
MARCH 2001

G A M E D E V E L O P E R M A G A Z I N E

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate
Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

R ecently an anticipated PC

title was slighly altered just

before release in an attempt

to dodge an “M” (mature)

rating from the Entertain-

ment Software Rating Board (ESRB). The

developer and publisher were concerned

that an M rating would limit the sales of

their title, that stores like Wal-Mart or

Target wouldn’t carry their game unless

those features were removed and the game

carried a “T” (teen) rating.

You can certainly understand why they

would make this decision. After working on

a title for such a long time, wouldn’t you

want to maximize your potential sales? But

what we’re talking about is a business deci-

sion overriding an artistic decision. Can

you imagine Leonardo da Vinci painting

over the Mona Lisa’s smile with a big grin

in order to make his painting sell better?

Creating a game for the teen market to

maximize the availability of your game is

certainly a reasonable thing to do. But to

create a game that is for mature audiences,

and then at the last minute attempt to tone

it down to improve sales, violates the

integrity of the art you’ve created.

Movie studios do this type of thing all

the time, but that doesn’t make it right. If

you want to make a teen game, make a teen

game. If you want to make a mature game,

make a mature game. If you were doing

play-testing on your title with a mature

audience, and then at the last minute you

turned it into a teen game, doesn’t that

effectively nullify all of your play-testing? It

doesn’t make much sense to do this even

from a business standpoint.

Determine your target market from the

outset. Make a game that fits your target

market, whether it is 13-year-old girls or

30-year-old hardcore game players. Do

play-testing on people in your target mar-

ket, and don’t shy away from the rating

you get. It’s likely that the M-rated game

you’ve created is aimed at hardcore game

players who can buy it online anyway.

But this incident does bring up one other

question: as a developer, you could release

a patch which effectively changes your

game from “T” to “M,” or “M” to “AO”

(adults only). How should the ESRB deal

with that? Send us your thoughts.

This Month

I like to get out of the office and visit

developers. Sometimes when I do, I get

to see the most amazing technology. While

at ECTS last year, I visited SCEE’s Team

Soho and was just stunned by what they

were doing with facial animation. I imme-

diately asked their senior animator, Gavin

Moore, if he’d consider writing an article

on their Talking Heads system to share

with you, and I’m happy to have his article

in this issue.

We’ve also got an excellent feature this

month which deals with multi-platform

development. Dave Wagner, Lead Program-

mer at Midway, analyzes the issues they

dealt with in creating READY 2 RUMBLE

BOXING: ROUND 2 on the PC, and shipping

it for Dreamcast and Playstation 2.

Our Postmortem this month is the hit

sequel BALDUR’S GATE II. BioWare shares

some very valuable information about its

development process, including a checklist

of design guidelines that you should carve in

stone and tape to your wall. Check it out.

Lastly, the Game Developers Conference

(GDC) is coming up in March, and we’re

giving you a preview by interviewing a few

of the key presenters you’ll find there. I’m

not talking about the high-profile keynotes,

but the down-and-dirty tutorials, lectures,

panels, and roundtables which dig into rel-

evant issues for your day-to-day develop-

ment problems.

Next Month

A little advanced warning: next month’s

Game Developer will look different!

We’re making a few changes around here.

You’ll notice that a few things have

changed this month, but in April you’ll

see a new logo, more reviews, and other

goodies. See you at GDC!

Rating Systems

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Robert Darden e: rdarden@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Ruff

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate Jennifer Cereghetti

ß CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M4

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Understanding and
Attaboys Go a Long Way

W hen I read Jarrett Jester’s Soapbox

article in the January issue, I felt

like I was sitting through yet another proj-

ect meeting where the junior artists out-

number the exhausted coders four to one.

If I had a dime for every time I’ve sat

through “programmers are meanies and

don’t communicate well” junk, I’d be

retired on my island. If you run a piece

like this, make it offer positive solutions

on both sides of the issue. All I came away

with was that the “best programmers” will

kludge in the amorphous lump of late art

and make it work regardless of the design

you agreed upon months ago. And yes, it

will look just like the pencil and ink that

the producer/product manager has had on

his desk for three months, and it will move

like the gal in Species by tomorrow morn-

ing, and we’ll just take the extra 2,000

polygons from somewhere else in the code.

There. That’s the other side.

The solution I use is that my program-

mers must have at least a cursory knowl-

edge of every art tool, preferably more.

This gives the artist a vocabulary that he

can be assured the programmer under-

stands. In turn, the artists are expected to

put a little bit of effort into understanding

the technical trade-offs they are causing

from at least the standpoint of basic math.

This is not a huge revelation, I know. It is,

however, a simple message that I didn’t

come away with from Jester’s article.

Programmers cost more right now

because boring banking, telecom, and

database maintenance jobs are forever

hovering nearby, desperate to gobble up

creative people that can do 60 hours of

work in a 40 hour week for much more

money than they can make in games.

Supply and demand was all I got out of

seventh-grade social studies so it doesn’t

pose a problem to my world view.

One of the few tools I have to combat

this is to share the glamour that is usually

reserved for the “pure” artist. Rather than

dumping the “finished” model off at the

end of his work, the artist has gone over

the basic design several times with the pro-

grammer, often teaching the programmer

how to manipulate the aspects of the

model in the artist’s own tools. This way

both have developed a general view of the

problem instead of a neatly compartmen-

talized notion of what is “my job.” The

downside is that egos don’t do well with-

out the acknowledgement on a piece to

piece basis. You have to keep sight of the

momentary teams that are in flux.

“Attaboys” cost nothing and buy every-

thing — apply liberally and accurately.

This means, unfortunately, that the artist

loses the autonomous glory for a beautiful

model, but the programmer has invested in

the process all along the way.

Programmers will never admit that they

want any glory, but watch how they shine

when they are associated with something

pretty and cool.

Jason Rice

Senior Software Engineer, Mesa Logic Inc.

via e-mail

Author Did More Harm
Than Good

I recently read the Soapbox article in the

January 2001 issue, and noticed that it

was a programmer-bashing article in dis-

guise. I felt very angry at the stereotypes

and accusations that the author made

because I was expecting an article that was

about easing the tensions between artists

and programmers. I am a programmer that

deals with the OS and particularly does

not even work with the artists, yet now I

have some sort of “beef” with them. I

work with game programmers that deal

with the “game” process more intimately

and I see the quarrels between artists and

programmers, so I understand were the

author was coming from. Despite the title

of his article, I feel that he has increased

tensions between artists and programmers.

In his article, Jester wrote, “You’re a tal-

ented artist, who is creative, social, and

has a thorough knowledge of the latest

technologies used to make games.” Why

didn’t he say, “So you are a genius pro-

grammer who is inventive, diplomatic, and

makes the latest technologies used to make

games”? Is there some kind of reason why

he would make such one-sided comments?

“You’re working with a talented pro-

grammer who never comes out of his

room, wants to rewrite everyone’s code,

and doesn’t interact well with others on the

team.” Another stereotypical statement!

Usually the reason why code has to be

rewritten is because artists don’t even

understand what they are asking for when

they ask for it. Any system has its limita-

tions, but if you want something done, you

usually have to work around it.

What can Jester have meant by “[A pro-

grammer] doesn’t interact well with oth-

ers”? I know he meant that we don’t pity

their bloated desires to be noticed for their

unique work. Artists are a dime a dozen. If

programming were as fun as coloring a

coloring book, there would be a billion of

us. Do not deny that artists enjoy what

they do. I personally know many artists

who chose to be programmers because it’s

more of a challenge and not because it is

more fun. Throughout Jester’s article, he

has implied that we are nerds. Artists have

stereotypes, too. I could call them reclu-

sive, conceited, psychotic . . .

Does Jester not realize that game artists

are in fact riding a wave created by us

noncreative programmers and engineers? I

am pretty sure he remembers PONG,

ASTEROIDS, and PAC-MAN. Does he honest-

ly think that we programmers needed an

artist to create those classic games?

Imagine the day when a programmer fig-

ured out that he finally had enough horse-

power in hardware where he could actual-

ly add some nice-looking art. That was

when the game artists were born. If you

think about it, we made you.

Creativity does not lie only in high reso-

lution and millions of colors — it also lies

in inventive engineering. If you think that

making code is straightforward and does

not reflect on your unique style, you are

wrong. There is no real book of formulas

that solves every problem, just like there is

no one way to depict artistic creativity.

Chris Anilao

Software Engineer, WMS Gaming

via e-mail

C
Send an e-mail to gdmag@cmp.com, or

write to Game Developer, 600 Harrison

St., San Francisco, CA 94107

6

A WORD FROM US:
It seems quite a few readers took

umbrage with Jarrett Jester’s January
Soapbox “Viva la Différence.” Here are
just two of the responses we received:

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

8 m a r c h 2 0 0 1 | g a m e d e v e l o p e r

Z F R O N T L I N E T O O L S
W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

SN SYSTEMS’ NETWORK
TOOLS FOR PS2

SN Systems has created a set of net-

work tools for the Playstation 2,

allowing users to add networking capabili-

ties to their PS2 applications. The set con-

sists of a TCP/IP Stack for building Internet

connectivity into a PS2 game, and an Ana-

lyzer, which allows PS2 Internet traffic to

be examined on a development Windows

PC across a LAN using the native DECI2

interface, without the need for a USB

modem or Ethernet adapter.

The TCP/IP Stack can be

used on any consumer PS2

or Sony Debug Station,

however, the Analyzer

requires a PS2 DTL-

T10000 Development Tool,

as the Analyzer only works

with a DECI2 interface.

Pricing is based on quantity

of units purchased.

PS2 NETWORK DEVELOPMENT KIT |
SN Systems | www.snsys.com

NEWTEK RELEASES
LIGHTWAVE 6.5

T he newest version of Newtek’s 3D

modeling and animation application,

Lightwave 6.5, adds more than 500 new

features to the previous version. The

upgrade includes improved application

stability and speed, a UV texture atlas for

automated creation of complex UV maps,

and texture baking abilities. Bone defor-

mation speed is up to 40 times faster, and

the Motion Designer soft-body dynamics

engine is now integrated into the inter-

face, allowing simulations to be created

interactively with scene elements such as

the particle system. Other improvements

include faster editing of multiple chan-

nels, improved Bézier handling, and a

new Expressions tree view in the Graph

Editor. Lightwave 6.5 is free to registered

Lightwave 6.0 users. It will be distributed

initially through download, and will even-

tually become available on CD-ROM.

LIGHTWAVE 6.5 | Newtek | www.newtek.com

EYEON SOFTWARE SHIPS
EFFECTS SYSTEM

E yeon Software has released Digital

Fusion DFX+, its modular offering

for effects and image processing. Based on

the framework of Digital Fusion 3, DFX+

has the add-on capability of several differ-

ent modules. Each module system can also

be upgraded to the full version of Digital

Fusion or Digital Fusion High Definition.

Features of this system include collapsible

or expandable tool grouping, PSD import-

ing and layout, a new

character generator

called Text +, sub flow

tool caching, and

antialiasing. DFX+ has

five initial modules.

Module 1 controls

visual effects such as

tracking, stabilizing,

and rotoscoping;

Module 2 contains the

ultra keyer, difference

keyer, color corrector, and perspective

positioner. Module 3 allows I/O batch

capture video and SCSI tape I/O, while

Module 4 consists of 3D depth tools,

Zbuffer, Z merge, texture, and shade. And

finally, Module 5 contains the network

render manager and render node. Digital

Fusion DFX+ for Windows NT has a

starting price of $995, with the modules

priced at $295 and up.

DIGITAL FUSION DFX+ |
eyeon Software |
www.eyeonline.com

HOUSE OF MOVES
LAUNCHES
BLASTCAP 1.0

H ouse of Moves has intro-

duced BlastCap 1.0, its

online 3D web application that

processes raw motion capture

data. BlastCap reduces the time

it takes for clients to review

and order their data, and

allows them to access 3D

motion capture data online imme-

diately after it is shot. Users can

manipulate the

data in real-

time 3D and

order the shots

by performer,

shoot day, or

other criteria

for fast access

to information

regarding their

shots. Blast-

Cap is avail-

able to current

House of

Moves clients; a demo of BlastCap can be

provided by contacting House of Moves.

BLASTCAP 1.0 | House of Moves |
www.moves.com

ANALOG DEVICES AND
SENSAURA SOUND OFF

A nalog Devices and Sensaura have

announced the release of Sensaura

Virtual Ear for the SoundMAX PC audio

subsystem. The integrated digital audio

solution in the Virtual Ear upgrade

claims to give users more realistic audio,

particularly to PC game players who

wear headphones, and allows users to

customize their audio characteristics via

Head-Related Transfer Functions

(HRTFs). Although the baseline Sensaura

3D audio is included in SoundMAX, the

Virtual Ear upgrade allows for

greater configurability of

HRTF data, enabling

game players to adjust

the synthesized audio

cues of their games to

match the natural listen-

ing cues of the human

ear, which are normally

absent when wearing

headphones. Sensaura

Virtual Ear is priced at

$24.95, and is available

for download from

Sensaura’s web site.

SENSAURA VIRTUAL EAR
FOR SOUNDMAX |

Sensaura | www.sensaura.com

Raw data being processed by
BlastCap 1.0

Eyeon’s Digital Fusion DFX+

Sensaura Virtual Ear

10 m a r c h 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

3dfx sells out. In the wake of increasing

losses with no turnaround in sight, 3dfx

has closed its doors. After reporting a

third-quarter net loss of $178.6 million,

or $4.53 per share, the company’s board

of directors recommended massive cost-

saving measures including workforce

reductions, the sale of the majority of

3dfx’s assets to rival Nvidia, and dissolu-

tion of the company. “We have experi-

enced a significant slowdown in demand

for our products, especially the Voodoo 3

and Voodoo 5 boards,” explained 3dfx

CEO Alex Leupp. “Our inability to secure

a bank line of credit has impacted our

ability to build inventory to meet even the

existing demand.”

The assets transferred include patents,

trademarks, brand names, and chip inven-

tory in exchange for $70 million in cash

and one million shares of Nvidia stock.

“We strongly believe that to reduce

expenses, selling our assets and dissolving

the company provides the highest return

to our creditors, shareholders, and

employees,” said Leupp.

According to Nvidia president and CEO

Jen-Hsun Huang, the main motivation

behind the acquisition of the 3dfx assets

was to gain access to technologies and per-

sonnel without encumbering the

company with the liabilities that

would have come with an out-

right purchase of 3dfx. Nvidia

planned to make offers to

around 100 of 3dfx’s top engi-

neers, a number that Huang

believes would have been diffi-

cult to reach if 3dfx had contin-

ued to break up slowly over

time. Nvidia will also examine

all 3dfx technologies currently

in development, most notably

those 3dfx acquired from

Gigapixel, with the intent of

integrating them into Nvidia’s

product lines. Among the 3dfx

assets not moving to Nvidia are the compa-

ny’s board manufacturing business, which

3dfx’s remaining management will be left

to sort out on its own. Though Nvidia has

no plans to build its own Voodoo boards

now that it owns the name, Huang did hint

that the company would like to combine

the Voodoo brand with Nvidia technology

in the future.

Xbox delayed in
Europe.
Microsoft has

pushed back the

European Xbox

launch, originally

scheduled for the

end of 2001, to as

late as March

2002. The compa-

ny characterizes

the change in date

as a proactive

effort to avoid the

product shortages

that have plagued

Sony’s Playstation

2 launch. Those

Xboxes destined

for Europe won’t have far to travel. Plans

to build the Xbox in Hungary could make

Microsoft’s game machine that country’s

largest export. Hungarian Prime Minister

Viktor Orban believes the Xbox, set for

assembly in Hungarian plants owned by

Singaporean manufacturer Flextronics,

could create as many as 5,000 new jobs in

Hungary. Microsoft won’t confirm those

projections, but agrees that Xbox-building

will be big business in Hungary. Xbox

production will likely

become the largest sales

turnover enterprise in

Hungary, surpassing an

Audi engine plant that cur-

rently holds that honor.

Take-Two results. Take-

Two Interactive reported a 46

percent increase in fourth-

quarter income. The compa-

ny brought in net income of

$13.4 million on net sales of

$122.6 million in its fiscal

fourth quarter, an improve-

ment of 46 percent from net

income of $9.2 million in the

same period last year. For the 12 months

that ended October 31, Take-Two brought

in net sales of $387 million for a net income

of $25 million, up from a net income of

$16.3 million last year. Take-Two CEO

Ryan Brant credits the company’s diversi-

fied business model for Take-Two’s growth

during an industry-wide slump in interac-

tive entertainment software sales.

NPD study: videogame sales down in
2000. A report from market analysts The

NPD Group suggests that videogame sales

fell in the year 2000. The NPD Group had

expected that game sales would grow by

5.4 percent in 2000, but the final figures

will likely see sales four percent lower than

last year. A good deal of the difference in

numbers can be chalked up to The NPD

Group’s confidence in original Playstation

sales. The group based its 2000 projection

on the belief that Playstation sales would

increase by 29 percent; in fact, original

Playstation sales dropped by four percent.

The NPD Group’s data, based on U.S.

sales through November for major retailers

comprising more than 80 pecent of game

sales, indicate the industry’s 2000 take will

fall short of the $7.4 billion in revenue tal-

lied in 1999. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

N A B 2 0 0 1
LAS VEGAS CONVENTION CENTER

Las Vegas, Nev.
Conference: April 21–26, 2001
Expo: April 23–26, 2001
Cost: Advance — $150 and up

Onsite — $200 and up
www.nab.org/conventions/nab/2001

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

The Rock and Bill Gates at the Xbox unveiling at CES in January. Microsoft
has delayed the European launch of the Xbox for several months. Photo by
Jeff Christensen.

Angel Studios’ SMUGGLER’S
RUN, one of the games that
helped raise Take-Two’s
income more than 50 per-
cent in 2000.

w w w . g d m a g . c o m 13

W ithin the passages of

the Book of Genesis,

the Bible describes a

time when people

believed that togeth-

er they could accomplish anything. So

strong was this confidence and pride that

they believed they could build a tower tall

enough to speak directly to God. To teach

them a lesson in humility, the Lord con-

fused their language so they could no

longer communicate with each other and

scattered them across the face of the earth.

The story of the Tower of Babel lives on

today in the incoherent speech of highly

caffeinated game developers.

It’s true that in many ways being a game

developer is like being a citizen of the city

of ancient Babel. Much of the time, devel-

opers are full of confidence and enthusiasm

for a project. Teams of people communicate

with each other in a perfect rhythm of cre-

ative construction. The struggle of the pro-

grammer to learn the language of a piece of

complex gaming hardware or a sophisticat-

ed API starts to yield abundant fruit. The

team begins to feel that anything is possible.

But fate is cruel. It conspires to make a

developer’s life more difficult. Sometimes a

publisher will force a developer to change

to a new gaming platform mid-develop-

ment. In addition, the creator of a critical

tool or API may have a major new release

that breaks the game completely. The lan-

guage of development changes and the

project milestones get delayed. This frus-

tration has caused many developers to

abandon projects and leave their compa-

nies in search of better things.

For me, the current advances in 3D

graphics hardware have me babbling a

bit. I have reached the point where I feel

that I can accomplish quite a bit with 3D

hardware. Matrix math no longer gives

me a migraine. I can manipulate vertices,

normals, and triangles to get the kind of

shapes I want. I even have a pretty good

grasp on the obscure dialect of multi-tex-

ture rendering. However, as new hard-

ware features become available, the lan-

guage of development becomes strained.

Phrases like DOT3 bump mapping enter

the lexicon. The major graphics APIs

(OpenGL and Direct3D) are extended

and stretched to make these new features

available to producers and a public that

demands them. The “dictionaries” that

are supposed to help us with the language

cannot be written fast enough to keep up

with the progress. At some point the

whole language needs a major overhaul.

This happened back when hardware

began to expose multiple textures ren-

dered simultaneously. When that hap-

pened, the development APIs were

stretched thin and extended to their lim-

its. But they didn’t quite break. The addi-

tion of hardware transformation and

lighting had, thankfully, little direct

impact on the language of development.

However, this addition did point out

some cracks in the ledge just up ahead.

It’s been clear for some time to many in

the 3D graphics community that in order to

harness the power of the hardware and

unleash real creativity, we need a more flex-

Graphics
Programming
and the
Tower of
Babel

J E F F L A N D E R | Jeff is in charge of deciphering the babble at Darwin3D. Unfortunately,
most of his colleagues have trouble understanding his translations. Feel free to give it a try
yourself. He can be reached at jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

ible and elegant interface to the card. Set-

ting pages of render states (such as blend

modes and texture mathematics) to get a

desired effect was becoming both tiresome

and restrictive. Last year in this column

(“Under the Shade of the Rendering Tree,”

February 2000), I noted some trends aimed

at bringing Renderman-style programmabil-

ity to consumer graphics hardware. Over

the last year, this area of research has really

taken off. Several extensions and compilers

for OpenGL have been proposed by graph-

ics researchers. But the hardware vendors

have made the big moves. Hungry to fill the

voracious appetite players have for new

technology, the card makers saw the need

for something new and put it in the design

pipeline. The hardware guys worked with

developers and Microsoft to establish a

method to get greater programming access

to the graphics hardware. But in doing so,

they have gone beyond creating a new

dialect for the existing programming APIs;

they started speaking a different language.

Get That Babelfish out
of Your Ear and Listen!

I am not talking about Microsoft’s

Direct3D itself. I’ve clearly stated a pref-

erence for OpenGL but I don’t have any

problem with Direct3D. I think of Direct3D

like watching the members of the British

House of Commons speak on C-SPAN: it’s

dressed up in a little too much formality,

and maybe it’s needlessly complex, but it’s

easy enough to understand. Generally, tech-

nology exposed in one API, if it is useful,

will make its way to the other API. So it

really is just a matter of figuring out the set-

tings you want on the card and then trans-

lating it to the particular dialect of 3D API

that you want to use.

The big change is actually the move to

programmable 3D hardware. I am sure you

have all heard by now that the next genera-

tion of 3D accelerators will have program-

mable vertex and pixel paths. This was a

key feature in the announced specifi-

cations for the Xbox. Beyond the

hype and buzzwords, though, what

does this mean?

Up until now, 3D graphics hard-

ware has had fairly fixed pixel-

blending operations. You could

specify a few settings that con-

trolled how textures were

combined on the frame buffer.

With the addition of multi-

texture capability (that is, ren-

dering multiple textures simul-

taneously), more controls were

added to allow some control over this

process. However, programmers need-

ed to be concerned with which combi-

nations were supported (and therefore

possible) and which ones were not.

Specifying these various settings needed

for each particular effect in a game proj-

ect was becoming quite a chore. Some

companies, notably id with their QUAKE 3

project, have resorted to using scripting

languages to allow designers to specify the

particular set of render states they want for

a surface. But even this flexibility is limited

by the capabilities of the hardware.

What we really want is to use the graph-

ics card to perform arbitrary functions

using colors and textures. That is where

the pixel shader comes in. It replaces the

fixed-function pixel path with a set of

instructions that are provided in the form

of a “shader” that is sent to the hardware.

The advent of the hardware acceleration

of transformation and lighting has created

even more possibilities. Current 3D hard-

ware that performs transformation and

lighting such as the Nvidia GeForce or ATI

Radeon generally follow the standard

OpenGL (or Direct3D) lighting path. They

transform and light a vertex and then send

it to the rasterizing hardware. Some special

cases, such as cubic environment maps and

other texture coordinate generation rou-

tines, are supported. However, support for

arbitrary operations using the transforma-

tion hardware is not possible. With the

new programmable vertex processing rou-

tines, many new things become feasible.

The downside to all of this new function-

ality is that it has been exposed through an

entirely new set of programming instruc-

tions. The use of it requires understanding a

new set of assembly-language-style instruc-

tions that run directly on the hardware. If

you really want to scare your artists, tell

them that in order to use the new graphics

cards, they will need to use an assembly lan-

guage compiler in 3D Studio Max. That’ll

scare them. We, however, are going to dive

right in and see if there is anything in these

shaders to help out with these cartoon char-

acters I’ve been playing with for the past

couple of months. So stick the Babelfish

back in your ear and let’s get started.

Do-It-Yourself T&L

I n order use this stuff right away, I need

to dig into Direct3D. As I am writing

this, the Direct3D software emulator is the

only way to use the new shaders until the

hardware actually shows up that can do all

of this. I fully expect this functionality to be

exposed under OpenGL as well. However,

for now that is not an option.

I am not going to go through all of the

functionality of the vertex and pixel

shaders. There is plenty of information

14

G R A P H I C C O N T E N T

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

FIGURE 1. A single mesh object with diffuse
color materials applied.

available in the Microsoft DirectX 8 SDK

which is available now. I am also sure that

you will be seeing all kinds of interesting

tricks with programmable shaders at this

year’s Game Developers Conference. I will

just start trying to implement my rendering

pipeline using the new system and see

where it takes me.

Let me start with a typical object that I

wish to shade with a cartoon look. For

example, let me use the cartoon flower in

Figure 1. This object is a simple single

mesh and the polygons have diffuse color

materials applied. There are currently no

textures used for this object.

If you remember my column from last

year (“Return to Cartoon Central: Adding

Texture to a Nonphotorealistic Renderer,”

August 2000), the way I handled rendering

cartoon objects without a texture was by

using a 1D texture as a nonlinear shading

function. The way it works is this: I take

the dot product of the vector from the

scene light to each vertex in the model.

This value is used as a texture coordinate

for the 1D texture. The model is then ren-

dered giving the result of the cartoon shad-

ing, as you see in Figure 2.

On my current system under OpenGL,

this dot product operation is handled in

software before the model is sent to the

graphics card to be rendered. Now, this

operation runs pretty fast on my little PC

here, but for a model with a significant

number of vertices, it can have a real

impact. If I could offload this burden to

the graphics card, I could be doing other

things on the CPU.

This is where the programmable vertex-

processing routines or vertex shaders start

to really add some value. A vertex shader

makes it possible to perform custom pro-

cessing like this on each vertex. But to use

this functionality right now, I need to

make the leap to Direct3D. Thankfully,

Nvidia has been working on this stuff for

quite a while now and has provided some

wonderful examples of vertex shaders,

including one to achieve this very effect. I

am now going to go through the steps for

creating a vertex shader.

Vertex Shaders and Me

T o use a programmable vertex shader, I

need to define the input data, set up

the transformation parameters,

and submit the vertex program.

The input data is the data that is

normally associated with a vertex:

position, normal, color, texture coor-

dinates and so on.

For simple shading, I am going to

need the position and the normal. I will

leave the color part out for a moment.

To get the effect, I need a single texture

coordinate, u. So that means my vertex

data structure looks like:

struct t_Vertex

{

float x, y, z;

float nx, ny, nz;

float u;

};

I now need to set up the transforma-

tion information. The Direct3D docu-

ments suggest taking your 4×4 projection

matrix and putting it into four vertex

shader constant registers. A DirectX 8 ver-

tex shader has 96 constant registers. Each

register is a four-component floating-point

vector. That means the 4×4 transformation

matrix will take four shader registers.

Direct3D thoughtfully includes a function

to set these constants in your shader:

m_pD3DDevice-> SetVertexShaderConstant(0,

&Matrix, 4);

This puts a 4×4 transformation matrix

into vertex shader constants 0 through 3.

In order to do the lighting, however, I will

also need the inverse-transpose of this

matrix. So, that can be stored in con-

stants 4 through 7.

The last constant that I will need for the

shader is the light vector, assuming a single

infinite light source. For my shader, I am

going to store this vector in constant 8.

Now it is time for the vertex shader

itself. A vertex shader has up to 16 input

registers, labeled v0 through v15 (each

also has four float component vectors).

This is the vertex stream that comes from

your model. However, for my simple

model I am only going to use three input

registers for the position, normal, and

texture coordinate. In addition to these

input and constant registers, the shader

has 12 temporary registers that can be

used for calculations.

Once I have finished my calculations, I

need to set the output registers. At the

minimum, I will be setting the output posi-

tion vector, oPos, and the first texture regis-

ter, oT0. Since I am only using a 1D texture,

I only need to set the first component of

oT0. The shader language lets you specify

components with an optional extension. In

my case, I will be working with oT0.x.

What do I want to accomplish with

this shader? I want to transform the point

so it can be rendered, and to transform

the normal and then take the dot product

with the light vector. This value will then

be put into the output texture coordinate

register. I will only need to use a dot

product operation on three and four com-

ponent vectors. The vertex shader com-

mands to do this are dp3 and dp4. The

commands take the form:

{dp3 or dp4} vDest, vSrc0, vScr1

All of the components of vDest are set to

the value of the dot product. In practice, I

w w w . g d m a g . c o m 15

FIGURE 2. The model rendered with cartoon
shading.

will generally only set one component as in

vDest.x. That is all I need to know to write

the shader. You can see it in Listing 1.

Once I set up all the formality in my

Direct3D application to load the object,

set up the render states, and bind my 1D

shade texture, I once again get the image

we saw in Figure 2. However, this time the

custom lighting calculation is completely

hardware-accelerated on graphics cards

that support the DirectX 8 vertex shaders.

Adding the Color

I have several options for coloring the

object. In my OpenGL application, I

modulated the shade texture with a dif-

fuse material color. I can do this here as

well by setting another shader constant

containing the color. I

would then need to set the

diffuse-color output register,

in most cases that would be the

oD0 register.

Another method in Direct3D is

to use the D3DRS_TEXTUREFACTOR render

setting. The texture factor is a color

that can be modulated with the base

texture in the texture stage. Either way,

you end up with a colored and shaded

image as you saw with the flower at the

beginning of the article in Figure 1.

Going Beyond the
Basics

T he next issue I need to address is

the silhouette. In my OpenGL

version, I rendered back-facing

polygons with thick lines. This

works pretty well but required quite

a bit of extra transformations and ren-

dering. One of the first thoughts that

occurred to me was to use the same trick

to render the silhouette as a second pass,

this time using the vector from the model

to the eye point to make the texture cal-

culation. I tried that with various shade

levels and achieved some interesting

effects, as you can see in Figure 3.

However, as you can see, there are some

real problems. As the angle between the

normal and the eye approaches 90 degrees,

the system renders it as a silhouette. This

leads to a lot of blackened portions of the

image that are not necessarily part of the

silhouette. Particularly problematic are large

flat surfaces. They will turn black very

quickly and all at once. This is one of the

drawbacks to the idea of vertex shaders.

Since the shader has no knowledge of con-

nected faces or even adjacent vertices, han-

dling edges is difficult.

Cass Everitt of Nvidia proposed an

interesting solution to this problem. He

suggested that you set the silhouette

shade in the MIP-map images that are

used for very small polygons. That way,

large faces are not affected, but as a face

goes extremely edge-on, the effect is visi-

ble. This creates an interesting pencil kind

of effect. It doesn’t really generate the

kind of bold, cartoon-style ink lines I

want for my objects, but we’ll get into

that more next time.

What about the Pixels?

W ell, I’m out of space and I’ve only

dealt with the vertex part of the

equation. I also want to get back to the

topic I left you hanging with last month, a

cartoon fighting game. Using the standard

single-pass rendering pipeline and the ver-

tex shader we just discussed, I can create

solid-colored objects with the cartoon

shading. However, to get anything more

interesting, I will need to do some manipu-

lation of the pixel pipeline. The first thing

I want to do is add some shaded texture to

my objects. Just like in my OpenGL ver-

sion, I am going to use the alpha channel

to select between the shaded and non-

shaded textures on my model. See if you

can get that working before next time.

Until then, grab yourself a hunk of vertex-

shading code off the Game Developer web

site at www.gdmag.com. q

m a r c h 2 0 0 1 | g a m e d e v e l o p e r16

G R A P H I C C O N T E N T

LISTING 1. The simple cartoon vertex
shader.

; Cartoon-Style Vertex Shader

;

; Vertex Data

; v0 vertex position

; v1 normal

; v2 texture coordinate (only x used)

;

; Shader Constants

; c0-3 Transformation and Projection

; matrix

; c4-7 Inverse Transpose Matrix used to

; transform normal

; c8 Light vector

; Declare the shader version number

vs.1.0

; Transform the vertex position

dp4 oPos.x, v0, c[0]

dp4 oPos.y, v0, c[1]

dp4 oPos.z, v0, c[2]

dp4 oPos.w, v0, c[3]

; Transform the normal

dp3 r0.x, v1, c[4]

dp3 r0.y, v1, c[5]

dp3 r0.z, v1, c[6]

; Compute the Dot product of the light

; and normal and

; set the output texture coordinate

dp3 oT0.x, r0, c[8]

FIGURE 3. The silhouette rendered on the sec-
ond pass, using the vector to the eye point.

A t some point in your illustrious career as a comput-

er artist, you will most likely be called upon to

generate some realistic terrain. Maybe the terrain

will be for a background image, or perhaps it will

be used in a skybox. Creating realistic-looking ter-

rain can be a challenging exercise for even the most seasoned

game artist. The final result oftentimes needs to recreate real-

world geography in a believable way. As creators of these things,

we need to mimic nature in a way that is both believable and

cost-effective. With a bit of research and the right tools at your

disposal, this process can be made much easier.

Unless your overall goal is to render the images by hand, a

method needs to be developed that allows the data to eventually be

converted to 3D. Depending upon the requirements of your game,

that 3D format may need to be optimized heavily for 3D tile

pieces, or perhaps it needs to have a ton of detail for FMV renders.

While it is possible to create the terrain from a mesh that has

been modeled by hand, this approach is prohibitively time-con-

suming. It will take many hours of painstaking vertex pushing to

begin to get the results you expect to see. Instead of hand-tweak-

ing from the onset, it is a good idea to utilize a method that is not

only faster, but gives you results that are more in keeping with

what we are used to seeing in our everyday world.

Displacement Maps

O ne of the best approaches to generating a terrain mesh is to use

displacement maps that will deform the geometry. Just about

every 3D package has some sort of displacement map function. A

displacement map is essentially a grayscale image that alters the

geometry of a given mesh based upon the gray value of the pixels.

Black pixels usually represent no change in the geometry while white

Terraforming, Part One

M A R K P E A S L E Y | Mark is currently the art director at Gas
Powered Games. Visit his web site at www.pixelman.com or e-mail
him at mp@pixelman.com.

20

m a r k p e a s l e y A R T I S T ’ S V I E W

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

pixels represent the maximum amount of

displacement, as you see in Figure 1. Once

the displacement map is linked to the mesh,

it can be altered or even animated over time

to create a morphing effect.

While any paint tool will allow you to

edit a bitmap in grayscale, you may want

to consider some tools that will make

things easier. Even with the industry stan-

dard Photoshop at your disposal, it will

quickly become apparent that nature is

infinitely more complex than the few

brushes and filters Photoshop provides.

After a short period of exploration in

hand-painting the displacement map, you

will quickly start looking for alternatives

that are faster and more effective.

Tools

T here are several applications out there

that will create some great looking

terrains. The two I’ve used in the past

with a fair amount of success have been

Corel’s Bryce 4 and 3DNature’s World

Construction Set (WCS). WCS is a very

powerful application that creates realistic

terrains which it then populates with pla-

nar-mapped polygons. Each plant/polygon

is associated with an ecosystem. From

there, you define rules that WCS uses to

determine which ecosystem populates spe-

cific regions of the terrain. The results can

be quite convincing. There are downsides

to the application: the initial cost is fairly

high, and the setup is different from the

way most 3D applications work.

For generating a displacement map, I

prefer to use Bryce. It is relatively inexpen-

sive and has a ton of sophisticated controls.

I also use Photoshop to do any of the more

advanced image editing, since the paint

program within Bryce is fairly rudimentary.

Bryce 4 is sometimes written off as

more of a toy than a “real” 3D applica-

tion because of the liberties taken with the

interface and its unique approach to creat-

ing, animating, and rendering 3D content.

However, make no mistake — it’s a pow-

erful program. The primary task of Bryce

is to generate realistic terrains. It has a

number of tools for editing the geometry,

and an equally impressive array of tex-

ture-mapping tools. Although it can do

traditional UV mapping, its real strength

is in procedurals. Both the grayscale editor

and the texture-mapping function rely

heavily on procedurally generated func-

tions. For example, each time you make a

change in the grayscale editor and click on

the fractal button, it will generate a new,

unique variation of what you were work-

ing on. It also has specific functions that

are made to re-create natural phenomena

such as erosion.

The texture editor has a multitude of

presets that help get you in the ballpark

of what you are trying to accomplish;

from there you can launch into the Deep

Texture Editor. It allows you access to the

mathematical formula used to create the

texture(s). While not for the faint of

heart, the results can be quite stunning

for those willing to devote enough time

and effort to controlling the vast number

of variables.

Within the grayscale editor, Bryce pro-

vides a small, specifically targeted paint

tool. Although it is adequate for the job,

those of us who are used to doing digital

editing will find the lack of more sophisti-

cated functions difficult to ignore. I general-

ly bypass the problem by having both Bryce

and Photoshop open at the same time and

swapping between them. By using the key-

board shortcuts for copy and paste while

alternating between applications, you can

have the best of both worlds. Since I’m

much more at home in Photoshop, I do all

grayscale editing in it and simply paste the

result back into Bryce. In a pinch, you don’t

even have to leave the Bryce application,

but I tend to find the speed that Photoshop

allows worth the effort. With all of this in

mind, let’s take a look at how to generate

some good-looking displacement maps.

Making a Mountain out
of a Molehill

T he first process we will go through is

to create a terrain environment from

scratch. The result we are looking for is

either a grayscale image that can be used in

our 3D application of choice as a displace-

ment map, or actual geometry that we can

export as a mesh. The latest version of

Bryce 4 has the capability to export ter-

rains in a variety of formats. The exporter

has a visually pleasing and informative

feedback image that lets you see the result

of your settings in real time. In addition, it

will allow you to optimize the polygon

count with a couple of different methods.

One method keeps the geometry on a grid

(Grid Triangulation), while the other opti-

mizes the mesh in the most efficient way

(Adaptive Triangulation) without concern

about moving the vertex points off of a

grid system.

For this month’s column, I’ll assume

that you are familiar with the general lay-

out of Bryce 4. As you will see, creating a

terrain is a very simple process. By clicking

on the icon at the top of the screen that

looks like a mountain (Create>Terrain),

you will see a mesh appear in the center of

the screen that looks like a garden-variety

mountain. In one step, Bryce has created a

mesh and linked it to a randomly generat-

ed grayscale displacement map, as you see

in Figure 2. Because this link is dynamic,

you have the ability to change things as

you desire and see the results updated

immediately. Bryce takes a sort of inverted

approach to defining the mesh resolution.

It bases the polygon count on the value

chosen in the grid selector. The size ranges

are from 16×16 (512 polygons) to

128×128 (32,768 polygons) all the way up

to 1024×1024 (2,097,152 polygons), as

you can see in Figure 3.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r22

A R T I S T ’ S V I E W

FIGURE 1. A displacement map uses gray values
to determine height.

FIGURE 2. Creating the initial default terrain in
Bryce 4.

So now that you have a mesh in the

middle of the screen, click directly on it to

select it. This will bring up the shortcut

icons to the right of the selected item,

forming a vertical row of five small boxes.

The last two are an “M” icon (shortcut

for Materials) and an “E” icon (shortcut

for Edit). In this tutorial, we are only

interested in editing the mesh. Click on

the “E” icon to take you into the

grayscale editor.

Once you are in the editor, you will

want to play around for a while to famil-

iarize yourself with the various tools avail-

able. The three main tabs are Elevation,

Filtering, and Pictures. You will spend

most of this tutorial in the default tab,

Elevation. If you click on the little icon

and word Grid in the middle of the screen,

you will see the pop-up that lets you define

how big your displacement map is in reso-

lution. Leave the setting at the default

128×128 for this tutorial. Directly below

the grid icon is a small arrow icon point-

ing down. Click on this to bring up anoth-

er pop-up. Select and place a check by the

Real-Time Linking choice. This will let you

interactively view the changes you make to

your terrain. Depending upon your dis-

placement resolution and your CPU horse-

power, this real-time link can lag on the

larger files.

Play around a bit with some of the set-

tings. Most of the selectable buttons in the

Elevation tab have two modes. The first is

a single click, which gives them a default

value. The other, which is more powerful,

is to click and hold on the button. The

cursor icon will become a two-headed hor-

izontal arrow. This lets you interactively

add or subtract the effect or setting you

have chosen to your terrain. If you have

set the Grid resolution to anything above

256×256, it may take a few seconds for

the interactive mode to catch up with you.

Have patience.

One area with tremendous variation and

power is the fractal button. To the right of

the button is a down arrow that, when

selected, brings up a lengthy pop-up box

with close to 30 variations of terrain pre-

sets, as you can see in Figure 4. To see the

wide variety of the selected choice, make

sure that the Random Extent, Random

Position, and Random Character all have

checks by them. Now, select one of the

presets such as Ridges. What you have

done is set up the fractal button to gener-

ate variations of the Ridges procedural.

Click on the fractal button and watch the

results. Click on it as many times as you

want; it will continue to randomize the

Extent, Position, and Character of the pre-

set Ridges, resulting in an almost infinite

number of variations.

Using Photoshop in
the Mix

W hile Bryce itself contains a rudi-

mentary paint program, it is

nowhere near as powerful and flexible as

Photoshop. There is, however, an easy and

efficient way to use both. You simply need

to have Bryce and Photoshop both open

on your computer and use the clipboard

to move the file back and forth.

In Bryce, go to the grayscale editor. You

don’t need to select anything specific; by

simply being in the editor, this will work.

Use the Control-C (Windows) generic

copy command to copy the terrain onto

the Windows clipboard. Next, switch over

to Photoshop (use Alt-Tab) without clos-

ing down Bryce. Once you are in

Photoshop, select File>New or use the

Control-N shortcut to create a new docu-

ment. Photoshop will recognize the size of

the image on the clipboard and automati-

cally create a new file with the same reso-

lution. If you have used the default values

in Bryce for your terrain, it should read

128×128 in the dialog box. Next, use the

paste command (Control-V) to paste the

image into this new document.

You now have an editable grayscale ver-

sion of the file from Bryce to which you

can do all of your standard Photoshop

magic. Once you are satisfied with the

result, it needs to once again be placed on

the Windows clipboard so that it can be

pasted back into Bryce. You should nor-

mally be able to simply copy the edited file

onto the clipboard and then reverse the

procedure. However, there is a catch in

Bryce 4.1 — it fails to recognize a grayscale

image in the clipboard that isn’t from its

own program (I’m not sure why), and will

tell you that the image you just cut out of

Photoshop is in an invalid clipboard file

format. An easy workaround for this is to

simply convert the Photoshop file from a

grayscale to an RGB image (select

Image>Mode>RGB Color). For some rea-

son, Bryce will recognize the RGB clip-

board image, but not the grayscale one.

Once this is done, the file can be selected

(Control-A), and copied onto the clipboard

again. By switching back to Bryce and

going into the grayscale editor, you can

paste the newly edited file back into the

Bryce grayscale window directly without

using any other dialog boxes. This is a slick

way to jump between the two applications

and speed up the production work you

may be doing.

So why did I go through that process in

the first place, since Bryce has its own

grayscale paint program? Well, if you are

like me, you are much faster and have a

far greater degree of control in Photoshop.

That’s not to say that the editor within

Bryce doesn’t have some things to offer. It

is chock full of features that allow you to

paint with other terrain types, erode

topography as if it were being eaten away

by rain, and a multitude of other tricks. I’ll

cover some of those methods in next

month’s column.

So, what if you don’t really want to

spend all that time and effort playing

around in the terrain editor within Bryce?

m a r c h 2 0 0 1 | g a m e d e v e l o p e r24

A R T I S T ’ S V I E W

FIGURE 3. Mesh resolution in Bryce 4 is based
upon grayscale image resolution.

FIGURE 4. The variations of fractal-generated
terrains.

26

Is there another way to get realistic terrain

data without building your own? Why yes,

now that you ask, there is.

DEM and SDTS Files

O ne of the areas that you should

explore is the huge quantity of data

available for free on the Internet in the

form of Digital Elevation Models (DEM)

and Spatial Data Transfer Standard

(SDTS) files. A DEM is simply an elec-

tronic format for storing topographical

information used by the U.S. Geological

Survey (USGS). The information is derived

from topographic maps, aerial photo-

graphs, or satellite images. A more com-

pact and newer format for storing the

same type of data comes in the form of

SDTS files. An easy way to think about

DEM and SDTS files is to consider them

as an array of height information sampled

at a specific resolution. Files can be easily

converted into a grayscale image which, in

turn, can be used as a displacement map

for a mesh. The advantage of DEM files is

that they are sampled off of real-world

data and give results that are often quite

difficult to mimic successfully by hand.

The USGS has DEM files of most of the

U.S. and quite a few other countries avail-

able online. The files are generally large,

but the terrain data you get out of them is

often stunning.

DEM files are defined in several ways.

The first definition is of the area covered

using longitude and latitude measurements.

The other is the detail contained within the

sample, which is usually expressed in the

form of meter sampling. Longitude and lat-

itude measurements are further broken

down into detail by the use of degrees, then

minutes, and finally, seconds. As an exam-

ple, a 7.5-minute DEM file covers a much

smaller area of terrain than a 1-degree

DEM file. The other variable is the sam-

pling rate. This is the amount of area

between each data sample. With this in

mind, a 30-meter sample will contain a

data point every 30 meters. A 100-meter

sample will have a data point every 100

meters and be much less accurate. As I’m

sure you’ve figured out by now, the more

accurate files with the higher number of

sample points will be slower to download.

As an interesting side note, NASA is

currently doing high-resolution mapping of

the surface of Mars. The Mars Orbiter

Laser Altimeter (MOLA), an instrument

currently on the Mars Global Surveyor

(MGS) spacecraft in orbit around Mars,

transmits infrared laser pulses toward the

planet and measures the time of flight to

determine the range between the MGS and

the Martian surface. The measurements

are used to construct a precise topographic

map of Mars that has many applications

to studies in geophysics, geology, and

atmospheric circulation. This allows for

extremely high-resolution DEM files with

an accuracy that will far surpass those pro-

duced by Mariner/Viking. Currently, it

takes several days of computational time

on some fairly impressive computers to

create just one shaded relief map of the

Martian terrain, as you can see in Figure

5, so it may be a while before these images

are available for the lowly game artist.

Importing DEM and
SDTS Data

Importing a DEM file into Bryce is fairly

painless. Bryce converts the data file

into a massive resolution (1024×1024)

grayscale image. Once converted, it is

identical to any other mesh terrain you

might create. Once you load a DEM file,

you will begin to see why it would be hard

to create this stuff by hand, as you can see

in Figure 6. There are subtleties that are a

result of different erosion patterns and all

sorts of things that you wouldn’t have

imagined. Once you have loaded a file that

is acceptable for your purpose, you can

save it as a preset. Go to the Create pull-

down box, select Mountains or User, and

then add the file you just created. It will

allow you to give it a name and a descrip-

tion. Once you have a good set of diverse

terrain types, creating a complex environ-

ment is much faster to do.

Next Month

I n next month’s continuation of this

tutorial, I’ll go more in-depth with some

of the techniques for creating displacement

maps. I’ll also cover some of the tiling

techniques that can be used, and how

some of these displacements or exported

meshes might be useful in the 3D package

of choice. q

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

A R T I S T ’ S V I E W

WEB S ITES
B 3DNature’s World Construction Set

www.3dnature.com

B U.S. Geological Survey Digital Elevation

Model files for the United States

http://edc.usgs.gov/glis/hyper/guide/

1_dgr_demfig/index1m.html

B Mars Orbiter Laser Altimeter (MOLA)

http://ltpwww.gsfc.nasa.gov/tharsis/

mola.html

BOOKS
B Kitchens, Susan, and Victor Gavenda. Real

World Bryce 4. Berkeley, Calif.: Peachpit

Press, 2000.

FOR MORE INFORMATION

FIGURE 5. Example of a segment of a MOLA
shaded relief map of Mars.

FIGURE 6. A DEM file rendered out in
grayscale in Bryce 4.

F
or the past ten years, I’ve been developing videogames for the home

console and arcade markets. Only in the past five years has it become

possible for me to do almost all development on the PC, and only cross-

compile to the target platform to verify the game’s speed and look. Prior

to that, PCs and console systems were too dissimilar in how they han-

dled graphics for this cross-platform development to be practical. The PC was used

only to edit code and then cross-assemble or cross-compile to the target platform. All

the testing and debugging had to be done on the target development system itself.

What has changed to make cross-platform development possible? It is a combina-

tion of two factors. First, with the introduction of the Nintendo 64 and Sony Playsta-

tion, console systems went from the realm of 2D sprite-based machines to full-blown 3D

polygon machines. At about the same time, on the PC side of the equation, companies like

3dfx introduced graphics cards designed specifically for 3D polygon acceleration. Both the PC

and the console systems finally had enough in common in terms of graphics capability. Sec-

ond, the processing power on console systems increased to the point where it was practical

Two Games
for the Price
of One?
Adventures in Cross-Platform Development

for READY 2 RUMBLE BOXING: ROUND 2

m a r c h 2 0 0 1 | g a m e d e v e l o p e r28

D A V E W A G N E R | Dave is a lead programer at the San Diego office of Midway Home Enter-
tainment where he has been for more than seven years, producing the PS2 and Dreamcast version
of READY 2 RUMBLE BOXING: ROUND 2, the Dreamcast version of READY 2 RUMBLE BOXING, the
arcade version of BIO FREAKS, and KYLE PETTY’S NO FEAR RACING for the SNES. Prior to this he
was the lead programmer at Microprose Software were he produced SUPER STRIKE EAGLE for
SNES, and F15 STRIKE EAGLE for the NES. Before entering the videogame industry he developed
custom security systems for the CIA and the DOE He can be reached at dwagner3@san.rr.com.

C R O S S - P L A T F O R M D E V E L O P M E N T d a v e w a g n e r

to develop most of the game code in C/C++, which is portable

across platforms. The only thing necessary is a software abstrac-

tion layer that allows the game code to be independent of the final

hardware. This software abstraction layer, or what our team calls

the port layer, is what we have been developing over our past

three projects.

Why not develop directly on the target system? First, the PC

typically has better tools for debugging and memory-leak checking

than most console development systems. Second, any problems

you have with your game that manifest themselves both on

the PC and on your target system are usually logic

bugs, and identifying this can eliminate a lot of

bug-checking and narrow down where the bugs

are in the code. The best

approach I’ve found is to

debug logic errors

on the PC and only debug hardware-specific bugs on the target

system. Third, you can start development on the game before you

even have target development systems. This can be crucial, as new

console systems come out every year. Fourth, developing on the

PC gives you a consistent development environment. Having that

consistent environment makes the transition from older console

systems to the next generation much easier. Fifth, it is cheaper to

develop a game when you only need target development systems

for the programmers and a few of the artists. Lastly, by having

your game running on multiple platforms, it helps to verify that

your code is truly platform-independent and thus easier to port to

another platform. The best advice I can give on keeping your code

portable is to set warning levels to their highest level to help elimi-

nate compiler differences.

Building R2R2

D eveloping on the PC and cross-compiling for the target plat-

form is not an easy task if you’re starting out from scratch.

Fortunately, our team has had the advantage of building up our

code base over the last three projects. We started developing on

multiple platforms when the team was working on an arcade

fighting game. At the time, we were using a PC with a

3dfx graphics card for development. The arcade sys-

tem used a MIPS R5000 processor and the same

3dfx card. Both systems used Glide, 3dfx’s

graphics library, for the graphics calls. For the

joystick, button, and sound functions, we

linked in different files that contained the

equivalent higher-level functions. In addi-

tion, I optimized some of the math rou-

tines into assembly language, which was

linked into the arcade source code. Since

speed for the PC version wasn’t a priority, we

kept those math routines in C for readability. There

were also a few #if statements in the code for plat-

form-specific code such as the coin-drop reader

functions on the arcade hardware. This code formed

the initial basis of what became our port layer.

Our next project was READY 2 RUMBLE BOXING

(R2R) for the Sega Dreamcast. For this project, we

continued to use 3dfx graphics cards for PC devel-

opment. Unfortunately, we no longer had the

luxury of using the same graphics library on

the target platform as we were using on the

PC. To keep the code portable, we had to

separate out the graphics layer at a higher

logical level. This also had to be done

because the rendering engine needed to

be rewritten and optimized to run as

fast as possible on the Dreamcast.

On the PC, math processing is

expensive, so it is important to

do as much polygon culling

early on in the graphics

pipeline as possible.

30 m a r c h 2 0 0 1 | g a m e d e v e l o p e r

C R O S S - P L A T F O R M D E V E L O P M E N T

m a r c h 2 0 0 1 | g a m e d e v e l o p e r32

However, on the Dreamcast math processing is cheap, but memory

cache misses are very expensive. To minimize memory cache misses,

I rewrote the graphics pipeline into small, tight loops that would

move through memory as linearly as possible to take advantage of

memory prefetch. The graphics pipeline starts out by transforming

all the vertices from object space to camera space. I found that it

was faster to do back-face removal in software instead of letting the

Dreamcast graphics processor handle it. This minimizes the amount

of data that needs to be transferred to the graphics processor in the

form of display lists and thereby eliminates bottlenecks. We

replaced the code written for the arcade hardware with Dreamcast

library calls for the joystick, buttons, and sound functions.

After we finished R2R we were scheduled to release READY 2

RUMBLE BOXING: ROUND 2 (R2R2) for Sony’s launch of the

Playstation 2. For this game, we developed on Windows 2000

using OpenGL and cross-compiled to both the Dreamcast and

PS2. There were several reasons why the team decided to develop

for both systems simultaneously. First, we already had experience

with the Dreamcast, so the only technical challenge was to port

the engine over to the PS2. Second, by doing both versions our-

selves, we would have better quality control over the final prod-

ucts. Lastly, but most important, doing both versions of the game

meant more royalties for the team.

Ian McLean took over the job of writing the port layer for

R2R2. Ian had written the front-end code for R2R along with the FIGURE 1. Console development layers.

Game Code

Port Layer

Platform-Specific Library Calls

Hardware

Audio Controller CD-ROM Memory
Cards Video

Console Development Layers

C R O S S - P L A T F O R M D E V E L O P M E N T

sound drivers and memory card interface. He was very excited

about developing for the PS2. Since I have developed games for

NES, Super NES, Nintendo 64, arcade hardware, and Dreamcast,

I was more than willing to hand off the low-level development to

Ian. The first task for Ian was to take our previous code and for-

malize the low-level functions into a port layer. For R2R2, we had

new PCs with Nvidia’s GeForce 256 graphics cards. To test his

port layer, Ian started out by converting the code base to OpenGL

instead of Glide. Having a complete game to test out his port

layer proved to be a great help in verifying that the port layer was

working correctly. Ian’s next step was to get the port layer run-

ning on the PS2.

While Ian worked on the port layer, I was working on updat-

ing our tool chain. For R2R, the artists used PowerAnimator 8.1

running on then-ancient SGI hardware. For R2R2, they made the

transition to Maya 2.5 running on PCs with dual Pentium III

processors. This meant that the art pipeline had to switch over to

different file types for both animation and model data. To

accomplish this change, I used Maya’s developer toolkit and inte-

grated their code into our new tool chain. I soon discovered that

getting the data out of Maya was not as straightforward as I had

hoped. On the surface, Maya’s documentation seemed to be very

well written. Only when I got down to the low-level details did I

find that the documentation was frequently either incomplete or

incorrect. There seem to be at least three different ways to

w w w . g d m a g . c o m 33

FIGURE 2. PC development layers.

Game Code

Port Layer

Hardware

Audio Controller Hard Drive Memory
Cards Video

DirectX Stdlib OpenGL

(Simulated using files)

PC Development Layers

retrieve the same piece of data from Maya. The best approach I

found to finding any information was to look first for a function

in the documentation that might be useful. Then I would search

Maya’s sample code for an example that used that function. The

only real problem I encountered was that some of Maya’s func-

tion calls have small memory leaks. This would cause Windows to

crash if we were processing many animations at one time without

closing down our application and releasing memory. Unfortunate-

ly, it was one of those things we just had to work around.

How did we handle data for multiple platforms? All of our

tools first convert their data into a general

binary format and then this data is con-

verted to a native format for each tar-

get platform. All of this data is then

appended to a single resource file.

Each of the target platforms would

then use the same resource file during

execution. When we wanted to do a

release build for a specific plat-

form, we would run this resource

file through a program that

extracts only the data types

necessary for that platform

and sorts them in an order

which minimizes seek time.

The Port Layer

L et’s examine the port

layer more closely

now. What makes up this

port layer? The port layer han-

dles all calls to the hardware, which

includes the CD-ROM, memory cards,

controllers, audio, and of course,

video display. For console systems,

the port layer sits on top of libraries

supplied by the company that pro-

duced the console. These libraries,

in turn, provide the interface to

their hardware. For the PC, the port

layer sits on top of DirectX, stdlib,

and OpenGL.

Since the port layer is so criti-

cal to multi-platform develop-

ment, I’ll describe in depth each

of its major components.

Controllers. The state of each

button on the controller (on

or off) is stored as an array

of bits in an unsigned long.

These bits are stored in

order by the button’s func-

tion, such as accept or can-

cel. This makes the logic for

checking the controller consistent

between platforms. During gameplay a state flag is set to tell the

port layer to use any remapping of the buttons that the user might

have selected. The buttons also have a different logical meaning

during gameplay than in the menu system. Instead of accept or

cancel, the buttons are mapped to logical meanings such as high

left punch, low right punch, or block. For analog joystick input,

not only do we set a bit to represent the direction of the joystick,

we also store a signed value for exactly how far it is being

pressed.

Disk I/O. The standard C functions fopen, fclose, fread, fseek, and

so on, for synchronous disk I/O are the perfect choice for a port

layer, but most console systems also provide asynchronous data

transfer. To take advantage of this, a port layer needs to have

asynchronous disk I/O functions. These functions

either accept a function pointer or have a manual

polling method to indicate when data transfer is

complete. For our games, we store all resource

data in one file; therefore, our port layer also

has higher-level functions to retrieve and store

data from the resource file.

Memory card. Memory cards are used for

saving and loading the game state. On the

PC, this data is stored in files on the hard

drive. Other memory card functions include

checking to see if there are memory cards

plugged in and if so, how many. We simulate this

on the PC by having a separate subdirectory for each

memory card. If the subdirectory exists, then the game

will recognize it as an available memory card.

Audio. On most console systems the sound processor

has its own audio memory which has to be managed.

Because of this, we organize our sound effects into

groups of sounds we call banks. We load and unload

sound banks from audio memory using a stack

approach. When loading a sound bank, the load

function returns a base index for that bank. This

index is added to a relative bank index to play a

sound. But not all sounds in a bank are loaded into

audio memory. Songs and large sound effects are

flagged so that they stream from disk when played.

Graphics. At the beginning of our last project we

were faced with the choice of using OpenGL or

DirectX to handle graphics. This choice was made for

us when we found out that the graphics cards used by our

artists only supported OpenGL.

For 3D graphics, the interface to our port layer is at the

level of model drawing. For our game, there are only two

basic model types: the boxers and the arena. These two

types have very different requirements; we optimized the

port layer by separating them into different function calls.

The boxers are skinned polygonal meshes with weighted ver-

tices that are dynamically lit. Since the boxers are almost

always in the camera view and are made up of

very small polygons, we didn’t have to worry

about clipping their polygons to the view frus-

tum. We only cull to the front plane and let the

34 m a r c h 2 0 0 1 | g a m e d e v e l o p e r

C R O S S - P L A T F O R M D E V E L O P M E N T

overdraw area on most graphics chips handle the polygons

near the edge of the screen. The arenas

are made up of pre-lit, larger, static

polygons. This means we have to do

clipping but we don’t have to worry

about dynamic light calculation or han-

dling weighted vertices.

For 2D graphics, we have higher-level

function calls which handle drawing text and

2D static or animated sprites. All these 2D

functions still use polygons for rendering at

the lowest level.

Systems. The port layer also provides a

higher-level interface to things like movie

players, real-time clocks, and memory man-

agement routines.

Game Design Issues

N ow that I’ve given you a brief history

of how we approached our develop-

ment, I’ll talk about some of the general

game design issues we had to think through

when we decided to develop simultaneously

for the Dreamcast and the PS2.

The Cons

T ime. There are still a limited num-

ber of resources available for a

project and the more platforms you

develop for, the less time you have to spend

on each platform.

Controllers. Since each platform’s controllers are

different, you can’t design your game to take full

advantage of any particular controller’s layout, number of but-

tons, or any extra features it may have. Examples of this are the

visual display on the Dreamcast VMU, or the two analog joy-

sticks or analog buttons available on the PS2’s Dual Shock 2

controller. You have to develop your game to use only the com-

mon features between the target systems or be willing to spend

time customizing the game design to handle each controller.

Polygon count. Not every game design can be easily adjusted

to take advantage of the differing number of polygons that

can be displayed per frame on each platform. Many games

are now using or experimenting with dynamic levels of

detail (LOD) to take full advantage of a platform’s power;

however, this technique is not practical for every type of

game. If you can’t take advantage of software techniques

like LODs then it means a lot more work for your artists.

Graphics features. Videogame machines are not just

w w w . g d m a g . c o m 35

36

polygon pushers. Today’s game machines offer an array of graph-

ics features which set them apart from their competition. Exam-

ples are the Dreamcast’s bump mapping or the PS2’s control of

video memory (which allows you to do real-time effects such as

blur trails and volumetric lighting). If you opt to take advantage

of the special graphics features offered by one of the systems,

then you’re going to have to live without it on the other systems.

This also means that you’re going to spend time writing code to

get extra data through your tool chain and down to the graphics

engine, and your artists are going to spend extra time generating

that data. This is not always the

case, but it does mean you’re

going to have to spend time on

your port layer that might have

been better off spent on other parts

of your game.

Networking. The Dreamcast is cur-

rently the only platform that has

Internet capabilities. For now, it is

uncertain how long it will be before any

of the other

platforms

are ready

with their

Internet access. This means that time

spent on any game features which take

advantage of Internet access are features

that are currently only going to be avail-

able for the Dreamcast.

Middleware. If you plan on using a

middleware product, you have to make

sure it is available for all of your target

platforms.

The Pros

T ime. Although I listed time as a con,

when discussing development time

we must also consider it in the proper

context. Developing a product for two

or more platforms simultaneously should

reduce the overall development time ver-

sus developing that product for one plat-

form and then porting it to another.

Money. Many companies in this indus-

try get compensated for overtime in royal-

ties. Having a product on multiple plat-

forms increases the profitability of that

product and hence increases the amount

of royalties available.

Quality. If the original team does the

port simultaneously, they can more easily

maintain the vision and quality of the

product. Often, third-party development

teams are unable to maintain the same

commitment to quality as the original

team.

In the final analysis, simultaneous

development for multiple platforms is

certainly not an easy task. It is a decision

that should be taken only after giving a

great deal of thought to the manpower it

will take to produce the product, the soft-

ware that will be needed to accomplish

this task, and how this will affect the

overall game design. q

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

C R O S S - P L A T F O R M D E V E L O P M E N T

I n this article, I’m going to describe Talking Heads, our

facial animation system which uses parsed speech and a

skeletal animation system to reduce the workload involved

in creating facial animation on large-scale game projects.

SCEE’s Team Soho is based in the heart of London, sur-

rounded by a plethora of postproduction houses. We have always

found it difficult to find and keep talented animators, especially

with so many appealing film projects being created on our door-

step here in Soho.

THE GETAWAY is one of SCEE’s groundbreaking in-house proj-

ects. It is being designed by Team Soho, the studio that brought

you PORSCHE CHALLENGE, TOTAL NBA, and THIS IS FOOTBALL. It

integrates the dark, gritty atmosphere of films such as Lock, Stock
and Two Smoking Barrels and The Long Good Friday with a liv-

ing, breathing, digital rendition of London. The player will jour-

ney through an action-adventure in the shoes of a professional

criminal and an embittered police detective, seeing the story

unfold from the perspectives of two completely different charac-

ters with their own agendas.

THE GETAWAY takes place in possibly the largest environment

ever seen in a videogame; we have re-created over 50 square kilo-

meters of the heart of London in painstaking photorealistic

detail. The player will be able to drive across the capital from

Kensington Palace to the Tower of London. But the game

involves much more than just racing; the player must leave his

vehicle to enter buildings on foot to commit crimes ranging from

bank robberies to gang hits.

So, with a huge project such as THE GETAWAY in development

and unable to find enough talented people, the decision was made

to create Talking Heads, a system that would severely cut down

on the number of man-hours spent on tedious lip-synching.

Breaking It Down

T he first decision to be made was whether to use a typical

blend-shape animation process or to use a skeleton-based sys-

tem. When you add up the number of phonemes and emotions

required to create a believable talking head, you soon realize that

blend shapes become impractical. One character might have a

minimum of six emotions, 16 phonemes, and a bunch of facial

movements such as blinking, breathing, and raising an eyebrow.

Blend shapes require huge amounts of modeling, and also huge

amounts of data storage on your chosen gaming platform.

The skeleton-based system would also present certain problems.

Each joint created in the skeleton hierarchy has to mimic a specif-

ic muscle group in the face.

“If you want to know exactly which muscle performs a certain action, then

you won’t find an answer in Gray’s Anatomy. The experts still haven’t defined

the subject of facial expression. Though psychologists have been busy updat-

ing our knowledge of the face, anatomists have not.”

— Gary Faigin, The Artist’s Complete Guide to Facial Expression

Most information on the Internet is either too vague or far too

specialized. I found no one who could tell me what actually

makes us smile. The only way forward was to work with a mirror

close at hand, studying my own emotions and expressions. I also

studied the emotions of friends, family, work colleagues, and peo-

ple in everyday life. I have studied many books on facial anima-

tion and over the years attended many seminars. I strongly recom-

mend a book by Gary Faigin, The Artist’s Complete Guide to
Facial Expression (Watson-Guphill, 1990). Or if you can, try to

catch Richard Williams in one of his three-day master classes; his

insight into animation comes from working with the guys who

created some of the best Disney classics.

Building Your Head

O nly part of a face is used during most expressions.The whole

face is not generally used in facial expressions. The areas

around the eyes, brows, and mouth contain the greatest numbers

of muscle groups. They are the areas that change the most when

we create an expression. We look at these two positions first and

gather most of our information from them. Although other areas

of the face do move (the cheeks in a smile for example), 80 per-

cent of an emotion is portrayed through these two areas.

Neutral positions.We can detect changes in a human face

because we understand when a face is in repose. We understand

Talking
Heads

m a r c h 2 0 0 1 | g a m e d e v e l o p e r38

G A V I N M O O R E | Gavin has worked in the games industry for ten years. He is currently the senior animator on THE GETAWAY at Sony Com-
puter Entertainment Europe’s Team Soho. He is in charge of a team of artists and animators responsible for all aspects of character creation and
animation in the game. Gavin can be reached at Gavin_Moore@scee.net.

F A C I A L A N I M A T I O N g a v i n m o o r e

w w w . g d m a g . c o m 39

FIGURE 1. The areas that change the most when we create an expression.

the positions of the brow and the mouth, and how wide the eyes

are. These elements are constant from face to face. This is true if

we are familiar with a person’s face at rest or not.(See Figure 1).

This changed the way we built our models, adding greater

detail around the eyes and the mouth. Simulating the muscle rings

seen in anatomy books allowed for greater movement in the face

at these points.

The proportions of the face are the key to building a good

head. Get this right and you are well on the way to creating real-

istic facial animation. (See Figure 2.) Asymmetry is another goal

to strive for when modeling your heads. Do not create half a head

and flip it across to create the other half. The human head is not

perfectly symmetrical.

There are many rules concerning facial proportions. The overall

shape of the head is governed by a simple rule: The height of the

skull and the depth of the skull are nearly the same. The average

skull is only two-thirds as wide as it is tall. The human head can

be divided into thirds: forehead to brow; brow to base of nose;

and base of nose to chin. The most consistent rule is that the

halfway point of the head falls in the middle of the eyes. Excep-

tions to this are rare. A few other general rules:

• The width of the nose at the base is the same as the width of an

eye.

• The distance between the brow and the bottom of the nose gov-

erns the height of the ear.

• The width of the mouth is the same as the distance between the

centers of the pupils.

• The angle between the top lip and the bottom lip is 7.5 degrees.

• The bottom of the cheekbones is the same height as the end of

the nose.

The heads for THE GETAWAY all stem from one model. This

head contains the correct polygon count, animation system, and

weighting. We scan actors using a system created by a company

called Eyetronics, a very powerful and cost-effective scanning

process. A grid is projected onto the face of the person’ whom

you wish to scan and photographs are taken. These photographs

are passed through the software and converted into 3D meshes.

Each mesh is sewn together by the software, and you end up with

a perfect 3D model of the person you scanned. At the same time,

it creates a texture map and applies this to the model.

Then the original head model, the one that contains the correct

polygon count and animation, is morphed into the shape of the

scanned head. Alan Dann, an artist here at SCEE, wrote propri-

etary in-house technology to morph the heads inside Maya. The

joints in the skeleton hierarchy are proportionally moved to com-

pensate for the changes in the head. We are left with a model that

has the stipulated in-game requirements but looks like the actor

we wish to see in the game. (See Figure 3.)

THE GETAWAY heads are designed with incredible level of detail.

We use a 4,000-polygon model for extreme close-ups in the real-

time cutscenes. The highest-resolution in-game model is 1,500

polygons, which includes tongue, teeth, eyelashes, and hair.

The skeleton hierarchy also contains level of detail; we remove

joints as the characters move farther away from the camera.

Eventually only three joints remain, enough to rotate the head

and open the mouth using the jaw.

Creating the Skeleton

T he skeleton hierarchy was created by mimicking the major

muscle groups of the human head, It would be impractical to

replicate every single muscle, so broad areas are simulated by each

joint Two main joints are used as the controls, the neck and the

head. The “neck” is the base, the joint that is constrained to the

skeleton of the character model. This joint can either be driven by

constraints or motion capture data from the character model can

be copied across. This gives us the point at which we could have

seamless interaction between the head and body. The “head” joint

m a r c h 2 0 0 1 | g a m e d e v e l o p e r40

FIGURE 2. Study of facial proportions by Leonardo da Vinci. FIGURE 3. A 1500-polygon model used for high-resolution in-game and
medium-resolution cutscenes.

F A C I A L A N I M A T I O N

controls slight head movements: shaking and nodding, random

head motions, and positions taken up in different expressions.

The head leans forward during anger or downward when sad.

This is the joint that all other joints will spring from; it’s used as

the controlling joint. Wherever it goes, the rest of the joints go.

Other joints which relate to specific muscle groups of the face are:

• Six joints control the forehead and eyebrows.

• Three control each eye, one in each eyelid and one for the eye

itself.

• Two joints, one on either side of the nose.

• Two joints control each cheek.

• Two joints on either side of the jaw.

• Three joints in the tongue.

• Four joints control the lips.

The idea behind this mass of joints (see Figures 4 and 5) is that

they simulate certain muscle groups. The muscles of the face are

attached to the skull at one end and the other end is attached

straight to the flesh or to another muscle group. This is different

from muscles in the body, which are always attached to a bone at

both ends. As the muscles contract, it should be a simple case of

just animating the scales of our joints to simulate these contrac-

tions. Unfortunately this is not the case, as there are actually hun-

dreds of muscles which all interact together. To achieve realistic

expression we had to rotate, scale, and translate the joints.

Weighting

H ow do you go about assigning an arbitrary head model to

this skeleton? The original skinning of the character took

two whole days of meticulous weighting, using Maya and its

paint weights tool.

I didn’t want to do this for every head. Joe Kilner, a program-

mer here at SCEE who was writing the animation system with me,

came up with a MEL (Maya Embedded Language) script that

would copy weights from one model to another. The script basi-

cally saved out the weights of the vertices using two guidelines:

the vertex’s normal direction and UV coordinates. This enabled us

to export weights from one head and import them onto another.

For this to work, we had to make sure that all of our head tex-

tures conformed to a particular fixed template. The added bonus

of this was that we could then apply any texture to any head. The

template also made it easier to create our face textures (Figure 6).

Emotions and the Face

R esearch has shown that people recognize six universal emo-

tions: sadness, anger, joy, fear, disgust, and surprise. There

are other expressions that we have that are more ambiguous. If

you mix the above expressions together, people offer differing

opinions on what they suggest. Also, physical states such as pain,

sleepiness, passion, and physical exertion tend to be harder to rec-

ognize. So in order to make sure that the emotion you are trying

to portray is recognized, you must rely on the overall attitude or

animation of the character. Shyness, for example, is created with a

slight smile and downcast eyes. But this could be misinterpreted as

embarrassed or self-satisfied.

Emotions are closely linked to each other. Worry is a less

intense form of fear, disdain is a mild version of disgust, and

sternness is a mild version of anger. Basically, blending the six uni-

versal emotions or using lesser versions of the full emotions gives

us all the nuances of the human face (Figure 7).

Emotions and the System

C reating the emotions on your base skeleton is the next step.

Which emotions should the system incorporate? We use the

six universal emotions, some physical emotions, a phoneme set,

and a whole load of facial and head movements. The system inside

w w w . g d m a g . c o m 41

FIGURE 4 (left) and FIGURE 5 (middle). Front view and side view of the
facial animation system, showing the skeleton hierarchy.

FIGURE 6 (right). A typical face texture in THE GETAWAY.

Maya runs off the back of three locators. Each locator controls a

different set of Set Driven Keys. A locator in Maya is a Null object

that can have attributes added.

The first locator controls expressions. Each of the following is an

attribute on the locator: sadness, anger, joy, fear, disgust, surprise,

shock, perplexed, asleep, pain, exertion, and shout. Each attribute

has a value which ranges from 0 to10.

The skeleton is set to a neutral pose which is keyed at 0 on all

the emotion attributes. Then the joints are scaled, rotated, and

translated into an expression, for example, “sad.” Using Maya’s

Set Driven Key, this position is keyed onto a value of 5 on the sad-

ness attribute. Then at a value of 10, “crying open-mouthed” is

keyed, giving us a full emotional range for sadness. Now the face is

set up so that Maya can blend from a "neutral" pose to one of

“sad” and then continue on to “crying,”(Figures 8–10).

For each emotion attribute, several different keys are assigned as

above. This gives the character a full range of human emotions.

These emotion attributes can then be mixed together to achieve

subtle effects.

A mixture of joy and sadness produces a sad smile, while anger

and joy produce a wicked grin. The process is additive, which

means that mixing emotions over certain values starts to pull the

face apart. A good rule of thumb is never to let the total of the

attributes exceed the maximum attribute value. As we have keyed

ours between 0 and 10, we try never to exceed 10. If you mix

three emotion attributes together and they have equal values then

each cannot exceed 3.3. There are attributes that can be mixed at

greater levels, but trial and error is a great way of finding out

which you can mix and which you can’t.

Phonemes and Visemes
“A phoneme is the smallest part of a grammatical system that distinguishes

one utterance from another in a language or dialect.”

— Bill Fleming and Darris Dobbs, Animating Facial Features and Expressions

B asically, a phoneme is the sound we hear in speech. Com-

bining phonemes, rather than letters, creates words. The

word “foot” would be represented by “f-uh-t.”

Visual phonemes visemes are the mouth shapes and tongue

positions that you create to make a phoneme sound during

speech. The common myth is that there are only nine visual

phonemes. You can create wonderful animation from just these

nine; however, there are in fact 16 visual phonemes. Although

some may look very similar externally, the tongue changes posi-

tion,(See Figure 11).

Our second locator controls the phonemes. They are assigned in

exactly the same way as the emotion attributes. An exaggerated

form of each phoneme is keyed at 10. When creating the lip-synch-

ing we generally only use values up to 3.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r42

FIGURE 7 (upper left). Sterness is a mild version of anger. FIGURE 8 (upper right). Sadness attribute keyed at a value of 0.
FIGURE 9 (lower left). Sadness attribute keyed at a value of 5. FIGURE 10 (lower right). Sadness attribute keyed at a value of 10.

F A C I A L A N I M A T I O N

m a r c h 2 0 0 1 | g a m e d e v e l o p e r44

The phoneme set shown is Anglo American. This can be

replaced with any phoneme set from around the world. You can

conceivably make your character talk in any language you wish.

Two rules for the use of visual phonemes:

•Never animate behind synch. Do not try to animate behind the dia-

logue. In fact, it’s better to animate your phonemes one or two

frames in front of the dialogue. Before you can utter a sound, you

must first make the mouth shape.

•Don’t exaggerate. The actual range of movement while talking is

fairly limited. Study your own mouth movements.

Talking Heads tries to simulate realistic facial movements, and

“less is more” is true for all parts of the system. The mouth doesn’t

open much at all while talking, so don’t make your visual

phonemes exaggerated.

Specials

T he third locator controls aspects of the face that are so natu-

ral that we don’t even think about them. These attributes

are essential if you want to achieve realistic facial animation

(See Figure 12).

Blinking. A human blinks once every four seconds. This timing

can change according to what emotional state the character is in. If

anger is your dominant attribute then the blink rate should

decrease to once every six seconds. The reason behind this is physi-

cal; the eyes open wide in anger, achieving a glare. If you are acting

nervous then the blink rate increases to once every two seconds.

This reaction is involuntary. Blinking brings realism to your char-

acters but also emphasizes a particular emotion or mood.

Facial shrug and raising eyebrows. These attributes are generally

used when the character is silent, listening to a conversation, and

the like. The human face is never static, it’s constantly moving.

This movement can take many forms. Slight head movement, con-

stant eye movement, and blinking are excellent at keeping the

character alive. Raising an eyebrow or performing a facial shrug

can be used in conjunction with emotion attributes to add a little

extra emphasis to the emotion.

Nodding and shaking the head. Whenever we encounter a positive

or negative statement, we either nod in agreement or shake our

head in disapproval. These are involuntary acts and the quickest

ways to state your point of view without opening your mouth.

Note that the neutral position of these two attributes is set at 5.

This allows the head to move in four separate directions, up,

down, left, and right.

Random head motion. We realized very quickly when animating

our heads that when you talk you are constantly moving your

head. The random head attribute simulates this slight movement.

Breath. The breathing attribute is set at several different posi-

tions. It can simulate slight breathing to full gasps.

The Fourth Locator

T here is one final locator that I haven’t yet mentioned. This

locator is called the “look at” and controls what the charac-

ter is seeing. The joints that control the eyes are constrained

using aim constraints in Maya. This forces the joints to always

track or point at the “look at” locator. You can then use the

locator to control the character’s point of view. You can animate

FIGURE 11 (above left). The phoneme set used on Talking Heads.
FIGURE 12 (above right). Specials: attributes that are controlled by scripts.
FIGURE 13 (left). Using the “look at” locator to control the point of view, eye
position, and head direction.

F A C I A L A N I M A T I O N

m a r c h 2 0 0 1 | g a m e d e v e l o p e r46

this locator and enable your character to glance away during a

conversation. The angles of the eye joints are linked via an

expression with the head joint. If the eyes are forced to rotate

more than 20 degrees to follow the “look at” locator, the head

rotates to compensate. We found this to be very realistic, mim-

icking the movement of the head (See Figure 13).

Tips and Tricks

H ere are a few additional pointers for animators when ani-

mating facial expressions.

You must have two frames to be able to read it! When you are

laying down keyframes for your lip-synching, always make sure

that the consonants last for a minimum of two frames at 24FPS.

Obviously, if you are running at 60FPS on PS2, then triple this.

Any phoneme that is a consonant, such as p, b, m, f, or t, must be

keyed in this way. This rule cannot be broken; the mouth must be

in a closed state for the two frames. If you don’t make sure of this

then you will not be able to read what the character is saying. If

you have no time to fit this in, steal from the previous word.

Make sure your animation is ahead of your timeline. The easy

way to do this is to animate to your sound file. When you are

happy with your animation and lip-synching, move the sound

forward in the timeline and make sure that the animation starts

one to two frames before the sound. You cannot utter a peep

unless you have first made the correct mouth shape. This will

improve your lip-synching.

Subtlety is king. I cannot stress too much how important this

is. The urge once you have created your system is to go mad. The

human face is a subtle machine; keep your movements to a mini-

mum and your animations will look much more realistic.

Move the Eyes. If you want to keep your character alive, keep

the eyes moving. When we are talking to someone we spend 80

percent of our time tracking their eyes and mouth and 20 percent

glancing at their hands and body.

Head synch is almost as important as lip-synch. Every word and

pause should have a separate head pose. We use random head

motion to achieve this. Some words need accenting or emphasiz-

ing. Listen to your sound file and pick out the words that are

stressed; these are the ones to which you should add extra head

movement.

The System

W e have talked about the basics of facial animation, why

we chose a skeleton-based system, and how we put this

into practice. The next step is to explain exactly how Talking

Heads works.

As I’ve mentioned before, the point of a system like this is to

reduce the workload and demands on a small group of animators

working on a large project. The only way that this can happen is

to hand over some of the more tedious tasks of facial animation

to the computer.

Our facial animation system works on three levels: the first is

concentrated around achieving believable lip-synching, the second

around laying down blocks of emotions, and the third on underly-

ing secondary animation such as blinking or breathing.

Lip-synching. The first step is to record an uncompressed 44kHz

.WAV file of the chosen actor and script. A good point to mention

here is that your script should contain a series of natural pauses.

A good actor or voiceover artist should give you this automatical-

ly. Remember, you want the best performance you can get. The

sound file contains all the hints you will need to animate emotions

and will carry your animation. The pauses aid the system, allow-

ing it to work out where it is in the .WAV file when it calculates

the phonemes.

We then create a text file which is an exact script of the ..WAV

file. During the creation of the phonemes, the text file is matched

against a phoneme dictionary. There are many such dictionaries

on the web, it’s just a matter of finding a free one (see For More

Information). The dictionary contains a huge list of words and

their phoneme equivalents. By checking the script against this dic-

tionary, the system determines the phonemes required to make the

words. Some obscure words are not covered, and we enter these

into our dictionary by hand.

Most of the development time of Talking Heads was taken up

working out how to parse the .WAV file. This is all custom soft-

ware which enables us to scan through our sound file and work

out the timings between the words. We also work out the timing

between phonemes, which is very important.

Talking Heads then lays down keyframes for the phonemes in

Maya. It does this by taking the information from the dictionary

and the .WAV file and matching them, phoneme against length of

time. As mentioned before, these keys are assigned to the locator

that controls the phonemes. This allows for easy editing of the

phonemes at a later stage by an animator, or the creation of a

complete new phoneme animation if the producer decides that he

wants to change the script. So a one-minute animation that could

take a week to animate by hand can be created in half an hour.

Then the animator is free to refine and polish as he sees fit.

One advantage to the system is the creation of language SKUs.

We produce products for a global market, and there is nothing

more frustrating than redoing tedious lip-synching for each coun-

try. Talking Heads gets around this problem quite efficiently. You

have to create a phoneme set for each language and find a corre-

sponding phoneme dictionary, but once you have done this the

system works in exactly the same way as before. You can lay

down animations in English, French, German, Japanese, or what-

ever language you wish.

Emotions. The next step is to add blocks of emotion. To do this

we edit the text file that we created from the .WAV file. A simple

markup language is used to define various emotions throughout

the script (Figure 14).

FIGURE 14 (bottom). An example of the script from THE GETAWAY, marked up
with emotions.

“ [Anger 2.2] Now listen here, you are going to do what I
tell you, [Anger 2.2, Smile 2.7] or the boy gets it. [Anger
0, Smile 2.1] ”

F A C I A L A N I M A T I O N

m a r c h 2 0 0 1 | g a m e d e v e l o p e r48

As you can see, emotions are added and given values. These

values correspond with those on the emotion locator. An Anger

value of 2.2 gives the character a slight sneer, and by the end of

this sentence the character would smirk. In this way, huge

amounts of characterization can be added. We videotape our

actors at the time we record the sound, either in the sound stu-

dio or the motion capture studio. We can then play back the

video recording of the scene we are editing and lay down broad

emotions using the actor’s face as a guideline.

The advantage of editing a text file is that anyone can do it.

You do not have to be an animator or understand how a compli-

cated software package works. As long as the person who is edit-

ing knows what the different emotion values look like, he or she

can edit any script. Using the video of the actor’s face allows any-

one to see which emotions should be placed where and when.

Later on, animators can take scenes that have been set up using

the script and go in and make changes where necessary. This

allows our animators to concentrate their talents on more detailed

facial animation, adding subtlety and characterization by editing

the sliders in the animation system and laying keys down by hand.

Specials. The third area to be covered by the Talking Heads sys-

tem concentrates on a wide range of subtle human movements.

These are the keys to bringing your character to life. Talking

Heads takes the text file and creates emotions from the markup

language as it matches phonemes and timings. It also sets about

laying down a series of secondary animations and keying these to

the third locator. As mentioned before, this locator deals with

blinking, random head motion, nodding and shaking of the head,

breathing, and so on.

Blinking is controlled by the emotion that is set in the text file.

If the character has anger set using the markup language, then it

will only set blinking keyframes once every six seconds. When

angry, the face takes on a scowl, the eyes open wide, and blinking

is reduced to show as much whites of the eyes as possible. It has

lengths of time for each emotion and will use the one with the

highest value as the prime emotion for blinking. Also added is a

slight randomness which will occasionally key in a double blink.

The normal blinking rate is once every four seconds, and if the

character is lying or acting suspiciously this rate increases to once

every two seconds.

Random head motion is keyed only when keyframes are present

for phonemes. This means that the character always moves his

head when he is speaking. This is a subtle effect, so be careful

with the movement, as a little goes a long way. The next pass

looks for positive and negative statements. It tracks certain words

such as “yes,” “no,” “agree,” “disagree,” “sure,” “certainly,” and

“never.” When it finds such words, it sets keyframes for nodding

and shaking of the head. Using the timing from the script, it uses

a set of decreasing values on the nod and shake head Set Driven

Keys. This gives us very realistic motion.

Breathing is automatic; the system keys values when it reaches

the end of a sentence. This value can differ depending on the

physical state of the character. Normal values are hardly

detectable, while extreme values mimic gasping for breath.

At this stage the system also creates keys for random eye

motion. This keeps the character alive at all times. If your char-

acter stops moving at any point, the illusion of life is broken.

Set up and ready to go. Once everything has run through

Talking Heads, we have a fully animating human head. At this

stage an animator has not even overseen the process. Our char-

acter blinks, breathes, moves, talks, and expresses a full range of

human emotion.

At this point we schedule our animators onto certain scenes

and they make subtle changes to improve the overall animation,

making sure that the character is reacting to what other charac-

ters are saying and doing.

More Refined in Less Time

T he process of creating Talking Heads has been a long nine

months, and still changes are being made. We continue to

tinker and evolve the system to achieve the most believable

facial animation seen in a computer game. Whether we have

done this successfully will only be seen when THE GETAWAY is

eventually released.

The next step is to incorporate Talking Heads into real time.

This would allow our in-game NPCs to react to whatever the

player does. This is already in motion and we hope to see this

happening in THE GETAWAY.

Facial animation can be achieved without huge animation

teams. The process of creating Talking Heads has been an

extremely worthwhile experience. Not only are we now able to

turn out excellent animations in very short times, our team of

animators is free to embellish facial animation, adding real char-

acter and concentrating their efforts on creating the huge

amount of animation required for in-game and cutscenes. q

F O R M O R E I N F O R M AT I O N

BOOKS
Faigin, Gary. The Artist’s Complete Guide to Facial Expression. New York:

Watson-Guphill, 1990.
Fleming, Bill, and Darris Dobbs. Animating Facial Features and

Expressions. Rockland Mass.: Charles River Media, 1999.
Parke, Frederic I., and Keith Waters. Computer Facial Animation.

Wellesley, Mass.: A. K. Peters 1996.

WEB S ITES
HighEnd3D
www.highend3d.com

3dRender.com
www.3Drender.com

Dictionaries and English Vocabulary Resources
www.notredame.ac.jp/~peterson/URL/research/dictionaries.html

F A C I A L A N I M A T I O N

The annual Game Developers Conference (GDC) is right
around the corner. GDC takes place in San Jose, Calif., this year
on March 20–24. We’ve interviewed a few of the key presenters to
find out what they’ll be talking about at the conference, and why
the GDC is important to them. For more information about the
conference, visit its web site at www.gdconf.com.

Duncan Brown
Level Designer, LucasArts Entertainment Company

Lectures: Current Architecture and Potential Approaches to Level Design and

The Architecture of Level Design; Panel: Use of Realism in Level Design

W hat are you speaking about? I am giving a presentation on

examples of recent American architecture. There is great

interest in the architectural profession in using the computer as a

design tool, to have it be more than just a drafting aid. In games,

we try to simulate real-world environments to enhance the sense

of immersion, but architects are also using the computer to devel-

op new types of spaces. Hopefully, the presentation will serve as

an introduction to ways that architects have integrated the com-

puter into their process and highlight designs that will have an

application for game levels.

You’re giving several talks on architecture and level design this
year — how essential is it for a level designer to understand tradition-
al architectural design methodologies? I definitely think it is helpful

for a level designer to have a feel for traditional architectural

design. An architectural background helps in developing ideas and

scenarios for games that support plot and gameplay. Once those

ideas are understood and approved, you have the ability to imple-

ment them. There are other parallels to architecture in terms of

the processes that game development goes through, the project

cycles, and studio setup.

What games have you worked on at LucasArts? I’ve worked on JEDI

KNIGHT, MYSTERIES OF THE SITH, STAR WARS EPISODE 1: RACER,

and most recently, BATTLE FOR NABOO.

How many years have you been going to the GDC? Why is it valuable
to you? This will be my second year. I am really looking forward

to it after last year. The general raising of developer awareness

that takes place as a whole is very valuable. It really brought

home that there are people doing similar things. People who have

different approaches, different problems, better solutions — it is a

terrific learning experience.

Melissa Farmer
Product Marketing Manager, Infogrames

Roundtable: Games for Girls: The Last Hurrah?

W hat is your roundtable on? My roundtable is designed to be an

open discussion of where people think the genre of games

for girls is at. Is it really failing as it appears or is this just a tempo-

rary slump? I’m hoping to attract developers who were or are

actively involved in making games targeted to girls and women.

Please note that I use the term “girl” loosely; I’m also using it as a

term for games designed for the entire female audience.

What do you think could be done by the game development industry
to attract girls? There are so many things that need to be addressed

before we will be able to attract large numbers of girl gamers to the

software store and women to the industry as developers. I believe it

has to start at the very beginning — by maintaining the interest of

young women in computers and technology as they begin to mature

into their teens. Studies have shown that up until about nine or ten,

girls and boys have the same level of interest in computers and tech-

nology. Then, right around ten years old, girls tend to lose interest.

Why? Any number of reasons: a lack of good, stimulating games

targeted to them; an increase in other interests such as extracurricu-

lar activities, boys, and so forth; and a lack of encouragement and

support from schools.

Is there still a glass ceiling in the game industry? Yes, but it’s show-

ing signs of cracking. Until just recently, most women were relegat-

ed to typical women’s positions in the game industry — marketing,

HR, trade show coordination, and so forth. Women were simply

not thought of for more technical roles such as programmers, pro-

ducers, or game designers. At one of my early roundtables, I had a

woman who was a senior producer from a very large game compa-

ny relate the following tale: “I have an assistant who works with

me who happens to be male. We had a meeting to review a game

concept with some developers today. They come into the room, and

immediately ignore me and begin speaking to my assistant. They

thought I was in marketing, but they never bothered to ask.” The

perception that females in the industry belong in “women’s jobs” is

beginning to change. We are creative, we are technical, and we are

successful. All we need is the chance to prove it.

How many years have you been going to the GDC? Why is it valuable
to you? I’ve been going to the conference for about eight years. I

started out as a conference associate, then became the executive

director of the CGDA, and have been a speaker for the last three or

four years or so.

The most valuable part of the conference for me is actually two-

fold: learning from my peers and seeing folks I only get to see once

a year because we’re scattered across the country. The best way for

us to grow as an industry is to share our ideas, in my opinion. New

ideas tend to spark new creativity; they help expand the way you

think and conceptualize. By hearing what my colleagues are doing, I

can keep up with the newest techniques in game development.

Andrew Kirmse
Senior Programmer, LucasArts Entertainment Company

Roundtable: Moving from the PC to Consoles

W hat is your roundtable on? We’ll be talking about what it’s like

to move from PC game development to console game devel-

opment, in particular the Playstation 2, Xbox, and Dreamcast.

Game Developers
Conference 2001 Preview

m a r c h 2 0 0 1 | g a m e d e v e l o p e r50

G D C I N T E R V I E W S c o m p i l e d b y m a r k d e l o u r a

m a r c h 2 0 0 1 | g a m e d e v e l o p e r52

Though a lot of the challenges are the same, we had a steep learn-

ing curve getting used to the limited memory environment, a dif-

ferent style of input, display on NTSC and PAL televisions, the

approval process, and the style of play that people expect from

consoles. We’ll be discussing all of these issues, as well as some

structural approaches to make the transition easier. The idea is to

share knowledge to help all console developers, but especially

first-time console programmers.

Do you believe that the game industry is shifting toward a greater
degree of console support? From a corporate standpoint, it just

makes sense to make games for the platforms that sell more

copies, and today that’s the consoles. The converse to the low bar-

rier of entry on the PC is a glut of titles, some of dubious quality,

which confuses customers and hurts sales. Console publishers

tend to regulate the quality of the games that they put out and

assure at least a minimum standard.

The main appeal of consoles for developers is a fixed hardware

platform. PC hardware is improving at an incredible rate, but PC

owners are not upgrading as often as they used to. That puts PC

developers in a dilemma. A game has to impress at the high end

to compete with other titles, but it needs to run on low-end hard-

ware to reach the masses.

How many years have you been going to the GDC? Why is it valuable
to you? I first attended in 1997 to give a lecture about the devel-

opment of MERIDIAN 59, which had recently launched. It was a

great morale boost to see people sharing their knowledge, similar

to the academic environment I had just left. My hat is off to the

companies that advance the state of the art by describing their

techniques at the GDC. Talks by id Software and Dynamix come

to mind as proof that you can share your innovations and still

stay at the top of the industry.

You may pick up a technical trick or two to add to your game,

but the main benefit is a restoration of your sense of wonder.

When you hear some of the best developers in the industry

describing what they’ve done, it puts your work in perspective

and dares you to do better. It’s like going from being a superstar

in high school to being just another overachiever at college: you

realize that no matter how good you are, there are lots of people

who are better.

Walter Park
Lead Artist, Saffire

Roundtable: Too Many Polygons! Artistic Alternatives for Harnessing Hardware

W hat is your roundtable about? I want to discuss the best

ways to use the crazy polygon counts that the new genera-

tion of consoles is giving us as artists to play with. Just because

we can put more polygons in a character’s face than we used to

use in whole models doesn’t mean we should. I believe that there

are ways to use that power more effectively and at the roundtable

we will explore some of those.

In what ways do game artists miss the mark in creating an immer-
sive sense of “place” for players? I think we tend to get caught up

in the process of making really cool parts and sometimes miss the

whole. Our characters may be fantastic and elements of our envi-

ronment may be great, but it’s rare to see them combined in a

world that creates total immersion. It takes a world that seems to

work on its own, that your character is just a part of, to really

put a player in a place.

What could 3D artists do to improve their worlds instead of simply
creating more detail? First, I want to say that detail is important.

Too much detail in our models, however, will limit our use of

other things that might be even better at bringing our game

worlds to life. Fog, rain, wind, reflective water, birds, waving

grasses, blowing leaves, fireflies, smoke, fires, crowds, snow,

smog, footprints, splashes, foggy breath, flapping banners — I

believe that these sorts of things can have a lot more impact on

the immersiveness of a game world than creases and rivets.

How many years have you been going to the GDC? Why is it valuable
to you? I’ve been going for three years. GDC is a great opportuni-

ty to rub shoulders with some of the luminaries in our field. We

also get a fantastic sharing of ideas across company and genre

boundaries that can really help enrich the games we are making.

Scott Patterson
Head of 3D Technology, Next Generation Entertainment

Lecture: Interactive Music Sequencer Design

W hat is your lecture about? I’ll talk about the game design

issues and music design issues that influence how pro-

G D C I N T E R V I E W S

53

gramming for interactive music is done. I’ll cover the basic needs

that almost all games have for interactive music and also get

into the more interesting kinds of controls that a game can have

over music.

How is interactive music important to a game? Music is an

important part of the suspension of disbelief formula, right? And

unlike a movie soundtrack, the game may ask for changes in

state at any time rather than following a scripted sequence. If a

player’s status in the game has changed in a significant way and

the music doesn’t reflect this in an equally significant way, then

we have missed an important opportunity for better entertain-

ment and immersion.

What are the best tools for someone who wants to compose inter-
active music? Well, certainly DirectMusic Producer is a fine

choice for PC or Xbox development. But interactive music can be

created using whatever composition tool is most familiar. The

music can be marked with various labels and a custom music

processing tool written to package the data for your custom

interactive music sequencer.

What books are you reading lately? You mean besides Game
Programming Gems? [Laughs.] The other books at the top of the

pile are 3D Game Engine Design, The Algorithm Design Manual,
and The Quick Python Book. And the award for longest-titled

book that I have been reading lately is Data Structures and
Algorithms with Object-Oriented Design Patterns in C++.

How many years have you been going to the GDC? Why is it valuable
to you? I think 1998 was my only previous attendance. I’m happy

to make it again this year! I can get up-to-date information, meet

the experts who can answer my questions, get exposed to new

design ideas, learn new approaches to tricky problems. . . . What

is most valuable is that it’s all valuable.

Gary Rosenzweig
Owner, CleverMedia

Tutorial: Shockwave and Flash

W hat is your tutorial about? I’ll be showing everyone how to

build Shockwave and Flash games. I’ll talk a little about the

advantages and disadvantages of using each, and then summarize

the basics of how they are built. From there, I’ll touch on some

more advanced topics and show some Lingo and ActionScript code

used in games. I’m also planning to have three other developers

present case studies of some games they have developed.

Web-based games have been around for several years now, but

the industry is just beginning. While the latest 3D first-person

shooter may seem cool to hardcore gamers, millions of people

aren’t interested in them. They would rather play the wide variety

of games on the web. You can take a crash course in what these

games are about and how they are made. There’ll be something

for programmers, artists, and business people alike.

What are the primary differences between Shockwave and Flash?
The lines are getting blurry. Shockwave started with Director,

which was a CD-ROM-building tool. It is very deep, with a pow-

erful programming language behind it. It is also very easy to learn

and use. Flash started as a vector animation tool. It is still prima-

rily that, but the most recent version added a complex program-

ming language that allows us to make all sorts of games.

Another major difference between them is the playback engine.

Shockwave is a large, complex playback engine that about 60

percent of Windows and Mac users have. Flash, on the other

hand, is available on more than 90 percent of Windows and Mac

machines, as well as Linux, and may soon also be on handheld

devices and set-top boxes.

Do you believe that Shockwave and Flash will continue to domi-
nate as the tools used by web game developers? Yes. I see Flash use

growing particularly. Some complex projects will require Shock-

wave, at least for the time being, but Flash is a very fertile ground

for game development. I see Macromedia making sure that Flash

stays several steps ahead of the competition.

How many years have you been going to the GDC? Why is it valuable
to you? I first went in 1998, the one in Long Beach. I came back

very inspired. It was one of the reasons why I started changing

my company, which had done general multimedia until then, to

become a game development company. I gave one-hour sessions on

“Designing Web-Based Games” at the 1999 and 2000 conferences.

A lot of people answer this question by saying the people you

meet or the connections you make. While those things are definite

highlights of the conference, I have to say that the tutorials and

sessions have been incredibly inspiring. I come home with tons of

ideas about games and business from these sessions. q

w w w . g d m a g . c o m

B
ALDUR’S GATE was released just over two years ago. It was the culmina-

tion of nearly 90 man-years of work by a number of inexperienced but

very talented and creative individuals at BioWare. BioWare was a Cana-

dian game developer, with only a single title (SHATTERED STEEL) to its

credit prior to BALDUR’S GATE. Published by Black Isle Studios, the inter-

nal RPG division of Interplay Productions, BALDUR’S GATE was the next in a line of

famed Interplay and Black Isle RPGs that included the venerable BARD’S TALE and the

highly respected FALLOUT. BALDUR’S GATE beat the odds and was both a critical and a

commercial success. It collected nearly all of the industry’s PC RPG of the Year awards

for 1998, as well as a few Game of the Year awards and has since sold about 1.5 mil-

lion copies worldwide.

After the resounding success of BALDUR’S GATE, BioWare began the development of

BALDUR’S GATE II. We set out to prove the magic of BALDUR’S GATE could not only be

repeated, but that a great game could be made even better. One of the first things we con-

sidered was the difficulty in building an excellent sequel. In making BALDUR’S GATE II, we

knew everyone would be looking very carefully at the result. Facing comparisons with

multiple great games using our BioWare Infinity Engine including BALDUR’S GATE, ICEWIND

DALE and PLANESCAPE: TORMENT (the latter two games both developed by our publisher’s

Black Isle Studios after they licensed the BioWare Infinity Engine for this purpose), our

work was cut out for us.

In developing a sequel, you must start with the right philosophy: the goal must be to

make the game better, not just to make the same game over again. You also need a

mechanism to quantify your previous mistakes and learn from them. If you don’t make

a point of figuring out what you did wrong last time, you’re not likely to fix it the sec-

ond time around.

At BioWare, we have learned to do thorough postproject reviews to analyze both the

strong and weak development areas of our projects. In the case of the original BALDUR’S

GATE, we felt we didn’t have adequate time to reach our design goals; we were simultane-

ously developing the BioWare Infinity Engine while creating the content in BALDUR’S

GATE. This led to extreme pressure to have simple areas and game design. With BALDUR’S

GATE II, we resolved to allow the designers and artists adequate time to allow the game

to reach its full potential. We were committed to review our previous projects, learn from

our mistakes, and apply these solutions to all new and ongoing projects.

This postmortem will review both our successes and failures with BALDUR’S GATE II.

Fortunately, the successes outmatched the failures, the game has been a resounding com-

mercial and critical success, and we did achieve a large majority of our development goals.

BALDUR’S GATE II

m a r c h 2 0 0 1 | g a m e d e v e l o p e r54

G A M E D A T A

PUBLISHER: Black Isle Studios/Interplay
PROJECT LENGTH: 20 months

NUMBER OF FULL-TIME DEVELOPERS: 25–30
(programmers, artists, animators, writers and

designers, QA, audio, producers)
NUMBER OF PART-TIME STAFF/CONTRACTORS: approx.

30 (mainly QA, audio, localization)
BUDGET: Approx. $4 million

(includes development, audio, localization, and
some marketing and PR)

TARGETED RELEASE DATE: September 15, 2000
ACTUAL RELEASE DATE: September 21, 2000

PLATFORMS: Windows 95/98/NT/2000/ME
(NT and 2000 not officially supported)

DEVELOPMENT PLATFORM: mainly Windows NT
CRITICAL DEVELOPMENT

HARDWARE: 600MHz Pentium IIIs, with 256MB
RAM, GeForce, 17GB hard drives

CRITICAL DEVELOPMENT SOFTWARE: Visual C++ 6.0,
C++ Builder 4.0, Lightwave 5.5, 3D

Studio Max 2.0, Photoshop 5.5
NOTABLE TECHNOLOGIES: The BioWare Infinity

Engine, InstallShield 6.2, Windows
Commander 4.0, SourceSafe 6.0, PR Tracker,
multiple internal designers’ tools and editors

created by the BioWare Tools Group
PROJECT SIZE:

Game code: 545,320 lines of code
Editor code: approximately 250,000 lines of code
Resources: 54,775 files totaling 7.0GB (Excluding

model files and raw sound)
BG2 Raw Data Disk usage: 37GB

P O S T M O R T E M j a m e s o h l e n , d r . g r e g z e s c h u k & d r . r a y m u z y k a

J A M E S O H L E N | James is the director of writing and design at BioWare. He was the lead
designer on BALDUR’S GATE and the co-lead designer on BG2, as well as the lead designer on
BioWare’s upcoming Star Wars role-playing game.
D R . G R E G Z E S C H U K A N D D R . R A Y M U Z Y K A | Ray and Greg are the co-
founders of BioWare Corp. They are joint CEOs and co-executive producers of all of
BioWare’s products, including BG2. Ray was the producer at BioWare of BALDUR’S GATE

while Greg was the producer at BioWare of SHATTERED STEEL and MDK2.

BioWare’s

w w w . g d m a g . c o m 55

ABOVE. Some of these portraits were created by Mike Sass, the director of production art at BioWare.

What Went Right

1.Stable engine technology. Given that our goal was for

BALDUR’S GATE II to be a showcase of design and art, and

not a technological marvel (at least not overtly), we were able to

minimize our development risk by making only informed decisions

with regard to the game engine. From the very beginning, we

decided to use the BioWare Infinity Engine to develop BALDUR’S

GATE II, assuring a stable engine for the designers and artists to

create content. We set out to make a number of improvements to

the engine, but we managed to schedule the majority of these

changes around the designers and artists. The first step was a com-

plete engine feature list.

Part of any design phase should be creating a feature list.

Thanks to the Advanced Dungeons & Dragons license attached

to BALDUR’S GATE II, there were thousands of possible features

we could add to the game. This being the case, our challenge was

to determine which features to add. We followed two routes —

the first was to make an internal list (generated by BioWare and

our publisher, Black Isle/Interplay) of what was feasible and rea-

sonable considering the engine, and the second was to ask the

fans what they wanted to see. Fortunately, in the case of BG2, a

number of fans on the newsgroups had already done much of the

work for us and compiled a list of what they wanted to see in

BG2. This list gave us a sense of what our hard core fans were

expecting and helped point us in the proper direction. The major

feature list that we eventually came up with looked like this:

• Higher resolution (800×600 and up)

• 3D support for 3D graphics cards

• Non-pausing dialogue in multiplayer

• Drop-off panels in the interface

• Multiple new character kits (subclasses) for all classes

• Faster character movement

• Dual wielding of weapons

• Improved (more detailed and more frames) character animation

• Inclusion of all of the famous AD&D monsters, including the

most famous of all, the dragon

• Spells up to 9th level

• Streamlined Journal, annotatable Map

• Deathmatch mode

• Character interaction on par with FINAL FANTASY

• Character romances

• Definite evil and good paths to allow for alignment-based

role-playing.

We added several features as the game went on, including a new

race (the half-orc) and three new classes (sorcerer, monk, and bar-

barian), plus myriad character kits. Very few features had to be

cut or weren’t implemented in a fashion that worked as well as

we hoped they would.

One thing we did not do was to rank the game features into

simple classes such as essential, important, less important, and so

on. When it came to making feature decisions, we opted to keep

as many as we could, but we didn’t have an agreed upon list or

mechanism to resolve the decisions. Fortunately, we were using a

mature engine that we had developed, so adding most features

was relatively easy. However, we certainly can’t claim that all of

our decisions were enlightened.

Deathmatch was a feature that should have been cut early on,

but persisted until close to the end of the project. It then became

obvious that the ship date would have to moved back in order to

accommodate deathmatch. Considering that multiplayer code was

some of the most fragile in the engine, and deathmatch wasn’t

being very well received by QA, we reluctantly decided to cut it.

Non-pausing dialogue was the most problematic feature. Early

in the project it was cut due to time constraints. In early 2000 we

decided to add the feature back in, as the amount of dialogue in

the game was making multiplayer very frustrating. Looking back,

this was probably the wrong decision. Most of the dialogue had

already been written under the assumption that the game paused

in dialogue mode. We had to create a hybrid system where plot-

critical dialogue would still pause. Our changes to the multiplayer

code also created several instabilities that led to some very late

nights for the programmers.

In the end, the stable BioWare Infinity engine allowed for the

majority of the 20-month development cycle for BALDUR’S GATE II

to focus on content, rather than on engine or tool development.

While there were tool and engine changes made, they were done

without disrupting the designers or artists as they created the con-

tent in the game.

2. Team dedication to the project. Anyone that has

worked on a game should be able to spin spine-tingling

m a r c h 2 0 0 1 | g a m e d e v e l o p e r56

P O S T M O R T E M

ABOVE. Concept art created by John Gallagher, director of concept art.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r58

P O S T M O R T E M

yarns of long hours, hard work, and the dreaded “crunch time.”

During the long periods associated with developing a game, peo-

ple often burn out, or at least lose their focus on the final goal. A

variation of this happened in the middle of the development of

BALDUR’S GATE II.

After a year in development a project becomes a little boring,

especially when compared to other new and shiny projects still in

the initial prototyping phase. Complicating this difficult time in the

development of BALDUR’S GATE II was the appeal of NEVERWINTER

NIGHTS (being built just down the hall from BALDUR’S GATE II), and

the Star Wars role-playing game that was early in development for

LucasArts.

We didn’t do anything too special to get through this phase,

aside from listening to the team members and encouraging them

where appropriate. All they had to do was play the game to see

that they were making something special. In the end, everyone

believed this and it carried them through to completion. The

team was extremely dedicated, very professional, and saw the

project through to completion.

3.Returning veterans. Veterans of BALDUR’S GATE

returned to improve on the system they had created,

ensuring familiarity with the development pipeline and engine. Fol-

lowing a successful game, one of two things can happen: everyone

that worked on the project can return to work on the sequel or

exciting new projects at the same company, or the group can dis-

perse, with each person looking elsewhere for something new and

fun to do. Fortunately, after BALDUR’S GATE, practically the entire

team stayed on with BioWare. Some of the team members moved

on to NEVERWINTER NIGHTS, while the remainder of the team con-

tinued with the BALDUR’S GATE mission pack, TALES OF THE SWORD

COAST, and then on to BALDUR’S GATE II.

Consistency of people on a project is very important if your

goal is to maintain quality. It is much harder to apply the lessons

learned on previous projects if no one working on the game had

the pleasure of making some of the grievous errors of the past.

There is also very little value in having people work on a game

that they aren’t enthusiastic about. At the best of times, making a

game is challenging and a lot of hard work. If you aren’t inspired

by what you’re working on then you should be doing something

else. At BioWare, we tend to reshuffle teams when a project is

complete. This gives us the opportunity to keep senior people

challenged with new and exciting projects and opens senior posi-

tions for the up-and-comers. Additionally, we are not averse to

adding new — inexperienced but smart and talented — people to

our established teams. If you find the right rookies to add to a

project, their infectious enthusiasm can inspire even the most

crotchety oldsters.

Starting with a team of core members of the BALDUR’S GATE

and TALES OF THE SWORD COAST teams was essential to the suc-

cess of BALDUR’S GATE II. One of our main areas of focus during

the entire development process was the content pipeline — this is

much easier if the people on the job are already familiar with the

methods of the existing content pipeline.

Essentially, the content pipeline for BALDUR’S GATE II remained

the same as it was in the original BALDUR’S GATE. In BG1, the

pipeline started off looking rather nebulous, but had solidified

into a concrete operation by game’s end. With TALES OF THE

LEFT. One of the 3D models in
the game and the original
concept art it was based on.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r60

SWORD COAST, we had another four months to refine the entire

content creation process.

There are four basic divisions in the BALDUR’S GATE pipeline:

programming features, movies, in-game animations, and game

levels. The largest and most complex of these is the game level

pipeline. Going into BG2, we had an eight-stage process that we

followed when creating levels for the game. The process for cre-

ating a game level was:

1. Designers map out an area and write up a description.

2. Concept artists draw an isometric concept of the level.

3. Models are created for the level.

4. Models are placed within the level and then textured.

5. The level is dressed with smaller objects (barrels and chairs).

Lighting is done for the level, and then any final tweaks are

completed.

6. The art piece is given to the designers so that the clipping,

luminosity, height, and search map can all be done.

7. Creatures, items, traps, and triggers are all added to the level.

8. The scripting for the level is completed.

Many of the people working on BALDUR’S GATE II were instru-

mental in creating the original content pipeline for BALDUR’S

GATE. There was a small amount of personnel turnover during

the full development cycle of the game, but the process was well

maintained by the foundation members of the team. When the

development pipeline is intact and working well, it is relatively

easy to get a game finished.

4.Good project discipline. This is one of the areas where

we have both a positive and a negative point on the same

topic. In fact, most areas had both good and bad facets. One of the

goals we managed to reach was extremely high game quality in

BALDUR’S GATE II. At the same time, in the “What Went Wrong”

section, we discuss how the game ended up being too large.

In the case of game design, we set out a number of standards to

use in creating content. These standards were a work in progress,

and were modified as the game was made. In the end, it would

have been wonderful to have a completed version of these stan-

dards before the game was started.

One thing we definitely didn’t want to do with BALDUR’S

GATE II was make some of the same design mistakes that we had

with the original game. Since some of our team members were

brand new, and since many of our memories seemed rather

porous, we decided to make up a set of guidelines. While each

department had its own set of guidelines, the level design guide-

lines were by far the largest, as it was the area with the most

room for improvement in BALDUR’S GATE II. A set of guidelines

accompanied by a feature set (preferably with some sort of pri-

oritization) reflects some degree of discipline on the part of the

development team — this discipline was invaluable in helping to

manage a project like BALDUR’S GATE II. To better understand

what was required to get BG2 done, we’ve included a truncated

version of the guidelines used by the game designers.

Basic Design Rules:

• The player must always feel as if it is his actions that are mak-

ing him succeed. He should feel that it is through his smart

decisions and actions that he has solved a puzzle or battle.

• The player must feel as if he is having an effect on the environ-

ment. His actions are making a very visible difference with

how things are running in the game world. His actions have

consequences.

• When designing, a good and evil path must be considered.

Several plots should be marked as changing according to the

player’s alignment.

Story Design:

• The story should always make the player the focus. The player is

integral to the plot, and all events should revolve around him.

P O S T M O R T E M

LEFT. A 3D model of Jon Irenicus, the arch-villian in BALDUR‘S GATE II. RIGHT (upper). One of the many editors created by the Tools Group.
RIGHT (lower). Some of the thousands of frames of animation in BALDUR‘S GATE II.

w w w . g d m a g . c o m 61

• It is important that the player be kept informed about the

progress of the villain. This can be done through cutscenes dur-

ing chapter transitions, or through integrating him into the main

plot from time to time.

• It is important that there be a twist in the story (or even more

than one). This is where a revelation is made to the player that

makes him reevaluate what’s going on with the story. All of the

twists should involve the main player. Twists that the player fig-

ures out on his own are also better.

• It is good to keep the ending of the story open-ended, especially

if a sequel or expansion packs are being planned.

Environment Design:

• The game world should be divided into chapters. Each chapter

should be of equal size and exploration potential. Each of these

chapters should have a rather obvious goal, but one that the

player can achieve in any fashion that he wants.

• Certain areas should be marked as core areas. These areas are

usually towns or similar places that the player will be returning

to often. Core areas should change as the environment changes.

As the player performs actions in other areas, there should be

changes to reflect this in the core areas.

• The player must always feel that he is exploring interesting

areas. This means that areas always need to have a unique feel

to the art.

• It is not a good idea to have the player moving between areas

often. This becomes annoying. Plots should be kept within the

confines of a single area.

• It’s good to show things to the player that he cannot use or

places that he cannot go. Later on, these objects or places will

become enabled.

Game Systems Design:

• A well-thought-out reward system must be created. The player

should be rewarded often during the course of the game. These

rewards can come in the form of XP, items, story rewards, new

spells, new monsters, new art, romances, and so on.

• It is important that the player be able to personalize his char-

acter. This means that he should feel that the character he is

playing is his own.

• It is important that the world reflect the ways in which the

player has personalized his character.

Writing Guidelines:

• No modern-day profanity.

• Each of the dialogue nodes (dialogue pieces) spoken by a non-

player character (NPC) should be limited to two lines. Only in

very rare circumstances are more than two used.

• All character responses should be one line when they appear in

the game. There should be no reason for them to be longer

than this.

• Try not to use accents in dialogue. For certain characters

(Elminster, sailor types) it is all right, but for the most part it

should be avoided.

• When using player choices, try to keep the visible number to

about three. Two or four are all right, but only when really

necessary.

• When an NPC talks directly to the main player, this should be

noted for scripting purposes. Other dialogue should be includ-

ed for when someone other than the main player talks to this

character.

• Random dialogue should be avoided, or at least used sparingly.

Commoners should have only a few random dialogue lines, but

there should be several different commoners to talk with.

There are a few important points to be made regarding these

guidelines. First, they were a work in progress, and the version

ABOVE. The world map editor created by the Tools Group.

62

you see here is not the version that we used at the beginning of

the development process. Second, we considered them as a set of

guidelines, not the absolute law. If a situation dictated the guide-

lines not be followed, and it made sense to do so, the designers

were given the latitude needed to follow their creative goals.

Sometimes this worked and at other times it didn’t.

The approach used during the development of BALDUR’S GATE II

was to establish development guidelines and follow them, but also

continually work on refining the guidelines based on the progress

of the game. Without this degree of discipline, we wouldn’t have

been able to complete the game.

5.Quality assurance in the endgame. Because of its

immense size, BALDUR’S GATE II was a tester’s nightmare.

This was compounded by the fact that we didn’t do enough test-

ing as areas were being developed. BALDUR’S GATE II contains

roughly 290 distinct quests — some of these are very small (20

minutes long) while others are quite large (a couple of hours in

length). Each quest needed to be tested both in single-player and

multiplayer modes. Even though we didn’t do enough early test-

ing (unsurprisingly, this is covered in the “What Went Wrong”

section), when it did come time to do some serious final QA, we

had a good plan.

During testing we adopted a

very sound task and bug track-

ing method taught to us by

Feargus Urquhart, the director

of Black Isle Studios, during the

three weeks he spent in Edmonton

helping with the project’s com-

pletion. We put a number of

whiteboards in the halls of

the testing and design area

and listed all of the quests on

the boards. We then put an “X” next to each quest. We broke

the designers and QA teams into paired subgroups, and each pair

(one tester and one designer) had the responsibility of thoroughly

checking and fixing a number of quests. After they were certain

the quest was bulletproof, its X was removed — but Xs were

removed only by the testers, to ensure they really believed that

the Xs needed to be removed. It took about two weeks to clear

the board (on the first pass). An X was added back if a bug was

subsequently found in a subquest.

In addition to the subquest testing, we had another BioWare

QA team (consisting not only of a couple people from QA, but

also some junior programmers and some designers) work through

the game in multiplayer mode. This was in addition to a Black

Isle/Interplay Multiplayer QA team working on-site at BioWare

and the nearly 30 QA people working down at Black Isle/Inter-

play. The experience with BALDUR’S GATE II reinforced the point

that role-playing games really need significant QA commitment to

be successful.

In the end we found and crushed more than 15,000 bugs in

BALDUR’S GATE II. Thanks to the hard work of everyone involved

in the testing process of BALDUR’S GATE II, we were able to ship a

giant game with no significant bugs.

What Went Wrong

1.Fragmentation of team communica-
tion. Even though the many members of

the BALDUR’S GATE II team had worked together dur-

ing previous BALDUR’S GATE projects, there were

still plenty of opportunities for poor communi-

cation. In fact, a case could be made that since

people worked together so well (at least in the

various subgroups — programmers, artists, and

designers) that their close interactions in smaller

P O S T M O R T E M

m a r c h 2 0 0 1 | g a m e d e v e l o p e r

ABOVE. Inside Amn, the main city in BALDUR‘S GATE II.

w w w . g d m a g . c o m 63

groups actually negatively impacted the

interdisciplinary communication.

Examples of the results of poor communi-

cation were rampant — one example was

the lack of attention to the established pro-

gramming constraints. The mistaken assumption

of many of the team members was that the newly

increased system specifications that vastly

exceeded the previous BALDUR’S GATE specs

would cover the large increases in animation

frame numbers, effect sizes, and similar resources.

Making matters worse was the flexibility of the

BioWare Infinity Engine — even though people

were breaking the rules, the engine would

support their borderline data. The prob-

lem is that when all the data is oversize,

the small performance hits all add up to

something quite significant. This led to

some frantic optimization efforts to get the game playing faster

near the end of the development cycle when little time was avail-

able to either identify the problem areas or fix them.

Another example of a communication gap could be found in

something as simple as naming conventions — each discipline

used a different name to refer to identical game areas. This

required additional documentation to “translate” names

between departments.

Another example of a communication gap was found in the

size of areas created. Concept artists created areas that were larg-

er than expected and artists in turn created areas based on the

large concepts they received rather than following the defined

design parameters. Early in the design process it had been decid-

ed that smaller sized areas (compared to BG1) would be helpful

to counterbalance the anticipated slowdowns from increases in

other sorts of data, and in addition it was felt that smaller areas

would be easier for players to explore. Unfortunately, no one

ever told the concept artists about the smaller area constraints

until too late in the development process.

During the development of BALDUR’S GATE II, we added three

line producers to assist the producer in maintaining team commu-

nication and task tracking. By its end, BALDUR’S GATE II had a line

producer/designer assigned to making builds of the game and man-

aging BG2’s gigantic resources, and a second line producer respon-

sible for the thousands of bugs on the bug list. We added a third

line producer near the very end of the project to work on compati-

bility issues and to help with answering technical questions on the

bg@bioware.com support e-mail.

In the end, none of the communication problems were insur-

mountable. They just had the effect of making the development

process a little more complicated, something none of us needed

when trying to finish a game as large as BALDUR’S GATE II.

2.Content bloat (game too big). In a project as content

rich as BALDUR’S GATE II, we didn’t really have to worry

about cutting content. While we shipped with nearly all the features

we had originally planned, we did start cutting quests and charac-

ters well before the final testing phase. We still ended up with over

200 hours of gameplay. We had antici-

pated approximately 500,000 words of

dialogue, but ended up with about

900,000 words of dialogue (with about

150,000 of these reused from the original

BG1). Sure, the amazing size and depth of the

game were certainly celebrated, but it was a

huge pain to manage during the finishing and

polishing stages.

In retrospect, we should have started the

cutting process many months earlier. One of

the dangers of development is that game devel-

opers have a tendency to always add content

if they are given time. They don’t naturally

spend time limiting and polishing content;

instead, more time means more stuff. It’s

wise to use that prioritized feature list to

hone the work (of course ours was informal, which made it a lit-

tle difficult).

We learned to look at our target date and adjust our content

development accordingly. In many ways, quality is more impor-

tant than quantity. Even though BALDUR’S GATE II was bigger than

BALDUR’S GATE, the actual content was much better quality — we

just didn’t realize how much more we had made in BG2 until it

was too late.

ABOVE. A troll.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r66

P O S T M O R T E M

3.Lack of early QA. Another oversight in the BALDUR’S

GATE II development included the lack of a specific early

testing stage scheduled as areas were completed. Early testing of a

game level would have allowed us to make changes and tweaks

while the level was being developed, when it was still relatively

easy to modify, rather than doing it in the final QA pass. This

would have streamlined the final testing process.

Instead, we didn’t start testing until large sections of the game

were fully content-complete. While BALDUR’S GATE II was in

development, we added an in-house QA department to BioWare

in order to do more early testing. We can now run game levels

through this department as soon as we have a working version of

the level and fine-tune it earlier, rather than later. Much QA sup-

port also was provided by our publisher, Black Isle/Interplay, in

that some QA testers visited BioWare for the last few months of

the project, and additional QA testing occurred down at Black

Isle/Interplay. In spite of all of these additional resources, every-

one would have been much happier if we had simply had a more

thorough early testing phase.

4.Late asset delivery of sound effects and voices.
An often neglected but very important element of game

development also managed to catch us unawares during the devel-

opment of BALDUR’S GATE II — audio. Like any element that falls

through the cracks, there were a number of reasons on both

BioWare’s and Interplay’s end (they provided the audio)

for the problems. The problems linked to BioWare

included a lack of adequate sound lists and

initially poor sound summary documenta-

tion. We just didn’t do a great job of

informing Interplay about the sounds we

needed. Once we had adequately

informed the audio folks at Interplay,

they in turn didn’t give us an accurate

estimate of when we would receive the

final audio. This made it very difficult

to plan out and build master versions

of BALDUR’S GATE II.

While we were aware it was going to

be a problem, and we made a point of

telling everyone at Black Isle and

Interplay about it, we still were

waiting on sounds and voices

while building the final version

of the game. The greater

impact of this was that we

were unable to do master CD

layouts until we had final

assets, and since we got the

assets so late, it rushed the

entire installer process, in

turn causing much pain when

it came to working with the installer for the

final builds.

Like most problem areas, the audio

issues were overcome by hard work and

dogged perseverance. The audio got finished, and it was at the

usual amazing level of quality that is characteristic of Interplay’s

audio group. No one was satisfied with the process, but thanks to

the hard work of individuals both at Black Isle/Interplay and Bio-

Ware, we still got it done to very high levels of quality in time for

the original planned release date of BG2.

5.Poor coordination of localization. Yet another area

that is often neglected during game development is local-

ization. In BALDUR’S GATE we had a relatively smooth localiza-

tion process, so it was disappointing to actually have the process

go worse for the sequel. Even though the process was smooth for

BALDUR’S GATE, the quality was poor. The goal for BALDUR’S

GATE II was to improve the quality of translation; ironically, this

was likely the cause of the more complicated and difficult local-

ization process we experienced this time around.

For BALDUR’S GATE, Interplay coordinated localization through a

single contractor, but for BALDUR’S GATE II this was done through

multiple houses, one for each language. We even had translators

on-site at BioWare to help with the translations of French and

German. Somewhere along the way, things got very complicated

— we were sending and receiving multiple files to multiple sources

and receiving files from various groups. BALDUR’S GATE II featured

around 900,000 words (with about 750,000 words representing

new writing content and about 150,000 words reused from

BG1), with some dialogue being written late in the devel-

opment of the game. Some voice files were lost, and no

one had any idea where or how it happened. We did

achieve the goal of increased quality of localization, but it

was at a significant cost both in extra stress and in

extra time required.

All of these difficulties have led us to learn a lot

and to modify how we do localization in our future

projects — our tool group has been developing

more comprehensive localization tools to simplify

the process. Our goal is to streamline localization to

make achieving nearly simultaneous release of our

games worldwide much smoother.

Honest Effort Pays Off

In conclusion, we’d like to thank all of the

people that worked on BALDUR’S GATE II,

both on the development team at BioWare and

at our publisher, Black Isle Studios/Interplay.

Special thanks go out to the entire BALDUR’S

GATE II team for working so damn hard, being so

good to work with, and for creating a great sequel. Like

any big game, BG2 had its ups and downs, but in the end

we are all very proud of the game we made. We hope this

retrospective provides you, the reader, with some insight

into our development methods and gives you some tangi-

ble ideas that you can apply to your own produc-

tions. In the end, it’s all about the game — if

you’ve put forth an honest effort, you will always

be satisfied with the result. qABOVE. A half-ogre.

m a r c h 2 0 0 1 | g a m e d e v e l o p e r80

S O A P B O X m a t t t o s c h l o g

Sixty Developers in
Malaysia!

W ho knew that

Malaysia has a

game development

community? As an

International Game

Developers Association (IGDA) board

member, I was amazed to find out that

the inaugural meeting of our Malaysia

Chapter had about 60 developers in atten-

dance. Wow! This shows me that there’s a

huge potential community of developers

looking for ways to come together.

Some geographical areas have enough

of a development community to support a

local group — the Post Mortem group in

Boston (www.igda.org/Chapters/

boston.htm) is an example. But game

developers also need a global communi-

ty. We’re scattered all over the world,

and even those of us in out-of-the-

way places (Ann Arbor, Mich., for

example) should still be able to

be part of a community.

As a fairly new industry that’s

becoming more and more finan-

cially significant, it’s time for

game developers to get serious

about working together. We need

to share our knowledge and expe-

rience, work together on setting stan-

dards for our industry, and develop a

voice for game developers. As a communi-

ty, we’re way behind in all of these, and

it’s time to get moving.

One of my biggest hopes is that an

organized community will help people rec-

ognize game development for the craft it is.

I’m sure that everyone in the game industry

has had this experience: you tell someone

that you make games, and they assume you

spend your days sitting around playing

Nintendo. While we do sometimes have

fun at work, making games is a real craft.

We need to convince ourselves, and the

world, that what we do is serious work.

Another big need in our still young pro-

fession is for a public voice. It seems that

no one really speaks for developers — the

controversy over game violence in recent

years has shown that we need a way to let

the public hear our views. We need some-

one to speak from the developers’ point of

view, to tell the world who we are and

what we think.

We also need to recognize and support

the groups of people who make up our

community. Artists, programmers, produc-

ers, and testers can benefit greatly from

sharing their knowledge and experience

with those doing the same jobs. Our jobs

constantly change with the market, and it’s

hard to keep up. We all need help to keep

on top of the latest issues, and to learn and

explore new ideas.

Just think about some of the things we

encounter on a daily basis. Maybe you’re a

programmer trying to figure out how to

squeeze every bit of performance from a

new console. Or perhaps you’re an artist

learning to use a new modeler to create

realistic facial animation. Or you’re a

producer wondering whether and how

to invest in a $200,000 mo-cap setup for

your new sports game. Why should you

have to go it alone? Perhaps beyond these

day-to-day issues, you’re a developer who

is concerned about the threat of censor-

ship of our art. Or you’re a studio man-

ager looking at the dissolution of your

company because of the exploitation of

a software patent. Or you’re the HR

director thinking about where on earth

you are going to find the trained people to

staff all your projects for the demanding

new platforms.

There are lots of us out there doing

those same things, and most of us are

happy to share our experiences and

help each move the industry forward.

Back in 1994, the IGDA (then known

as the Computer Game Developers Asso-

ciation) was formed with the goal of bring-

ing the developer community together. I

signed on as a charter member — number

88 to be exact. I didn’t know what the

organization would turn out to be, but I

saw the value in a professional organiza-

tion for game developers. We were a small

industry getting bigger, and we needed the

things that an association could provide: a

public voice and a way for developers to

communicate with each other.

The IGDA has had its ups and downs,

but in the last year we’ve made a lot of

changes and are now moving ahead at full

steam to address the needs of our industry.

continued on page 79

NOTE: In 1999, the IGDA signed a management agreement with the CMP Game Media Group
(the publisher of this magazine, and owner of the annual Game Developers Conference). The
IGDA remains an independent nonprofit organization run by its members, and CMP provides
the kind of administration for which game developers are not famous.

Ill
us

tr
at

io
n

by
 P

au
l W

at
so

n

w w w . g d m a g . c o m 79

S O A P B O X

We have the will and the means to bring

together the development community in

ways that will help us all. Among many

other efforts, the IGDA provides three

basic programs to empower the communi-

ty: chapters, committees, and special

interest groups.

Many of us rely on E3 and the Game

Developers Conference to keep us connect-

ed to our compatriots, but we can do better

than once or twice a year. And we need a

way to reach those who are just starting

out or who can’t afford the trips to Califor-

nia each year. As I mentioned, the IGDA’s

chapters are what’s bringing the community

together on the local front. From Malaysia

to Seattle, from Montreal to London, from

Amsterdam to New York, there are count-

less chapters that have been or will be

established with the goal of connecting

developers and promoting regional game

development communities.

The committees are a means by which

developers get a voice and can actively

work to better the industry. Committees

are formed to address particular issues

(violence, patents, education, and so on),

whether related to public policy or anoth-

er area of general concern to developers.

It is actual developers (in most cases)

who constitute these committees, and

who are responsible for reporting back

their findings.

To help developers communicate, the

IGDA runs several special interest groups

(SIGs) whose topics range from the tradi-

tional (3D graphics, AI, quality assurance,

and others) to more recent topics such as

mobile entertainment and machinima.

Each SIG hosts a discussion group at the

IGDA web site, where developers meet to

talk about the topic.

All of this is great, but to build a com-

munity, we need you. Whether you’re an

industry veteran who can share your secrets

of success or a newbie who can let the rest

of us know what work still needs to be

done, we need you to play a part. There’s a

place for everyone to get involved, where

you can learn, share your knowledge, and

voice your opinion. We need everybody’s

help and personal contribution to build a

solid community of developers for the bet-

terment of the industry and the develop-

ment of the art form. q

M A T T T O S C H L O G | When not daydreaming of Malaysia, Matt Toschlog is the president
of Outrage Entertainment. Best known for the DESCENT series, Outrage is currently working
on an adventure game and an action game for the next-generation consoles. Matt encourages
you to check out the IGDA’s web site at www.igda.org. He can be reached at

continued from page 80

	04gameplan
	06saysyou
	08frontlin
	10indwatch
	13graphic
	20artview
	28f-wagner
	38f-moore
	50intrview
	54postmort
	80soapbox

	return:

