the font (line
weight, widths, serif details) can become inconsistent, irregular,
and sometimes even missed entirely. This can have a dramatic
effect on how legible the font is. In Figure 2, you can see how
the letter would reduce down if it were simply scaled to the
appropriate size and rasterized. The second image shows how
the hinting alters the letter shape so that the placement of the
pixels is controlled. This, in turn, causes the font to be much
more legible at a small size.

As you might guess, this sort of customization on a letter-by-let-
ter basis can become a substantial time sink. If you are dealing
with a larger publisher, they may already have purchased rights to
use some fonts in their products. This doesn’t lend itself to a cus-
tom look, but it can save time and money if the font isn’t too crit-
ical of an element in the overall design.

Building a Bitmap Font

A nother alternative is to consider building a bitmap font.
These are usually created by rasterizing a font, which can

contain multiple colors and alpha transparency. The font is then
divided into cels which are linked to the character code via pro-
gramming code. The good news is that it’s done in a paint pro-
gram and is a fairly straightforward process.

There are a couple of different ways to create your font. The
first is simply to make a character set that contains every charac-
ter needed for translation to the Western European countries. This
entails rasterizing each of the 256 characters and laying them out
in a base file. The exact layout is something you will be working
directly on with the UI programmer. A pixel is usually used to
define one side or corner of the cel that encloses the letter (see
Figure 3). These cels are then linked to the character codes.

If your game is a graphics-hardware-only solution, then consid-
eration must be given to laying out the various characters so that

they fit on power-of-two texture maps. Again, this may be han-
dled via a cut-up routine that the programmer establishes, or you
may need to lay them out on a custom basis.

In our example font (see Figure 4), each of the 256 character
cels needs to be accounted for and laid out on a 256×256 texture
map. The first 32 slots are blank, so oftentimes you can simply
start with cel 32 and continue from there.

Another method that can save on space is to have a text file
that is linked to the bitmap file. The text file contains nothing
more than the string of characters in the same order as they are
found on the bitmap font file. The advantage to doing it this
way is that the precise order of the cels need not be adhered to.
It also allows you to add characters as needed without breaking
the code. This is also an excellent way to deal with multiple font
sizes if you only need a few specific letters. The downside is that
organization begins to go out the window, and tracking two
assets that need to maintain an exact match can quickly turn
into more of a headache than you might think.

Leading and Kerning in a
Bitmap Font

O ne of the disadvantages of a bitmap font is that kerning (the
spacing between letter pairs) is usually not done. Because

kerning requires quite a bit more coding to accomplish, it usually
ends up on the cutting room floor. When dealing with a cel, you
can define how much spacing a specific letter gets on one side, but

FIGURE 2 (above). This is an
example of how hinting works.
The first character image on the
left hasn’t been fitted to the under-
lying grid, giving a poor pattern
and an awkward letter. However,
the second image on the right is
fitted to the grid, resulting in a
balanced letterform.
FIGURE 3 (left). A close-up of the cel
that defines the “B” character.

35

you won’t be able to get a customized kerning look. What this
means is that your font will be generically spaced, usually with one
or two pixels between each letter, regardless of what’s next to it.

While this isn’t the ideal solution visually, it is one of those
things that we’ve become accustomed to seeing in games. If you
have some free time on your hands, and the UI programmer
wants to get fancy, you can make specific kerned pairs of letters,
such as lowercase double ls (ll) or double os (oo). The code is
then set up to detect any of the unique letter combinations that
you have custom spaced, and replaces the standard-spaced let-
ters with your kerned pair.

Hopefully, this has given you a bit of insight into creating a
game font. I’ve done quite a few of them over the years, and
each time it’s a bit different. Each program and each program-
mer working on the UI approaches the problem differently from
the production standpoint. If you take the opportunity to plan
the process out and do some research first, it can save you a lot
of wasted time later. q

A R T I S T ’ S V I E W

FOR MORE INFORMATION

Macromedia Fontographer
www.macromedia.com/software/fontographer

Microsoft Typography
www.microsoft.com/typography

TrueType Font Specification
www.msdn.microsoft.com/library/toc.asp?PP=/library/toc/specs/
specs12.xml&tocPath=specs12

FIGURE 4. An example font laid out to fit onto a 256×256 texture map. Note
the pixels that define the cel borders. These are usually in a unique color
so that the code can recognize the border pixels.

w w w . g d m a g . c o m

M any games being written today take advantage of

graphics cards that support hardware transformation

and lighting when available. But some of these games

also have vertex data that is modified dynamically for

performing techniques such as multiple-bone skinning

of meshes. Ironically, when modifying the vertex data dynamically on a per-frame basis, a

significant speedup can sometimes be gained by modifying more of the data. In this arti-

cle we’ll take a look at accelerated graphics port (AGP) memory and the interaction

between the processor, the chipset, and the graphics card. In the process, we’ll learn

about write-combining memory and how to avoid partial writes which can slow down

your AGP updates. When we’re

finished, you’ll have an under-

standing of these terms and how

to use this information to

achieve performance increases of

up to 20 percent or more in

your games. Let’s start by exam-

ining what AGP memory is.

m a y 2 0 0 1 | g a m e d e v e l o p e r36

F A S T A G P W R I T E S d e a n m a c r i

D E A N M A C R I | Dean is a technical mar-
keting engineer within the Solutions Enabling

Group at Intel. He enjoys working with
mathematical aspects of 3D graphics and per-
formance optimization techniques. Dean wel-
comes e-mail on anything 3D-related and can

be reached at dean.p.macri@intel.com.

CPU

Graphics
Card

Chipset Memory

Memory Bus
(Front-Side Bus)
8B/s * Bus Speed

PCI
133MB/s

AGP
>1GB/s

cache

FIGURE 1. PC architecture with AGP 4x support.

Fast AGP Writes
for Dynamic
Vertex Data

Fast AGP Writes
for Dynamic
Vertex Data

w w w . g d m a g . c o m 37

Ill
us

tr
at

io
n

by
 J

ua
n

A
lv

ar
ez

AGP History

I ntroduced with the Intel Pentium II processor in 1997, the
AGP interface provides a high-speed mechanism for video

cards to access main system memory. Debuting at 266MB/s peak
transfer speed, the current specification, known as AGP 4x,
allows for a peak transfer rate of 1,067MB/s, eight times faster
than the standard PCI bus found in desktop systems. Figure 1
depicts the architecture of a PC with support for AGP 4x. Notice
that the graphics card has a direct pathway along the AGP bus,
through the chipset to the system memory. For a system with a
133MHz front-side bus, the AGP bus speed is equivalent to the
memory bus speed but still falls short of the 3.2GB/s peak bus
speed of Pentium 4 processor–based RDRAM systems.

In addition to the high transfer speed, requests on the AGP bus
can be pipelined, whereas the PCI bus only supports sequential
transfers with a special case for bursting. Figure 2 shows the bene-
fit of pipelined access as provided by the AGP specification. The
PCI bus requires that the data D1 arrive from the memory request
for address A1 before it can submit a memory request for address
A2. In a more efficient manner, the AGP bus can accept memory
requests for addresses A2 through An while waiting for data item
D1 to arrive. In this fashion, data items D2 through Dn arrive
much sooner than in the nonpipelined scheme such as that provid-
ed by the PCI bus. Something we’ll talk about later is a burst
operation that both the AGP and the PCI buses support. In a
burst operation, a small number of data items (four to eight) can

be sent across the bus with a single memory
address request.

The AGP bus also provides an additional eight
“sideband” address lines to allow more overlap-
ping of previous data and addresses on the main
32 wires with new addresses and requests, for
further performance improvement. We won’t
need to know any more about the underlying
protocol and addressing scheme of the AGP
specification, but the description just provided
should help us better understand what’s going on
under the hood of the machine. What will be

essential is to realize that the graphics card uses the AGP interface
to access data in the system’s main memory. It’s this data in main
memory that we’re going to look at in detail.

Prerequisites for AGP Memory

F or applications to be able to take advantage of the benefits
of the AGP bus, the operating system and the hardware

must perform several housekeeping tasks. First, because system
memory is being used primarily for typical applications, there
can be considerable fragmentation based on what applications
are running and what particular memory allocations have
occurred. A request to allocate 256KB of memory for the graph-
ics card to access via the AGP bus could result in several small,
noncontiguous chunks of main memory being allocated. To
make this appear as one contiguous 256KB piece of memory to
the graphics card, the chipset, which controls the communication
between the processor and main memory as well as the PCI bus,
has something called a Graphics Address Remapping Table
(GART). The GART maps a linear range of virtual memory
addresses to multiple 4KB physical addresses in main memory.
Figure 3 shows an example of a region of linear memory visible
to the graphics card, with the memory being mapped to a non-
contiguous set of pages in physical memory. The amount of
memory available for remapping by the GART is often deter-
mined by a setting in the BIOS known as the AGP aperture.
Values vary from system to system, but there is usually a maxi-
mum limit of half the available system memory.

We’ve addressed the tasks the chipset must perform. Now,
because the graphics card will be accessing the memory regularly
and performance is critical, the operating system must make sure
that memory which will be accessed by the AGP bus is not
swapped out to disk. The operating system does this by locking
the pages of memory. Finally, because current processors have
one or more levels of cache to improve performance of typical
applications, something must be done to make sure the graphics
card sees the most up-to-date data. To achieve this without
requiring the graphics card to “snoop” the caches of the proces-
sor, the memory being used for AGP transfers is marked as not
cacheable, or uncacheable, by the processor. This uncacheable
memory is the heart of what we’re going to look at to achieve
performance improvements in 3D applications. To understand it,
we need to examine a feature which Intel processors have carried
for several generations.

m a y 2 0 0 1 | g a m e d e v e l o p e r38

F A S T A G P W R I T E S

Linear
Virtual

Memory
Addresses

Fragmented
Physical
Memory
Addresses

GART

A1 D1

D1 D2 D3 D4 Dn

D2PCI A2

AGP A1 A2 A3 A4 An ……

Memory Latency

FIGURE 2 (top). AGP pipelining versus PCI transfers.
FIGURE 3 (bottom). Remapping of memory addresses through the GART.

Memory Types

S tarting with the Pentium Pro processor, Intel processors have
provided a mechanism for changing the access characteristics

of regions of memory via a set of registers known as the Memory
Type Range Registers (MTRRs). These registers are not accessible
to a normal application and can only be changed by the operating
system or a device driver. However, the drivers that support AGP
memory use the MTRRs to provide the right characteristics to the
memory being accessed by the graphics card. Let’s look at the var-
ious options that can be selected using the MTRRs.

Table 1 shows the most common memory types used by cur-
rent systems. Most of the memory in a system is marked as
cacheable memory, with one of two schemes for synchronizing
cache memory with main memory: write-back or write-through.
With write-back cacheable memory, both read and write cache
misses cause cache line fills. However, write-back memory only
writes cache lines back to main memory when they are being
evicted due to contention with another memory access or explic-
itly by being invalidated by the processor. Write-back memory
provides the best performance possible, because in many cases
the processor can do many operations on the data in the cache
before ever writing out to main memory. However, this requires
that any device with access to main memory be able to snoop
memory accesses in order to maintain system memory and cache
coherency. Write-through memory still performs
cache line fills on read misses but never on
write misses. All writes are written to a
cache line (assuming a cache hit) and
through to main memory.

Interesting things happen when memory is
marked as uncacheable. All reads and writes
go directly to system memory, bypassing the
caches. As you can imagine, this slows down both
read and write accesses, leading one to wonder why
memory would ever be marked as uncacheable. Let’s
answer this question by revisiting something we briefly
touched on previously. Sometimes, devices other than the
processor need to fetch data from main memory.
The obvious example would be the graphics
card fetching data from main memory via the
AGP bus. In doing so, there needs to be a
way to make certain that data writes done
by the processor appear in the actual main
memory, not just in the data caches to

which only that processor has access. Additionally, the graphics
card may also write to main memory, so the processor needs to be
certain that if it reads from the memory, it sees the actual data
written by the graphics card and not some old data stored in the
data caches. By marking memory as uncacheable, we can be cer-
tain that the data the graphics card sees is identical to what the
processor sees and vice versa.

To further complicate things (but to improve performance in
some cases), memory can be marked using a fourth type: write-
combining. Write-combining memory is uncacheable but with a
twist. When writing to write-combining memory, there are a few
buffers internal to the processor where data writes are temporarily
stored. The number of buffers varies with each new processor, with
four on the P6 family of processors (Pentium Pro, Pentium II, and
Pentium III) and six on some later versions of the Pentium III
processor and on the Pentium 4 as well. More buffers means per-
formance improves, because you can disperse your writes a bit
without causing an eviction. Let’s take a closer look at these write-
combining buffers to see what advantages they bring to the table.

Write-Combining Buffers

W hen discussing the AGP bus, we mentioned burst opera-
tions supported by the PCI bus and the memory bus. In a

burst operation, rather then sending one memory address for
every eight bytes of data, it’s possible to send one memory address
for one full cache line of data (32 bytes on the P6 architecture and

64 bytes on the Pentium 4 architecture). The data
transfer still only happens on a 64-bit bus, but the
transfers can happen more quickly because there’s

no need to wait for additional memory addresses.
This bursting operation is used by write-back
cacheable memory when it flushes a cache line out
to main memory, so write-back cacheable memory
always achieves the highest write throughput possi-
ble. For uncacheable memory, the write-combining

buffers offer a means to achieve benefit from
burst transfers of data.

When software writes to memory that is
marked as write-combining, the processor

will begin to fill one of the write-combin-
ing buffers (remember there are four or
six of these). It’s possible to think of the
write-combining buffers as a very small,
fully associative cache that is never filled

w w w . g d m a g . c o m 39

Memory Type Cacheable? Fill Cache
on Read?

Fill Cache
on Write?

Use Write-Combining
Buffers?

Uncacheable (UC) No N/A N/A No

Write-Combining (WC) No N/A N/A Yes

Write-Back (WB) Yes Yes Yes No

Write-Through (WT) Yes Yes No No

Table 1. Common memory types selectable with MTRRs.

from main memory. As you write data, the buffers are filled, and
you can even read back the bytes just written without doing a fetch
from main memory. You can also rewrite bytes that you’ve already
written without causing an eviction. When you try to write data to
a memory address that isn’t represented by one of the buffers, how-
ever, one of the existing buffers will be evicted to main memory.
This is where the magic happens. If every byte in the buffer (32
bytes for P6 processors, 64 bytes for the Pentium 4 processor) has
been modified, then the buffer is transferred to main memory via
one burst transaction. If not every byte has been modified, then the
processor writes the buffer out eight bytes at a time.

You’re probably beginning to see that if you modify 31 consec-
utive bytes and don’t modify the 32nd, then it will take four bus
transactions on P6-family processors to evict the data. The same
eviction could have happened with one transaction if you had just
written data to the 32nd byte (of course, you’ll want to write the
appropriate data for your application). On Pentium 4 processors,
the worst case is even worse in terms of the number of transac-
tions. If you modify 63 bytes rather than 64, it will take eight bus
transactions rather than one — ouch. Fortunately, the high speed
of the bus on Pentium 4 processor–based systems alleviates some
of the pain. What we see, though, is that to achieve maximum
performance, it’s essential you modify every byte of a write-com-
bining buffer.

The last thing to mention about write-combining memory is
that it is weakly ordered versus strongly ordered uncacheable
memory that isn’t write-combining. Weakly ordered means that if
you write out bytes 1, 4, 3, and 2 in that order, they won’t neces-
sarily get written to main memory in that order. In fact, they
probably won’t. This is due to the buffering performed by the
write-combining buffers. Weakly ordered memory is fine for the

types of data being sent across the AGP bus. For devices that per-
form memory-mapped I/O, however, writes would need to be
strongly ordered so that they appear on the bus in the exact
order that the program wrote them. To guarantee that all the
write-combining buffers get written to main memory, several
instructions are available, including SFENCE and MFENCE, CPUID, and a
few others. Rest assured that the API (for example, Microsoft
DirectX) that gives you the AGP memory will manage the task of
making sure that all of your write-combining transactions have
been committed to memory before allowing the AGP device to
read the memory.

Experimenting with Write-Combining
Memory

W e’ve covered enough of the low-level details of AGP and
write-combining memory. Now let’s see how to create a

sample application which demonstrates the benefits of ensuring
that the write-combining buffers are utilized properly. We’ll also
see the deleterious effect of causing multiple bus transactions
due to partially filled write-combining buffers. The techniques
I’m going to describe here are specific to DirectX 8 under Win-
dows 98. There seems to be something unexpected happening
behind the scenes on Windows 2000 which may be related to
the operating system, drivers, or both, so I won’t cover that
here. I’m also assuming that you understand how to use the
DirectX APIs. If not, you can find the essential information at
www.microsoft.com/directx.

In a DirectX 8 Direct3D application, three basic types of data
resources can be allocated in AGP memory: vertex buffers, index
buffers, and textures. Under DirectX 7 it was possible to request
AGP memory specifically. Using DirectX 8, however, there are
some guidelines that the application can make, but the API and
drivers ultimately determine where the resources are allocated. For
our example, we’re going to be allocating a vertex buffer that we
would like to reside in AGP memory. To do this, we must take
care of several things. First, we need to be creating a vertex buffer
that will be used by a graphics card which supports hardware
transformation and lighting (currently, only the GeForce cards
from Nvidia and the ATI Radeon card fulfill this requirement).
Otherwise, the DirectX API won’t allocate the vertex buffer in
AGP memory, because it would severely limit the performance of
the transformation and lighting pipeline. So, when we use the
CreateDevice() method of the IDirectX8 interface, we need to specify
either D3DCREATE_MIXED_VERTEXPROCESSING or D3DCREATE_HARDWARE_VERTEX-
PROCESSING to be able to have the graphics card do the transforma-
tion and lighting of the vertices.

Next, we need to include the usage flags D3DUSAGE_DYNAMIC and
D3DUSAGE_WRITEONLY when calling the CreateVertexBuffer() method of
the IDirect3DDevice8 interface. These flags indicate, respectively, that
we’re going to be changing the data in the vertex buffer regularly
and that we’ll only be writing to the buffer. Additionally, we need
to tell DirectX to allocate the buffer in the default memory pool
(D3DPOOL_DEFAULT). With these restrictions, we should get a vertex
buffer allocated in AGP memory. For our example, we’ll use a ver-
tex structure that contains information for vertex position, normal,

m a y 2 0 0 1 | g a m e d e v e l o p e r40

F A S T A G P W R I T E S

LISTING 1. D3DVERTEX structure from DirectX 7.

typedef float D3DVALUE;

typedef struct _D3DVERTEX {

D3DVALUE x; /* Homogeneous coordinates */

D3DVALUE y;

D3DVALUE z;

D3DVALUE nx; /* Normal */

D3DVALUE ny;

D3DVALUE nz;

D3DVALUE tu; /* Texture coordinates */

D3DVALUE tv;

} D3DVERTEX;

pDx8Device->CreateVertexBuffer(

mVertexSize*mNumVertices,

D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY,

D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1,

D3DPOOL_DEFAULT,

&mpVertexBuffer);

LISTING 2. Creating the sample vertex buffer in AGP memory.

and one set of texture coordinates, as shown in Listing 1. I’ve cho-
sen this format for two reasons: it’s the D3DVERTEX structure that was
used by previous versions of DirectX, and more importantly, it’s
exactly 32 bytes, which is the size of one cache line on P6-family
processors and half a cache line on the Pentium 4 processor.

Listing 2 shows a code snippet for creating a vertex buffer using
the flags just described. In the example, pDx8Device is a pointer to
the IDirectX8Device interface, mVertexSize is the size of the vertex
type (32 bytes), mNumVertices is the number of vertices the buffer
will be able to hold, and mpVertexBuffer will contain the pointer to
the IDirectX8VertexBuffer interface when the function returns.

When we lock the vertex buffer, the pointer we receive should

point to memory that is uncacheable and write-combining. Using
the memory pointer returned from the Lock() method of the ver-
tex buffer, we can now experiment with modifying the data in
the vertex buffer. I created a simple program that renders a sin-
gle, highly tessellated sphere using a vertex buffer allocated in
AGP memory. At every frame, I lock the vertex buffer that holds
the vertices of the sphere and move the positions of the vertices
along the direction of their normal using a simple sine wave.
Granted, this same task could have been accomplished using a
scale, but I just wanted a simple test to experiment with the per-
formance impact of vertex buffers in AGP memory. This program
is available on www.gdmag.com. Using a copy of the original

w w w . g d m a g . c o m 41

FIGURE 4 (top). Test application results on a Pentium III processor with two different graphics cards.
FIGURE 5 (bottom). Test application results on a Pentium 4 processor with the same two graphics cards.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

100

90

80

70

60

50

40

30

20

10

0

Nvidia GeForce 2 GTS 64MB ATI Radeon DDR 64MB

Pentium 4 Processor 1.5GHz

Floating Point Values Modified for Every Two Vertices

Fr
am

es
 P

er
 S

ec
on

d
-

N
or

m
al

iz
ed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

100

90

80

70

60

50

40

30

20

10

0

Nvidia GeForce 2 GTS 64MB ATI Radeon DDR 64MB

Pentium III Processor 600MHz

Fr
am

es
 P

er
 S

ec
on

d
-

N
or

m
al

iz
ed

Floating Point Values Modified for Every Two Vertices

vertex data for the sphere stored in sys-
tem memory, I create a temporary
set of modified coordinates and
then update the positions of the
data in the vertex buffer. To do
this, I lock the vertex buffer at
every frame. Then, I calculate new
X, Y, and Z positions for the vertices
one at a time and store these in a temporary ver-
tex structure along with the original normal vector
and texture coordinates for the vertex. Finally, depending
on a variable that indicates the number of floats (4-byte values)
to touch, I use a small piece of assembly code that uses the
repeatable string move operation on DWORDS (rep movsd) to copy the
system memory copy to the actual vertex buffer. This enables me
to experiment with touching one float (just the X coordinate of
the vertices), two floats (X and Y coordinates), and up to eight
floats (the entire vertex structure). I also provided a mechanism
to skip every other vertex. Because the size of the write-combin-
ing buffers on the Pentium 4 processor is 64 bytes, this enabled
me to see what happens when half of the 64-byte buffers are
modified but not the entire buffer.

Results

U sing the test application just described, I used the displayed
frame-rate counter to do a visual comparison with different

parameters. Figures 4 and 5 show the results on two different sys-
tems with two different graphics cards. The X-axis of the charts
shows how many consecutive floating-point values are modified
per vertex. The Y-axis of the charts shows the frames per second,
normalized according to the frame rate when none of the vertex
data is modified. As you can see from the charts, the frame rate
drops dramatically with the number of bus transactions required
to write out a partially filled write-combining buffer. But when the
buffers are completely filled, performance picks up. You can also
see the size of the write-combining buffers, because on the Pentium
III system we see performance pick up when eight floats (32 bytes)
and 16 floats (64 bytes) are modified. On the Pentium 4 system,
we only see performance pick-up when 16 floats are modified.

Checking for Partial Writes Using
Vtune Analyzer

I also wanted to define a more rigorous test so that you, as a
game developer, could have somewhere to go to see if your

application is suffering from partial writes of write-combining
buffers. To do this, I used the Intel Vtune Performance Analyzer
5.0. There isn’t space here for a full tutorial on using Vtune
Analyzer, but I’ll give a quick description of how to use it to check
for partial writes of write-combining buffers. For more informa-
tion on Vtune Analyzer, see the For More Information box.

When running Vtune Analyzer on a P6-family processor or
Pentium 4 processor, it’s possible to count events that occur in the
processor. (Note: mobile processors — those found in laptops —
don’t support the event-counting mechanism.) The most common

event to count is the number of CPU cycles or
clock ticks that have elapsed. Other events
include the number of instructions executed,
number of L1 cache hits, and many more. For
P6-family processors, we’re interested in the
“External Bus Partial Write Transactions”
event. This event occurs, obviously enough,
every time a partial write happens on the
bus. Because all writes to write-back,
cacheable memory are performed one com-

plete cache line at a time, this event typically
only occurs when a write to uncacheable memory

has happened. On the Pentium 4 processor, an event
specific to write-combining memory, “Write WC Partial,” is the
one to check. Using these events, you’ll be able to determine if
your application is causing a significant number of partial writes to
occur.

Wrapping Up

W e’ve seen the performance implications of partial writes to
write-combining memory and learned how to avoid the

problems just by moving a little extra data, which is pretty coun-
terintuitive. I encourage you to examine programs where you
modify vertex buffer data on a per-frame basis and see if you may
be causing partial writes to write-combining memory. The
speedup can be significant, as we’ve seen. And the same tech-
niques apply to other resources allocated in AGP memory. If
you’re modifying textures regularly and seem to be touching data
a few bytes at a time, then maximizing your use of the write-com-
bining buffers could improve your performance considerably. q

m a y 2 0 0 1 | g a m e d e v e l o p e r42

ACKNOWLEDGEMENTS

I’d like to thank Pete Baker, Kim Pallister, and Will Damon for their valuable

input into this article.

FOR MORE INFORMATION

Microsoft DirectX

www.microsoft.com/directx

Intel Developer Site

http://developer.intel.com

Intel Vtune Performance Analyzer

http://developer.intel.com/software/products/vtune

Nvidia GeForce 2 GTS

www.nvidia.com/products/geforce2gts.nsf

ATI Radeon 64MB DDR

www.ati.com/na/pages/products/pc/radeon64_ddr/index.html

F A S T A G P W R I T E S

w w w . g d m a g . c o m 43

m a y 2 0 0 1 | g a m e d e v e l o p e r44

S E C U R I T Y g a v i n d o d d

Keeping the
Pirates at Bay

Implementing Crack Protection for

SPYRO: YEAR OF THE DRAGON

o you’ve worked 10- to 12-hour days for the past two years, trying

to make your latest game the best ever. You even added copy pro-

tection to try to stop the pirates, but within a few days of release

there are already crack patches flying around the Internet. Now anyone

can help themselves to your hard work, without so much as a

“please” or “thank you.”

This is what happened to Insomniac’s 1999 Playstation release,

SPYRO 2: RIPTO’S RAGE. Even though it had good copy protection, it

was cracked in a little over a week. So when we moved on to SPYRO:

YEAR OF THE DRAGON (YOTD), we decided that something more had to be done to try to

reduce piracy. The effort was largely successful. Though a cracked version of YOTD

has become available, it took over two months for the working patch to appear,

after numerous false starts on the part of the pirates (the patch for the European

version took another month on top of that). The release of patches that didn’t work

caused a great deal of confusion among casual pirates and plenty of wasted time

and disks among the commercial ones.

Two months may not seem like a long time, but between 30 and 50 percent of

most games’ total sales occur in that time. Approximately 50 percent of the total

sales of SPYRO 2, up to December 2000, were in the first two months. Even games

released in the middle of the year rather than the holiday season, such as Eidetic’s

SYPHON FILTER, make 30 percent of their total sales in the first two months. If YOTD

follows the same trend, as it almost certainly will, those two to three months when

pirated versions were unavailable must have reduced the overall level and impact

of piracy. On top of this, since YOTD was released in Europe one month after the

U.S., those two months protected early European sales from pirated copies of the

U.S. version.

So why did it take so long to crack YOTD when a patch was available for SPYRO 2 so

quickly? The difference was that SPYRO 2 only had copy protection, while YOTD

added crack protection. The crack protection complemented the copy protection by

checking for alterations to the game, rather than just making sure the game was

run from an original disk. This extra layer of protection slowed down the crackers

significantly, because removing the copy protection had to be done without trig-

gering the crack protection. Basically, YOTD is booby-trapped — one wrong bit and

it will blow up in your face. This article will explain the techniques that we used in

YOTD, what we learned from using them, and some ideas about how to take our

techniques even farther. However, I will not go into explicit detail, as most of the

coding involved is relatively simple. Crack protection is more about out-thinking

the crackers than out-coding them. A great advantage of any method of protection

is novelty. Even a new implementation will give an advantage over simply reusing

code, regardless of whether it was successful in previously delaying a crack.

w w w . g d m a g . c o m 45

G A V I N D O D D | Gavin started work at
Psygnosis in 1992. There he worked on many
games which he probably wouldn’t want to
mention (except for JOHNNY MNEMONIC on
Sega CD which he is perversely proud of) and
most of which never saw the light of day.
The only notable products he worked on at
Psygnosis were COLONY WARS and COLONY

WARS: VENGEANCE. In 1999 he moved on to
Insomniac Games to work on SPYRO 2 and
SPYRO: YEAR OF THE DRAGON. Now he is
working on a PS2 game he isn’t allowed to
talk about, so don’t even ask. Gavin can be
reached at gjd@insomniacgames.com.

Defining the Problem

F rom the very beginning we recognized that nothing is uncrack-
able. Many different software and hardware techniques have

been used in an attempt to stop piracy; as far as I know every one
of them has been bypassed or cracked. Our goal was to try to slow
the pirates down for as long as possible.

First we looked at the copy protection: was there any way to
reduce its vulnerability to cracking? We could call the copy protec-
tion multiple times throughout the game, making it harder to
bypass. Unfortunately, the copy protection requires exclusive access
to the CD for about 10 seconds, which is an eternity when you are
waiting for a level to load. So that was out of the question.

Then we looked at how a typical crack is made. Most cracks
for Playstation games replace the boot executable with an “intro”

that proclaims the prowess of the crackers and allows cheats to be
activated. This intro is concatenated with a copy of the patched
executable and compressed so that the total file size is no larger
than the original file. The new file bears little resemblance to the
original boot program. This difference gives us the opportunity to
reload the boot executable sometime after startup, causing severe
corruption if it has been altered in this way. As with the previous
option, this solution suffers from the problem of adding to the
load time. It is also vulnerable to the pirates finding some other
space on the disk to hide their crack, leaving the original boot file
untouched. While this solution might have slowed the pirates
down for a few more days, it didn’t seem like it was the answer
we were looking for.

We decided that we needed a thorough way of detecting at run
time that the game had been cracked. When we could reliably
determine whether the game had been modified, we could stop the
game anytime we found a discrepancy. We also needed a method
that didn’t require access to the disk. It should just check the code
in memory, unlike the standard copy protection or our option of
reloading the boot program. This would allow us to place the
check anywhere in the game, making it much harder to remove.

So now we had a definite goal, an approach that should signifi-
cantly improve the protection for YOTD.

Checksumming

F inding out if a block of data has changed in any way is actu-
ally pretty easy. Techniques have been used for error detec-

tion for years and are well documented. Just search for “check-
sum” on the Internet. For YOTD, we decided to use a CRC
checksum: it’s robust, simple, and fast.

The checksum was calculated bitwise rather than using tables,
as tables would be an easy point for a cracker to attack. We took
care to hide and protect the checksum values as well. If these
could be found and altered easily, a cracker would simply replace
the checksum with a new value that matched the cracked data,

which is far easier than removing the code. For the same reason
we didn’t use functions to calculate checksums, we inlined the
code as much as possible. If the code was in a function, it would
only have to be removed once. The inline code would have to be
removed as often as it was used.

We used a few slightly different implementations to stop sim-
ple pattern searches from being used to find the checksum code.
To what degree this survived compiler optimization we don’t
know. To make our lives easier we made macros. These could be
sprinkled around the code and mixed in with other tasks, which
would make it much more difficult to spot where the checksum
was being calculated.

Unfortunately, because checksums are designed to detect errors
and not modification, they cannot offer full protection against
modification. The checksum value for any block of data can be

made to add up to any value by modifying the same number of
bits that are used for the checksum. In other words, if the check-
sum is 16 bits, altering 16 bits in the data can make the check-
sum match any value.

To deal with this, multiple checksums were applied to the same
data. Each checksum used a different start offset into the data,
and stepped through the data by different amounts. This meant
that overlapping and interleaved sections of data were check-
summed at different points, making it almost impossible to alter
anything and still have all the checksums add up. I could have
used different checksum algorithms for the same effect, but in
this case I didn’t have time to implement more than one method.

We used the fact that altering a small number of bits can give
you any checksum value to our advantage. By inserting the correct
value into the middle of the data, the checksum could be made to
equal any predetermined value. This meant the checksum value
could be hard-coded and therefore become part of the data being
checksummed. This is bewildering to even think about, let alone
try to crack.

Since the game used multiple code overlays (or DLLs), they
cross-checked each other as much as possible. This further
reduced the chance that any section could be altered without
being spotted. If any overlay noticed a discrepancy, it altered
data in the core such that no subsequent checksum would be
valid. This meant that if an alteration was detected in one over-
lay, then other overlays loaded later would know about it. This
made it difficult for the cracker to spot what actually triggered
the protection, as I’ll explain later.

Obfuscation

N ow that the meat of YOTD’s crack protection had been
implemented, it was time to move on to the second stage —

slowing down the crackers as much as possible. We had already
tried to make the protection as difficult as possible to understand,
mixing in the checksum code with regular game code, and using

m a y 2 0 0 1 | g a m e d e v e l o p e r46

S E C U R I T Y

“Basically, SYPRO: YEAR OF THE DRAGON is booby-trapped — one wrong
bit and it will blow up in your face.”

different implementations so that it would be hard to understand.
We thought that if the crackers couldn’t understand what we had
done, it would be a lot harder for them to crack the game. We
wanted to make it hard enough to reduce the pool of people capa-
ble of cracking it. If there are only a couple of pirates with
enough skill to crack a game’s protection, it might take them a
week or two to get around to it. Unfortunately, with YOTD being
such a high-profile game, this was probably wishful thinking.

Thus we wanted to make the job of cracking YOTD time-con-
suming and tedious. If we could just keep the crackers busy at
finding the protection, that’s time taken away from them working
out how to remove it. Again, we were trying to reduce the pool of
people available who could crack the game. Not every cracker
would have enough time available to make the crack; it probably
isn’t anyone’s day job. On this note, it’s worth pointing out that
for most crackers this is a hobby. If they get bored, they may well
give up. We tried to make the crackers have to wade through plen-
ty of chaff before finding the protection. There were a couple of
techniques we tried to achieve this.

First of all, if the crackers know what they are looking for, they
often don’t even have to boot up the game to find the protection.
They can simply search the disk and sometimes even edit the pro-
tection right there and then. Simply doing an XOR of as much of
YOTD’s code as possible before burning it to the CD means that
this technique will not work. It also makes it difficult to match up
data in memory with its source on the disk. We worked under the
assumption that code can’t be modified if it can’t be found.

Second, we made it as difficult as possible to debug. If you’ve
ever had to debug code that behaves differently when you trace
through it, you know how much of a pain debugging can be. We
used trace traps to make the code behave differently if breakpoints
had been placed. The checksum helped with this, as any software
breakpoints used would alter the checksum. Rebooting the debug-

ger and the game takes time, and the more often we could force
the cracker to do this, the more of their time we were wasting.

Perversely, though, the harder a crack is to make, the more fun
it is for the cracker to make it. It’s a challenge, and therefore fun.
Paradox, the cracking group who produced the working patch for
YOTD, even thanked the “Sony coders” who added such interest-
ing protection to the game. The more difficult the crack, the more
effort they will put into making it.

It’s the same with the length of time it takes to produce. The
longer that the game has been out without a crack, the more pres-
tige there is in being the first to produce one. Again, this means
more effort will be put into producing it.

Taking Action

O f course, all of this effort is worth nothing if the game does-
n’t do anything once a crack is detected, but this needs to be

handled carefully. If the game just halts as soon as any modifica-

tion is detected, the cracker would soon find and remove all the
protection. However, if we wait too long to react, too much of the
game would be playable even if an incomplete crack was used. To
balance this, we used as many layers of protection as possible,
which occurred at different points during the game. In YOTD we
had four layers, including the copy protection.

The copy protection stopped the game very early. When this
was removed, the game appeared to work for some time. We
assumed that the crackers generally don’t play the games they
crack very much, they just play until the point where the protec-
tion they know about kicks in. Then they release a crack, believ-
ing it to be complete.

To play on this, we designed the game to break in ways that
weren’t immediately obvious. Most of the protection is “off-cam-
era,” affecting levels other than the one currently being played.
In YOTD the object of the game is to collect eggs and gems,
which are then used to open later parts of the game. The protec-
tion removed eggs and gems, so that the player could not make
progress. We tried to make the game unplayable for any length
of time, while at the same time making it difficult to determine
exactly where things had gone wrong. If errors accumulated
slowly until the game broke, the cracker would not notice such
behavior so easily.

Other, more obvious protection was done less frequently. Call-
backs were corrupted, which made the game crash in odd ways.
The European version changed languages randomly. Some of
these actions break the game and others are just an annoyance to
the player, but if the game is difficult or frustrating to play
because of the failed crack, this can be more effective than break-
ing completely.

By making the game behave in as many odd ways as possible,
we hoped to cause a lot of confusion. The pirates wouldn’t know
if the crack didn’t work, whether they had just failed to apply the

crack correctly, or if the disk had failed to burn correctly. The
people who didn’t play a lot of the game wouldn’t notice that
anything was wrong and claim that the crack worked. This hap-
pens more than you would think. A lot of people pirate more out
of habit than anything else, booting up the game to have a look
before moving on quickly. All of this would help to delay a com-
plete crack from being made, because no one would be sure that it
was required.

The Costs

Implementing all of this protection takes time and resources
away from actually developing the game. For YOTD those

costs were as follows:
Programmer time. One programmer was required for three to

four weeks. The programmer spent this time adding the copy pro-
tection, integrating the anticrack protection into the game, and
writing tools to mask the data and generate checksums. For about

w w w . g d m a g . c o m 47

“If the crackers know what they are looking for, they often don’t even
have to boot up the game to find the protection.”

six months prior to actually writing any code, some time was
spent thinking of methods for protecting the game and what to do
when a crack was detected. This was slightly less than two per-
cent of the total programmer time budgeted for the game.

Game data preparation. The game data needed additional prepa-
ration before a disk could be burned. The game’s WAD file had to
be run through tools to generate checksums and mask data. This
added about an hour to the burn cycle, making it about three
hours long. The extra steps involved also made this process more
prone to error, though this diminished over time as we became
used to it and automated what we could.

Debugging. Any version of the game with protection included
was very difficult to debug, as any software breakpoints would
trigger the protection. Beyond a certain point, hardware break-
points were turned off by the copy protection. This effectively
meant that any debugging had to be done by the programmer
who implemented the protection (me) on production versions of
the game.

Testing. The protection was designed to produce effects almost
indistinguishable from bugs, so testing was also affected. If any
false positives occurred in the protection, they could be reported
incorrectly. For this reason a very thorough debugging plan was
produced just for the protection. Every location that could trig-
ger protection was listed, along with how long it would take to
trigger, what the exact effect would be, and where you had to
look to see the effect. Testers had to visit the locations, wait the
required amount of time, and then look to see if the protection
had been triggered. Having any of the protection give a false pos-
itive was obviously our biggest worry. Therefore all the protec-
tion was set up on a compile-time switch so that it could be
turned off at any time if we weren’t absolutely sure that the pro-
tection was reliable (and believe me, there were a few moments
when it didn’t seem to be).

After the Crack

I n the end, rather than trying to remove all the checksum code,
the crackers simply found a way to bypass it. I’m not exactly

sure how, but I know YOTD was vulnerable because the copy
protection was only run once, at boot time. I assume the crack
bypassed the copy protection and then restored the data to its
original state. Any checksums performed after this point would
not find any alterations (and any checksums before this were
removed by the crackers).

While the protection on YOTD was reasonably effective, there
were definitely things that we could have done better. If we had
been able to check the data on the disk and run multiple copy
protection checks, then it would have been a lot more difficult for
the crackers. As I mentioned at the beginning of this article, there
were practical reasons why these approaches could not be applied
to YOTD. Maybe if the protection had been integrated into the
game earlier, these difficulties could have been overcome.

Also, too much of the game could be played with a partial
crack. This was a balancing act, though. If the protection had
kicked in faster, perhaps the crackers would have realized sooner
that they hadn’t been successful with the first crack. But in the

end, we were perhaps a little too cautious. We could have
reduced the amount of the game that could be played with an
incomplete crack.

What We Learned

W ere all our efforts worth it? Yes. While the effects of crack
protection against piracy are extremely difficult to meas-

ure, we certainly caused a great deal of confusion. Until the crack
came out, YOTD was the most talked about game on the copying
forums. People wasted disks, blamed the cracking teams, and
claimed that the cracks that didn’t work were O.K., just because
they hadn’t seen anything go wrong. People were saying nasty
things about Insomniac and Sony because they couldn’t “back
up” the game. Some people even thought it was funny when the
fairy character, who normally offers players helpful advice, instead
told them they were playing a modified game. There is also an
effect on future piracy to consider: at the very least we made a
few people think twice about buying a cheap copy of a game.

We’ve gained valuable knowledge about what works and what
doesn’t. Layering protection that doesn’t kick in immediately is
definitely a very effective protection. If nobody thinks a crack is
required, they won’t be working on one. Even when they do work
on the crack, it takes them longer. The crackers apparently spent
quite some time play-testing YOTD before they released the final
crack, just to make sure they didn’t get burned twice.

Unfortunately, the crack protection is weaker once the copy
protection has been run. The cracker only needs to remove the
code that runs the copy protection. Once it has been run, the orig-
inal code can be restored, and the checksum will be correct. If this
is only in one place, it is easier to attack. To combat this, the copy
protection needs to be run as often as practical from independent
copies of the code.

If there is space, put multiple copies of the game data on the
disk. The cracker will have to find out which one is used or alter
them all. Either way, you’ve slowed them down. An extension to
this would be to actually use multiple copies of the data, either
loading a random selection or loading using a pattern based on
when the data is being loaded. If some of the copies are masked
differently and some are never used, the cracker will have to find
and alter them all to ensure that the crack is complete.

Even better than masking the data is compressing it, which
offers many advantages over simple masking. The relationship
between compressed and uncompressed data is much less obvi-
ous, the file sizes are different, and any cracked data has to be
compressed or else it won’t fit back on the disk. This means the
cracker has to find out what compression was used, and if you
customize the algorithm for your data, they may have to write a
compression program just to be able to make the crack.

Looking back at the choices we made, we could have imple-
mented multiple copy-protection checks throughout the course of
the game. Unfortunately, this isn’t always possible or practical,
depending on the method of protection used (especially if mini-
mizing load times is a primary concern). An alternative is to check
the source data on the disk. Of course you can’t check the entire
disk, but all the executables can be checked, along with the table

m a y 2 0 0 1 | g a m e d e v e l o p e r48

S E C U R I T Y

of contents and boot information. This is something YOTD failed
to do and is probably how it was cracked.

Reality Check

W e may not be able to stop the pirates, but we can have
enough of an impact to make pirating a much less attrac-

tive option. Given the choice of buying a game or waiting two to
three months for a pirated version, a lot of pirates are going to
start buying games. Or at least they’ll buy their favorite ones.

There is also an advantage in numbers; the more games that
add effective protection, the greater the benefit is for all games.
Crackers have limited resources, and the longer that they’re tied
up on each game, even if it’s only for a few weeks, the fewer
cracks they can produce.

Games that implement just a standard copy protection scheme
can be cracked in less than a day. Sometimes a tool is even avail-
able which does it in seconds. Any game that takes longer than
this because of added protection will be put in line until the
cracker has time to deal with it. The longer that line is, the
longer it will take for any given game to be cracked. The trick is
to keep your game from reaching the front of that line for as
long as possible. q

w w w . g d m a g . c o m 49

FOR MORE INFORMATION

If you are interested in learning more about how the copying com-

munity works and how cracks are made, try looking at the cracking

groups and forums. Here are a few starting points.

www.paradogs.com

www.cdrom-guide.com

www.gamecopyworld.com

www.megagames.com

The following links are not to crackers but to “homebrew” program-

mers who make console demos. Still, techniques and tools made for

the hobby scene always end up migrating to the crackers.

www.uic-spippolatori.com/psx/tute/faq.html

www.hitmen-console.org

http://napalm.intelinet.com

B y the end of 1999 it was becoming increasingly unviable for
third-party publishers to continue to support the Nintendo
64. Like many independent developers, Blitz Games suffered
because of this, but it was the cancellation of one of our
N64 projects that indirectly led to our decision to approach

the CHICKEN RUN games.
Earlier in the year, we’d had much success with an original Nintendo 64

title called GLOVER. Work was well under way on a sequel for both the N64
and Playstation when both projects were pulled by the publisher, leaving

more than 20 people without a game to work on. This happens to many
developers, of course, but Blitz never likes to put people out of work in
a situation like this. The search was on for a new project to keep these
two teams occupied and self-sustaining.

At around the same time, our chief executive and co-founder,
Philip Oliver, was at an industry dinner in London and got talking
(in the men’s restroom, of all places) to an industry friend. He
mentioned that he might have a very attractive project coming up

that would be right up Blitz’s alley if only we had the resources
available. Philip was naturally very interested, and a meeting
was soon set up where we learned that the interactive license in
question was Chicken Run.

Dreamworks (which owns the Chicken Run license together
with Aardman and Pathe) had been looking for an interactive

D A V E M A N U E L | Dave has been with Blitz Games since 1997. He joined the
company after doing a degree in graphic design and a master’s degree in computer
animation. He has worked on a range of Blitz titles, including GLOVER, and was cre-
ative manager for the CHICKEN RUN titles. He is currently a project manager for an
upcoming Xbox title.
D A V E F L Y N N | Dave has been with Blitz Games since 1997. He joined the compa-

ny after spending numerous years writing and selling his own software while study-
ing multimedia at university. He has industry experience spanning back to

1993 and has worked on a range of other Blitz Games titles and was a
team leader on CHICKEN RUN. He is currently an artist for an upcom-
ing Playstation 2 title.

m a y 2 0 0 1 | g a m e d e v e l o p e r50

P O S T M O R T E M d a v e m a n u e l a n d d a v e f l y n n

Blitz Games’

CHICKEN
RUN

CHICKEN
RUN

w w w . g d m a g . c o m 51

G A M E D A T A

PUBLISHER: Eidos Interactive
FULL-TIME DEVELOPERS: 24
BUDGET: Around $1 million plus the cost of the
license
LENGTH OF DEVELOPMENT: 9 months
RELEASE DATE: November 2000
PLATFORMS: Playstation, Dreamcast, PC (�2),
Game Boy Color
HARDWARE USED: 450MHz Pentium IIIs with
64MB RAM, respective development kits
SOFTWARE USED: 3D Studio Max, Photoshop 5.0,
Painter, Visual SourceSafe, InstallShield, Visual
C++, Bink
NOTABLE TECHNOLOGIES: Jobe: in-house 3D tex-
turing package; Egg: in-house world-creation
package, written specifically for the CHICKEN

RUN games.

Chicken Run images ™ & © 2000 Dreamworks LLC,

Aardman Chicken Run Ltd. and Pathe Image. CHICKEN

RUN games designed, developed and licensed by Blitz

Games Ltd. CHICKEN RUN games published under

license by Eidos Interactive, THQ, and Activision.

licensee for some time but had so far drawn a blank. This was partly because they were
keen to have a finished game for release for the Christmas 2000 holiday period in order
to capitalize on the last major push for the Playstation 1, but that left less than a year in
which to develop the game. We had to act fast and make some tough decisions. We had
more than 20 people back at the office without any work, but we had the opportunity
to venture into new territory for a developer — paying to become a licensee ourselves.
After much deliberation, we picked up the full interactive rights for the Chicken Run
property and set about putting the games together.

Although we knew we had the manpower to produce the three main console versions
of the game (on Playstation, PC, and Dreamcast), we decided to subcontract some of the
other versions that were produced. We realized that, as well as supporting a console-style
game, the PC audience would also be interested in a multimedia-type package. So we
approached Activision (which had just sold record numbers of the TOY STORY ACTIVITY

CENTER) and a developer called Absolute (which had worked with Aardman, the studio
behind both Chicken Run and the Wallace and Gromit films, previously on several
Wallace and Gromit multimedia packages), and contracted them both to produce the
CHICKEN RUN PC FUN PACK in time for the U.S. and U.K. movie release date. We also
decided that a Game Boy Color version of the game could work well, so we prepared
detailed design documents and approached specialist Game Boy Color programmers to
follow our design. The finished game, although different from the main console versions,
was ready for release at the same time and published by THQ.

If we were going to hit the pre-Thanksgiving/Christmas release slot with the three
versions that we were developing in-house, we needed to put a pretty aggressive sched-
ule in place, which is what we did. The GLOVER Playstation team got to work on the
Playstation version of CHICKEN RUN, with the plan to convert to PC and Dreamcast
later in the project. Meanwhile, the GLOVER 2 N64 team got stuck into the next-genera-
tion versions, planning to produce a Playstation 2 title initially, followed by Xbox and
Gamecube versions.

That’s not the end of the story, though. Although we had the rights to develop the
games, we still needed a publisher on board to get the finished titles to market. So while
the teams put together a detailed schedule and got started on the work, the senior manage-
ment team began to make their way around the major publishers with the first playable
demo in order to get a deal signed up. We were always confident that the Chicken Run
movie would be a smash hit because we’d seen plenty of Aardman’s work before, such as
the Wallace and Gromit series, which is very popular in the U.K. Many of the American

publishers were yet to be convinced,
though, and it initially proved to be an
uphill struggle. A deal was eventually
signed with Eidos on the night before E3
2000, and everything was in place.

What Went Right

1.Becoming a Chicken Run licens-
ee. One of the most successful

aspects of the project was the fact that we
ourselves were a licensee of the property,
rather than just a third party commissioned
by a publisher. We have a five-year deal for
the interactive rights for the property, and
this gave us a much higher degree of con-
trol than on any previous project. We obvi-
ously had consultation and approval
processes with Dreamworks, Aardman,
and our publisher Eidos to consider, but
the project-management freedom which
being a licensee gave us was liberating.

The whole deal was obviously a very
risky move, as we carried the license fee
and the whole of the development costs
ourselves, but in the end the risk paid off.
We were one of the first independent devel-
opers to pay for a license option ourselves,
and we’ve gained a lot of respect within
the industry for going down this route. It
was hard work trying to sell the game to
publishers in this way, but we’ve learned a

lot from the process and now know how to
approach it better if the opportunity comes
up again.

In addition to the learning process,
which was worthwhile in itself, the success
and public awareness of the movie has
given us a much higher profile than we
had before. Last year was our most suc-
cessful year to date and one which saw the
biggest lineup of games in the company’s
history, but the global popularity of
Chicken Run has helped establish us fur-
ther and raised our profile in an ever-
growing range of areas. Although the
company has been around just over
10 years now, there’s a distinct feel-
ing that we’re really starting to
make our name. Being a Chicken
Run licensee has helped
strengthen that position and
improve our reputation for
creating quality games.

2.Getting great
support. If you’re

a longtime reader of these
Postmortems, you may have drawn
the conclusion that producing a movie-
licensed game can be really problematic.
The film’s producers are frequently reluc-
tant or simply unable to release much
information about the product, and

52

P O S T M O R T E M

The interior of one of the chickens’ work huts in various stages of modeling and texturing.

m a y 2 0 0 1 | g a m e d e v e l o p e r

53

while the game needs to be tied into the
movie closely, it’s often impossible to get
much information out of the studio. Often,
little more than a preliminary movie script
is offered to the development team on
which to base the look, feel, and gameplay
of the games, but in our case we had no
end of help from Dreamworks and in par-
ticular Aardman themselves.

The team at Aardman was very helpful
right through the project and provided us
with a wealth of source materials on which
to base our designs for the virtual chicken
farm. As Aardman’s base is a mere hour’s
drive away from ours, they showed us the
sets for the movie down at their studios, let
us see scripts and storyboards, and also let
us have full style-guide reference materials
and snippets from the finished film to use
in FMV sequences throughout the game.

The great thing was that because the
movie is an animated feature, the film’s
production work took even longer than
producing a game usually does. By the
time we came on board, a lot of the mate-
rials and footage was already available.
Our team was also able to see rough cuts
of the movie well ahead of release. This
level of support ensured that everyone
working on the project had a good view
of how the finished movie product would
eventually appear in cinemas worldwide.

3.Making the
right game-

play decisions.
It’s always tricky

to take a linear movie
story line and make it
into an interesting interac-
tive experience. It was
especially tough in this
case, as the film is essen-
tially about failure almost
right up to the last scene.
We realized that to make
the game enjoyable there
had to be an element of
player success much earli-
er on in the game, so it
was important that we
include plenty of opportu-
nities for at least some of
the chickens to escape at
various points. To do this,
we decided to include a
number of amusing sub-
games that would also
add replay value to the
game, whereby the player could free a
group of chickens in one go after building
a contraption of some sort.

Complete contraptions. It was these sorts
of contraptions that we also felt were key
to the movie’s (and therefore the game’s),
distinctive humor. The array of weird and
wonderful devices that the chickens create
and use in the movie led us to employ a
simple but effective find-and-collect ele-
ment to the main gameplay, and we were
happy at how well this worked.

Chicken Gear Solid. The other major
gameplay decision we made early on that
was vital in re-creating the real feel of the
movie was to include stealth elements. The
film’s Great Escape overtones naturally led
us to implement the same idea, and pay
homage to the likes of METAL GEAR SOLID

in the game. We used several MGS-style
elements (such as the radar style and

characters creeping along walls) in
the early designs, and these
helped give the characters a
slightly more heroic edge as
they pitted themselves
against guard dogs, search-

lights, and the evil Tweedys.
Although a few reviewers actual-

ly accused us of stealing METAL

GEAR’s idea, most realized we were
poking gentle fun at a genre in the
same way that Aardman uses subtle
visual in-jokes in its movies.

The main plus point in our game-

play decision-making was the fact that
although we were guided strongly by the
movie’s visual appeal (discussed in the fol-
lowing section), we didn’t make the mis-
take of following the proceedings so slav-
ishly as to cripple the development
process. In the end, the game was praised
for being similar to the film while still
being imaginative and creative.

4. Faithfully re-creating the
atmosphere of the movie.

Aardman is known for its perfectionist
approach to its work and is rightly very
keen to make sure that any use of its char-
acters, environments, or story lines is treat-
ed sympathetically. Luckily for them, Blitz
is a company that recognizes the value of
strong intellectual property, and we have
much experience taking established charac-
ters and giving them an interactive spin.
Above all, we were keen to make sure that
the CHICKEN RUN games were something
much more than your average movie tie-in
and that they extended the experience and
the longevity of the film.

Character-building. As we’ve said
already, the movie has a very distinct look
and feel, and not just because the main
characters are all made out of plasticene.
It is these characters, though, that are
always the strongest element in any
Aardman production, and we were keen
to make sure that anyone who had seen
the movie would instantly recognize the

Ginger and Babs discuss their next move in one of the many cut
sequences.

w w w . g d m a g . c o m

look and personality of any of the charac-
ters in the game. This was a difficult feat,
because lip-synching and facial anima-
tions, which would have achieved this eas-
ily, are near-impossible on the Playstation.
We therefore worked closely with
Aardman to create realistic body
movements and gestures that
would accurately convey the
personality of each of the
characters. Many of the
movements we wanted the
chickens to do in the game
were things that they’d
never had to do in the
film, but the Aardman
animators were again on
hand to advise our own
animation teams with
tips on how the charac-
ters were originally
brought to life.

We did a detailed study
of each chicken, but in
some cases we only had a
few hundred polygons
for each one, so we care-
fully combined a mix of body
gestures with animated tex-

tures to create just the right feel. The plas-
ticene look of the characters was then
achieved by our expert texture artists. They
worked with subtle but highly detailed
bitmaps, which were combined with some

advanced lighting techniques coded into
the game.

Moonlight serenade. Another
challenge the team faced was

that a large chunk of the
movie takes place at night
in the moonlit farmyard,

and these moody condi-
tions are tricky to trans-
late into an interesting
gaming environment. The
dark and hostile environ-
ment we saw in the
movie was very distinc-
tive, and the chickens are
constantly on the lookout
for guard dogs, or the
Tweedys as they plot their
escape. We knew we could
introduce that stealthy feel
to the gameplay as we’ve
already discussed, but we
also needed to create a
visual feel that supported it.

Once again, it was Aardman’s help that
enabled us to do this so convincingly.
Along with their original plans of the
farmyard, they also let us have source stills
and production shots of the set. From
these we were able to create the final lay-
out of the gaming environment. Each
building was located exactly where it was
in the film, but we also gave each one a
detailed interior and populated it with col-
lectibles, chickens, and plenty of other
environmental details.

Lighting the way. Lighting was another
key element of the environmental design.
The blue-tinged moonlit sections worked
really well in the end, despite some initial
confusion as to how the game’s lighting
effects should be implemented. For much
of the level lighting we used an in-house
tool that enabled us to have low-level con-
trol over all aspects of texturing and light-
ing on a per-polygon basis. Each of the
meshes was painted with Gouraud light,
which let us create atmospheric areas of
deep shadow as well as the piercing light
of the farm’s spotlights. We added animat-
ed scenic models to many scenes, as well
as a host of other smaller touches, such as
flickering candles and smoke drifting from

54 m a y 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

Stealth and cunning play a major role in the CHICKEN RUN titles. Characters sneak around the huts at night in METAL GEAR SOLID style (top left), avoid the
spotlights and Mr. Tweedy’s flashlight in the farmyard (right), or negotiate a tractor puzzle in the toolshed (bottom left).

stoves, in order to convey the Aardman
feel authentically.

5. Including voices. The inclusion
of character voices was a bone of

contention for some time during the course
of the project. Many on the team were
unconvinced at first that voices could have
such a major impact on the finished prod-
uct, but our development director, Andrew
Oliver, insisted they be implemented. In
retrospect, we all admit that he was right
to force our hand, because the character
voices ended up providing that final piece
of character expression that would other-
wise have been lacking.

As we mentioned in the previous point,
it is the characters in Aardman’s work
that are its strength, and it’s their humor-
ous phrases and expressions that really
complete the picture. Once it was finally
agreed that we would include voices in
the game, the work began in earnest to
secure voice talent to record the extensive
script we’d drawn up. We managed to
secure a few of the original actors, but for
many of the characters we began a long
search for sound-alikes, which then had
to be approved before any recording

could begin. There was much confusion
over whether or not we would be able to
use all of the key character voice talent
from the film in the game, and we went
to great lengths to try to secure it. We
ended up having to use some sound-
alikes, but once again we learned some
valuable lessons in how to control this
type of input into a game.

All our effort was well worthwhile, and
the voices add that finishing touch to the
final game. The voices give the characters
more life and personality than simple text
dialogue would have provided.

What Went Wrong

1.Attempting too many versions.
We’d been very excited about the

CHICKEN RUN project, and after assigning
so much of the company’s money to buying
the rights, we were naturally keen to make
the most of it. We initially planned to pro-
duce a number of titles on a range of plat-
forms. The idea was to have Playstation,
PC, and Dreamcast versions ready for
release in time for Christmas 2000, then to
follow them in 2001 with Playstation 2,
Xbox, and eventually Gamecube versions.

Unfortunately, this wasn’t to be the case.
As we mentioned earlier, we had trouble

at the start of the project convincing many
publishers that the movie would be a suc-
cess. Even though we were eventually
proven right, we then had trouble convinc-
ing them that interest in the property
would extend beyond Christmas 2000. We
had full designs in place for the next-gener-
ation versions and had a team working on
them, but it soon became apparent that the
work on these games was in danger of
jeopardizing the earlier-release titles. As it
was looking increasingly unlikely that we
could secure publisher support for the
next-generation versions anyway, we decid-
ed that work should stop on these games
and that the two teams should be merged
in order to guarantee the production of the
Playstation, PC, and Dreamcast versions.

It’s a valuable lesson to have learned,
but perhaps it was inevitable that having
paid out for the interactive rights we
would try to throw as many people into
production on as many different versions
as possible. As we said in the first part of
the “What Went Right” section, what we
have learned from CHICKEN RUN on all
levels is valid. If we are ever in the same

m a y 2 0 0 1 | g a m e d e v e l o p e r56

P O S T M O R T E M

The level layouts are very faithful to the movie, whether it’s the chicken coop itself (bottom right) or the farmyard outside the wire (left). It’s all tied togeth-
er with cutscenes and conversations with the game’s key characters (top right).

58

position again, we’ll be much more realis-
tic with our goals of what we can do with
a license opportunity of our own.

2.Having too short a schedule.
The major problem throughout the

project was time, or rather a lack of it. We
had nine months in which to produce all
three versions of the game, and by most
standards these days that is an extremely
short project. We didn’t want to skimp on
any aspects of the game, but at the time
the team merger was first suggested it was
becoming more and more obvious that
something had to give. Combining the staff
helped enormously, but at the same time
we had to make some hard decisions about
exactly what would remain in the game
and what might have to go.

Removing sections of a game midway
through the development process was
never going to be a popular move, but
when the game was assessed in April it was
decided that a large section set in the
Tweedys’ pie machine would have to be

cut. This obviously caused a
few ructions with the mod-
elers that had started work
on it. Nevertheless, this

section was chosen for a num-
ber of reasons, not the least of
which was that it had the least
amount of already completed
work in place.

Once these decisions had
been made, though, the team
was able to carry on with the
project with a much greater
sense that the whole package
was achievable. It was still a
massive amount of hard work
and determination from the
team that actually brought the
games to completion on time. If
there’s one thing we’ll take from
this project on to the next one,
it’s that we need more than nine months.

3.Re-creating the scale of the
movie. As we said in the “What

Went Right” section, we tried to re-create
the whole movie’s environment, along with
some new areas, as faithfully as possible.
Still, the scale of the farmyard is something
that was never going to be easy to get
across. We were keen to make sure that as
players guided a small chicken across the
coop and the farmyard, they got a real

sense of how large and foreboding their
surroundings were. As we explained,

we achieved a lot of this with
atmospheric visual touches,

but we also wanted to let
players explore the

entire farmyard if
they wanted to in

order to give them
the sense of scale
of the place.

The Play-
station’s limited

memory caused us
to struggle with

displaying the farm
in its entirety, so we

had to split it into a
number of separate sec-

tions and stream them in
from the CD one at a
time. This process worked
really well and enabled us

to create a feeling of
seamless exploration

across the entire
farm. It also permit-

ted a much higher polygon count for each
hut and room interior that was displayed.

4.Merging two teams into one.
When two groups of development

staff, one of which has already spent a
few months working on a project, are
brought together to complete the project,
it’s inevitable that there’ll be some ten-
sion. Not surprisingly, this was the case
with CHICKEN RUN. As we’ve already dis-
cussed, merging the teams was essential if
all the planned Thanksgiving 2000 releas-
es were to be delivered on time. However,
when the moves came, not everyone on
the teams was completely happy, and
morale problems began to surface.

Part of the problem was that the two
team leaders had distinctly different mana-
gerial styles, and as a consequence the cre-
atives in their teams were used to working
in different ways. The nature of the short
schedule also meant that this transition
period was considerably more rushed than
it would have been if it had occurred dur-
ing a longer project.

Once again, we learned some valuable
lessons from this team-merging, not the
least of which was that it’s better to sort
out the team structure before simply mov-
ing desks about the building. Many of the
staff were unsure of the new structure or
how it would affect them and their work,
so at first productivity suffered slightly.
However, with some determined reorganiz-
ing and fresh planning of the task at hand
we were able to pull off what at first
seemed impossible — finishing all three
versions of the game on time.

m a y 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

Nick and Fetcher, the wily Cockney rats, tackle the infamous pie
machine.

w w w . g d m a g . c o m 59

It’s easy to say that you’ve learned from
your mistakes, but in this case we have
already implemented a new approach to
staffing. We are now approaching the
games that we currently have in develop-
ment in a much more flexible way. Team
structure and identity are just as important
as ever, but with new systems in place we
can now apply several teams to one game
project as they’re needed without too
much upheaval.

5. Starting testing and bug-fixing
too late. CHICKEN RUN’s short

timescale affected us in many ways, but
one factor that proved significant was that
the development work on the Playstation
version was scheduled to beyond alpha
stage. This meant that a lot of the play-
testing and then bug-fixing couldn’t be
started until much later than we would
have liked.

Play-testing always brings up a huge
range of suggestions for improvement, and
this was the case with CHICKEN RUN. Sev-
eral ideas to make the game more playable
were suggested, including modifying the fly-
ing-machine section at the end of the game.
This was a significant element to alter, and
we were reluctant at first to embark on

such a major change so late in the project.
Eventually, the work was done, and it made
the final version much better. In turn, how-
ever, it brought up a whole raft of new
bugs to work through at a late stage.

We also encountered problems when we
started to identify bugs. We were using an
internal spreadsheet system for recording
all bugs, but this wasn’t compatible with
the system our publisher was using.
Because of the unusual nature of how this
project worked (in that we were the licens-
ee and were essentially just selling a fin-
ished product to Eidos), the whole bug-
testing scenario was unclear for some
time. If it had been possible for all parties
to register bugs into the same system, then
it might have been possible to smooth out
the bug-recording and -fixing issues. In a
project with an already very tight sched-
ule, this would have been a big help
toward lessening the growing tension in
the final weeks of development.

Inspiration and
Determination

T he key factor throughout this project
was the importance of time, and very

major problems and changes ultimately

came about because we were working to a
nine-month schedule. In retrospect, the
team is pleased with the results, and
although the game is perhaps a little short
for a hardcore game player, the target audi-
ence has loved it. There are always prob-
lems in every project, and there are always
things to learn as each game progresses. We
had many more unknown quantities than
usual when we took on CHICKEN RUN, and
we all recognize that the project could so
easily have failed. The reason it didn’t was a
combination of hard work and sheer deter-
mination, enabling us to win through. In
addition, the whole Chicken Run property
is one that really excited everyone here at
Blitz, and the chance to work with some of
the world’s best animators was something
that kept a lot of the team going through
even the hardest times. Becoming a licensee
for a property such as Chicken Run was an
interesting new move for us, but one which
was ultimately a great success, leading us to
consider similar interactive licensing oppor-
tunities for the future. We consider our-
selves very lucky that we were able to have
learned some valuable lessons while still
managing to put out a well-received and
highly playable game on time for three dif-
ferent platforms. q

Rocky dashes into the egg store to avoid the evil Mrs. Tweedy (left). Ginger’s safer inside one of the huts (bottom right) than in the glare of a flashlight
(top right).

m a y 2 0 0 1 | g a m e d e v e l o p e r64

S O A P B O X c h r i s h e c k e r a n d c a s e y m u r a t o r i

Software Patents
Should Be Abolished

W
hether software patents are ethically wrong
or not is a matter of philosophy. However,
even if you don’t believe patenting software
is wrong from an ethical standpoint, you
must agree that if a thing is not working as

intended, and if it is in fact operating to the contrary of what it’s
intended to do, then that thing must either be fixed or thrown out.

We strongly believe software patents are unethical, but they also
fail miserably to work as intended. Worse yet, they are detrimental
to the game industry and to the software industry in general. We
fear software patents will spell the end of freedom and innovation
in game programming if we continue on our current course.

We hope that after reading this short article and following up
with the references yourself, you will come to the same conclusion
we have, and will join us in trying to dismantle the incredibly bro-
ken patent system.

Intent vs. Reality

S
oftware patents do not work as intended on a
number of levels. Patents — limited-time

exclusive rights to an invention — are
allowed under the U.S. Constitution as
long as they “promote the progress of
science and useful arts.” Unfortunately,
software patents do not accomplish this
goal in practice, and hard evidence is
emerging that they actually hinder
progress for both the patent holders and
for others in the industry.

James Bessen, from an organization
called Research on Innovation, and
Eric Maskin, a Harvard and MIT eco-
nomics professor, have written a paper
called “Sequential Innovation, Patents,
and Imitation.” In this paper, Bessen
and Maskin look at the various ratio-
nales and conventional wisdom for
patents, and build economic models
for these theories. They then compare
the theories and models with data
from the computer industry. The soft-
ware industry is a good empirical test
case for patents, because software

patents were not legal until the early 1980s. So, the authors look
at R&D spending and other metrics from the time before software
patents until after they’re well established.

Their results are not surprising to any programmer unlucky
enough to have dealt with software patents: Software patents did
not spur progress and competition in the computer industry. The
industry did not experience a wave of innovation after software
intellectual property law was strengthened, as defenders of software
patents have implied. In fact, Bessen and Maskin found that R&D
has stagnated relative to pre-software-patent times, especially
among the companies that patented most.

This is vitally important research. The patent debate is rife with
assertions and assumptions, but here is some actual data showing
that software patents have had the opposite of their intended effect.
As David Brotz, principal scientist at Adobe, testified, “It is clear to
me that the constitutional mandate to promote progress in the use-
ful arts is not served by the issuance of patents on software.”

Given this data, even if you don’t agree with us that software
patents are inherently unethical (the topic for another Soapbox), as
a logical person you still must conclude that they need drastic fix-
ing or elimination. Unfortunately, laws are not changed by the

publication of a research paper, regardless of
how important its results are. Laws are

changed by people who have a vested
interest in an issue lobbying Congress.
That’s why it’s important that you, as a
game developer, learn more about this
issue and become active.

Here are a few more brief reasons
why software patents don’t work:

“Nonobvious” to whom? The vast
majority of software-patent criticism
focuses on absurdly obvious algorithms
and techniques being granted patents. A
lot of these are quite hilarious in how
they violate the U.S. Patent and Trade-
mark Office’s own criterion of being
“nonobvious to a person having ordi-
nary skill in the art.” However, there’s
an incredibly serious side to these anec-
dotes. Patents which will affect your
ability to develop games are being
granted every day by underpaid and

technically unsavvy Ill
us

tr
at

io
n

by
 D

w
ig

ht
 A

llo
tt

S O A P B O X

continued from page 64

patent examiners. Do you really want the future of your company
or career to be decided by an examiner who has only eight hours to
review a patent application?

Patents don’t protect small inventors. Another myth is that
patents protect small inventors from being crushed by large com-
panies. The numbers do not bear this out. Applying for a patent is
expensive, and prosecuting or defending a patent is astronomical-
ly expensive; Stanford law professor Lawrence Lessig says it takes
$1.2 million on average to litigate a patent.

Bad resource allocation. As Lessig, a lawyer himself, says,
“Awarding [obvious] patents . . . siphons off resources from tech-
nologists to lawyers — from people making real products to peo-
ple applying for regulatory privilege and protection.” Brotz said,
“An industry that still generates tremendous job growth through
the start ups of two guys in a garage will not continue to grow
when a room for a third person, a patent attorney, needs to be
made in that garage.”

The references we’ve provided cover many more reasons soft-
ware patents are a bad idea. The truth is, software patents do far
more harm than good, and they are forming a noose around our
industry as you read this. Please read up on the issue and do what
you can to help eliminate software patents. q

C H R I S H E C K E R | Chris (checker@d6.com) is editor-at-large of Game Developer. C A S E Y M U R A T O R I | Casey (cmu@funkytroll.com)
is the lead developer on Granny, RAD Game Tools’ licensable character animation system and 3D toolkit.

F O R M O R E I N F O R M AT I O N

The League for Programming Freedom
http://lpf.ai.mit.edu/Patents/patents.html
http://lpf.ai.mit.edu/Patents/against-software-patents.html

A pro-patent rebuttal of the LPF essay
www.heckel.org/Heckel/ACM%20Paper/acmpaper.htm

Bessen and Maskin’s paper
www.researchoninnovation.org/patent.pdf

The IGDA is forming a Software Patents Committee
www.igda.org

	06gameplan
	08saysyou
	10indwatch
	13prodrev
	20profile
	23graphic
	31artview
	36f-macri
	44f-dodd
	50postmort
	64soapbox

	return:

