
MAY 1999

G A M E D E V E L O P E R M A G A Z I N E

A ccording to experts, sound
is more closely coupled to
the emotional center of
our brain than our visual

sense is. At least that’s what Dave
Rossum, the chief scientist at E-mu
Systems/Creative Labs, says. But I
believe him — audio has a mysterious
and indescribable way of affecting a
person’s mood.

There are many firms trying to bring
better audio to game players, which I
find very encouraging. This issue,
Jonathan Blow reviews the SDKs from a
number of these companies and pre-
sents his findings. These programming
libraries help create interesting audio
effects using techniques such as head-
related transfer functions (HRTFs), inter-
aural time delay (ITD), crosstalk cancel-
lation, and reverberation, often in
conjunction with specific sound cards.

On the Outside Looking In

B ut it’s with mixed emotions that I
look upon the state of 3D audio

today. I’ve experienced spatialized
audio effects while playing games under
controlled conditions, and I think it’s
being oversold. Using two speakers, if I
keep my head just so, I may be tricked
momentarily into believing a sound is
coming from a point 90 degrees off
center to my left or right. Once in a
while, if I’m wearing headphones, a
game will fool me into believing a
sound is almost directly behind me. In
every case though, the effect is fleeting
and not very impressive. The only time
I truly believed a sound was coming
from directly behind me was during a
demonstration of Psygnosis’s LANDER in
a sound room at Dolby Labs. And these
sounds coming from behind weren’t
really the result of trickery, they were
produced by some expensive stereo
speakers that were actually mounted
on the wall behind me. That was amaz-
ing and immersive. But I couldn’t cred-
it HRTFs and ITDs in that case.

Better Sound from Games:
A Fact-Finding Mission

D on’t get me wrong. I understand
the limitations inherent to HRTFs,

ITD, and so on, and what they bring to
gaming is far better than anything
we’ve had in the past. However, it’s
important for this industry to be can-
did with consumers about what 3D
audio delivers using the hardware that
most users have (two speakers), because
positional audio is not well understood
by consumers. One well-known com-
pany states on its web site that its
sound card “immerses you in heart-
pounding, adrenaline-rushing PC gam-
ing and entertainment audio with mul-
tidimensional sounds and awesome
effects from every direction.” Every
direction, perhaps, if you have a 4.1 (as
good as it gets on a computer) speaker
system. But most players don’t have
that much audio hardware hooked up
to their computers. This kind of hyper-
bole doesn’t help consumers trying to
make informed decisions about the
technology. People complain about the
confusing terminology on the packag-
ing of graphics cards, but at least in
those cases, a person can research the
term “MIP-mapping” and get a straight
answer. With audio, it seems to be
more of a hype sell. HRTFs, ITD, and
other audio concepts aren’t even men-
tioned on most sound card packages.

For that reason, I have to applaud
Creative Labs for using the term “envi-
ronmental audio” (as used in their
Environmental Audio Extensions, or
EAX, technology), because I think that
it’s a much more candid way of mar-
keting these features than the term “3D
audio.” Creative Labs stresses that envi-
ronmental audio isn’t necessarily audio
coming “from every direction.” Truth
in advertising is key. ■

G A M E D E V E L O P E R M A Y 1 9 9 9

4

P L A NG A M E

3D Audio: The Sound of

One Hand Clapping

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Editorial Assistant
Jennifer Olsen jolsen@mfi.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer e: alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.comz

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President Donald A. Pazour
Executive Vice Presidents H. Ted Bahr, Darrell Denny,
Galen A. Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

h t t p : / / w w w. g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

New Products
by Wesley Hall

Smooth Moves from Mirai

NICHIMEN GRAPHICS just launched the
much-hyped Mirai, and is now second
out of the gate (post-Maya) with its
next-generation 3D animation package.

Mirai targets game developers and
high-end character animators, and is
the latest incarnation of Nichimen’s N-
World suite of real-time content cre-
ation tools. The system incorporates
features such as subdivision surface
modeling, 2D and 3D paint, skeletal
modeling, inverse kinematics (IK), bio-
mechanical motion editing, a nonlinear
motion editing system, particle systems
and physics simulations, and photoreal-
istic rendering. Nichimen calls this a
“3D operating system,” and seems par-
ticularly proud of Mirai’s linked 2D and
3D editors and other structural features
which allow you to work in a more cre-
ative, nonlinear fashion. The company

also touts Mirai’s sophisticated skeletal
system which automatically enables
skeletal objects for IK movement as you
build them. Additionally, you can cre-
ate constraints with just a couple of
mouse clicks, and the IK algorithms
allow for natural human movement.
Biomechanical motion editing tools
help blend motion and smooth cycles.
In short, Mirai sounds like a boon if
you want to animate the heck out of
3D bipedal characters.

The package is available for a sug-
gested retail price of $6,495 and
includes online documentation, a tex-
ture library, and a motion capture
library from House of Moves. For
Windows NT, Silicon Graphics, and the
SGI Visual Workstations.
■ Nichimen Graphics Inc.

Los Angeles, Calif.

(310) 577-0500

http://www.nichimen.com

IPEAK Family Upgrade

INTEL recently announced that all
seven tools in the IPEAK family have

been updated to
improve efficiency
and to support
more hardware
devices.

The major news
is Version 2.0 of
the Graphics
Performance
Toolkit (GPT),
which now sup-
ports DirectX 6.1.
The GPT measures
3D hardware
accelerator perfor-
mance, analyzes
and records appli-
cation workload,
and analyzes the
interaction of
graphics hardware
and software to

help you isolate weaknesses in your
game and optimize your 3D graphics
performance. Other tools currently
available in the IPEAK suite include
the IPEAK Storage Performance
Toolkit, the Intel Power Management
Analysis Tool (IPMAT), Intel DVD
Qualification and Integration Kit
(DQUIK), Intel I/O Subsystem
Performance Monitor (I/O Mon), and
the Intel 1394 Integration Toolkit.

The new 2.0 version of GPT is priced
at $279. All Intel Developer Forum
attendees receive a free evaluation of
the tools.
■ Intel Corp.

Santa Clara, Calif.

(800) 889-4290

http://developer.intel.com/

design/ipeak/

Renderware 3 for Next Playstation

CRITERION SOFTWARE announced in
March that it will be providing
Renderware, the company’s indepen-
dent 3D graphics engine, as middleware
for the next-generation Playstation.

The latest version, Renderware 3, pro-
vides a lightweight framework with very
fast default implementations for an
array of 3D-related operations.
RenderWare provides you with a 3D
graphics API with a simple object-based
interface consisting of a small number
of object types and a rich set of associat-
ed functions. You can customise exist-
ing Renderware 3 plug-ins or build
totally new custom plug-ins. Render-
ware 3 is very small (about 100K) so as
not to limit system resources.

At press time, Renderware pricing,
availability, and details of some specif-
ic Renderware 3 plug-ins for the next-
generation PlayStation were not yet
available.
■ Criterion Software Ltd.

Guildford, Surrey, UK

+44 1 483 406 200

http://www.csl.com/

New Products: Nichimen’s next-gen-
eration Mirai, Intel’s GPT supports
DirectX 6.1, and Renderware is middle-
ware for the next Playstation. p. 7

Industry Watch: Sony announces
the next generation, Rival Studios is
born, Interplay sees red ink, THQ
moves on up, and other news. p.8

Product Reviews: Jeffrey Abouaf
dissects Digimation’s Bones Pro 2.
pp. 10-12News from the World of Game Development

7

UV editing, a modeling window, a 2D image, and a 3D paint

window allow you to do nonlinear work in Nichimen’s Mirai.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Alex Dunne

SONY REVEALS NEW CONSOLE PLANS.
Sony took the wraps off the
Playstation’s successor, announcing that
the project (the “Next Generation
Playstation”) would use DVD-ROM
discs, and would play current PSX
games thanks to a new I/O processor
from LSI Logic. The new processor uses
a 32-bit core identical to the current
Playstation system. Sony announced no
firm pricing details. Another interesting
revelation is that the new console will
play DVD movies and music, which
makes it a direct competitor to Nuon-
based DVD players. (VM Labs probably
isn’t thrilled.) The console is scheduled
to go on sale in Japan by March 2000.

RADICAL DEPARTURE. Radical
Entertainment recently lost some of its

developers when the developers
behind Fox Interactive’s ID4 and EA’s
ESPN X GAMES PRO BOARDER left to form
their own company, Rival Studios.
Rival Studios founder Darrin Brown
has signed with Boston-based Dotted
Line Entertainment, which is currently
talking with publishers about the
developer’s first original title. A deal
announcement is expected by E3.

SIERRA REORGANIZES. In one fell
swoop, Sierra closed many of its far-
flung development studios and relocat-
ed their teams to Sierra’s headquarters
in Bellevue, Washington. The company
indicated that the 11 different locations
that housed its developers weren’t opti-
mal, and reeled a number of these
development and marketing teams back
into the headquarters. The affected stu-
dios include Yosemite Entertainment
(Oakhurst, Calif.), Pyrotechnix
(Cincinnati, Ohio), Synergistic (Renton,
Wash.) and Books That Work (Palo Alto,
Calif.). All relocations are expected to be
completed by E3. Sierra subsidiaries
Berkeley Systems, Impressions Software,
Papyrus Design Group, and Dynamix
were not affected by the move, but the
reorganization did not leave them
unscathed, either. The restructuring
resulted in about 180 layoffs through-
out the company, including 30 at
Dynamix alone.

EIDOS SIGNS ELIXIR STUDIOS. Eidos
Interactive announced a publishing
agreement with London-based Elixir
Studios. Eidos will publish Elixir’s first
three products. The first is due in 2000.
Elixir Studios was formed in 1998 by
managing director Demis Hassabis, the
cocreator of Bullfrog’s THEME PARK.

GT DOES CE. Wizardworks, a subsidiary
of GT Interactive, is releasing a new line
of games for Windows CE-based hand-
helds, under the product line of Games
to Go!. The first five titles were released
in early March for about $20 each.
Thomas Heymann, GT’s new chairman

and CEO, said, “With projected annual
hardware sales of $7.5 billion by the
year 2003, the mobile computer market
is a huge industry in the making.”
Heymann, who succeeded Ron
Chaimowitz at the helm of the compa-
ny, used to be president of The Disney
Store. Chaimowitz now heads up
Onezero Media, a GT subsidiary.

INTERPLAY SEES RED. Interplay report-
ed that its net revenues for 1998
amounted to $126.9 million, compared
with $120.1 million for the prior year,
and amounting to a net loss of $28.2
million. The company lost $16.6 mil-
lion in the fourth quarter alone.
Interplay head honcho Brian Fargo
attributed the poor fourth quarter
results to the company’s inability to
ship MESSIAH and EWJ 3D, the fact that
BALDUR’S GATE shipped late, and higher
customer returns than usual in the
fourth quarter. CFO Jim Wilson said
that Interplay just negotiated an
expanded line of credit and is address-
ing problems by reducing headcount by
almost 20 percent.

ID NABS DEVINE. Graeme Devine, the
cofounder and CEO of Trilobyte, landed
a spot at id Software as a designer.
Devine produced titles such as THE 7TH

GUEST and THE 11TH HOUR.

THQ DOES MORE WITH LESS. THQ
announced its revenue increased 141
percent to $215.1 million for the year
ending December 31, 1998. Profits for
the year came to $23.2 million, versus
$9.3 million for fiscal 1997. The com-
pany had an especially impressive
fourth quarter, thanks in part to strong
sales of WCW/NWO REVENGE for the
Nintendo 64. Interestingly, THQ’s
growth in 1998 was achieved with
fewer titles shipped than in 1997.

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

8

May 9-13, 1999

SD ‘99 West
Moscone Convention Cntr.
San Francisco, Calif.
Cost: variable
http://www.sdexpo.com

May 10-13, 1999

3D Design and
Animation Conference
Santa Clara Convention Cntr.
Santa Clara, Calif.
Cost: Early Bird rates available
http://www.3dshow.com

May 12-15, 1999

E3 99: Electronic
Entertainment Expo
Los Angeles Convention Cntr.
Los Angeles, Calif.
Cost: $400
http://www.e3expo.com

UPCOMING EVENTS

CALENDAR

Mad action shots from WCW/NWO

REVENGE, THQ’s money-maker.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

Digimation’s
Bones Pro 2

by Jeffrey Abouaf

D igimation’s Bones Pro debuted
in the days of 3D Studio DOS
as the must-have kinematics

chain-based deformation tool for char-
acter animation. Using Bones Pro is
similar to using the boning systems
found in most mid- to high-level 3D
animation packages: the artist builds a
hierarchical chain of bones scaled to fit
and function as a skeleton within a
character model composed of either a
single mesh or multiple meshes. The
mesh is then bound to the skeleton so
that each bone exerts influence over a
nearby section of vertices; animating
the skeletal hierarchy deforms the
mesh smoothly and naturally.

When 3D Studio Max 1.x and
Character Studio 1.x appeared in 1996,
Bones Pro Max expanded its function
to remain a viable alternative to the
native 3D Studio Max animation sys-
tem and the Character Studio plug-in.
Character Studio consisted of two
parts: Biped, a two-legged inverse kine-
matic skeleton with its own footstep-
driven animation system; and
Physique, a mesh modifier for attach-
ing and deforming the character mesh
as the biped skeleton moved. Physique
worked by assigning fixed vertex selec-
tion sets to specific bones. Animators
critical of Character Studio 1.x had two
principal complaints: freeform anima-

tion was more flexible than Biped’s
footstep-driven system, and the mesh-
vertex selections were influenced only
by single bones, not by and across
multiple bones, resulting in unnatural
movements and deformations.

Bones Pro Max was based on 3D
Studio Max’s space-warp technology,
which meant that bones could influ-
ence the mesh in combination and
proportionally, based on overlapping
envelopes or bounding boxes radiating
from each bone. All animation was
freeform, and unlike Biped, the bones’
size and scale could be animated (for
instance, animating the scale of a chest
bone makes the character appear to
breathe). Complete control over move-
ment, scale, and bone influence led
many animators to use Bones Pro
exclusively to animate their characters,
and others to use it in combination
with Character Studio 1.x (for example,
using Character Studio for body move-
ment and Bones Pro for facial anima-
tion). But last spring brought Character
Studio 2; this long-awaited update
addressed most of the limitations of
version 1.x. The upgrade also incorpo-
rated many features formerly exclusive
to Bones Pro: skeletal animation could
be footstep-driven, freeform, or import-
ed motion capture data, and could be
converted from one form to another at
will. In the new version, Physique
defaults to envelope-based overlapping
influence fields, which allows more
than one bone to influence an area of
skin and lets users assign weights for
the influences. Character Studio 2’s
new features eclipsed those of Bones
Pro Max in most respects.

Enter Bones Pro 2, with improved
functionality and additional features:
modifier-based application; support for
multiple skeletal types, including Biped
and Max bones; the capability to save,
import, and export Bones Pro data
(which is useful when more than one
object is controlled by the same BP
data); a more accurate bounding box
influence calculation; support for
forced vertex weighting; quick identifi-
cation and assignment of unlinked ver-
tices; and a new Bone Jiggler space
warp for soft-body dynamics.

Bones Pro’s tried and true utilities
also bear mentioning (although these
are the same utilities that shipped with
Bones Pro 1): the Skeleton utility, for
converting native 3D Studio Max
bones into the box-based skeleton used
by Bones Pro 2; Blend, a modifier for
smoothing the intersection between
attached or Boolean objects; and
Snapshot Plus, a utility for creating
stand-alone copies of a deformed mesh
without the influence of any space
warps (so you can essentially use a
space warp as a modeling tool).
SKELETONS FROM BOXES AND BONES. In
order to deform a mesh, Bones Pro 2
needs a skeleton in the form of geome-
try (regular geometric boxes linked
together), a regular biped skeleton, a set
of native 3D Studio Max bones, or a set
of Max bones that have been converted
to boxes using the Skeleton utility. If
you’re not using a biped, 3D Studio
Max bones are the easiest way to create
the skeleton, because they generate
proper IK chains automatically and can
be easily edited to fix distances between
joints. If you use Bones Pro 2’s Skeleton
utility, it generates boxes around the
bones and replaces the 3D Studio Max
bones’ IK controllers with Bézier and
TCB controllers. The Skeleton utility
will remove any end effectors (rotation-
al or position) that you place on a
native 3D Studio Max skeleton.
However, once you’ve generated the
skeleton boxes, you can set joint con-
straints just as you would with any
other IK chain in 3D Studio Max. Figure
1 shows a skeleton created from 3D
Studio Max bones (left) and the result
after running the Skeleton utility. The
boxes generated by the utility will retain
some of the skeleton’s information,
such as the fact that they are hierarchi-
cally linked, the fact that they are the
correct size, and the way in which mul-
tiple chains of 3D Studio Max bones are
linked together (for example, the pelvis
is root). But no joint constraints, termi-
nators, or end effectors exist on the new
box skeleton. You can resize (and ani-
mate the resizing of) any box-bone in
the new skeleton to fit the character.

Alternatively, you can use 3D Studio
Max bones directly to build the skele-
ton. Bones Pro 2 recognizes these bet-
ter than did version 1, and if you take
this approach, the bones remain sub-
ject to 3D Studio Max 2.x’s IK con-
troller. That is, you can place end effec-

Jeffrey Abouaf is an 3D artist and instructor. When he’s not teaching or writing, it’s
rumored that he’s conducting secret experiments on virtual humans. He can be
reached at jabouaf@ogle.com and http://www.ogle.com.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

11

tors, constrain joints, and set termina-
tors using 3D Studio Max’s most
advanced IK abilities, and still enjoy
the advanced capabilities of Bones Pro
2. The main difference between the
approaches is how you might animate
changes to bone scale: with geometry,
you can animate x, y, z scale; with
helpers, moving the bone extends or
contracts it in relation to other bones,
although you can’t animate thickness.
Either way works.
CHARACTER STUDIO WITH BONES PRO 2.Of
great interest to animators is how well
Bones Pro 2 integrates with Character
Studio 2. You can use a biped as a
skeleton for Bones Pro 2 (instead of
Physique). Or you can link new bone
boxes to the biped, animating the
biped with Physique and the addition-
al bones with Bones Pro 2. Or, you can
apply Physique to all the bones, and
then apply Bones Pro 2 to the same
bones and the same mesh; Physique
handles the underlying animation and
Bones Pro 2 acts as a modifier on top
of that. These different approaches
show the flexibility of this upgrade.
But the details of when and why you
might use them together can be con-
fusing, and sadly there’s no documen-
tation on point. For example, would
you ever use Character Studio 2 and
Bones Pro 2 together to animate an
arm movement?

Clearly, integrating Bones Pro 2 with
Character Studio 2 is elegant for adding
facial animation to a biped character.
This technique also compensates for
some limitations still present in
Biped/Physique, such as the inability to
animate biped bone-scale to simulate
breathing. You can apply the Bones Pro
2 modifier on top of Physique — a first
— and animate using each of the appli-
cations up and down the stack.

Unlike Character Studio 2, Bones Pro
2 works with meshes, not NURBS or
lattice-type space warps — a notable
limitation. Applying Bones Pro 2 to a
NURBS Bones Pro 2 object automatical-
ly converts it to a mesh; 3D Studio
Max 2.x won’t let you convert an
editable mesh back to NURBS. You sim-
ply can’t apply Bones Pro 2 to a lattice
space warp.
WORKING WITH BONES PRO 2. Bones Pro
2 is a 3D Studio Max Object Space
Modifier (OSM), meaning it’s applied
as a modifier to the target mesh object,
not as a space warp, as was Bones Pro

1. This has advantages for cases in
which you animate other modifiers in
the stack. Within the Bones Pro 2 roll-
out, you designate the specific bones
that you wish to affect the mesh
(Figure 2). You then work in Bone
and/or Vertex Sub-Object levels to visu-
alize and adjust the influence of any
bones on mesh vertices.

Bones Pro 2 displays relative influ-
ence strengths using color-coding. You
can adjust Strength and Falloff in real-
time and see the influence reflected as
a change in color. In Bones Pro 1, rela-
tive influence was located in a pop-up
window with its own set of controls.
Bones Pro 2 is better organized: the
viewer is in the viewport window, takes
on the view of that viewport, and
groups the relevant buttons in the
command panel. This valuable visual-
ization tool should be implemented
throughout 3D Studio Max; now if we
could only paint vertex weights, à la
Maya’s artisan….

The vertex Sub-Object level sports an
improvement. While Bones Pro 1 used
a bounding box or enveloping
approach to set bone influence accord-
ing to bone-vertex proximity, Bones Pro
2 lets you override this setting by typ-
ing in specific vertex weights and

examining the effect. (Vertex weighting
is also a feature in Physique 2.0, but
there it appears intended for special-
case rather than general usage.) Bones
Pro 2 also lets you specifically identify
any unassigned vertices and either
include or exclude them as influenced
by the selected bone. For anyone work-
ing with Bones Pro 1 or Physique,
where it’s common to see some vertices
left behind when you first apply the
modifier, these blanket inclusions and
exclusions are a big help.

The Bone Jiggler feature will likely be
Bones Pro 2’s main selling point,
because it introduces the appearance of
soft-body dynamics (jiggles) as sec-
ondary mesh motions. I was able to
create a short animation in which a
character’s belly jiggles as the character
jumps. A special belly box-bone was
added in the stomach and linked as
child of the spine bone. I applied the
Bone Jiggler space warp to the bone
(not the mesh), and animated those
settings (Figure 3) over 100 frames.
You’ll need to enable inertia and oscil-
lation jiggling in the Bones Pro 2 mod-
ifier settings for jiggling to work.
(These two settings enable an effect
that is much like the motion created
by the Hypermatter plug-in and, to a

F I G U R E 1 . Bones Pro 2 can make use of native 3D Studio Max bones (right), geo-

metric boxes, a biped skeleton, or an IK chain of boxes (left) generated with the

Skeleton utility.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12
lesser degree, by the freeware Lag mod-
ifier. The advantage is that Bones Pro 2
is easier to use than Hypermatter,
doesn’t require a proxy object to be
swapped for the original, and generally
has been reworked to optimize usage
in conjunction with Character Studio
2. And the Lag modifier lacks the
extensive controls that are included
here.) Six variables control jiggle move-
ment, which can be constrained by
axis. As motion, and not simulation,
the Bone Jiggler works where visual
accuracy will suffice (it requires less
calculation than physical simulation).

Bones Pro 2 files can now be saved
out in their own file format (.BPM),
and the structure and animation data
can be exported in .TXT format. These
formats work well if you have several
characters that need to be driven by
the same skeleton. Bones Pro 2 makes
full use of the modifier stack, meaning
that you can use it for morphing
objects, as with Smirk, Mix, FFD, or
other modifiers. Or you might use the
Snapshot Plus utility to generate
morph targets. Either way, this
approach is an improvement over the
options that version 1 offered.

Bones Pro 2 offers new integration
with Maxscript, which perhaps holds
the greatest potential for this new ver-
sion. Most functions can be called
with their own script terms. As
Maxscript plays an increasingly more
significant role in production, the abil-
ity to write, for example, a slider-dri-
ven facial animation system using
native 3D Studio Max bones and Bone
Pro 2 is a great possibility.
WHAT’S LEFT FOR BONES PRO 2. However
versatile, 3D Studio Max is criticized

for its IK, especially when compared
with Softimage, Maya, or Nichimen’s
achievements in this area. Specifically,
I refer to IK handles, spline handles, or
intelligent skeletons, in which multiple
bones are controlled by one handle or
a spline. These kinds of features save
the animator time by constraining
motions to the most natural move-
ments. With Bones Pro, Digimation
has an opportunity to bring advanced
technology to this part of the 3D
Studio Max environment.

My other wishes are comparatively
modest. I’d like to apply Bones Pro 2
to NURBS without converting to a
mesh, and it would be interesting to
apply Bones Pro 2 to a lattice. Also,
the documentation, which is good as
far as it goes, could be more compre-
hensive in addressing how to get opti-
mal results with Bones Pro 2 and
other plug-ins, such as Character
Studio, Smirk, and others. Bones Pro 2
has been improved to work with
many other plug-ins — it would be
helpful to have some dos and don’ts
in this area.
OVERALL. Character Studio 2 stole much
of Bones Pro 1’s thunder, making it
obsolete to all but facial animators and
those who want total control in
keyframing forward and inverse kine-
matic chains. Bones Pro 2 keeps the
product alive. It makes native 3D
Studio Max bones easier to work with;
is easier to use than 3D Studio Max
bones; allows great flexibility in deter-
mining bone influences and vertex
weights; and integrates a usable, color-
coded editor/viewer. The Bone Jiggler
feature adds soft-body secondary

dynamics, a natural extension for this
type of product. The Blend, Skeleton,
and Snapshot Plus utilities, while not
new, are appropriate complements, and
keep the product useful.

Overall, the improvements in Bones
Pro 2 — in feature set, usability, and
stability — make it beneficial to anima-
tors. The $395 price appears appropri-
ate in the context of other 3D Studio
Max plug-ins. The fact that Digimation
developed this product in-house over
several years is a plus — tech support
has been good and maintenance releas-
es have been issued on a regular basis.
In November 1998, Kinetix announced
a strategic partnership with Digimation
Inc. to provide Kinetix third-party
developers with full software publish-
ing services, including packaging, doc-
umentation, quality assurance, market-
ing, and support. This product is useful
and easy to use; I look forward to its
continued development. ■

Company: Digimation Inc.

St. Rose, La.

(800) 854-4496

(504) 468-7898

http://www.digimation.com

Price: $395.00

System Requirements:
Bones Pro will run on any

system capable of run-

ning 3D Studio Max, such

as a Pentium, Pentium

Pro, or Pentium II with

64MB RAM (128MB

recommended).

Pros:
1. Supports many skeleton

types and makes it easy

to edit or include/

exclude vertices from

bone influences.

2. Bone Jiggler is useful

because it precludes

having to use more com-

plex plug-ins for soft-

body effects.

3. Support for Maxscript.

Cons:
1. Could use advance IK

manipulators, such as IK

or spline handles to

drive skeletal move-

ment.

2. No support for NURBS

or lattices.

3. Documentation could be

extended to address the

nuances of using Bones

Pro 2 with other Max

plug-ins.

Bones Pro 2:

F I G U R E 2 . Bones Pro 2 is applied to

the target mesh as a 3D Studio Max

modifier. You then assign the bones

affecting that mesh.

F I G U R E 3 . The Bone Jiggler space

warp includes six animatable charac-

teristics, which can be constrained to

the x, y, and/or z axes, to produce a

very specific motion.

b y J e f f L a n d e r G R A P H I C C O N T E N T

Users with more powerful systems get
a more realistic experience, while users
with less powerful systems are still pro-
vided with a complete experience. It’s
a situation analogous to the use of lev-
els of detail in your 3D models.
Particularly in the PC market, where
target systems can vary widely, these
techniques have become a crucial
weapon in the developer’s arsenal.

For a current project, I decided to
maximize the use of dynamics to
increase realism wherever possible.
The project focuses on characters in
moody interior environments. It
occurred to me that the use of cloth
animation in my scenes would be cru-
cial to creating the mood I was trying
to establish.

Traditional Cloth Animation in Games

C loth animation is tricky. Even in
the world of high-end computer

graphics, it’s difficult to get right. Most
of the time, it’s wise to avoid the
whole issue. Anyone who has ever cre-
ated a female character in a skirt is
familiar with the problem of the legs
poking through the cloth mesh during
animation. This is pretty difficult to
fix, especially if animation requires a
variety of motions. It’s particularly
tricky if you are applying motion cap-
ture data to a character. Unfortunately,
it’s also a really obvious animation
problem that any end user can spot.
These cloth animation problems are
the reason why most digital characters
are clothed in tight-fitting gear, such as
skin hugging stretch pants.

Most loose clothing doesn’t look

natural in digital art because it’s static.
It doesn’t move along with the body.
It’s possible to morph the shape of the
skirt to match the motion of the char-
acter, but this requires quite a bit of
detailed animation work. Likewise,
deforming the skirt with a bone sys-
tem can be effective, but not necessari-
ly realistic.

For my work, I wanted to create real-
istic cloth in the environments and on
the characters. My hardware accelerat-
ed graphics rasterization freed the
processor power necessary to make this
possible. So, I set about creating a real-
time cloth simulation.

The Latest “Springy” Fashions

T he mass and spring dynamics sim-
ulation I developed in a recent col-

umn (“Collision Response: Bouncy,
Trouncy, Fun” March 1999) proved
effective for simulating soft body
objects in real time. I thought it should
be possible to use these techniques to
create a cloth simulation. In fact, sever-
al of the commercial cloth animation
systems for 3D animation programs
such as 3D Studio Max, Softimage, and
Maya use similar techniques. So how
do I go about creating a piece of cloth?

I am going to be using the same
spring force formulas for the cloth
simulation as the ones I used in the
March column. If you are unfamiliar
with the dynamic forces generated by

springs, you should go back and read
the March column or at least take a
look at the March source code on the
Game Developer web site (http://www.
gdmag.com).

I start by creating a rectangular grid,
and then connect each point to neigh-
boring points with springs, as you can
see in Figure 1A. These springs define
the rough structure of the cloth and so
I refer to them as structural springs.

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

17

Devil in the Blue-Faceted Dress:

Real-Time Cloth Animation

I’ve been describing methods of dynamic simulation using mass and spring sys-

tems for the past couple of months. These techniques dramatically increase the

realism in your real-time graphic simulation. One of dynamic simulation’s key

benefits is that it creates a scaleable game experience.

Jeff Lander prefers to wear comfortable loungewear when hanging out writing code at
Darwin 3D. Drop him a note and let him know what the fashion conscious are wear-
ing this spring at jeffl@darwin3d.com.

The devil wears an animated-cloth

blue dress.

The resulting cloth patch looks pretty
good and requires few springs.
However, once I run the simulation,
problems appear immediately as shown
in Figure 1B.

The simple spring connections are
not enough to force the grid to hold its
shape. Much like the box in the March
column, there are simply no springs to
maintain the shape. If I held on to only
one point, the entire surface would col-
lapse into a single line creating a rope.
Not exactly what I wanted, but it
points out something I want to address
a bit later.

I really want to keep the model from
shearing too much. That is, I want the
space between diagonal elements of
the model preserved. So, I just add a
few more springs to the grid along the
diagonals creating a group of shear
springs, as you can see in Figure 2A.
Run this new structure through the
simulation and the results are much
better, as you see in Figure 2B.

This new form of cloth works pretty
well hanging from hooks on the wall.
However, if you drop the cloth on the
floor, it wads up into a big mass of
springy spaghetti. The reason for this
failure is that the model is still incom-

plete. If you look
at the structure in
Figure 2A, you
may see that there
is nothing to keep
the model from
folding along the
edges of the struc-
tural springs,
much as you fold
a handkerchief.
The fibers that
comprise actual
cloth run the
length of the fab-
ric and generally
resist folding and
bending. In order
to simulate this
effect adequately,
I need to do a little more work.

My research uncovered two methods
for dealing with this problem. The first
minimized the bend between two adja-
cent cells by using the dot product to
determine the angle of bend. The sec-
ond method simply added an extra set
of springs called flexion or bend
springs to apply the bend force. I creat-
ed the bend springs by stretching a
spring across two cells alongside the

structural springs. These springs end
up connecting every other cell in the
cloth mesh.

I prefer the second method because
it works within the existing spring sys-
tem without the need for a new
method for calculating forces. I also
get the benefit of having only one cal-
culation to optimize later. For other
applications, it’s possible that the
angle minimization method may work
out better.

I now have a sufficient spring net-
work to simulate a variety of different
types of cloth. You can see how all the
springs are connected in Figure 3.

Stretch without Tearing

These three types of springs make it
possible to simulate a variety of

different cloth types. By varying the
stiffness of the springs, it’s possible to
simulate anything from stiff cardstock
to stretchy nylon. For example, span-
dex would have very flexible structural
and shear springs to allow strong
stretching capability. Paper, on the
other hand, is very resistant to shear-
ing and stretching, so its springs
would be very stiff. When considering
how much a material will bend, a sur-
face such as cardboard should have the
very stiff bend springs to make it resis-
tant to folding. I find experimenting
with different values for spring stiff-
ness the only real way to find adequate
surface properties.

Stiff springs can make a numerical
simulation unstable. To combat this,

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

F I G U R E 1 A . A simple cloth grid. F I G U R E 1 B . Stretched cloth grid.

F I G U R E 2 A . Added shear springs. F I G U R E 2 B . A better cloth model.

F I G U R E 3 . The interconnection of cloth springs.

it’s important to use a good numerical
integrator. The midpoint method and
Runge-Kutta integrators developed last
month seem to do the trick nicely.

Making It Move

I already have a simulator from the
March column that is capable of

handling a cloth patch. I can even
apply gravity to it and lock the posi-
tion of individual vertices. That’s pret-
ty interesting, but it needs some
improvement to come alive. In March,
I also discussed the use of planes for
collision. With this same method, I can
create collision boxes that enable me to
simulate a tablecloth draped over a
table, as you see in Figure 4.

This model is interesting and realis-
tic looking but not terribly animated.
In fact, in this case it’s probably better
to freeze the simulation and avoid the
constant recalculation. Unless, of
course, the wind kicks up or someone
pulls on the corner.

For characters, a moving box is not
the most realistic way to displace the
cloth. Moving bounding spheres allow
much more pleasing character anima-
tion. Fortunately, this is easy to add to
the simulation. Determining whether a
point is inside a sphere is very easy. If
the distance from the point to the cen-
ter of the sphere is less than the radius
of the sphere, the point is on the
inside. If a point in the cloth is found
inside a sphere, I have a penetrating
collision. Just like handling collisions
in the March simulator, I need to back
up the simulation time to find the
actual point of contact. In a sphere,
contact takes place when the distance
of the point to the sphere’s center is

equal to the radius of the sphere. Now
that the contact point has been estab-
lished, I need to resolve the collision.
The collision normal, N, between a
point and a sphere is the vector
between the point of contact and the
center of the sphere. You can see this
in Figure 5. Fortunately for me, the rest
of the collision response is handled just
like the collision with a plane. This
means my existing collision response
code works great.

I can now add collision spheres to
my simulation. The cloth slides realisti-
cally off the spheres. You can see how
the simulation looks with two collision
spheres in Figure 6. By animating the
spheres along with the 3D model, I can
get a nice animated hip sway and other
alluring effects. The motion of the
cloth continues after the animation
stops, creating entertaining effects that
are diffiicult to achieve with traditional
animation techniques.

Problems to Avoid and Ignore

The simulation has a couple of
problems. The first is that the way

to simulate cloth realistically is to use
a lot of points in the simulation. This
takes more computation time. High-
end animation programs rely on a
great number of particle points for
realism. Of course, in other fields,
hour-long render times are perfectly
acceptable. In a real-time game, how-
ever, this won’t get you on the cover
of any game magazines. You have to
sacrifice realism for speed. This is
another good area for scaling game
performance. If the system is running

quite fast, subdivide the cloth patches
a little more. Game players with a
white-hot system should have
smooth-looking cloth.

Another problem is that each spring
acts independently. This means that
each spring can be stretched to a great
extent. In many cases, the amount of
stretch can exceed 100 percent. This is
not very realistic. Actual fabric will not
stretch in this manner. The problem I
have is that I am using linear springs
when fabric actually displays a nonlin-
ear spring behavior. As the amount of
stretch increases, the strength of the
spring increases also. The fabric will
also stretch to some limit and then if
the force continues, it will rip. This is
not what I want (at least for now). This
issue, which Xavier Provot (see For
Further Info) calls “the Super-Elastic
Effect,” is difficult to handle.
Increasing the spring strength dynami-
cally can lead to instability problems
just like any other stiff spring problem.
Provot suggests checking the amount
of stretch in each spring, and if it
exceeds a set deformation limit, the
springs are adjusted to achieve this
limit. While I agree this solves a defi-
nite problem, a second pass through
the springs is costly. For the effects I
have attempted to achieve, I can live
with super-elastic cloth.

My collision system is pretty primi-
tive. To make things easy, I only col-
lide the vertices of the mesh with the
objects. As it stands, if a sphere is
small or the fabric stretches too much,

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 4 . Collision boxes allow for

the draping effect on this tablecloth.

F I G U R E 6 . Cloth hanging from a pair

of invisible hips.

N

X

S

F I G U R E 5 . Collision with a sphere.

the sphere will pass right through it. I
also don’t handle self-collisions. That
is, the fabric can pass through itself
without penalty. This could be cor-
rected by placing bounding spheres at
each vertex. However, applying the
sphere collision test between each ver-
tex gets expensive. So, I just limit the
situation so that either the cloth
doesn’t pass through itself, or so the
effect isn’t too noticeable.

Taking It to the Limit

O nce the system is working, it’s
fun to see how it can be extend-

ed. I mentioned the issue of tearing
and ripping after the fabric stretches
too far. I can monitor the spring
lengths. If they exceed a limit, the
spring can be removed from the sys-
tem, effectively tearing the fabric. I
think this would be a great way to
simulate a cannonball tearing
through the mainsail of a tall ship.
This same method of breaking a
spring would work for a simulation of
a rope as well. After all, a rope is real-
ly just a one-dimensional version of
the cloth patch.

Another dynamic effect can be

achieved by manipulating the flexion
springs. With these springs in place,
the fabric will resist folding. However,
if I selectively delete one of these
springs, the fabric will be able to fold
nicely where the springs are missing. I
don’t know where I can use that yet,
but I’m sure I can find a way.

The Application

T he application this month was
actually pretty easy to build. It’s

essentially the same as last month’s
application, but with a few additions.
There’s a function that creates the
cloth patch in a sort of macro fashion.
You can set the spring settings for the
three types of springs. You can also
drop some collision objects around
and watch them interact. Find the
application and the source at
http://www.gdmag.com. ■

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

Special thanks to Chris Hecker of Def-

inition 6 and Rob Wyatt of Dreamworks

SKG for discussing the issue with me.

A C K N O W L E D G E M E N T S

• Provot, Xavier. “Deformation

Constraints in a Mass-Spring Model to

Describe Rigid Cloth Behavior,”

Graphics Interface, 1995, pp. 147-155.

Also available in electronic form at

http://www-rocq.inria.fr/syntim/

research/provot

• Baraff, David and Andrew Witkin.

“Large Steps in Cloth Simulation,”

Proceedings of SIGGRAPH 1998, ACM

SIGGRAPH, pp. 43-54.

There are also fabric simulations avail-

able for many professional 3D anima-

tion packages available either as plug-

ins or integrated into the software. I do

not know what techniques these prod-

ucts use with the exception of one. Colin

Withers of Topix created a fabric simu-

lation for Softimage based on the

Provot paper. Graciously, Topix

released the source code for this plug-

in to the public. See

http://www.topix.com for more info.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y M e l G u y m o n A R T I S T ’ S V I E W

They run the gamut from multilegged
crab-like villains to spiky-haired, sword-
toting heroes. Today’s character artists
have been working overtime to bring us
some of the most awe-inspiring and
nightmare spawning characters ever
seen on a video display. To spring fully
to life, these characters need to move
convincingly and with, well, character.

Back in my October column, (“It’s
About Character”) we took the characters
from pencil sketch to fully textured
model. In this month’s feature, we’ll look
at the final step in the process required to
bring these actors to life — character ani-
mation. We’ll discuss some of the differ-
ent tools and techniques available to
today’s character animator, provide some
general tips, and point out some of the
pitfalls to avoid. Finally, we’ll go on a
field trip to House of Moves, the West
Coast’s premier motion capture studio,

to look at the advantages and disadvan-
tages of using motion capture in a pro-
duction environment.

There are several methods currently
in use for animating characters, each
with its own particular problems and
advantages. Identifying the right
method early on will save you time and
money. Choosing the wrong one can
cost you both. All of these methods can
be broken down into four basic cate-
gories: classical, rotoscoping, motion
capture, and procedural animation (we
won’t cover the last one this month).

Classical Animation

C lassical animation, or animating
by hand, is by far the most com-

mon method artists use today. For the
purposes of our discussion, classical ani-

mation includes any and all forms of
hand-generated motion, and uses any
of the variety of skeletal animation
tools available. Classical techniques
require the least amount of preparation,
and are supported by almost every tool
set. Most production houses prefer to
use this method of animation due to
these lax technological restrictions. The
experience base for this technique is
the largest, and reference materials
abound. Still, skilled character anima-
tors are increasingly hard to find, and
the classical method depends solely on
the skills and talent of the animator to
bring characters to life.

Design documents may also dictate
classical animation as a production
technique. With nonbipedal charac-
ters, for example, your other options
are pretty limited. Both motion capture
and rotoscoping depend on having a
real-world analog in order to work.
Furthermore, an extremely stylized
look may dictate a nonrealistic style of
motion. You wouldn’t expect to see
motion capture used for SUPER MARIO

or CRASH BANDICOOT. Results may vary,
but it’s possible to achieve motion-cap-
ture-like animation by hand if the ani-
mator is skilled and spends sufficient
time on the motion.
TIPS AND TECHNIQUES. Classical animation
depends almost entirely on the creativ-
ity of the animator involved. Because
most if not all of the animation comes
directly from the animator’s head, the
motions will be an interpretation of
things that the animator has either
seen or experienced. Having an exten-
sive library of books, videos, and other
references can serve to speed the
process and raise the level of quality of
classical animation. Figure 1 shows an

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

23

See Jane Walk

S ee Jane run. See Jane do a triple spin kick with a half twist, drop to a

crouch, draw her 9mm, and waste three zombies.... If we took a cross sec-

tion of the characters populating today’s game environments, we’d end

up with an extremely rich and diverse cast.

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . Running sequence from Muybridge’s classic Animals in Motion.

excerpt from Muybridge’s Animals in
Motion. An excellent reference, the
two-book series provides an in-depth
treatment of some of the more com-
mon styles of motion for humans and
selected animals. Studying an actual
real-world animation on film can be
just as helpful. For example, looking at
a Jackie Chan video frame by frame can
provide you with valuable insight into
how a martial arts move is performed.
For animal reference, check out the
local video store for the National
Geographic documentary series, which
covers almost every species and body-
style imaginable.
COMMON PITFALLS. As with most things in
life, in animation you can’t get some-
thing for nothing. Classical animation
depends entirely on the skill set and
efforts of the animator, and the result is
totally scalable. The more time you
spend adding subtle nuances to an ani-
mation, the better it’s going to look.
Good animation takes time. Sure, you
can do a run cycle that works with four
keyframes, but don’t expect it to look
anything like motion capture.

Every animator has his or her own
style of working. Consequently, the
results will vary slightly between ani-
mators. This can cause problems if you
have several animators on a team
working on similar character sets,
because achieving a uniformity of
motion can be problematic. Consider
having one animator work on all the
bipeds, one on all the four-legged
types, and so on (or one work on all
the male characters, another on all the
females, and so on). Probably the worst
thing you can do is split up the work
for a single character between multiple
animators. If splitting a character
among animators is absolutely neces-
sary, consider putting one animator on
all the combat moves and the other on
all the standard interactive ones.

Rotoscoping

A lthough not as widely used as
other methods, rotoscoping never-

theless provides near-motion-capture
realism at a fraction of the cost.
Somewhere between motion capture
and classical animation, the methodolo-
gy of rotoscoping is fairly straightfor-
ward. First, you take video footage of an
actor performing a series of moves.

Then you transfer the film to a digital
format and bring it into the animation
software, frame by frame, as a backdrop
over which the skeleton is animated.
The technique requires a significant
amount of preparation, and the techni-
cal restrictions on the sequence require
that the camera angle of the backdrop
be similar to that used for animation.

When compared to classical anima-
tion, rotoscoping typically cuts down
the time required to achieve the anima-
tions. Furthermore, because of the visu-
al aid, the results can be very true to life.
Finally, with the added flexibility of
keyframing by hand, the animator can
choose to use only part of the roto-
scoped scene as a guide, and animate
the rest of the sequence with other
methods. Thus, both rotoscoped and
classical animation can be mixed
together on a single character. If pickup
animations need to be added by hand at
some point, the difference from the
rotoscoped animations will be indistin-
guishable to the average player.

Despite its advantages, choosing to
use rotoscoping can be a hurdle for
some studios because expertise in this
method is very limited. The technique
has its limitations, too, because the
footage you can use is limited to real-
world animation. Furthermore, because
all of the keyframes are actually being

set by hand, the rotoscoped data only
serves as a crutch and the animator’s
skill set still needs to be fairly high.

Figure 2 shows a rotoscoping scene in
Softimage taken from Ripcord’s FLESH &
WIRE (see my March 1999 column for a
full description). In this example, a
Softimage skeleton has been overlaid
onto a previously captured image (bot-
tom right quadrant). Note that although
the skeleton is not quite humanoid, the
animators have been able to outfit an
actor with a suit that resembles the
character’s anatomy. In this way, when
they’re animating, they can approxi-
mate the resultant motion with a high
degree of accuracy.
TIPS AND TECHNIQUES. Rotoscoping’s big
advantage is that it can be done totally
in-house with a single video camera and
a darkened office. The sets can be
extremely primitive. As we saw in the
previous example, some sort of refer-
ence grid is useful for the animator. A
very low-tech, large sheet covered with
duct tape strips will serve this purpose.

Using an actor can help as well, and
you need only go down to the nearest
university or high school drama
department to find a few starving stu-
dents willing to do the work. If you do
use actors, try to keep the same actor
playing the same character. If the soft-
ware you’re using doesn’t support real-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . Rotoscoping in action with Ripcord’s FLESH & WIRE.

time animated backgrounds, try assign-
ing a series of images as a texture map
to a dummy object which you can then
use as a backdrop. (Remember to keep
the aspect ratio of your backdrop object
the same size as your image, otherwise
you’ll get some nasty distortions.)
COMMON PITFALLS. Here again, the ani-
mator’s effort and skill level can make
all the difference. Rotoscoping is really
only one step up from pure classical
animations. So, the formula for success
is the same: the more time spent, the
higher quality level of the animation.
Work hard to plan out the animations
before shooting the footage. Paging
through hundreds of megabytes of
unnecessary video footage wastes the
time of everybody involved.

Motion Capture

U ntil they’re exposed to it for the
first time, most people think that

motion capture is just an expensive
technique reserved for movies and
commercials. Yet, several successful
franchises owe their success to this
technology, and several major devel-
opment houses use it almost exclu-
sively for their projects. To get the
scoop on motion capture, we visited
the Los Angeles-based House of Moves
(http://www.moves.com), the premier
motion capture studio on the West
Coast.
THE MOTION CAPTURE PROCESS. For those
still not familiar with the process,
motion capture is a method by which
the motion of an actor is digitized
through a series of sensors attached to
the actor’s body. The capture process is
extremely fast, and House of Moves
(HOM) is able to capture more than

150 moves in a single day. The motion
capture staff then sets to work cleaning
up any noise generated in the capture
process. The next step is to attach the
data to a skeleton. This can either be
done in-house, or by the large staff of
animators working at HOM. Figure 3
shows an example of a motion capture
skeleton being worked on by the com-
pany. The small circles represent the
markers attached to the actor’s body.
By the time you’re done with a motion
capture session, you end up with a set
of animation sequences no different
from those generated by your in-house
animation staff, but with one major
exception — the animations have the
fidelity of motion and nuance of form
recognizable only in motion capture.

Compared to the previous two meth-
ods, the motion capture process is
extremely fast. An entire set of anima-
tions for a game can be generated in
just a few months. Consider that for a
project calling for only 200 anima-
tions, an average animator capable of
churning out 5 to 10
high-quality anima-
tions per week
would take any-
where between 5
and 10 months to
get the same work
done. If you’re aim-
ing for a realistic
look, nothing looks
better than motion
capture.

For this reason,
the motion capture
process is also cost
efficient. If the same
animator in the
above example is
being paid an annual

salary of $50K, then the cost to the pro-
ject to generate the same 200 anima-
tions by hand is anywhere from $20K
to $40K. This exceeds the cost of most
motion capture shoots.

Despite these advantages, the decision
to use motion capture is not one to be
undertaken lightly. Many horror stories
ciruculate about a budding developer
who spent thousands of dollars on
motion capture data that was never used

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 3 . Motion capture skeleton

set up at House of Moves.

F I G U R E 4 . Motion-captured scene from PARASITE EVE.

Advantages:
•Extremely flexible; animations can be
created on-the-fly, in-house
•Character diversity; no restrictions on
character type or movement style
•Universal tool support
•Can be cost effective

Disadvantages:
•Time intensive: animating by hand
takes the longest
•Higher personnel requirements:
needs a highly skilled animator on
staff
•Animation uniformity: multiple ani-
mators can mean multiple styles.

Advantages
•Faster than classical animation
•Realistic, predictable motion
•Ability to blend motion between roto-
scoping and classical animation
•Relatively low cost
•Lower animation skill set required vs.
classical animation

Disadvantages
•Significant time commitment; you’re
still animating by hand
•Rotoscoping shots are limited to real
world animation
•Setup time and porting images into
animation software.

Advantages
•Extremely fast
•Can be cost effective
•Versatility; some otherwise complex
moves are made simple
•Realistic, true-to-life motion
•In-house animation skill set require-
ment is minimal compared to other two
methods

Disadvantages
•Preparation time is essential
•Difficulties involved in mixing meth-
ods; motion capture data stands out
•What you see is what you get; chang-
ing the data afterwards is difficult.

CC LL AA SS SS II CC AA LL RR OO TT OO SS CC OO PP II NN GG MM OO TT II OO NN CC AA PP TT UU RR EE

in production. Although it’s an extreme-
ly useful technique, motion capture is
not applicable to every situation, so
knowing when it is applicable can save
time and money for everyone involved.
TIPS AND TECHNIQUES. You should choose
motion capture if your game contains
humanoid or bipedal characters; your
game engine supports animation data
at a high frequency (animation fidelity
pared down to 5 to 10 FPS loses most of
the look of the motion capture data);
you have a solid understanding of
what animations you will need so you
won’t be changing the data after you
get it; or your game requires complex
animations that would be difficult to
achieve through other methods.

You should not choose motion cap-
ture if your game contains no bipedal
characters; your game design is not
completely solid (and you don’t know
what animations you will need); or
your game design calls for non-
realistic, stylized motion.

Even with these general guidelines,
there are some other specific times
when motion capture really beats all
contenders. Most fighting games — the
TEKKEN series, for example — owe much
of their success to the lightning quick,
realistic motion of their characters. This
is something that is extremely hard to
animate by hand. Sports titles are
another genre ideally suited to motion
capture. Finally, any military-style, or
close-order combat scenario is a good
candidate for motion capture.

Most of the problems with motion
capture occur because the developers
don’t realize the amount of preparation

involved in doing a successful shoot.
Preparation is the key to any successful
endeavor, but with motion capture it is
absolutely critical. (See Melianthe
Kines’s Game Developer articles,
“Planning a Motion Capture Shoot,”
September 1998 and “Directing a
Motion Capture Shoot,” October 1998).

Plan to spend a few weeks outlining
every animation on
the list to be cap-
tured. When you go
to do the shoot, you
are going to be given
what you ask for — if
you don’t know
what you want, pre-
pare to be surprised
by the result.

Use actors. Hiring
an actor is a fraction
of the total motion
capture cost, and the
correct body style
can make all the dif-
ference to how the
motion looks. For
example, if your
main character is a
petite female martial
arts expert, you don’t
want to capture a
bulky computer pro-
grammer. Spend
time interviewing
actors to use for the
capture shot, or work
with the studio to
find the right fit.
Once you’ve settled
on an actor or set of

actors, take a few days to go over each
animation in detail with the actor.
Doing this will ensure that the actor
gives you what you want, and you may
find that after seeing the performance,
you want to adjust it slightly or change
it all together.

Once you’ve received the data, be pre-
pared to use it as is with only slight
modifications. Greatly modifying the
animations will prove to be tedious and
time-consuming, and will often remove
the subtle nuances which give motion
capture its unique look. And while there
are many good reasons to choose
motion capture, the overwhelming one
is it’s unparalled realism of motion.

Wrap-Up

A t the end of the day, the choice is
yours. Horror stories abound about

teams that have jumped the gun with
one method or another. Spend the extra
time to determine which method is best
for your game. The money and time
dividends you earn will pay off in an
enjoyable development experience. ■

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

27
F I G U R E 5 . Elaborate stunt set up at House of Moves.

H A R D T A R G E T S

Despite audio’s stepchild status, devel-
opment teams are recognizing the
importance of improving quality in
every technology sector in order to
provide a well-rounded game-playing
experience. In the audio section,
developers are adding realism in the
form of 3D audio, and are considering
the quality of audio in light of the
growing interest in digital audio tech-
nologies. The new 3D audio capabili-
ties and the rise in audio quality
expectations creates a market with
interesting dynamics. Nowhere is this
dynamic more interesting to observe
than in the contrasts between Dolby
Laboratories and Aureal Semi-
conductor. Both companies are similar
in their desire to bring their respective
audio technologies to bear on the PC
games market, but their different
approaches and products point toward
increasing conflicts (and synergies) in
this oft-neglected side of the develop-
ment business.

Complementary Differences

D olby’s background lies in the
film, television, and recording

industries. The company’s noise
reduction and surround sound tech-
nology is readily found in the con-
sumer electronics market. Most of us
are familiar with the ubiquitous Dolby
logo on our audio systems and VCRs.

In the case of Dolby surround sound
technologies, the area in which Dolby
brings most to the PC, the technology
is essentially transparent. A normal
stereo’s capabilities may be realized by
the consumer via a simple playback
system upgrade. The Dolby Digital
AC-3 technology (upon which the
company bases its surround sound
license) allows for a number of chan-
nels or speakers through bandwidth
reduction, and thereby makes multi-
channel audio readily deployable. But
this is not necessarily an interactive
technology. It does not allow interac-
tive positioning of sound, and the
developer must pre-encode positional
audio for playback. This is all well and
good at the movies, but it may not be
what the average game developer
wants to do. This playback advantage
is pretty consumer friendly, however,
and doesn’t require a great deal of ini-
tiation on the part of the user.

Aureal approaches surround sound
with the interactive in mind. The
company’s focus on interactivity
stems from Aureal’s concentration the
desktop computer market. So, while
Aureal provides technology for multi-
channel audio, it’s designed for two-
speaker playback. Aureal does support
four speaker configurations, but this
isn’t a significant part of the compa-
ny’s strategy. In fact, Aureal is a Dolby
licensee too. Like many PC companies
before them, Aureal crosses paths with

Dolby at only one junction: Dolby
Digital audio is one of the approved
DVD-Video and DVD-ROM formats.

Toni Schneider, Aureal’s vice presi-
dent of advanced audio technology
says, “Dolby is the master of sound-
tracks and prerecorded (as in, non-
interactive) audio. Because games are
an interactive medium, Dolby’s tech-
nologies have had less of an impact on
gaming than they did on movies. We
consider our A3D interactive 3D tech-
nology complementary to something
like Dolby ProLogic or Dolby Digital.”

The Business of Technology

S o, in many ways, Aureal and
Dolby are standing at different

ends of the audio spectrum. This sepa-
ration becomes even more obvious
when we examine the ways in which
the two make money.

Tom White of the MIDI Manu-
facturers’ Association (a respected
audio analyst who provided excellent
background information for this arti-
cle) says, “Dolby is a licensing compa-
ny, with a strong existing business in
the recording, film, and broadcast
industries. It licenses proprietary tech-
nology which assists in reducing
noise, reducing bandwidth require-
ments, and producing multichannel
surround sound (AC-3). Its customers
are hardware and software vendors.
Dolby makes nothing and sells noth-
ing tangible. It is privately owned and
likes it that way.

"Aureal, in contrast, is a public com-
pany that has been fueled by outside

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

Dolby and Aureal:

Contrasts in Audio

If you sliced up a PC’s architecture and ranked the components most relevant to

game developers, you’d end up looking first at the raw CPU power and bus per-

formance. Graphics might come next. Unfortunately, audio would probably end

up near the bottom of the list.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

investment and has only recently
started to earn significant revenue due
to increased demand for their ICs. Of
course, the other 3D audio companies
have also been suffering losses as they
all invest heavily to create a market.
But I think it is apparent that Aureal
expects to make the bulk of their rev-
enue from chip sales, not licensing."

This means that Aureal’s business
model is completely opposite Dolby’s.
The audio chip business is volatile,
and Aureal’s market success is primari-
ly attributable to developer and brand
recognition of the A3D API and tech-
nology (not its Vortex hardware,
which is used on Diamond’s Monster
Sound audio cards). Nevertheless,
Aureal recently announced that the
company and its licensees had com-
pleted shipments of more than five
million PCI audio products enabled by
Aureal’s A3D positional audio stan-
dard. So, a mixture of hardware and
licensing is creating momentum for
Aureal. Dolby is, obviously, a market
force in its own right.

The Standards Minefield

B oth companies have to negotiate
the issue of audio standards if

they wish to succeed in the future.
Dolby is involved in open standards
only in so far as that may allow the
company to collect licensing revenue.
The company contributed to MPEG
development so that it could collect
from the patent pool, knowing that
MPEG would be used by satellite broad-
casters and would likely be mandated
by various countries. Dolby’s power of
influence can also be seen in the DVD-
Audio specification. At the 11th hour
the specification was modified to
include AC-3 as a standard format.

Toni Schneider of Aureal says,
“Aureal has tried to strike a balance
between strongly supporting both
open standards such as Microsoft’s
DirectSound 3D and our own propri-
etary A3D standard. There are simple
reasons why both types of standards
are needed in the PC space. Open
standards, especially ones endorsed by
Microsoft, are a requirement to make
a feature such as 3D audio a baseline
feature, and eventually a legacy fea-
ture on all platforms. Proprietary stan-
dards such as A3D are required to

allow companies to innovate and
push the technology envelope.”

For both Dolby and Aureal, the
threats to PC audio standards come
from the outside. In Dolby’s case, the
threat always exists that PC audio stan-
dards might find their way into the liv-
ing room and onto consumer electron-
ics products in much the same way
that Dolby is now appearing on the PC
through DVD. Aureal, on the other
hand, has to be more concerned about
Creative’s influence than Dolby’s.

Both companies wish Microsoft
would give either of them the edge by
incorporating the features closest to
their respective hearts into
DirectSound 3D. Yet, any help
Microsoft may give to either company
could actually result in diminishing
returns — unless you own a standard,
no one will pay you for it. Can anyone
imagine Microsoft giving another
company that kind of opportunity?

Tony Schneider of Aureal has this
perspective: “The latest version of
DirectSound 3D enables solid baseline
3D audio positioning. It’s pretty much
at the level of our original A3D that
was published in ‘96. Our latest ver-
sion, A3D 2, adds a wealth of new fea-
tures that go beyond 3D positioning
of sounds and into the area of 3D
geometry-based acoustics. We hope
that our advanced features (for exam-
ple reflection and occlusion or
obstruction of sound waves by walls
and door ways) will eventually be
adopted by Microsoft.”

The PC Audio Challenge

D olby made an interesting point
about its technology. Gary

Valan, Dolby’s director of computer
audio initiatives, said, “Dolby sur-
round sound technologies are used in
broadcasts of major sporting events,
and the need for this technology is
becoming just as important in sports
genre game titles.” So, the more main-
stream games go, the more the trend
plays into the hands of a company
such as Dolby. After all, Dolby is as
mainstream a high-end technology as
you can find. If Dolby conquers PC
audio it won’t be due to DVD alone.
Games must be a part of the picture
because DVD has little viability as a
playback medium for audio and video

on the PC.
What’s more, in current PC systems

delivery of Dolby Digital tracks occurs
through an audio subsystem that is sep-
arate from other PC audio tracks such
as MIDI and WAV. This separation
might require two separate speaker sys-
tems. Speaker companies are attempt-
ing to address this problem with new
all-in-one systems, but without some
standards in this area the market is like-
ly to languish due to incompatibilities
and consumer confusion.

Aureal has its own problems.
Primarily, the company has to be suc-
cessful and profitable at some point.
It’s a public company, whereas Dolby
has the luxury of privacy.
Nevertheless, Aureal is the Phoenix
that rose from the ashes of Media
Vision, the multimedia hardware
maker of the early nineties. The fact
that Aureal is where it is today is testa-
ment to a success of sorts. But Aureal
must maintain the value of its tech-
nology against the standards of
DirectSound 3D and the proprietary
power of Creative’s EAX.

In the final analysis, both Dolby
and Aureal have good news and bad
news awaiting them. Tom White says,
“The impracticality of multiple speak-
ers in most desktop environments will
encourage virtualization and interac-
tive 3D for the most part, with Aureal
and Creative having the lion’s share of
these markets. But the future of digital
entertainment may not be on the
desktop, but in the living room, com-
prised of video game consoles, set-top
boxes, DTV receivers (already using
AC-3) and multispeaker Dolby Digital
or Dolby Surround compatible sound
systems. If Dolby can secure their
future in PC audio, they stand to dom-
inate both markets, as it is very
unlikely that anyone from the PC side
will step in and replace Dolby in the
living room.”

Dolby then has to look at DTS, and
George Lucas’s THX among other
competitors. It’s not just a game, it’s
all entertainment, and that’s why
audio is such an important compo-
nent in the game developers’ world.
Maybe it doesn’t have its deserved sta-
tus today, but it will tomorrow, and
the day after that. To that end, Dolby
is planning on virtual Dolby surround
sound on two speakers, as well as a
Dolby headphone. ■

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

29

b y O m i d R a h m a t

32

A D V A N C E D

COLLISION
DETECTION
T E C H N I Q U E S

A D V A N C E D

COLLISION
DETECTION
T E C H N I Q U E S

B y N i c k B o b i c

ince the advent of computer games, pro-

grammers have continually devised ways to

simulate the world more precisely. PONG,

for instance,

featured a

moving square

(a ball) and two paddles.

Players had to move the paddles to

an appropriate position at an appropriate

time, thus rebounding the ball toward the

opponent and away from the player.

The root of this basic

opera-

tion is primitive

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

Nick Bobic is trying not to work 14 hours a day with very little success.
Any new collision tips and tricks should be sent to nickb@cagedent.com.

C O L L I S I O N D E T E C T I O N

33

(by today’s standards) collision detec-
tion. Today’s games are much more
advanced than PONG, and most are
based in 3D. Collision detection in 3D is
many magnitudes more difficult to
implement than a simple 2D PONG

game. The experience of playing some
of the early flight simulators illustrated
how bad collision detection can ruin a
game. Flying through a mountain peak
and surviving isn’t very realistic. Even
some recent games have exhibited colli-
sion problems. Many game players have
been disappointed by the sight of their
favorite heroes or heroines with parts of
their bodies inside rigid walls. Even
worse, many players have had the expe-
rience of being hit by a rocket or bullet
that was “not even close” to them.
Because today’s players demand increas-
ing levels of realism, we developers will
have to do some hard thinking in order
to approximate the real world in our
game worlds as closely as possible.

This article will assume a basic
understanding of the geometry and
math involved in collision detection.
At the end of the article, I’ll provide
some references in case you feel a bit
rusty in this area. I’ll also assume that
you’ve read Jeff Lander’s Graphic
Content columns on collision detec-
tion (“Crashing into the New Year,”
January 1999; “When Two Hearts
Collide,” February 1999; and “Collision
Response: Bouncy, Trouncy, Fun,”
March 1999). I’ll take a top-down
approach to collision detection by first
looking at the whole picture and then
quickly inspecting the core routines.
I’ll discuss collision detection for two
types of graphics engines: portal-based
and BSP-based engines. Because the
geometry in each engine is organized
very differently from the other, the

techniques for world-object collision
detection are very different. The object-
object collision detection, for the most
part, will be the same for both types of
engines, depending upon your current
implementation. After we cover polyg-
onal collision detection, we’ll examine
how to extend what we’ve learned to
curved objects.

The Big Picture

T o create an optimal collision detec-
tion routine, we have to start plan-

ning and creating its basic framework
at the same time that we’re developing
a game’s graphics pipeline. Adding col-
lision detection near the end of a pro-
ject is very difficult. Building a quick
collision detection hack near the end
of a development cycle will probably
ruin the whole game because it’ll be
impossible to make it efficient. In a
perfect game engine, collision detec-
tion should be precise, efficient, and
very fast. These requirements mean
that collision detection has to be tied
closely to the scene geometry manage-
ment pipeline. Brute force methods
won’t work — the amount of data that
today’s 3D games handle per frame can
be mind-boggling. Gone are the times
when you could check each polygon of
an object against every other polygon
in the scene.

Let’s begin by taking a look at a basic
game engine loop (Listing 1). A quick
scan of this code reveals our strategy
for collision detection. We assume that
collision has not occurred and update
the object’s position. If we find that a
collision has occurred, we move the

object back and do not allow it to pass
the boundary (or destroy it or take
some other preventative measure).
However, this assumption is too sim-
plistic because we don’t know if the
object’s previous position is still avail-
able. You’ll have to devise a scheme for
what to do in this case (otherwise,
you’ll probably experience a crash or
you’ll be stuck). If you’re an avid game
player, you’ve probably noticed that in
some games, the view starts to shake
when you approach a wall and try to
go through it. What you’re experienc-
ing is the effect of moving the player
back. Shaking is the result of a coarse
time gradient (time slice).

But our method is flawed. We forgot
to include the time in our equation.
Figure 1 shows that time is just too
important to leave out. Even if an
object doesn’t collide at time t1 or t2, it
may cross the boundary at time t where
t1 < t < t2. This is especially true when
we have large jumps between succes-
sive frames (such as when the user hit
an afterburner or something like that).
We’ll have to find a good way to deal
with this discrepancy as well.

We could treat time as a fourth
dimension and do all of our calcula-
tions in 4D. These calculations can get
very complex, however, so we’ll stay
away from them. We could also create
a solid out of the space that the origi-
nal object occupies between time t1
and t2 and then test the resulting solid
against the wall (Figure 2).

An easy approach is to create a con-
vex hull around an object’s location at
two different times. This approach is
very inefficient and will definitely slow
down your game. Instead of construct-

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

C O L L I S I O N D E T E C T I O N

boundary

t1

t2

F I G U R E 1 . Time gradient and colli-

sion tests.

while(1){

process_input();

update_objects();

render_world();

}

update_objects(){

for (each_object)

save_old_position();

calc new_object_position {based on velocity accel. etc.}

if (collide_with_other_objects())

new_object_position = old_position();

{or if destroyed object remove it etc.}

}

L I S T I N G 1 . Extremely simplified game loop.

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

C O L L I S I O N D E T E C T I O N

ing a convex hull, we could construct a
bounding box around the solid. We’ll
come back to this problem once we get
accustomed to several other techniques.

Another approach, which is easier to
implement but less accurate, is to sub-
divide the given time interval in half
and test for intersection at the mid-
point. This calculation can be done
recursively for each resulting half, too.
This approach will be faster than the
previous methods, but it’s not guaran-
teed to catch all of the collisions.

Another hidden problem is the col-
lide_with_other_objects() routine,
which checks whether an object inter-
sects any other object in the scene. If
we have a lot of objects in the scene,
this routine can get very costly. If we
have to check each object against all
other objects in the scene, we’ll have to
make roughly

(N choose 2) comparisons. Thus, the
number of comparisons that we’ll need
to perform is of order N2 (or O(N2)). But

we can avoid performing O(N2) pair-
wise comparisons in one of several
ways. For instance, we can divide our
world into objects that are stationary
(collidees) and objects that move (col-
liders) even with a v=0. For example, a
rigid wall in a room is a collidee and a
tennis ball thrown at the wall is a col-
lider. We can build two spatial trees
(one for each group) out of these
objects, and then check which objects
really have a chance of colliding. We
can even restrict our environment fur-
ther so that some colliders won’t col-
lide with each other — we don’t have
to compute collisions between two bul-
lets, for example. This procedure will
become more clear as we move on, for
now, let’s just say that it’s possible.
(Another method for reducing the
number of pair-wise comparisons in a
scene is to build an octree. This is
beyond the scope of this article, but
you can read more about octrees in
Spatial Data Structures: Quadtree, Octrees
and Other Hierarchical Methods, men-
tioned in the “For Further Info” section
at the end of this article.) Now lets take
a look at portal-based engines and see
why they can be a pain in the neck
when it comes to collision detection.

Portal Engines
and Object-Object Collisions

P ortal-based engines divide a scene
or world into smaller convex

polyhedral sections. Convex polyhedra
are well-suited for the graphics pipeline
because they eliminate overdraw.
Unfortunately, for the purpose of colli-
sion detection, convex polyhedra pre-

sent us with some difficulties. In some
tests that I performed recently, an aver-
age convex polyhedral section in our
engine had about 400 to 500 polygons.
Of course, this number varies with
every engine because each engine
builds sections using different geomet-
ric techniques. Polygon counts will
also vary with each level and world.
Determining whether an object’s poly-
gons penetrate the world polygons can
be computationally expensive. One of
the most primitive ways of doing colli-
sion detection is to approximate each
object or a part of the object with a
sphere, and then check whether
spheres intersect each other. This
method is widely used even today
because it’s computationally inexpen-
sive. We merely check whether the dis-
tance between the centers of two
spheres is less than the sum of the two
radii (which indicates that a collision
has occurred). Even better, if we calcu-
late whether the distance squared is
less than the sum of the radii squared,
then we eliminate that nasty square
root in our distance calculation.
However, while the calculations are
simple, the results are extremely impre-
cise (Figure 3).

But what if we use this imprecise
method as simply a first step. We repre-
sent a whole character as one big
sphere, and then check whether that
sphere intersects with any other object
in the scene. If we detect a collision
and would like to increase the preci-
sion, we can subdivide the big sphere
into a set of smaller spheres and check
each one for collision (Figure 4). We
continue to subdivide and check until
we are satisfied with the approxima-

N
2

boundary

t1

t2

F I G U R E 2 . Solid created from the

space that an object spans over a

given time frame.

F I G U R E 3 . In a sphere-sphere inter-

section, the routine may report that

collision has occurred when it really

hasn’t.

a cb

F I G U R E 4 . Sphere subdivision.

tion. This basic idea of hierarchy and
subdivision is what we’ll try to perfect
to suit our needs.

Using spheres to approximate objects
is computationally inexpensive, but
because most geometry in games is
square, we should try to use rectangu-
lar boxes to approximate objects.
Developers have long used bounding
boxes and this recursive splitting to
speed up various ray-tracing routines.
In practice, these methods have mani-
fested as octrees and axis-aligned
bounding boxes (AABBs). Figure 5
shows an AABB and an object inside it.

“Axis-aligned” refers to the fact that
either the box is aligned with the world
axes or each face of the box is perpen-
dicular to one coordinate axis. This
basic piece of information can cut
down the number of operations needed
to transform such a box. AABBs are
used in many of today’s games; devel-
opers often refer to them as the model’s
bounding box. Again, the tradeoff for
speed is precision. Because AABBs
always have to be axis-aligned, we can’t
just rotate them when the object
rotates — they have to be recomputed
for each frame. Still, this computation
isn’t difficult and doesn’t slow us down
much if we know the extents of each
character model. However, we still face
precision issues. For example, let’s
assume that we’re spinning a thin, rigid
rod in 3D, and we’d like to construct an
AABB for each frame of the animation.
As we can see, the box approximates
each frame differently and the precision
varies (Figure 6).

So, rather than use AABBs, why can’t
we use boxes that are arbitrarily orient-

ed and minimize the empty space, or
error, of the box approximation. This
technique is based on what are called
oriented bounding boxes (OBBs) and
has been used for ray tracing and inter-
ference detection for quite some time.
This technique is not only more accu-
rate, but also more robust than the
AABB technique, as we shall see.
However, OBBs are lot more difficult
to implement, slower, and inappropri-
ate for dynamic or procedural models
(an object that morphs, for instance).
It’s important to note that when we

subdivide an object into more and
more pieces, or volumes, we’re actually
creating a hierarchical tree of that
starting volume.

Our choice between AABBs and OBBs
should be based upon the level of accu-
racy that we need. For a fast-action 3D
shooter, we’re probably better off
implementing AABB collision detec-
tion — we can spare a little accuracy
for the ease of implementation and
speed. The source code that accompa-
nies this article is available from the
Game Developer web site. It should get
you started with AABBs, as well as pro-
viding some examples of source code
from several collision detection pack-
ages that also implement OBBs. Now
that we have a basic idea of how every-
thing works, let’s look at the details of
the implementation.

Building Trees

C reating OBB trees from an arbi-
trary mesh is probably the most

difficult part of the algorithm, and it
has to be tweaked and adjusted to suit
the engine or game type. Figure 7
shows the creation of successive OBBs
from a starting model. As we can see,
we have to find the tightest box (or

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

C O L L I S I O N D E T E C T I O N

AABB of an object

A 3D object
z

x

y

F I G U R E 5 . An object and its AABB.

y

z

time

F I G U R E 6 . Successive AABBs for a spinning rod (as viewed from the side).

A

B

C

D

E

F G

A

B C

D E F G

F I G U R E 7. Recursive build of an OBB and its tree.

volume, in the case of 3D) around a
given model (or set of vertices).

There are several ways to precom-
pute OBBs, and they all involve a lot of
math. The basic method is to calculate
the mean of the distribution of vertices
as the center of the box and then calcu-
late the covariance matrix. We then
use two of the three eigenvectors of the
covariance matrix to align the box with
the geometry. We can also use a con-
vex hull routine to further speed up
and optimize tree creation. You can
find the complete derivation in the
Gottschalk, Lin, and Manocha paper
cited in the “For Further Info” section.

Building AABB trees is much easier
because we don’t have to find the min-
imum bounding volume and its axis.
We just have to decide where to split
the model and we get the box con-
struction for free (because it’s a box
parallel with the coordinate axes and it
contains all of the vertices from one
side of the separating plane).

So, now that we have all of the
boxes, we have to construct a tree. We
could use a top-down approach where-
by we begin with the starting volume
and recursively subdivide it.
Alternatively, we could use a bottom-
up approach, merging smaller volumes
to get the largest volume. To subdivide
the largest volume into smaller ones,
we should follow several suggested
rules. We split the volume along the
longest axis of the box with a plane (a
plane orthogonal to one of its axes)
and then partition the polygons based

upon which side of the partitioning
axis they fall (Figure 7). If we can’t sub-
divide along the longest axis, we subdi-
vide along the second longest. We con-
tinue until we can’t split the volume
any more, and we’re left with a triangle
or a planar polygon. Depending on
how much accuracy we really need (for
instance, do we really need to detect
when a single triangle is collided?), we
can stop subdividing based on some
arbitrary rule that we propose (the
depth of a tree, the number of triangles
in a volume, and so on).

As you can see, the building phase is
quite complex and involves a consid-
erable amount of computation. You
definitely can’t build your trees during
the run time — they must be comput-
ed ahead of time. Precomputing trees
eliminates the possibility of changing
geometry during the run time.
Another drawback is that OBBs require
a large amount of matrix computa-
tions. We have to position them in
space, and each subtree has to be mul-
tiplied by a matrix.

Detecting Collisions
Using Hierarchy Trees

N ow, let’s assume that we have
either our OBB or AABB trees.

How do we actually perform collision
detection? We’ll take two trees and
check whether two initial boxes over-
lap. If they do, they might intersect,
and we’ll have to recursively process

them further (recursive descent). If,
along the descent, we find that the sub-
trees do not intersect, we can stop and
conclude that no intersection has
occurred. If we find that the subtrees do
intersect, we’ll have to process the tree
until we hit its leaf nodes to find out
which parts overlap. So, the only thing
we have to figure out is how to check
whether two boxes overlap. One of the
tests that we could perform would be to
project the boxes on some axis in space
and check whether the intervals over-
lap. If they don’t, the given axis is
called a separating axis (Figure 8).

To check quickly for overlap, we’ll
use something called the Separating
Axis Theorem. This theorem tells us
that we have only 15 potential separat-
ing axes. If overlap occurs on every sin-
gle separating axis, the boxes intersect.
Thus, it’s very easy to determine
whether or not two boxes intersect.

Interestingly, the time gradient prob-
lem mentioned earlier could easily be
solved by the separating axis tech-
nique. Remember that the problem
involved determining whether a colli-
sion has occurred in between any two
given times. If we add velocities to the
box projection intervals and they over-
lap on all 15 axes, then a collision has
occurred. We could also use an struc-
ture that resembles an AABB tree to
separate colliders and collidees and
check whether they have a possibility
of collision. This calculation can quick-
ly reject the majority of the cases in a
scene and will perform in an O(N logN)
time that is close to optimal.

Collision Techniques
Based on BSP Trees

B SP (Binary Space Partitioning)
trees are another type of space

subdivision technique that’s been in
use for many years in the game indus-
try (DOOM was the first commercial
game that used BSP trees). Even
though BSP trees aren’t as popular
today as they have been over the past
couple of years, the three most
licensed game engines today — QUAKE

II, UNREAL, and LITHTECH — still use
them quite extensively. The beauty
and extreme efficiency of BSP trees
comes to light when we take a look at
collision detection. Not only are BSP
trees efficient for geometry culling, we

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

C O L L I S I O N D E T E C T I O N

OBB 1

OBB 2

Separating Axis BA

F I G U R E 8 . Separating axis (intervals A and B don’t overlap).

also get very efficient world-object
collision almost for free.

The BSP tree traversal is the funda-
mental technique used with BSPs.
Collision detection basically is
reduced to this tree traversal, or
search. This approach is powerful
because it rejects a lot of geometry
early, so in the end, we only test the
collision detection against a small
number of planes. As we’ve seen
before, finding a separating plane
between two objects is sufficient for
determining that those two objects
don’t intersect. If a separating plane
exists, no collision has occurred. So,
we can recursively traverse a world’s
tree and check whether separating
planes intersect the bounding sphere
or bounding box. We can increase the
accuracy of this approach by checking
for every one of the object’s polygons.
The easiest way to perform this check
is to test whether all parts of the
object are on the same side of the
plane. This calculation is extremely
simple. We can use the Cartesian
plane equation, ax + by + cz + d = 0, to
determine the side of the plane upon
which the point lies. If the equation is
satisfied, then our point lies on the
plane. If ax + by + cz + d > 0, then the
point is on the positive side the plane.
If ax + by + cz + d < 0, then the point is
on the negative side the plane.

The only important thing to note is
that for a collision not to occur, all of
the points of an object (or a bounding
box) have to be on either the positive
or the negative side of a given plane. If
we have points on both the positive

and negative side of the plane, a colli-
sion has occurred and the plane inter-
sects the given object.

Unfortunately, we have no elegant
way of checking whether a collision
has occurred in between the two inter-
vals (although the techniques dis-
cussed at the beginning of this article
still apply). However, I have yet to see
another structure that has as many uses
as a BSP tree.

Curved Objects
and Collision Detection

N ow that we’ve seen two approach-
es to collision detection for polyg-

onal objects, lets see how we can com-
pute the collision of curved objects.
Several games will be coming out in
1999 that use curved surfaces quite
extensively, so the efficient collision
detection of curved surfaces will be
very important in the coming year. The
collision detection (which involves
exact surface evaluation at a given
point) of curved surfaces is extremely
computationally intensive, so we’ll try
to avoid it. We’ve already discussed
several methods that we could use in
this case, as well. The most obvious
approach is to approximate the curved
surface with a lowest-tessellation repre-
sentation and use this polytope for col-
lision detection. An even easier, but
less accurate, method is to construct a
convex hull out of the control vertices
of the curved surface and use it for the
collision detection. In any case, curved
surface collision approximation is very

similar to general polytope collision
detection. Figure 9 shows the curved
surface and the convex hull formed
from the control vertices.

If we combined both techniques into
a sort of hybrid approach, we could
first test the collision against the hull
and then recursively subdivide the
patch to which the hull belongs, thus
increasing the accuracy tremendously.

Decide for Yourself

N ow that we’ve gone over some of
the more advanced collision

detection schemes (and some basic
ones, too), you should be able to decide
what type of system would best suit
your own game. The main thing you’ll
have to decide is how much accuracy
you’re willing to sacrifice for speed,
simplicity of implementation (shorter
development time), and flexibility. ■

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

C O L L I S I O N D E T E C T I O N

• Note: Links to these and many more

collision detection sites and online

papers can be found at

http://www.cagedent.com/nickb

• H. Samet. Spatial Data Structures:

Quadtree, Octrees and Other Hierar-

chical Methods. Addison Wesley, 1989.

• For more information about AABBs

take a look at J. Arvo and D. Kirk. “A sur-

vey of ray tracing acceleration tech-

niques,” An Introduction to Ray Tracing.

Academic Press, 1989.

• For a transformation speedup, check

out James Arvo’s paper in Andrew S.

Glassner, ed. Graphics Gems. Academic

Press, 1990.

• S. Gottschalk, M. Lin, and D. Manocha.

“OBBTree: A hierarchical Structure for

rapid interference detection,” Proc.

Siggraph 96. ACM Press, 1996. has con-

tributed a great deal to the discussion

of OBBs in terms of accuracy and speed

of execution.

• S. Gottschalk. Separating axis theo-

rem, TR96-024, UNC Chapel Hill, 1990.

You can find the BSP FAQ at

http://reality.sgi.com/cgi-bin/bspfaq

• N. Greene. “Detecting intersection of a

rectangular solid and a convex polyhe-

dron,” Graphics Gems IV. Academic

Press, 1994. introduces several tech-

niques that speed up the overlap compu-

tation of a box and a convex polyhedron.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 9 . Hull of a curved object.

sound cards support some kind of
built-in 3D audio processing. To deter-
mine the capabilities of the major
SDKs, I recently evaluated the strengths
and drawbacks of five different tools.

What to Look for in a 3D Audio SDK

G ame developers need to know
what kinds of effects an SDK will

help them create. I’ve presented a list
of features that are important when
considering an SDK for 3D and envi-
ronmental audio processing. I’ve divid-
ed the list into two categories: the qual-
ity of the 3D effects being produced,
and the engineering issues created
and/or solved by using the SDK.

QUALITY OF 3D EFFECTS
• Volume attenuation. Sounds that
occur further from the listener tend to
be quieter than sounds that are closer.
How sophisticated is the SDK’s
method of computing a sound’s vol-
ume? How intuitive is the method for
a developer to use?
• Frequency attenuation. Low-fre-
quency components of a sound tend to
survive better than high-frequency
components when traveling large dis-
tances or through obstacles. How well
are these effects modeled? How effi-
ciently are they modeled?

• Positional delay. Your ears hear
sounds at different times based on
where the sound occurs with respect to
your head. For example, if a gunshot
occurs to your right, then your right ear
will hear the shot slightly before your
left ear. Because the speed of sound
isn’t all that high, the sound must trav-
el further to reach your left ear. To help
fool the listener into perceiving sound
as 3D, the SDK will delay one channel
of the sound with respect to the other.
This effect is often referred to as the
interaural time differential (ITD).
• Head-related transfer function
(HRTF). The listener’s body acts as a fil-
ter to shape the frequency spectrum of a
sound based upon where the sound is
occurring. These frequency alterations
give the listener strong cues about the
position of the sound. Therefore, it’s
important to simulate them. The reshap-
ing of a frequency spectrum based on its
source position is described by the HRTF
for that position. The HRTF itself is a
function of position, so it changes as a
sound moves.

The HRTF is the most important
component of a system that simulates
3D audio, so it should be considered
carefully when choosing an SDK. It’s
good to know how well an SDK
approximates HRTF, how expensive
this approximation is, how much free-
dom the developer is given to make

trade-offs of speed versus quality, and
so on. Unfortunately, the information
about what parts of the HRTF are simu-
lated, and how accurately, is usually
regarded by a vendor as a trade secret.
Therefore, it can be difficult as a devel-
oper to have real data with which to
make an informed choice.
• Reverberation and resonance. Sounds
occurring in enclosed spaces will rever-
berate within that space. Certain fre-
quencies will be resonant and others will
be dampened. You should know what
tools the SDK provides for creating rever-
beration effects, how easily they can be
used, and how expressive they are.
• Doppler shifting. As a sound-emit-
ting body travels, the sound waves
that it emits will be compressed in its
direction of travel, causing frequencies
to be shifted upward. Sound waves
moving in the direction that the
sound is traveling away from will be
decompressed, shifting their frequen-
cies downward. Developers need to
know what facilities for Doppler shift-
ing the API provides, and how good
the quality of the shifting is.
• Crosstalk processing and handling
speaker configurations. When the lis-
tener uses speakers instead of head-
phones, each ear hears the output of all
the speakers. This configuration can
hinder attempts to trick the listener
into thinking a sound is positional, so
the SDK must compensate for this
effect. For example, if a sound coming
from the right speaker should be heard
primarily by the right ear, the SDK
must create a version of the samples
that is the opposite of what the left ear
is going to hear from the right speaker,
then play that sound from the left
speaker. These sounds should meet at
the left ear and cancel each other out.
This cancellation signal will also have
to be processed by an HRTF, but not the
same HRTF that is used for the left and
right speakers’ primary outputs. How
well the SDK handles crosstalk for dif-
fering speaker configurations, and how
expensive this processing is should be
of interest to game developers.

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

A U D I O3 D

3D Audio SDK Round-Up
b y J o n a t h a n B l o w

ositional audio has become an

expected feature for today’s first-

person 3D games. As a result,

software vendors have released a

number of commercial SDKs for simu-

lating 3D audio, and many new consumer

It was an accident! He didn’t mean it! If you know what to do when Baby turns blue,
tell jon@bolt-action.com.

PP

ENGINEERING CONSIDERATIONS
• Streaming capabilities. Does the
SDK allow you to stream in samples
from a user-defined callback, so that
you have full freedom to pull samples
from anywhere you want or even make
them up dynamically? How many
other forms of streaming (for example,
streaming from a very large file) does
the SDK provide for your convenience?
Are there any odd engineering con-
straints placed on our application?
• Support for hardware acceleration.
If the game player owns a sound card
with 3D or environmental audio effects
built in, will the hardware be used?
How well with the sound cards capabil-
ities be used? You also ought to know
whether supporting a given sound card
will require you to do any extra coding.
• Cross-platform portability. If you
tie your game to a particular audio
SDK, it’s critical to know whether
you’ll be able to release a version that
runs on multiple operating systems.
• Introspection. How well does the SDK
let you look at what’s going on in the
system? The more data it gives you to
debug, profile, and optimize, the better.
• Documentation and stability. An
SDK should be well documented, and
it should be fairly bug free. The alter-
native could be a steep learning curve
and inconsistent performance from
your game.

Comparing the SDKs

T his review focuses on the following
SDKs: Microsoft’s DirectSound 3D,

Creative Labs’ EAX 1, Aureal
Semiconductor’s A3D 1.2, Rad Game
Tools’ Miles Sound System 5 (which
includes RSX 3D Audio, recently pur-
chased from Intel), and Qsound Labs’
Qmixer 4.13. These SDKs perform at
various layers of abstraction, and each
offers a slightly different set of services.
We can’t set them all out in a row, look
at each, and simply declare a single
winner. Such a comparison wouldn’t
make sense because these SDKs aren’t
all the same kind of tool. Instead, I’ll
look at them one by one, describe the
scope of the problem each attempts to
address, and evaluate each product’s
effectiveness at solving those problems.

DIRECTSOUND 3D (DIRECTX 6.1)
DirectSound 3D is provided by

Microsoft as the standard way to play
3D sounds from Windows. Recent ver-
sions of DirectSound 3D support hard-
ware acceleration and are extendable.
Beyond that, DirectSound 3D contains
a set of software routines to perform
3D audio processing when hardware
isn’t available, or to use as fallbacks
when hardware-accelerated buffers are
all in use.
• Volume attenuation and positional
delay. DirectSound 3D provides a fair
implementation of both these effects.
• Frequency attenuation. DirectSound
3D’s software routines perform some
frequency attenuation. The main com-
ponents that it implements include
rear processing (so that sounds coming
from behind are muffled) and interaur-
al muffling (where sounds that cross
your head before reaching an ear are
muffled). The facilities provided are
fairly basic.
• HRTF. The HRTFs in DirectSound 3D
are of poor quality and are usually
unconvincing.
• Doppler shifting. DirectSound 3D
contains provisions for Doppler shift-
ing. Your game controls the amount of
Doppler shift on an object by setting
the velocity vector on that object.
• Crosstalk. DirectSound 3D doesn’t
attempt to handle crosstalk at all. In
fact, its documentation doesn’t even
acknowledge crosstalk as an issue. This
discrepancy, combined with the poor
HRTFs, results in 3D audio that is gen-
erally ineffective.
• Streaming capabilities. Streaming in
DirectSound 3D uses the basic
DirectSound streaming conventions.
DirectSound will notify the application
every time a sound buffer is ready to
receive new data. The application is
responsible for performing all of the
actual streaming operations from sec-
ondary media.
• Documentation and stability. The
documentation for DirectSound 3D is
extensive and of fair quality. It tends to
be skimpy on the details of what 3D
manipulations are actually performed,
and primarily sticks to descriptions of
the functions and their arguments. The
HTMLHELP program that comes with
DirectX 6 is a terrific documentation
browser, much better than searching
through a .PDF or .DOC file as one
must do with the other SDKs.

DirectSound 3D has no major stabili-
ty problems. Stability problems that

arise are likely to be the fault of a ven-
dor writing faulty DirectSound drivers.
• Cross-platform portability.
DirectSound 3D runs under Windows.
• Other engineering issues. The
Windows version of your game proba-
bly already requires a recent version of
DirectX, so deciding to use Direct-
Sound 3D wouldn’t incur any addition-
al packaging dependencies. The mixers
and effects processors in DirectSound
3D tend to be significantly slower than
the software mixers and filters provid-
ed by the other APIs.

EAX 1
EAX (Environmental Audio eXten-
sions) is an extension to DirectSound
3D by Creative Labs. It expands Direct-
Sound 3D’s hardware support to
include reverberation control for EAX-
enabled hardware (such as Creative
Lab’s Soundblaster Live!).

EAX lets you specify a set of three
properties for reverberation in the lis-
tener’s environment: volume, decay
time, and damping factor. The SDK
also provides a set of 26 presets so that
you can get good, quick results without
much programming. These presets
include environments such as padded
cell, auditorium, and underwater.

EAX will provide extra distance cues
by adjusting the volume of a sound’s
reverberation relative to its primary sig-
nal (as a realistic sound recedes into
the distance, its primary volume will
attenuate, but its reverberated signals
won’t fall off so quickly).
• Volume attenuation, frequency
attenuation, positional delay, HRTF,
Doppler shifting, crosstalk, and
streaming capabilities. EAX 1 presents
no new functionality in these areas
beyond what DirectSound 3D already
provides. The quality of each of these
effects depends upon the hardware
that the game player has. One major
drawback of EAX, as well as the rest of
the products in this review, is that a
severe drop in sound quality (and even
presence of effects such as reverbera-
tion) occurs when the computer runs
out of hardware-accelerated sound
buffers and is forced to start using
DirectSound 3D software emulation.
• Reverberation. The reverberation
modeling in EAX 1 is extremely simple.
It deals only with a global and vague
environment of no definite shape.
There’s no way to say, “This sound

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

45

happened in a sewer pipe, but it’s come
out of the sewer pipe and is being
heard at street level.” Creative Labs has
indicated that it will increase the
sophistication of reverberation model-
ing in EAX in future versions to
include listener-based reverb effects.
• Cross-platform portability. Because
EAX is an extension to DirectSound
3D, it’s tied to Windows.
• Hardware support. The EAX SDK is a
programming layer for controlling
effects on specific hardware that has
built-in EAX support. No software
implementation of the effects is avail-
able. Of course, this means that if the
user’s hardware doesn’t support EAX,
your extra programming won’t provide
any extra benefit.
• Introspection. EAX works using
DirectSound 3D property lists, which
can be set and inspected using
DirectSound 3D. EAX also provides
functions for getting preset properties
and reverberation mix values.
• Documentation and stability. The
EAX 1 Developer’s Kit documentation
is a 31-page booklet, and it must have
taken some effort to make it that long,
because there really isn’t much to say.
EAX is simple to use. There seem to be
no stability problems.

A3D 1.2
A3D (which stands for Aureal 3D), like
EAX, is an extension to DirectSound
3D. And just as EAX provides additional
control over Creative Labs audio hard-
ware, A3D gives you extra control over
audio processing when it’s used in con-
junction with 3D sound cards that use
Aureal’s 3D chips (such as Diamond
Multimedia’s Monster Sound).
• Volume attenuation, positional
delay, HRTF, Doppler shifting, and
crosstalk. The Aureal hardware has
good HRTFs which provide significant-
ly better effects than DirectSound 3D
software processing. A3D also does a
solid job of the other major tasks in 3D
positional audio. However, these bene-
fits are provided even when you use
raw DirectSound 3D, because they’re
essentially benefits that the accelerator
hardware provides — not the A3D SDK.
• Frequency attenuation. The A3D
SDK provides a significant new func-
tion, SetHFAbsorb(), which lets you adjust
a sound’s high-frequency rolloff. This
is the amount by which higher fre-
quencies are attenuated with distance.

This feature would be used most effec-
tively in outdoor games.
• Reverberation. A3D provides no
facilities for controlling reverberation.
• Cross-platform portability. Because
A3D is an extension to DirectSound
3D, it’s tied to Windows.
• Hardware support. The point of A3D
is to support hardware that incorpo-
rates Aureal’s chips. That it does.
• Introspection. You can call a func-
tion called GetHFAbsorb(), which tells you
the current rolloff factor of a channel.
• Documentation and stability. The
A3D 1.2 developer documentation is a
38-page Microsoft Word file. Unfor-
tunately, I found this documentation
to be extremely poor despite its length.
It spends most of its time describing
what is obviously an empty SDK frame-
work. The one important function,
SetHFAbsorbFactor, is mislabeled in the
documentation as a duplicate listing
for GetHFAbsorbFactor. The sparse descrip-
tion of the function contains almost
no useful information, forcing the pro-
grammer to resort to extensive experi-
mentation to figure out exactly what
the function does. It would have been
helpful to have the documentation
explain which exact frequencies are
attenuated, how much attenuation is
considered normal, what kind of atten-
uation-controlling curve is determined
by the single floating-point input para-
meter, and so on. The SDK has no sta-
bility problems, but then again, it
doesn’t do much.
• Other engineering concerns. The
SDK features a resource manager for the
benefit of the programmer, the point of
which is to reserve 3D-accelerated chan-
nels on the hardware so that higher-pri-
ority sounds can use them. When all
accelerated channels are filled up, the
resource manager either kills old sounds
or prevents new sounds from playing.
When the user’s hardware supports only
a low number of accelerated channels
(such is the case with Diamond’s
Monster Sound, which has eight chan-
nels), the killed and stillborn sounds are
quite noticeable — and extremely objec-
tionable. The resource manager is billed
as a “significant and dramatic improve-
ment over DirectSound 3D,” but this
functionality is nothing a programmer
couldn’t create in a page or two of code,
if so desired.

The resource manager was an
attempt to address a serious problem

common to hardware-based solutions:
when a system runs out of accelerated
channels, sudden drops in sound quali-
ty and frame rate can be caused by
DirectSound 3D’s software emulation.
The best long-term solution to this
problem is for hardware companies to
manufacture sound cards with more
channels. In a year or two, that will be
the case, just as we now have 3D accel-
erators that support more fill rate than
game developers need.

In the meantime, however, you have
two ways around the problem. Either
you can carefully segregate your
sounds into those that play on hard-
ware and those that play in software,
or, if segregation isn’t practical or pos-
sible, you can ignore the hardware
acceleration and use software emula-
tion exclusively. The latter is a perfect-
ly reasonable solution, especially given
choices such as Qmixer and Miles
(which I’ll discuss in a moment).
• Future directions for A3D. As this
article went to press, A3D 1.2 was the
only SDK available from Aureal.
However, A3D 2 was in the alpha stage
and will be released by the time you
read this. A3D 2 is a truly outstanding
leap forward, for which Aureal should
be commended.

Aureal’s next generation of hardware
should be capable of some quite sophis-
ticated sound processing. It will model
the way solid objects reflect and
occlude sound waves. A game will use
the A3D 2 SDK to tell the hardware
about the environment by rendering
polygons to the card every frame, much
as one draws polygons to a graphics
accelerator using OpenGL. Each sound
polygon has a material associated with
it, and differing materials will have
effects on sound. For instance, a noise
passing through a window will be fil-
tered quite differently than the same
noise passing through a steel door.
Usually, these sound polygons will be
of a much lower resolution than the
polygons displayed on the screen.

A3D 2 will support high-frequency
rolloff, as did A3D 1.2. It will also give
you the option to turn off reflections
altogether (to reduce the processing load
on the system), model first reflections
(sound waves that bounce off of an
object once before reaching your ears),
or model late reflections (second-order
reflections, which are the result of a
sound strong enough after one reflection

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

3 D A U D I O

to be considered for further reflections).
The SDK will also provide a tagging sys-
tem for game developers to designate
surfaces as reflectors (as opposed to
sound occluders, which are surfaces that
block sounds by absorbing them) and
for handling parallel surface reflectors
(to reduce load on the hardware).

MILES SOUND SYSTEM 5
The Miles Sound System has been
around for quite a while, and it has
grown with each release. Support for
3D audio is the newest addition to
Miles. It also supports the playing and
sequencing of DLS, MIDI music, and
Red Book audio. In this review, howev-
er, we’re only going to examine the 3D
features built into Miles.

Rad Game Tools made a deal with
Intel to acquire Intel’s RSX (Realistic
Sound eXperience) audio system,
which now forms the core of Miles’s
software 3D processing. Miles itself is
an API at the same level as DirectSound
3D, wherein you designate a number of
sound sources in space and describe
their properties. However, it’s more
sophisticated and feature-filled.
• 3D effects. The Miles Sound System
doesn’t implement 3D effects in any
specific way. It allows a game to enu-
merate all of the 3D providers available
and uses the one the game wishes to
use. Because RSX is built into Miles and
will always be available as a baseline,
we will primarily discuss RSX’s merits
in this category. DirectSound (2D and
3D), EAX, and A3D are also supported,
as is a fast and simplified software 3D
engine, separate from RSX, which Rad
provides for the benefit of slower
machines. For users who have multi-
speaker systems, a Dolby Surround
Sound provider is supported as well.
• Volume and frequency attenuation
and positional delay. RSX does fairly
well at these, slightly better than
DirectSound 3D.
• HRTFs. The HRTFs provided by RSX
are fairly good. They are better than
those used by DirectSound 3D, but
they still generally cannot match what
is available in hardware.
• Doppler shifting. Miles supports
Doppler shifting, but suffers from an
annoying inconsistency: the shift is usu-
ally computed using velocities that you
explicitly give the program, unless your
3D provider is RSX, in which case the
shift is automatically computed from

changes in object positions. Because the
way in which you control the Doppler
effect (and the amount of control you
have over it) changes depending on the
3D provider you use, you may have to
write more than one version of Doppler
control in your game. This is the para-
dox of all umbrella-style APIs: they
attempt to be generalized, but we may
still end up writing extremely special-
ized code to get them to work generally.
(Programmers who have used Direct3D
Immediate Mode are quite familiar with
this phenomenon.)
• Reverberation. The parameters that
Miles provides for controlling reverber-
ation are very similar to the parameters
used by EAX.
• Other 3D effects. When hardware
accelerated buffers are exhausted, Miles
falls back to fast software routines for
handling effects such as reverberation.
So, when using Miles with EAX, for
instance, the difference between accel-
erated and unaccelerated sounds is
much less jarring than when you use
EAX by itself.

Because Rad’s strategy with Miles is
to have it support as many 3D audio
technologies as possible, Miles doesn’t
let you control the emission cone of a
sound source, a technology used by
DirectSound 3D and Qmixer. For
example, using DirectSound 3D and
Qmixer, you can declare that most of
the energy of a sound is focused in a
cone 60 degrees wide. I found Miles’s
lack of support for sound cones a bit
strange, because while Miles allows you
to specify the orientation of a 3D
sound source, orientation doesn’t
affect the sound much unless the
source is also assumed to have some
nonspherical emission properties.

Miles doesn’t explicitly support the
smooth interpolation of values. What
this means is that if you move a sound-
emitting object or change its volume,
your application cannot control the
amount of time that it takes to ramp
up or down the volume — this is cho-
sen by the 3D provider you happen to
be using. Smooth interpolation is good
for preventing pops and other audible
discontinuities from creeping into
sound effects. This isn’t to say that
smooth interpolation doesn’t take
place; when using RSX, for example, it
will. It’s just that you have no control
over the interpolation.
• Streaming capabilities. Miles has

terrific streaming capabilities. In addi-
tion to streaming large .WAV files, it
can stream ADPCM-compressed wave-
forms and MPEG Layer 3 (MP3) files.
However, the raw interface it provides
to drop samples into a buffer appears
to be at a lower-level than Qmixer, and
this lower-level access doesn’t provide
any additional benefit — it just makes
it harder to use.
• Cross-platform portability. The
Miles Sound System runs on DOS,
Windows 3.1, Windows 95/98, and
Windows NT.
• Introspection. If you’re using
DirectSound as a 3D provider, Miles
will let you query for a DirectSound
object that you can then manipulate
normally. You can also instruct Miles
to stop handling the processing of indi-
vidual sound buffers if you’d like to
control all properties of a buffer your-
self. This is extremely nice when you
want to accomplish a specific task that
the larger framework doesn’t support
directly. Even better, the API lets you
measure what percentage of available
CPU time each channel is using. This
can be terrific when you’re trying to
optimize your game.
• Documentation and stability. Miles
has good documentation. It often
points out specific things you’d like to
know, such as whether a given API call
for setting some property of a sound
will affect a buffer that has not yet
started playing. Also — and this is bril-
liant — the documentation for most
important API routines tells you which
sample program provided with the SDK
will best demonstrate the use of that
routine. I’ve noticed no stability issues
with Miles either. However, because
Miles supports 3D audio by wrapping
around a variety of lower-level 3D
providers, the overall stability of this
solution depends upon the provider
that your application chooses.
• Other engineering concerns. There is
some weird doubling-up of API calls
within Miles that can make the system
difficult to use. For example, the func-
tion AIL_set_sample_volume() lets you set a
buffer’s playback volume. But it’s only
for 2D sounds. If you want to change
the volume of a 3D sound, you have to
call AIL_set_3D_sample_volume(). It’s as
though the folks at Rad felt that they
couldn’t afford extra if statements with-
in the API, and I found this strange.

On the other hand, if you spend the

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

3 D A U D I O

money for Miles, there are many good
utilities inside the libraries that your
application can use. For instance, you
can save and load .WAV files, or com-
press and decompress them using for-
mats such as ADPCM and MP3.

For Miles to work properly with your
completed game, you need to install a
number of files into the same directory
as the game executable. For basic func-
tionality, this only amounts to three
files. However, it can grow to as many
as ten files if you want to include mod-
ules that can detect all the different 3D
providers, which is a feature you surely
will want.

QMIXER 4.13
The Qmixer SDK concentrates on 3D
sound effects. It doesn’t attempt to
handle music or provide generalized
utilities as Miles does. On the other
hand, Qmixer provides more control
over 3D sound effects than Miles does.
Other than that, it’s an API at the same
level of abstraction as Miles. You would

use Qmixer instead of DirectSound 3D.
Qmixer is developed by Qsound Labs,
which has been making 3D audio chips
for some time now.
• 3D effects, HRTF, and crosstalk.
Qmixer’s software processing is very
fast compared to other SDKs, especially
the buffer-mixing. It also provides more
control over the effects performed on
sound buffers. For example, you can
control the speed with which position
updates (and panning positions for 2D
sounds) are interpolated, to create more
precisely the effects that you want.

Qmixer positional processing algo-
rithms aren’t based on the same HRTF
and crosstalk cancellation ideas dis-
cussed at the beginning of this article.
It uses a proprietary approach.
However, this alternative approach
produces results that are certainly bet-
ter than what’s built into DirectSound
3D and many other software APIs.
Newer hardware (such as the
Soundblaster Live! or the Monster
Sound MX300) tends to provide better

effects than what Qmixer delivers, but
if hardware acceleration is present
(interfaced through DirectSound 3D),
then Qmixer can use that rather than
its own software algorithms.

As for speaker support, Qmixer’s soft-
ware engine only generates two-speaker
output. However, you can tell Qmixer
that you’re using a four-speaker setup,
and that information will be passed
along to DirectSound (if it’s used).
Thus, if a hardware accelerator capable
of dealing with four speakers is present
in the user’s system, then four-speaker
output will be enabled. Also, Qmixer
provides headphone processing as an
output option, and I find that Qmixer’s
effects sound much better through
headphones than through speakers.
• Reverberation. Qmixer provides no
support for reverberation.
• Introspection. Qmixer lets you
inspect all the values that you can set.
Also, if you’re using DirectSound, you
can grab a pointer to the DirectSound
object and play with that. Qmixer also
contains a great debugging hook that
lets you log all output from the mixer
into a .WAV file for later analysis.
• Doppler shifting. The Doppler effect
provided by Qmixer is of poor quality:
aliasing often creeps into the sound
(perhaps due to high-frequency
foldover) and other weird processing
artifacts become audible, such as artifi-
cial-sounding tones that scale with the
Doppler shift. The Doppler code is also
slightly buggy (see my comments of
Qmixer’s stability to follow). This is
one area where the Qmixer developers
have emphasized speed over quality.
After hearing its results, you will proba-
bly turn off the Doppler effect (and
perhaps simulate it yourself).
• Streaming capabilities. Qmixer can
stream large .WAV files. Alternatively,
your application can provide a call-
back to alert Qmixer every time it
wants to fill a buffer with samples.
This callback mechanism is simple and
nice. It works well.
• Hardware acceleration. Qmixer can
make use of sound hardware as identi-
fied by DirectSound 3D.
• Cross-platform portability. Qmixer
runs on Windows and MacOS.
• Documentation and stability. The
Qmixer documentation is passable, but
could use improvement. It has
improved greatly during the past 15
months, but any given revision tends

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

3 D A U D I O

I n 1998, a group of game develop-

ers got together to write down a

design document for a portable

audio API called the Open Audio

Library, or OpenAL. The white paper has

yet to be finished, but the need and the

vision are still alive.

This year, Aureal introduced the pivotal

wavetracing feature to the hardware

audio market. With positional 3D audio

already in place, scene-geometry aware

sound rendering means a major shift

towards hardware acceleration for much

more immersive sound environments.

Established sound APIs become obsolete

along with the legacy boards they sup-

port, and the lack of an open standard

holds back developers and vendors.

Toni Schneider of Aureal says,

“OpenGL has shown that an open, cross-

platform API can achieve both innovation

and ubiquity. It is conceivable that our

A3D 2 API and technology could serve as

a basis for such an effort because it has

been designed as a cross-platform solu-

tion. It includes a soft emulation engine,

and the API is actually very close to

OpenGL. All of our wavetracing 3D

acoustics calls mirror the way OpenGL

processes 3D geometry.”

Aureal has working silicon and soft-

ware, and is already engaged in standard-

ization efforts with the IA-SIG. The compa-

ny could well take the lead in designing

an OpenAL API, adopting the SGI strategy

for promoting an open, flexible standard

— that means an Architecture Review

Board, an extension mechanism, and a

well-documented specification that is

readily available to developers.

But the OpenAL vision isn’t only about an

open standard. In five years, the industry

might see single-board, perhaps even sin-

gle-chip solutions for 3D graphics and

audio, with geometry processors handling

both transformations of textured polygons

and sound-reflecting surfaces. Neither

game programmers nor hardware engi-

neers want to duplicate operations, be it at

the application, driver, bus, or silicon

level. Consequently, design and calling

conventions of OpenGL and OpenAL

should be interchangeable wherever there

is a true similarity in the semantics of

operation. One day, a single driver might

provide both for your game coding needs.

For more information on the OpenAL effort,

see http://www.geocities.com/

SiliconValley/Hills/9956/OpenAL

– Bernd Kreimeier and Terry Sikes

The OpenAL Vision

to contain listings for outdated func-
tions and may omit important details
of new routines. In general, the docu-
mentation is too vague about what’s
going on. For example, there’s a func-
tion called QSWaveMixGetVolume that
returns the volume of a certain chan-
nel. However, the documentation
doesn’t specify whether it returns the
set point for that channel’s volume (for
example, the value that you told
Qmixer to set the volume to) or the
interpolated volume that Qmixer uses
internally as it’s smoothing out volume
changes. You must experiment to find
out which it is.

Qmixer tends to have minor stability
problems. For example, in the more
recent versions of the SDK, if you move
a Doppler-shifted object too quickly (so
that it approaches or exceeds the speed
of sound) or set the speed of sound to
be very low, the code may generate
floating exceptions or other weird
errors. Problems such as this tend to be
fixed within a few patches, but it’s
slightly unnerving that the SDK makes
it out the door in this state. On the
other hand, I’ve found that the bugs
haven’t been enough negate the useful-
ness of the SDK.
• Other engineering concerns. Qmixer
comes as a .DLL that you have to redis-
tribute with your game. This is a bit
annoying, but not as bothersome as the
Miles file bonanza.

The Qmixer SDK also comes with a
free, stereo-only counterpart called
QMDX, which you can download from
the Qsound web site; if you code to the
Qmixer API and decide that it doesn’t
meet your needs, you can do a text
search-and-replace on your files to con-
vert them to support QMDX. Qsound
generously lets you distribute your
game without paying a licensing fee if
you decided to use QMDX rather than
the full-blown Qmixer tool.

A future version of the Miles Sound
System will support the use of Qmixer
as a 3D provider. Because the Miles
SDK is more of an umbrella system
that lets you pick and choose various
lower-level audio providers, this sup-
port won’t provide as much fine-tuned
control over all of the Qmixer features.
Thus, the version of Qmixer that ships
with Miles will be feature-reduced.
Developers who wish to use the
Qmixer provider through Miles in a
shipping game will have to pay a

licensing fee. The good news is that
this licensing fee will be lower than
the fee for licensing Qmixer directly,
in part because of the decreased tech-
nical support load that will be placed
on Qsound.

What to Choose

W hich SDK best suits your needs?
If you want your game to run

on that growing market of MacOS
machines with juicy ATI Rage 128
graphics accelerators, then Qmixer is
the way to go — either that or just code
up the Windows version of your sound
system using DirectSound 3D and write
completely separate code for the
MacOS and other platforms. This is a
sorry situation. The establishment of
an OpenAL would be a terrific
improvement (see the sidebar, “The
OpenAL Vision”).

If your sound SDK budget is mini-
mal, you’ll want to stick to
DirectSound 3D, along with explicit
support for A3D and/or EAX. If, due to
limited manpower, you have to pick
A3D or EAX to support, I recommend
EAX, because I find that its effects are

much more noticeable to users. If A3D
2 fulfills its promises, however, it will
eclipse both A3D 1.x and EAX.

If you’re doing a lot of heavy-duty
audio and music processing, I recom-
mend Miles because of its scope and
the variety of tools that it provides. To
get an extremely fast software mixer,
you can use the upcoming Qmixer
provider for Miles. If you care very
much about the amount of control
that you have over your 3D sounds, use
Qmixer directly. Using Qmixer directly
won’t allow you to specify reverbera-
tion (which Miles does), but you can
still get reverberation on EAX cards by
querying the DirectSound object from
Qmixer, then querying that object for
EAX support via the EAX SDK. ■

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 9 G A M E D E V E L O P E R

51

DirectSound 3D. Free. http://www.micro

soft.com/directx/default.asp

EAX 1. Free. http://www.sblive.com

A3D 1.2. Free. http://www.a3d.com

Miles Sound System 5. Starts at

$3,000. http://www.radgametools.com

Qmixer 4.13. Starts at $5,000.

http://www.qsound.com

PPRROODDUUCCTT IINNFFOORRMMAATTIIOONN

G A M E D E V E L O P E R M A Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

AINBOW SIX and Red Storm Entertainment both

came into being during the same week. When

the company was formed in the fall of 1996, the

first thing that we did was to spend a weekend

brainstorming game ideas. That initial design

session generated over a hundred possibili-

ties that we then winnowed down to a handful that we thought had star

potential. The only one that we unanimously agreed we had to build

was HRT — a game based on the FBI’s Hostage Rescue Team.

The Concept

I t was a long road from HRT to RAINBOW SIX, but along the way,
the basic outline of the title changed very little. We knew from

the start that we wanted to capture the excitement of movies such
as Mission: Impossible and The Dirty Dozen — the thrill of watching
a team of skilled specialists pull off an operation with clockwork
precision. We also knew that we wanted it to be an action game
with a strong strategic component — a realistic shooter that would
be fun to play even without a QUAKE player’s twitch reflexes.

From that starting point, the title seemed to design itself. By the
time we’d finished the first treatment a few weeks later, all the cen-
tral game-play features were in place. We expanded the scope of

b y B r i a n U p t o n

Red Storm
EntertainmentÕs
RAINBOW SIX

P O S T M O R T E M

Brian Upton is the director of product design at Red Storm Entertainment. He has a Masters degree in comput-
er science from the University of North Carolina at Chapel Hill and spent ten years as a graphics programmer
before making the jump to full-time game designer. He can be reached at brian.upton@redstorm.com.

RR

53

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 8 G A M E D E V E L O P E R

game (rechristened BLACK OPS) beyond hostage rescue to
encompass a variety of covert missions. Play would revolve
around a planning phase followed by an action phase, and
players would have to pick their teams from a pool of opera-
tives with different strengths and weaknesses. Combat would
be quick and deadly, but realistic. One shot would kill, but the
targeting model would favor cautious aiming over the run-
ning-and-gunning that was typical of first-person shooters.

Ironically, the only major element that we hadn’t devel-
oped during those first few weeks was the tie-in to Tom
Clancy’s book. Clancy was part of the original brainstorming
session and had responded as enthusiastically as the rest of us
to the HRT concept, but he hadn’t yet decided to make it the
subject of his next novel. Because we had moved away from
doing a strict hostage rescue game, we batted around a lot of
different BLACK OPS back stories in our design meetings, rang-
ing in time from the World War II era to the near future. For a
while, we considered setting the game in the 1960s at the
height of the Cold War, giving it a very Austin Powers/Avengers
feel. We eventually converged on the RAINBOW SIX back story
in early 1997, but we didn’t find out that we would be paral-
leling Clancy’s novel until almost April. Fortunately, we’d
been sharing information back and forth the whole time, so
bringing the game in line with the book didn’t involve too
much extra work. (If you compare the game to the novel,
however, you’ll notice that they have different endings. Due
to scheduling constraints, we had to lock down the final mis-
sions several months before Clancy finished writing. One of
the pitfalls of parallel development…)

The Production

O riginally, the RAINBOW SIX team consisted of me and
one other programmer. Red Storm started develop-

ment on four titles straight out of the gate, and all the teams
were woefully understaffed for the first few months. The first
RAINBOW SIX artist didn’t come on board until the spring of
1997, with a full-time producer following shortly after. With
such a small group, progress was slow. During that first win-
ter and spring, all that we had time to do was throw together
a rough framework for what was to follow. This lack of
resources up front would come back to haunt us later.

Because we were so understaffed, we tried to fill the gaps in
our schedule by licensing several crucial pieces of technology.
The first was the 3D renderer itself. Virtus Corp., our parent
company, was working on a next-generation rendering library
for use in its own line of 3D tools. We decided to save our-
selves work by building on top of the Virtus renderer, rather

than developing our own. At first, this seemed to be an ideal
solution to our problem. Virtus had been doing 3D applica-
tions for years, and the renderer that its engineers were work-
ing on was a very general cross-platform solution that ran well
with lots of different types of hardware acceleration.

We also went out of house for our networking technology.
We had researched a variety of third-party solutions, includ-
ing Microsoft’s DirectPlay, but we weren’t satisfied with any
of them. Just as we were on the verge of deciding that we’d
have to write our own library, a local development group
within IBM contacted us. The group’s engineers were inter-
ested in finding uses for their powerful new Java-based
client/server technology. The technology, called Inverse, was
designed to allow collaborative computing between large
numbers of Java applets. The IBM engineers wanted to see
how it would perform in a number of different application
domains, including games. Inverse supported all of the fea-
tures that we wanted in a networking solution, such as net-
work time synchronization and reliable detection of discon-
nects, so after much deliberation we decided to use it for
RAINBOW SIX. Eventually, we would come to regret both of
these third-party technology decisions, but not until
months later in the project.

Over the summer of 1997, we acquired most of the motion
capture data that was used for animating the characters in
the game. One of the advantages of working with Tom
Clancy was that he put us in touch with a wide variety of
consultants very quickly. Among the many experts we spoke
with to get background information on counter-terrorism
were two close-quarters combat trainers who worked for the
arms manufacturer Heckler and Koch. When it came time to
do our motion capture, these trainers volunteered to be our
actors. They spent a couple of days at the Biovision studios in
California being videotaped running through every motion
in the game. Using real combat trainers for our motion cap-

Red Storm Entertainment
Morrisville, N.C.
(919) 460-1776
http://www.redstorm.com

Release date: August 1998
Intended platform: Windows 95/98
Team size: Sixteen full-time and six part-time developers
Critical development hardware: 400MHz Pentium II w/64MB

RAM and a 3D accelerator
Critical development software: Microsoft Visual C++,

Sourcesafe, Hiprof, Boundschecker, and 3D Studio Max.

RAINBOW SIX

ture data represented one of our better
decisions. While a professional actor
might have been tempted to overdo the
motions for effect, these guys played it
absolutely straight — the results are
impressive. The game’s characters come
across as serious and competent, and
are twice as scary as a result.

Our crisis came in October of 1997.
We’d been working hard all summer,
but (although we refused to admit it)
we were slipping further and further
behind in our schedule. Partially, the
delays were the result of my being
completely overloaded. Partially, they
were the result of the ambitious scale
of the project: because the plot of
Clancy’s evolving novel was driving
our level design, we’d committed our-
selves to creating sixteen completely
unique spaces — a huge art load. And
partially, they were the result of the
fact that the “time-saving” technology
licenses that we’d set up were proving
to be anything but.

Inverse was a great networking solu-
tion — for Java. Unfortunately, we
wrote RAINBOW SIX in C++. Our initial
research had suggested that mixing the
two would be trivial. However, in prac-
tice the overhead involved in writing
and debugging an application using two
different languages at the same time was
staggering. The interface code that tied
the two parts together was larger than
the entire networking library. It became
clear that we’d have to scrap Inverse and
write our own networking solution from
scratch if we were ever going to get the
product out the door.

(As a side note, we did continue to
use Inverse for our Java-based products:
last year’s POLITIKA and this year’s
RUTHLESS.COM. The problems we faced
didn’t arise from the code itself, but
from mixing the two development
environments.)

We also had problems with the Virtus
rendering library. As we got deeper and
deeper into RAINBOW SIX, we realized
that if the game was going to run at an
acceptable frame rate, we were going to
have to implement a number of differ-
ent renderer optimizations.
Unfortunately, the Virtus renderer was
a black box. It was designed to be a gen-
eral-purpose solution for a wide variety
of situations — a Swiss Army knife.
With frame rates on high-end systems
hovering in the single digits, we quickly
realized that we would need a special-
purpose solution instead.

In early November 1997, we put
together a crisis plan. We pumped addi-
tional manpower into the team. We
brought in Erik Erikson, our top graph-
ics programmer, and Dave Weinstein,
our top networking programmer, as
troubleshooters. I stepped down as lead
engineer and producer Carl Schnurr
took over more of the game design
responsibilities. The original schedule,
which called for the product to ship in
the spring, was pushed back four
months. The artists went through sever-
al rounds of production pipeline
streamlining until they could finally
produce levels fast enough to meet the
new ship date. Finally, we took imme-
diate action to end our reliance on
third-party software. We wrote an
entire networking library from scratch
and swapped it with the ailing Java
code. Virtus graciously handed over the
source code for the renderer and we
totally overhauled it, pulling in code
we’d been using on DOMINANT SPECIES,
the other 3D title that Red Storm had in
progress at the time. All this took place
over the holiday season. It was a very
hectic two months.

From that point on, our develop-
ment effort was a sprint to the finish
line. The team was in crunch mode
from February to July 1998. A variety of
crises punctuated the final months of
the project. In March, I came back on
board as lead engineer when Peter
McMurry, who’d been running devel-
opment in my place since November
1997, had to step down for health rea-

sons. As we added more and more
code, builds grew longer and longer,
finally reaching several hours in
length, much to the frustration of the
overworked engineers. The size of the
executable started breaking all our
tools, making profiling and bounds
checking impossible. In order to make
our ship date, we had to cut deeply
into our testing time, raising the risk
level even higher.

On the upside though, the closer we
got to the end of the project, the more
the excitement started to build. We
showed a couple of cautious early
demos to the press in March 1998 and
were thrilled by the positive responses.
(At this point, we were so deep into the
product that we had no idea of what an
outsider would think.) The real unveil-
ing came at the 1998 E3 in Atlanta, Ga.
Members of the development team ran
the demos on the show floor — for
most us, that was the longest stretch
we’d had playing the game before it
shipped. Almost all of the final game-
play tweaks came out of what we
learned over those three days.

What Went Right

1.A COHERENT VISION. Throughout all
of the ups and downs in the pro-

duction process, RAINBOW SIX’s core
game play never changed. We estab-

G A M E D E V E L O P E R M O N T H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

The wide variety of Rainbow Six char-

acters were animated with motion

capture data.

Game play involves a planning phase

followed by an action phase.

lished early on a vision of what the
final game would be and we main-
tained that vision right through to the
end. I can’t overstate the importance of
this consistency. Simply sticking to the
original concept saw the team through
some really rough parts of the develop-
ment cycle.

For one thing, this coherent vision
meant that we were able to squeak by
without adequate design documents.
Many parts of the design were never
written down, but because the team
had a good idea of where we were
headed, we were able to fill in many of
the details on our own. Even when we
had to perform massive engineering
overhauls in the middle of the project,
a lot of the existing art and code was
salvageable.

Our vision also did a lot for morale.
Many times we wondered if we’d ever
finish the project, but we never doubt-
ed that the result would be great if we
did. It’s a lot easier to justify crunch
hours when you believe in where the
project is going.

2.AN EFFICIENT ART PIPELINE. The art
team tried out four or five differ-

ent production pipelines before they
finally found one that would produce
the levels that we wanted in the time
that we had available. The problem was

that we wanted to have sixteen unique
spaces in the game — there would be
almost no texture or geometry sharing
from mission to mission. Furthermore,
instead of creating our own level-build-
ing tool, we built everything using 3D
Studio Max. Thus, artists had more
freedom in the types of spaces that
they could create, but they didn’t have
shortcuts to stamp out generic parts
such as corridors or stairwells — every-
thing had to be modeled by hand.

Eventually, the art team settled on a
process designed to minimize the
amount of wasted effort. Before anyone
did any modeling, an artist would
sketch out the entire level on paper
and submit it for approval by both the
producer and art lead. Then the model-
ers would build and play test just the
level’s geometry before it was textured.
Each artist had a second computer on
his desk running a lightweight version
of the game engine so he could easily
experiment with how the level would
run in the game.

3.TOM CLANCY’S VISIBILITY. A good
license won’t help a bad game,

but it can give a good game the visibili-
ty it needs to be a breakout title. When
we first approached members of the
gaming press with demos of RAINBOW

SIX in the spring of 1998, they had no

reason to take us seriously — we had
no track record, no star developers, and
no hype (O.K., not much hype…). We
were showing a quirky title with a less-
than-state-of-the-art rendering engine
in a very competitive genre. With
much-anticipated heavyweights such
as SIN, HALF-LIFE and DAIKATANA on the
way, having Clancy’s name on the box
was crucial to getting people to take a
first look at the title. Fortunately, the
game play was compelling enough to
turn those first looks into a
groundswell of good press that carried
us through to the launch.

4.REWORKING THE PHYSICS ENGINE. In
February 1998, we completely

overhauled the RAINBOW SIX physics
engine, which turned out to be a win
on a variety of fronts. We’d retooled
the renderer during the previous
month, but our frame rate was still
dragging. After running the code
through a profiler, we figured that
most of our time was going to collision
checks — checks for characters collid-
ing with the world and line-of-sight
checks for the AI’s visibility routines.

The problem was that every time the
physics engine was asked to check for a
collision, it calculated a very general
3D solution. Except in the cases of
grenade bounces and bullet tracks, a

h t t p : / / w w w . g d m a g . c o m M O N T H 1 9 9 9 G A M E D E V E L O P E R

55

The various mission levels called for the creation of sixteen completely unique spaces.

A 2D floor plan, created for the purpose of collision detection, also helped players in both the planning and action interfaces.

3D collision check was complete
overkill. Over the next month, we
reworked the engine to do most of its
collision detection in 2D using a floor
plan of the level. These collision floor
plans would be generated algorithmi-
cally from the 3D level models.

The technique worked. In addition
to getting the frame rate back up to a
playable level, it also made collision
detection more reliable. The game
engine also used the floor plans to
drive the pathfinding routines for the
AI team members. Players would view
these same floor plans as level maps in
both the planning and action inter-
faces. By figuring out how to fix our
low frame rates, we wound up with
solutions to three or four other major
outstanding engineering issues.
Sometimes, the right thing to do is
just throw part of the code out and
start over.

5.TEAM COHESION. Red Storm employs
no rock stars and no slackers.

Everyone on the RAINBOW SIX team
worked incredibly long hours under a
tremendous amount of pressure, but
managed (mostly) to keep their tem-
pers and their professional focus.

What Went Wrong

1.LACK OF UP-FRONT DESIGN. We never
had a proper design document,

which meant that we generated a lot of
code and art that we later had to scrap.
What’s worse, because we didn’t have a
detailed outline of what we were trying
to build, we had no way to measure our
progress (or lack thereof) accurately.
We only realized that we were in trou-
ble when it became glaringly obvious.
If we’d been about the design rigorous
up front, we would have known that
we were slipping much sooner.

2.UNDERSTAFFING AT THE START. This
point is closely related to the

previous point. Because we didn’t have
a firm design, it was impossible to do
accurate time estimates. Red Storm was
starved for manpower across the board,
and because we didn’t have a proper
schedule, it was hard to come to grips
with just how deep a hole we were dig-
ging for ourselves. There were always
plenty of other things to do in getting
a new company off the ground besides
recruiting, and we were trying to run as
lean as possible to make the most of
our limited start-up capital. Given the

circumstances, it was easy to rational-
ize understaffing the project and delay-
ing new hires.

Additionally, I badly overestimated
my own abilities. For Red Storm’s first
year, I was working four jobs: VP of
engineering, lead engineer on RAINBOW

SIX, designer on RAINBOW SIX, and pro-
grammer. Any one of these could have
been a full-time position. In trying to
cover all four, I spent all my time rac-
ing from one crisis to the next instead
of actually getting real work done. And
because I was acting as my own manag-
er, there was no one to audit my per-
formance. If one of the other leads was
shirking his scheduling duties or blow-
ing his milestones, I’d call him on it.
But on my own project, I could always
explain away what should have been
clear warning signs of trouble.

3.RELIANCE ON UNPROVEN TECHNOLOGY.
Our external solutions for render-

ing and networking both fell through
and had to be replaced with internally
developed code late in the develop-
ment cycle. In both cases, we were rely-
ing on software that was still under
development. The core technology was
sound, but we were plagued with inad-

56

P O S T M O R T E M

equate documentation, changing pro-
gramming interfaces, misunderstood
performance requirements, and heavy
integration costs. Because both pack-
ages were in flux, we failed to do a
thorough evaluation of their limita-
tions and capabilities. By the time it
became obvious that neither was com-
pletely suited to our needs, it was too
late to push for changes. In retrospect,
we would have saved money and had a
much smoother development process if
we’d bitten the bullet early on and
committed ourselves to building our
own technology base.

4.LOSS OF KEY PERSONNEL. Losing even
a junior member of a develop-

ment team close to gold master can be
devastating. When our lead engineer
took ill in February 1998, we were faced
with a serious crisis. For a few frantic
weeks, we tried to recruit a lead from
outside the company, but eventually it
became obvious that there was no way
we could bring someone in and get
them up to speed in time for us to make
our ship date in July 1998. Promoting
from inside the team wasn’t a possibili-
ty either — everyone’s schedule was so
tightly packed that they were already

pulling overtime just to get their coding
tasks done; no one had the bandwidth
to handle lead responsibilities too.

Ultimately, I wound up stepping back
in as lead. This time, however, we knew
that for this arrangement to work I’d
have to let my VP duties slide. The rest
of management and the other senior
engineers took up a lot of the slack, and
Peter had set a strong direction for the
project, so the transition went very
smoothly. (After his health improved
Peter returned to work at the end of the
project, putting in reduced hours to fin-
ish off the RAINBOW SIX sound code.)

5.INSUFFICIENT TESTING TIME. We got
lucky. As a result of our early mis-

steps, the only way we could get the
game done on time was to cut deeply
into our testing schedule. We were still
finding new crash bugs a week before
gold master; if any of these had
required major reengineering to fix, we
would have been in deep trouble. That
the game shipped as clean as it did is a
testament to the incredible effort put
in at the end by the engineering team.
As it was, we still had to release several
patches to clean up stuff that slipped
through the cracks.

In the End…

R AINBOW SIX’s development cycle
was a 21-month roller coaster

ride. The project was too ambitious
from the start, particularly with the
undersized, inexperienced team with
which we began. We survived major
overhauls of the graphics, networking,
and simulation software late in the
development cycle, as well as two
changes of engineering leads within
six months. By all rights, the final
product should have been a buggy,
unplayable mess. The reason it’s not is
that lots of very talented people put in
lots of hard work.

I’m not going to say that RAINBOW

SIX is the perfect game, but it is
almost exactly the game that we origi-
nally set out to make back in 1996,
both in look and game play. And the
lessons that we’ve learned from the
RAINBOW SIX production cycle have
already been rolled into the next
round of Red Storm products. Our
current focus is on getting solid
designs done up front and solid test-
ing done on the back end — and on
making great games, of course. ■

57

For those of you recently returning from
the outer rings, Linux is a free, open-
source operating system. It’s fast, stable,
reliable, and responsive — technically
equivalent and often superior to com-
mercial operating systems because
Linux development is driven by tech-
nology, not marketing. Think of the
Linux development community as the
world’s only functioning meritocracy.
Only the best code survives. A solid esti-
mate of Linux users is difficult to
come by — it’s perfectly accept-
able to download
the OS or copy it
for a friend —
but the most
reliable fig-
ures put the
1998 Linux
installed base
somewhere
between
12 and
15

million.
Still, you might ask, isn’t Linux just a

server OS? Well, International Data
Corp. estimates that Linux held about
two percent of the worldwide desktop
market in 1998. Quite remarkable for an
OS which has only recently begun to see
desktop applications. The trend is famil-

iar. New technologies often trickle
down from high-end applications, such
as servers, to the consumer desktop.

It’s true that most of the applications
available for Linux today are server
applications. But consumer applications
are beginning to appear. There are two
very good graphical user interfaces for
Linux already available: KDE
(http://www.kde.org) and GNOME
(http://www.gnome.org). There are also

several good
Linux

office
applica-
tions,
includ-
ing
Corel’s

recently
released

Wordperfect
8.0. Wordperfect was

downloaded over 250,000 times within
two weeks of its release. Who’s to say
games aren’t next?

Not only will Linux become an
increasingly viable desktop OS — I
believe that it’s also going to be the
gaming OS of choice. Because Linux is

open source, it’s possible to make
changes to the OS itself to enhance
game performance. By developing on
Linux, the game industry will further
Linux development — and build in
superior game play.

That’s why why we chose to port
Activision’s CIVILIZATION: CALL TO

POWER to the Linux platform. At Loki,
we license the rights to port successful
game titles to Linux. The original devel-
oper provides us with source code
(which we do not release). We then
port the game. Loki tests, publishes,
and supports the Linux port — and
pays the original developer royalties.
This way, we’re able to deliver the best
titles the PC game world has to offer to
our customers.

All developers could potentially bene-
fit. Game-related software libraries are
also open source in the Linux world and
thus gain all the benefits of the open-
source model. In our own company, we
are currently using the Simple
DirectMedia Layer (SDL) (http://www.
devolution.com/~slouken/SDL/) to sup-
port input, graphics, and sound. The
changes we make to SDL in our porting
work will be publicly available — source
code and all. Eyes will begin combing
the code. With thousands of developers
scrutinizing SDL code, bugs will be
found and fixed faster than they would
in any single company’s product.

Open source also encourages open
standards. And open standards translate
into lower costs for developers and
fewer headaches for users. Linux is far
more likely to standardize on a particu-
lar 3D API, for example. By contrast,
Windows developers struggle to support
competing 3D, sound, and other propri-
etary formats.

The combined benefits of an open
source OS, open source libraries, and
open standards add up to a superior
gaming environment. In the near future,
the same game running on the same
hardware will be faster, more stable, and
more responsive on Linux. Hardcore
gamers will pick up on this quickly.
What about game developers? ■

G A M E D E V E L O P E R M A Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y S c o t t D r a e k e rS O A P B O X
Making a Case

for Linux Games

G reat ideas seem obvious in retrospect.

Nearly eight months after founding Loki

Entertainment Software, putting games

onto Linux is starting to seem obvious, too.

Scott Draeker was a practicing attorney specializing in software and technology
licensing issues when legal research (surfing) on the Internet led him to the Linux
community. An avid game player, he became a vocal proponent of Linux gaming and
eventually formed Loki Entertainment Software in August 1998.

Illu
s

tra
tio

n
 b

y
 P

a
m

e
la

 H
o

b
b

s

	back:

