
JUNE 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall haydend@3drealms.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot e: twilmot@cmp.com t: 516.562.7081

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

I n an industry where days are

long but memories are often

short, game credits are vital, but

they sometimes pose problems

for developers and employers. If

you’ve never had to confront the issue

head-on in your professional career, con-

sider yourself lucky. When a former

employer owns every last byte of your

work on a game, your name in the cred-

its may be all you have to show for your

work and help land your next job. There

are opportunities for abuse on the parts

of both employer (denial of credit) and

employee (credit inflation or misrepresen-

tation); fortunately, there are incentives

for both sides to resolve the issue.

One stumbling block is the lack of

industry-wide standardization of job titles

and their respective scope of responsibili-

ty, which creates opportunity for abuse

from both employers and employees. In

Hollywood, people work on contracts

and deal with unions that can specify

what a “best boy” is and does, so it’s

hard for him to show up on his next proj-

ect claiming he was a second-unit direc-

tor. On the flip side, the union would be

able to protect him through arbitration if

he fulfilled the terms of his contract but

the film’s fun-loving producers decided to

credit him as “goat boy” instead.

More significant than the mere lack of

job-title standardization in the game

industry is the anarchy that characterizes

the methodology around which credit

files are typically created, maintained,

and implemented at the end of a project.

Many employers still have a make-it-up-

as-they-go-along approach to generating

game credits, both because there is no

industry-standard methodology to follow

and because disputes often arise after the

fact and are forgotten by the time the

next title ships. The IGDA is looking at

creating a voluntary set of standards for

companies to follow, which would be of

great help to employers and great relief

to developers.

The use of short-term contractors and

mid-project turnover of full-time employ-

ees represent two big sticking points in

credit determination. As lengths of game

projects swell from “Gee, I could have

gotten a master’s instead” to “I gave you

the best years of my life!” the chances of

an entire team remaining intact from

start to finish are increasingly slim. Since

most work in the game industry is done

by studio employees rather than contrac-

tors, mid-project departures wreak havoc

with credit claims. One company might

punish a lead who left a month before

ship by eliminating him or her from the

credits, while another might include a

low-level person who got fired for

incompetence after a few months. It’s a

crapshoot for hardworking developers

who don’t know whether they are choos-

ing between their next opportunity and

credit for their current work.

What can you do to protect yourself?

First, make it a priority to protect the

investment your hard work on a project

represents. This means that you can’t

rely on your employer’s good intentions.

Raise the subject of credits with the

project or studio manager when you are

hired, or each time you start on a new

project. Find out who administers the

credit file and how it is reviewed. There

should be a consistent framework to

determining criteria for inclusion (and

exclusion), and you should get it in

writing. Such a framework benefits

employees by managing their expecta-

tions and employers by giving them the

ability to justify and defend their final

decisions.

Game developers are not by nature a

vainglorious lot; most are still doing it

out of love for the work rather than a

shot at notoriety. The idea of pushing

for verifiable crediting processes at your

company may even feel unseemly or

selfish. But credits are an area where

there should never be surprises. It’s

worth it to both you and your employer

to establish what your company’s credit-

ing standards are.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

Credits and Debts

www.gdmag.com

Nintendo cuts royalty rates. Nintendo Co.

Ltd. has lowered its royalty rates that

third-party publishers must pay the com-

pany. The company hopes this move will

help lure more titles for the Gamecube at

a time when Nintendo lowered its cur-

rent fiscal-year outlook. The company

expects net profit for its current fiscal

year to be approximately $548 million,

lower than the initial estimates of $665

million. The company attributed low

Gamecube sales for the lower profits.

Mythic infusion. Mythic Entertainment,

developers of the MMORPG DARK AGE

OF CAMELOT, has received a $32 million

investment from TA Associates, a private

equity and buyout firm. The company

plans on using the cash to expand their

online player base and create new titles.

Interplay’s full-year results down.
According to year-end reports, Interplay’s

2002 revenue was $44 million, a 22 per-

cent drop from 2001’s revenues of $56.4

million. However, the company ended

the year with a net income of $15.1 mil-

lion, compared to the previous year’s

$46.3 million net loss. The company

attributed a $28 million gain to its sale

of Shiny Entertainment to Infogrames.

Acclaim saved from within? Acclaim CEO

Greg Fischbach and senior executive vice

president James Scoroposki fronted $1

million each of their own money in

hopes of keeping the publisher from

being delisted from the NASDAQ due to

low share price. In exchange for the cash

infusion, the two executives were each

issued 2 million shares of company stock,

plus other warrants.

ATI revenues up, but profits down. Blaming

a decline in royalty income, ATI Tech-

nologies’ second-quarter earnings dipped

slightly to $318.5 million from last year’s

$322 million. Charges in the quarter

included an $8 million class-action law-

suit settlement, $2.8 million in the clos-

ing of a European manufacturing opera-

tion, and other expenditures.

Xbox cuts European prices. In a move cal-

culated to position itself ahead of

Nintendo, Microsoft lowered the price of

its Xbox console in the European market.

The move, Microsoft’s third European

price cut in less than a year, makes the

console cheaper than the PS2 and about

the same price as the Gamecube. q

Send news items and product
releases to news@gdmag.com.

j u n e 2 0 0 3 | g a m e d e v e l o p e r6

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

Two 3DS Max plug-ins from Turbo Squid.
Turbo Squid has released AfterBurn 3

and Kaydara’s HumanIK plug-ins for

Discreet’s 3DS Max. AfterBurn 3

enables rendering of realistic effects

ranging from clouds, dust, and explo-

sions to liquid metals. HumanIK’s fea-

tures include automatic character rig-

ging, a BodyGenerator Max script, and

other features. www.turbosquid.com

Maya 5 unveiled. Alias|Wavefront

announced the newest version of their

3D modeling and animation program,

Maya 5. The new version features four

rendering options — the Maya software

renderer, Mental Ray for Maya, a new

vector renderer, and a hardware render-

er — plus enhanced character anima-

tion tools, new modeling tools, API

updates, new data exchange options,

and expanded polygon mesh-editing

tools. www.aliaswavefront.com

New game editor development tool
announced. Adventurerland Entertain-

ment has announced its Lab Tech-

nology Construction Kit, software that

includes a built-in compiler/linker that

creates and deploys a game engine’s

output. The kit supports DirectX,

OpenGL, and SDL.

www.adventurerland.com

Softimage reveals Softimage|XSI 3.5.
Softimage announced the newest version

of their modeling and animation envi-

ronment. Version 3.5 features automatic

symmetrizing of polygons, flattening of

UVs, more realistic hair generation, and

UI support for Cg and DirectX vertex

and pixel shaders. www.softimage.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P
C H R I S T I A N G A M E
D E V E L O P E R S C O N F E R E N C E

CASCADE COLLEGE

Portland, Ore.
July 25–27, 2003
Cost: TBA

http://cgdc.graceworksinteractive.com

S I G G R A P H 2 0 0 3
SAN DIEGO CONVENTION CENTER

San Diego, Calif.
July 27–31, 2003
Cost: $50–$950
www.siggraph.org/s3003

C L A S S I C G A M I N G E X P O
JACKIE GAUGHAN’S PLAZA HOTEL

Las Vegas, Nev.
August 9–10, 2003
Cost: $35 weekend pass
www.cgexpo.com

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Mythic Entertainment, developers of DARK AGE

OF CAMELOT, received a $32 million infusion.

j u n e 2 0 0 3 | g a m e d e v e l o p e r8

D oes it do anything but

driving games?” is a ques-

tion that draws groans

and smiles simultaneously

from the Havok team,

makers of their eponymous game physics

middleware that recently received a major

upgrade to version 2.0.

In response to what must be an all-

too-frequently asked question, Havok

2.0 broadens its scope to include char-

acter physics much more prominently

over earlier versions. In that sense

Havok 2.0 is not an upgrade, it’s a

whole new product. New demos show

off this functionality to good effect over

previous releases.

New and improved. In the original

Havok we heard a lot about dynamic

characters — rag doll — but it was more

akin to having a dynamic corpse. Havok

2.0 extends what is possible, thereby los-

ing a lot of the dead-body feel of its

predecessor. I’m not an animator by any

stretch but I was able to develop my own

walk cycles and attach the Havok physics

system and character control far easier

than with earlier versions. Havok has

realized that I need to dictate full control

over character look and movement in the

game, both player and nonplayer,

because that’s what the game player

wants. I don’t always require accurate

physical simulation, for example when a

more cinematic or fun-focused effect is

desired. Havok attempts to provide this

control, and while far from perfect it’s a

step in the right direction. I was able to

emulate parts of the standard zombie

demo easily enough that as my animation

walks forward I “detached” the head,

allowing it to loll freely. When hitting the

character with an impulse, such as simu-

lating a shotgun blast, I switched state to

playing a “knocked back” animation,

detached the arms and let the physics

control the flailing arm movement and

torso rotation. This could have been

extended to letting arms dangle limply

and legs drag heavily along the ground

when targeted. I was also happy to see a

proper section in the Havok manual for

handling characters and control, so you

aren’t left floundering.

You may not have heard this, but

Havok does driving games! There is obvi-

ous new functionality in the vehicular

component of the SDK, but the important

part for me was how easy it is to create

vehicles now. The original Havok Vehicle

SDK provided a lot of black-box func-

tionality that was poorly documented and

nonintuitive. With earlier releases, I spent

a lot of time spinning my wheels, literally,

trying to figure out how to balance all the

forces. Havok now assumes that you

don’t inherently know what anti-roll bars

are for, how to tune the suspension based

on terrain and vehicle type, and how to

calculate friction circles for cornering.

Havok details specifically how their

Vehicle SDK black box works and

assumptions made, removing a lot of past

guesswork from the equation.

Another thing that changed was auto-

matic construction of object groups.

Havok 2.0 introduces “Islands” so that

you no longer have to take an educated

guess as to which group in which to place

your object so that the collision system is

optimal. Islands are automatically con-

structed at run time, containing small

groups of objects based on the simulation

criteria. I had a previously existing proto-

type inside of which was a spiral of domi-

nos that could be knocked over. Origin-

ally, I placed all of the dominos in their

own group, which was fine, so long as

the player didn’t attempt to knock over

multiple dominos at once, causing multi-

ple cascades, as that would slow down

the simulation. Havok 2.0 took care of

the grouping for me; once a few dominos

came to rest, they formed their own “sim-

ulation island” and became quickly deac-

tivated. This relieves a huge burden from

me having to take what was, at best, an

educated guess as to which group objects

should be placed in. I also no longer need

to verify that someone else has placed

objects in the wrong group.

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

J U S T I N L L O Y D | Justin has over 18 years of commercial game programming experi-
ence on almost every released platform.

Havok 2: All Rag-Dolled Up
by justin l loyd

Other platforms. I’ve only been able to

work with Havok 2.0 on VC++ 6.0 run-

ning under Windows XP. Circumstance

did not permit me to compile on Sony

and Nintendo dev kits, so my only expe-

rience with Havok 2.0 on those platforms

is playing with the interactive demos at

GDC. From what I was able to glean

from their new Visual Debugger, a mod-

ule similar to the real-time VTune, the

frame rates on complex scenes, such as

the zombie demo with a dozen animating

rag dolls, and character control were rock

steady. CPU and memory usage never

spiked above 50 percent, usually hovering

around 20 percent, and when it did climb

it was only for one or two frames when

multiple characters attempted to interpen-

etrate. This was a pleasant surprise, as in

the past with Havok 1.7 I could bring my

3GHz, 512MB, 64MB Radeon 9000 to

its knees with a half-dozen rag dolls.

Looking through the documentation and

API headers reveals that Havok has gone

to great lengths to ensure that each plat-

form is properly targeted, the PS2 build

making good use of the scratchpad and

vector units.

How useful Havok’s “Visual

Debugger” will prove is questionable. It

certainly gives you insight into the work

being performed by the physics engine,

but I’d like to see more hooks to allow

integration into standard profiling tools

such as VTune and ProDG’s tools for

Gamecube and PS2. I’ve worked on proj-

ects where the team has provided a pro-

filing solution, and my experience with

the Havok VD suggests that it does not

provide the hooks that will be needed.

Support. Unlike a few middleware com-

panies I have dealt with, Havok is going

to great lengths to ensure that the people

providing tech support for the licensees

are qualified to do so, ex-game and

physics programmers to a man. They’re

tech support is second to none. From

prior experience with the 1.8 SDK on a

real project, technical queries submitted

late in the afternoon would elicit a

response by the time I returned to my

desk the next day. Still, Havok seems to

understand that as a middleware

provider, customers’ project deadlines

don’t wait for them. Pertinent questions

that would apply to other developers are

often placed in the FAQ — even if they

are only asked once — along with useful

code snippets; even small features are

quickly rolled back into the main Havok

code base. I saw just how quickly this

happens when attempting to create a

vehicle that behaves as the Warthog in

HALO, with all four wheels steerable.

Within 18 hours I had my answer, and a

day later it was a FAQ and code snippet

on how to modify the Vehicle SDK.

Havok supplies 95 percent of the source

code once you move beyond evaluation,

and that can save a lot of time when you

are hunting down an elusive bug or

attempting to optimize your game. Havok

is quite happy to let you look inside their

physics black box as much as you like.

Documentation. I’m of two minds con-

cerning the way that Havok is pursuing

documentation. The learning curve for

the Havok SDK can be steep, and one

reason is that they rely more on demos

than documentation to illustrate a point.

That causes two learning bottlenecks:

First, you have to spelunk through many,

many source files looking for the demo

w w w . g d m a g . c o m 9

HAVOK
www.havok.com
Sales and Engineering:
San Francisco, Calif.
(415) 543-4620
Engineering:
Dublin, Ireland
+353 (1) 677-8705

HAVOK GAME
DYNAMICS SDK 2.0

E ach project is different, and a physics
simulation, like Internet traffic,

changes moment to moment, making it
difficult to provide hard data that you could
form a judgment around. My test rig was
3GHz, 512MB DDR 2100, 64MB Radeon
9000–equipped notebook computer running
Windows XP and DirectX 9.0. I assembled
two demos for this review.

The first test project consisted of approx-
imately 150 objects in close proximity, 10 of
which were considered complex; small-
scale versions of the St. Louis Arch that
were pinned, i.e. infinite mass and immov-
able. The rest of the objects were mostly
simple geometric shapes (boxes, wedges,
and spheres) that the player could interact
with in varied fashion. There were also a
half dozen rag dolls consisting of 15 bones
each; a rag doll was connected to its
immediate neighbor via 2D dashpots,
forming a loosely coupled chain. The player
was represented as a single, two-wheeled
vehicle that rode as a child’s tricycle, con-
structed from one large wheel at the front,
and a single small wheel positioned just
slightly behind for stability. Due to the
small distance between the wheels, the
vehicle possessed a very small turning cir-
cle, enabling the player to negotiate the
tight environment.

The second demo — a simultaneous
blending of animation and physics — con-
sisted of two dozen rag dolls animating a
walk cycle that the player could shoot at with
the mouse. The quoted memory footprint
covers the entire demo,including graphics.

THE TESTBED

Peak
Frame
Rate

Average
Frame
Rate

Peak
Memory
Usage

Average
Memory
Usage

Demo
1:
Large,
150-
Object
Scene

120 80 10.1MB 9.4MB

Demo
2:
Anima-
tion and
Physics

174 98 2.9MB 2.7MB

Screenshot from the author’s second demo,
blending animation and physics.

or snippet of code that you think you

need (the “I’ll know it when I see it”

approach). Second, because the Havok

demos are built around a common

framework of code, the body of which

pulls in every feature that Havok pro-

vides, it requires more support function-

ality. You have to build up a mental

roadmap of that in your head, learning

what’s important and what’s immaterial

to the particular demo before you can

delve in to the small piece of code that

you really should be concentrating on.

The demos are good starting points, but

better documentation that shows the

bare minimum you need and why you

need to do the particular steps, would

make the job easier.

Terms. Licensing terms vary based on

numerous factors such as the number of

titles and platforms involved, and there

are numerous support options from

which to choose. One thing that is con-

sistent is that license fees are one-time-

only, with no royalties involved.

Final word. Havok is beginning to show

its maturity, both as a middleware compa-

ny and as a viable SDK for a new project

or to replace your in-house solution.

Version 2 shows great strides forward

beyond Havok’s driving-game roots, espe-

cially in the realm of character-based

physics, making it worthy of evaluation

by developers on a wide range of projects.

Singular Inversions’
FaceGen Modeller 2.2

by michael dean

F aceGen Modeller 2.2 is the newest

version of the face and head creation

software from Singular Inversions. It has

been designed to allow a user to create

custom, unique faces faster than tradition-

al 3D modeling packages typically allow.

Getting started is easy and fun. Upon

launch, a default head loads into the

shaded viewport, and I was immediately

able to create random faces with just a

push of a button. There is also the option

to load faces that have been previously

custom-created in the software.

To customize the premade and ran-

domly generated heads, FaceGen comes

complete with a simple yet powerful

modeling toolkit. It differs from a tradi-

tional 3D modeling package in that

geometry is not directly manipulated on

the vertex/face level but through a series

of sliders that control all aspects of your

model. For example, if I create the face

of a young woman and then want to

change the model to reflect an older age,

rather than push and pull vertices I use

two sliders that control age, one for the

geometry and one for the texture. Move

them forward, and cheeks lose their full-

ness, the nose grows, and the skin weath-

ers, all based upon the face’s natural

aging process. It works remarkably well,

and this is how everything in FaceGen

functions. There are also sliders that con-

trol masculinity and femininity, race,

symmetry, and realism.

Taking this to a deeper level, there are

sliders that make up, and append, subsets

of these more general categories. The

user can go into a much more detailed

slider group and fine-tune features like

the character of a nose. Users can also

adjust for a heavier brow or make a

longer face, for example. The ability to

easily create faces that differ greatly from

one another doesn’t disappoint. Morph

targets can be generated using combina-

tions of emotion sliders, as well as

phoneme sliders.

FaceGen’s built-in faces are customiz-

able, and there’s plenty to do with the

templates and modification tools provid-

ed. However, many artists will want the

ability to create heads from unique mate-

rial, which is where the PhotoFit service

comes into play. With PhotoFit, simple

snapshots of people can be made into full

models, all fully modifiable, as they are

with the template faces. After the images

are acquired, the wizard interface brings

them into the software and the images are

sent via Internet to Singular Inversions,

who converts the photographs (one or

two photos are supported) into a FaceGen

file, which can be loaded into Modeller,

edited, applied to a mesh, and exported as

a model with UVs and texture. The results

are amazing and look as if they came

from a 3D scanner. This additional feature

is fast, it took me about 20 minutes to

receive custom-generated FaceGen files.

PhotoFit also requires an additional

investment, starting at $9.50 per face,

XP R O D U C T R E V I E W S

j u n e 2 0 0 3 | g a m e d e v e l o p e r10

“We’ve had a positive experience with
Havok, although because we’re about
halfway through our current game life cycle,
we still have issues that we need to resolve.
If we are happy with Havok at the end of the
game, I can certainly see us using it again,
as much of the hard work of learning the
API will already be done. The documentation
could be better, though; a real boon would
be to have more code examples in the docs
themselves, rather than having to track
down the usage inside a demo.”

— Mark Baker, Mucky Foot

“Even with Havok it still takes significant
work to combine gameplay and physics in a
way that they enhance each other rather
than detract from one another. When we
originally looked at physics middleware a
year or so ago, Havok looked like the most
complete product on all platforms.”

— Sam Baker, Paradox

“We aren’t using the newest release yet,
but during development we’ve given them
lots of feedback and many of those issues
have been addressed in Havok 2.”

— Jay Stelly, Valve

YOUR MILEAGE MAY VARY:
HAVOK 2 USERS WEIGH IN

A custom head created in just a few minutes
from a few simple snapshots of my subject.
No additional editing was needed, the default
result was amazingly accurate.

after an initial 10-face credit.

FaceGen exports to the native formats

of most popular 3D packages. The mod-

els are a bit heavy on geometry, but

upon import into your favorite 3D pack-

age, detail is easily reduced. I converted

a 6,000-polygon FaceGen head into a

very nice 550-polygon 3DS Max head by

using only Max’s built-in MultiRes and

then flipping a few edges. The entire

process of creating this head took 10

minutes, and the results were excellent.

Even if the software cannot create

exactly the head you have envisioned (for

example, getting the bulbous nose I envi-

sioned for a character proved impossible

just using FaceGen), rest assured that

FaceGen will give you a very solid start-

ing point. At $495, FaceGen is a robust

package with a lot going for it, and an

artist could easily expect to save hun-

dreds of hours of time in the creation of

unique faces for any given project.

XXXX | FaceGen Modeller |
Singular Inversions |

www.singularinversions.com

Michael Dean is currently an artist at Ion
Storm in Austin, Tex.

Real-Time Shader
Programming by Ron
Fosner

reviewed by jeremy jessup

I n Real-Time Shader Programming,

Ron Fosner describes the essential ele-

ments necessary for developing shaders

in a very approachable full-color book

that spans just over 400 pages. Your $49

also gets you a CD with a beta version

of ATI’s RenderMonkey and coded

examples of many of the shaders dis-

cussed in the text.

Beginning with elementary vector

math, the book moves quickly into light-

ing theory. The lighting chapter high-

lights the mathematical approximation

of physically based lighting using the

traditional ambient, specular, diffuse,

and emissive colors in a scene.

Representations for reflection and refrac-

tion are derived

from Snell’s law and

Fresnel equations.

Finally, non-photo-

realistic rendering

(NPR) from cel

shading, tonal art

maps, and hatching

is covered through

pictures and a

wealth of external

references. The

chapter makes for

an enjoyable read

by providing an

understandable

background to light-

ing techniques for non–seasoned graph-

ics programmers.

Fosner describes how to set up the

DirectX pipeline to use shaders. While

he touches on some of the nuances

you’re likely to encounter, the DirectX

section seemed a bit sparse compared to

the earlier chapters. The DirectX setup

calls specific to shaders were well docu-

mented; however, the chapter didn’t

dwell on creating the pipeline.

The book then describes several cur-

rent shader creation and visualization

tools. This chapter is relatively short,

perhaps due in part to the newness and

hence volatility of cutting-edge shader

tools. While high-level shader tools, such

as Nvidia’s Cg and Microsoft’s High-

Level Shading Language were briefly

mentioned, the focus was on the shader

language primitives. As such, it provided

a sound fundamental shader approach

that is universal to all higher-level shader

implementations.

With the groundwork firmly in place, a

wealth of shader examples follows.

Starting with the minimal vertex shader,

additional functionality is layered to build

more complex shaders. Sample shaders

are developed using the lighting equations

presented earlier. While it may take a lit-

tle time to digest some of the more

sophisticated examples, such as the car-

toon shader, the text provides adequate

descriptive detail coupled with helpful

color pictures to make it easier.

The final chapter provides a vertex

and pixel command

reference. Each com-

mand describes the

supported shader ver-

sion, usage, and a

short example. The

book covers shader

implementations for

both DirectX 8.x and

DirectX 9. Differences

between the two ver-

sions are noted

throughout the sample

code and reference sec-

tion. When appropri-

ate, additional notes on

specific DirectX ver-

sions are also provided, and Fosner does

a good job of providing references

throughout the book for further infor-

mation on a subject.

While having familiarity with the ren-

dering pipeline, I found this book very

approachable and easy to understand

despite not being a low-level graphics

programmer. The writing and compan-

ion tools provided challenged me to

explore the world of shaders and

attempt to write some of my own. The

tools were a great aid, since they freed

me from having to write my own engine

and instead let me focus on the actual

shader code. Writing in pseudo-assembly

may not seem like fun, but it was —

especially when I could experiment with

one of the precoded routines Fosner sup-

plied and view the results of a vertex or

pixel shader routine through Render-

Monkey instantly.

Shaders will play an increasingly

important role in game development.

Fosner's book presents the introductory

groundwork necessary for developing

custom shaders. For the experienced

shader programmer the book's depth

may not satisfy, but to those new to

shaders or want to experiment with dif-

ferent rendering effects, this book is a

great place to start. q

XXXX | Real-Time Shader
Programming by Ron Fosner |

Morgan Kaufmann | www.mkp.com

Jeremy Jessup is a programmer for

j u n e 2 0 0 3 | g a m e d e v e l o p e r12

XP R O D U C T R E V I E W S XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

B efore joining the game indus-

try in 1996, Samantha Ryan

had a solid 10-year career in

broadcast marketing, work-

ing on projects for Infinity

Broadcasting, Miller Brewing Company, and

Frito-Lay. Ryan joined Monolith in 1998

and was recently promoted to president.

Samantha’s roles are varied, from pursuing

new projects and partnerships to overseeing

trademarks and legal agreements. “Con-

versely,” she admits, “if the conference room

is messy, I’ll clean it up.”

We caught up with Ryan to find out how

she leads a company like Monolith, and

how her marketing background comes into

play when dealing with videogames.

Game Developer: How has your past experi-
ence in entertainment marketing crossed over
into your work at Monolith? How does it affect the way you lead the
company?

Samantha Ryan: It’s true my past has been a little unusual,

although that doesn’t seem to be uncommon in this industry.

For 10 years prior to entering the game industry I worked in

broadcasting in both a production and a marketing capacity.

The knowledge I picked up there has definitely shaped my

approach to developing games. For example, there’s something

about the marketing process itself that is incredibly intriguing.

I’m not talking about creating box art or ads, although those

are certainly challenging. Rather, positioning and the psycho-

logical aspects of team dynamics as well as consumer marketing

are fascinating subjects and are worth studying by anyone in

senior management, regardless of duties or title.

GD: When developing a game idea — like NO ONE LIVES FOREVER — how
important is the brand’s marketability, in addition to its gameplay?

SR: A brand’s marketability is an aspect of development that

was de-emphasized in our early years. However, by this stage in

our maturity as a developer, it’s become very important. We

work closely with our publishers on each title’s overall position-

ing as well as the ongoing marketing and publicity efforts.

When developing a new intellectual property, we strive to

create a robust universe populated with compelling characters.

The more well-rounded your property, the better it will lend

itself to application in other mediums. NO ONE LIVES FOREVER

taught us a great deal, both things we did right and things we

need to do better.

GD: With three teams working on different projects under one
roof, how do you balance out projects, personnel, and other

resources so that not everyone is in crunch
mode all the time?

SR: Over the years we’ve learned to careful-

ly select and schedule the timing of our proj-

ects; typically we prefer no project finish

within six months of another project. At both

the beginning and tail end of large projects,

where you don’t need a full production team,

people tend to move around to help on other

titles. This strategy allows us to keep our

teams and personnel together for the bulk of

a project, but also to give people some variety,

and test them out on other teams.

GD: What has Monolith done to create an
environment where its employees can have a
sense of fun with their work and stay motivated
while still being able to meet milestones?

SR: This is a difficult challenge for any

management team. A great environment starts

with great projects, so we’re pretty selective. In addition, we plan

company events, such as movie screenings, outdoor parties, and

the like. We have also chosen an office-based seating plan rather

than a cubicle-based arrangement; we find people enjoy having a

bit more privacy, and that communication isn’t hampered by it.

GD: How do you keep your creative teams creative when they are
working on licensed content and sequel material?

SR: Staying creative on these types of projects has never

been a problem for Monolith. It’s all about the attitude with

which you approach these efforts. In addition, we’ve had some

wonderful properties with which to work: ALIENS VS. PREDA-

TOR, TRON, and THE MATRIX.

GD: What is the key to retaining your best employees?
SR: The best projects. Certainly maintaining competitive ben-

efits and salaries are important, but most Monolith employees,

including myself, work in this industry because we truly love

gaming. Therefore, finding great projects for our teams is prob-

ably one of our most important priorities. This is no easy task,

but definitely worth the effort.

GD: You had most of the team from NOLF return for NOLF 2. How
do you encourage a team to keep a fresh approach while building
on a franchise?

SR: Because it’s usually right at the end of a project that a

game finally takes shape, we believe a sequel is an opportuni-

ty to refine and polish all the concepts developed for the first

game. Also, as the team grows from one project to the next,

new hires or transfers from within Monolith are expected,

and each new person brings a unique perspective to the exist-

ing team. q

j u n e 2 0 0 3 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

No One Markets Beer Forever
Monolith’s Samantha Ryan

After 10 years in broadcasting, Samantha
Ryan decided it was time for a real career
and joined the game industry. She is now
Monolith’s president.

j u n e 2 0 0 3 | g a m e d e v e l o p e r18

LOD

j o n a t h a n b l o wI N N E R P R O D U C T

I n this series, we’ve been working on rendering large

triangle soup environments. To help accomplish this we

divide the environment into chunks, then create

reduced-detail versions of the chunks, ensuring that no

cracks are introduced in the process of detail reduction.

Last month (“Unified Rendering LOD, Part 3,” May 2003),

we clipped a triangle soup into two pieces, connecting the pieces

with some filler triangles that I called a “seam.” We created

reduced-detail versions of each half of the input mesh, ensuring

that the seam triangles always preserved the manifold between

the halves. Now we will extend this clipping method to an arbi-

trary number of pieces. Then we will be able to render an

LOD’d triangle soup using the chunk selection and blending sys-

tem discussed in Parts 1 and 2 of this series (March and April

2003), back when the system worked only on height fields.

Multiple Clipping Planes

L ast month’s system only used one clipping plane. You

might think that we could just apply that method repeated-

ly to chop up the input mesh and be done. But some complica-

tions arise, so let’s look at those.

With only one clipping plane, we create only two chunks of

geometry. Computing the seam between these two chunks is rel-

atively straightforward, as we saw last month. But in Part 1 we

saw that filling the gaps between each pair of chunks is not

enough. In corners where multiple chunks meet, we can have a

“pinhole,” as seen in Figure 1. With a height field, we might fill

these holes by marking the corner vertices of each chunk at pre-

process time and at run time by drawing two triangles between

these vertices.

But imagine trying to extend this strategy to a 3D rectangular

grid of chunks. In 3D, there are two major ways that multiple

chunks meet: along cube edges, where four chunks can meet, and

at cube corners, where eight chunks can meet. It becomes diffi-

cult to see a way that holes can be dynamically filled because

there is no longer a coherent concept of “corner vertices” to each

block. A cube edge that passes through a mesh can create many

“corner vertices,” some of which may disappear as the chunk’s

resolution is adjusted. If a coherent dynamic solution exists, it’s

messy and probably slow. (The height field seam-drawing code

from Part 2 [April 2003] already contained an unsavory amount

of confusing code that performs tree traversal to find neighbors,

and I’d hate to exacerbate that situation.)

So instead of filling the holes dynamically at run time, we

precompute the fill patterns for these holes the same way we

precompute the chunk-to-chunk seams. We expand our concept

of a seam, allowing seams to touch more than two blocks. We

need to precompute and store versions of each seam that cover

all possible LOD states of the blocks it touches. Planning out

data structures to handle the increased combinatorics for sever-

al-chunk seams is a big headache.

Increased Combinatorics

B ut as it turns out, we need to contend with more than one

combinatoric increase. In 3D, we usually can’t impose the

constraint that two fully diagonal neighbors must always be with-

in one detail level. We’ll discuss this next month, but the basic

idea is that the constraint reduces your control over the LOD

quality level, often by too much. We must give up the one-level-

neighbor constraint, which means the combinatorics between

neighboring detail levels can grow much larger: we must build

seams that tie together chunks that are two or three levels apart.

When I first thought about how to program this system, I

envisioned an octree containing all the chunks. To build a seam

between some high-resolution blocks and their low-resolution

neighbor, I would collapse one level of the octree in the appro-

priate place, cross-reference the high-resolution seams to build

a new seam, and record that result. This process can be applied

repeatedly until we exhaust all the combinations, but program-

ming all this is still a headache. (First we need to collapse por-

tions of the octree by one level, choosing them one at a time,

then two at a time, then three at a time, and so on; then we

need to collapse one portion of the octree by two levels, but the

rest of them by only one level, repeating all the previous combi-

J O N A T H A N B L O W I Jonathan is a
computer games consultant hanging out in
Austin. He can be contacted at
jon@number-none.com.

Part
4Unified

Rendering

FIGURE 1. Three terrain
blocks (gray with black bor-
ders) and the seam fills
between them (red with dot-
ted borders). Note the hole in
the middle. These blocks are
drawn with exaggerated
gaps; the actual hole would
be very small.

nations; then we need to collapse two portions by two levels,

and so on. It just feels nasty, and it would require a lot of the

unhappy neighbor-navigation code mentioned previously.)

I was unsatisfied with this solution. I wanted a way to deal

with all these combinations that was easy to program and

easy to understand, so I could put this LOD manager in the

core of my rendering system and have some confidence that it

actually works.

Triangle-Centricity

H appily, I came up with a simpler system to accomplish all

my goals. Two main observations helped me find the sim-

plifications, both of which came about when I decided to stop

thinking about octrees, chunk borders, and seams, and moved

to an entirely triangle-centric viewpoint.

First, I realized that any triangle, having only three vertices,

can touch at most three chunks simultaneously. Thus, if we ever

do anything that cares about the combinatorics of more than

three chunks at once, whether at preprocess time or at run

time, we’re complicating the situation needlessly.

The second observation was that, when remapping the high-

resolution seams, we actually don’t need much information about

which chunks neighbor which others. We only need to know

which chunks contribute their geometry to which lower-resolu-

tion chunks; then we can use that information to rewrite existing

seam triangles, and we get all the combinatorics for free.

A Database of Seams

W e can think of each triangle as being a triplet of “vertex

specifiers”: each specifier tells us which chunk of geome-

try, and which index inside that chunk, represents the vertex we

want. Suppose we have some chunk named A. The vertex specifi-

er for chunk A, index 7 can be written as “A7.” A seam triangle

connecting chunks A and B might be written as (A7, B10, A8).

Suppose we detail-reduce chunk B into a new chunk C, and

vertex 10 of B becomes vertex 3 of C. To help create the corre-

sponding seam, we want to rewrite the above triangle so that it

becomes (A7, C3, A8). As long as we perform this step properly

for every triangle that contains B in a vertex specifier, we will suc-

cessfully preserve the manifold. It doesn’t matter who the neigh-

bors of A, B, and C happen to be. The fact that seams always tie

neighbors together becomes an inductive property, caused by the

fact that we only made seams between high-resolution neighbors

to begin with. We don’t need to worry about maintaining this

property between resolutions, because it propagates automatically.

At preprocess time, I maintain a database of all existing seam

triangles. First, I split input geometry into chunks and put the

resulting high-resolution seams into this database. Then I per-

form the detail reductions and, for each reduction, execute a

rewrite rule on the database. The rewrite rule just searches for

all triangles containing a certain chunk in their specifiers, writes

new versions of those triangles with the new chunks and indices

(such as the B10-to-C3 conversion just mentioned), and adds

the new triangle to the database. We repeat this process, always

adding new triangles to the database, never removing any.

By the time we’ve reduced our input geometry to a single

low-resolution chunk, the database has computed for us all

combinations of all seams between neighbors of all possible res-

olutions. (To get a feel for this, try it with a simple case with

pencil and paper.)

We may not wish to store all these combinations, so we can

impose limits. For example, we can tell the database never to

create seams between chunks that differ by more than two or

three levels of detail. We can even set this limit on a chunk-by-

chunk basis, with those decisions arising from an analysis of

the input geometry.

I have spoken here of manipulating individual triangles, but

to reduce memory and CPU costs in the implementation, I group

the triangles into seams as before, with the grouping based on

the chunk part of their vertex specifiers. So the “chunk member-

ship” is stored in an array on the seam and used for all triangles

within the seam; only the vertex indices are stored per-triangle.

All this makes the preprocessing solution rather tidy. But how

do we organize these seams so they can be found quickly at run

time? The high-level answer to this is that we just store the seam

database wholesale and reload it for run-time use. To draw

seams between all the solid-rendered chunks on the screen, we

should first make an array of those chunks (which we have

already done so that we could render them), and then just tell

the database, “Give me all the seams that only touch blocks in

this set.” Then we render those seams. Simple, easy, done.

Now, “database” is a scary word for engine programmers

trying to do fast graphics. One might have nightmarish visions

of SQL queries happening inside the render loop. In actuality,

because we only need one query at run time, we can set up spe-

cialized data structures that help us answer that query quickly;

our “database” becomes some arrays or hash tables. But to

w w w . g d m a g . c o m 21

FIGURE 2A (left). Two neighboring chunks, with a seam connecting
them (red). We are about to split the lower chunk by clipping it
against a plane (green). FIGURE 2B (right). To split the seam, we
probably need to subdivide one of the triangles into two (cyan). Once
we have two seams, we need to insert a pinhole-filling triangle that
connects all three blocks (blue).

maintain simplicity, consider this a problem of “accelerate a

database query about vertex specifiers,” so try not to fall into

the mentality of “store seams in arrays based on neighbors and

resolutions,” as we did with the height-field renderer.

In this month’s sample code, the seams are stored in the data-

base in a single linear array. I performed the database query as fol-

lows: First, I mark all the chunks that are being rendered. Then I

iterate over every seam in the database and check the chunks it

touches (of which, remember, there can be no more than three). If

all the chunks are marked, I render the seam, otherwise I don’t.

After this is done, I unmark all the marked chunks.

This algorithm is O(m), where m is the total number of

seams in the database. That’s fast enough for the data sizes we

are dealing with now, but in a big system it might be a bit slow.

By storing seams in arrays on each chunk (which any seam

being referenced by multiple arrays), we can reduce the running

time to O(n), where n is the actual number of seams you need

to draw. Since the task of rendering the seams is itself O(n), it

wouldn’t help us greatly to try to drive the running time lower.

Perhaps I will implement this version of the query next month.

The Moral of the Story

T here’s a moral to this database story that I would like to

pass on. As engine programmers, we’re used to thinking

about a certain set of concepts and data structures, such as

octrees. When approaching a new problem, we tend to apply

these concepts first, perhaps disregarding simpler ways of seeing

the situation. Even though those data structures have helped us

in the past, they may not help us now, and they may serve only

to confuse matters. I am reminded of that old proverb “When

all you have is a hammer, everything looks like a nail.”

Increased Freedom

N ow that we use this database rewrite system, neither the

preprocess nor the rendering requires an octree. In fact

they require very little in the way of data structures. We need

only a set of hierarchical bounding volumes for frustum culling

and some LOD metric that we can apply to each chunk. That’s

an amazing amount of freedom, much more than I envisioned

when I started this project. That freedom is good; it means any-

one using the algorithm will not face many restrictions in how

this system must interact with the rest of the renderer.

In fact, nothing in this entire algorithm even cares about the

dimensionality of the space we are working in. So if you are some

kind of weird physicist running simulations in 11 dimensions and

you need a system to perform LOD, maybe this will suit you.

Given all this newfound freedom, I’m going to try something

different from what I originally planned. Instead of using a 3D

grid of blocks to store the seam, I will employ a system of BSP-

style cutting planes, situated at arbitrary orientations. I will then

compute these cutting planes based on the density of the scene.

Filling Pinholes

T he seam database approach worked so well for LOD gen-

eration that I used it for the initial chunk generation as

well. I split a chunk into subchunks by applying a single split-

ting plane and rewriting the seams in the database. Often this

will split a seam into two, adding also a single-triangle pinhole-

filling seam, as seen in Figure 2. This correctly preserves the

manifold for one split, and thus, since we perform one split at a

time, it inductively preserves the manifold until we’ve got all

our chunks and are ready to build LODs.

This month’s sample code, which you can download from the

Game Developer web site at www.gdmag.com, contains two dif-

ferent running systems. One of them is the height-field renderer,

modified to use the seam database approach. This system serves

as a relatively simple introduction to the database, as it doesn’t

need any of the chunk splitting mentioned above (a height field

can be chunked just by applying a window to the array of data).

The second system in the sample code is a new version of the

bunny-chopping program, modified now to use an arbitrary

number of splitting planes. This program illustrates the BSP-

style cutting planes I am talking about, and it serves to verify

that the mesh-chunking and pinhole-filling schemes work prop-

erly. You can see the results in Figure 3.

Next month we’ll look at LOD metrics and discuss methods

of choosing splitting planes. q

j u n e 2 0 0 3 | g a m e d e v e l o p e r22

I N N E R P R O D U C T

A B C D
FIGURE 3A. The Stanford Bunny, chopped into arbitrary chunks by four different splitting planes. The original mesh contained 16,000 triangles, but
the portion in the upper-right has been reduced by one level of detail. The seam-filling triangles have been drawn in red, and the pieces of the
bunny have been pulled apart so that you can see the seams. FIGURE 3B. The same geometry as 3a, but rendered more like it would be in an
actual game, without the pieces pulled apart. FIGURE 3C. Like 3a, but now we have reduced the left half of the mesh by three levels of detail. Note
that the seams are still properly filled. FIGURE 3D. Like 3c, but without the pieces pulled apart.

A R T I S T ’ S V I E W h a y d e n d u v a l l

j u n e 2 0 0 3 | g a m e d e v e l o p e r24

F or most people,

change can be

difficult or

uncom-

fortable.

Unfamiliarity leads

to insecurity, and

no one likes to feel

insecure. New envi-

ronments and new

experiences can be

exciting, but those

first steps into the

unknown are usu-

ally accompanied

by some degree of

apprehension.

The game industry

at present is, like the

larger economy and job

market, somewhat unsta-

ble. Job security for the most

part is limited, and changing

jobs is sometimes inevitable,

whether for career advancement

or as a result of project termination.

Whether your move is local or transcon-

tinental, the transition process is a vital

part of successful integration into a new

environment, and it is a crucial time for

both individual artists and the compa-

nies that employ them if the best long-

term results are to be achieved.

The following is a collection of advice

gathered from a variety of people within

the industry, from relative newcomers to

company owners, on how to make the

transition process as smooth and effec-

tive as possible. The first section

addresses the experience of the employ-

ee, the second looks at the situation

from the employer’s side.

The New Employee

I n almost every case, the newly arrived

employee has more to lose than the

company employing them if things don’t

work out. For the employee, changing

jobs every few months isn’t the most

encouraging thing to have on

one’s résumé.

For artists making tran-

sitions, it’s important to

distinguish between

joining a new company

to start a project, or

at least arriving when

the game is still in its

very early stages,

and joining a com-

pany to work on a

game that is nearing

completion.

An artist joining a

project at or near the

beginning is likely to

be in a position to con-

tribute to the concept

stage, helping shape the

game’s look, and to also be

involved with the setup and

organization of the art pipeline

(unless the company already has an

existing, rigid methodology in place).

Involvement at this early stage greatly

helps the process of transition, as work

becomes more about helping to build

initial concept and structure than sim-

ply fitting into a preexisting slot. Espe-

cially with artists’ creative nature, the

more restrictions that are put on that

creativity, the more difficult and less

enjoyable the job can be. Chances are,

however, that a change of jobs will not

HAYDEN DUVALL I Hayden started work in 1987, creating air-
brushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives with his wife, Leah, and
their four children, in Garland, Texas, where he works as an artist at
3D Realms. Contact Hayden at duvall_hayden@hotmail.com.

Transition

Ill
us

tr
at

io
n

by
 T

ri
s

N
er

im
a

always bring you in at the start of a

project.

Joining a game later on is more diffi-

cult, as the artist’s contribution is more

about content generation and the

inevitable reworking of existing assets

that characterizes the end of game proj-

ects. Stepping into someone else’s shoes

(who left the vacancy you arrived to fill)

or filling a position that has been created

at this late stage to make deadlines more

achievable puts more pressure on the

newcomer who has to adjust to a new

work environment as well as having to

fit seamlessly with an existing art style.

Joining a project in the role of an art

director, art lead, or some other senior

role, brings additional pressures due to

the challenge of leadership.

Establishing credibility and respect as

an artist is central to a rewarding work

experience. This is even more crucial if

you join a company in a leadership role.

There are several ways in which artists

and managers can improve their chances

of success, compiled from advice from

those that have experienced both good

and bad transition periods.

Enthusiasm and
Attitude

A s the new kid, showing enthusiasm

about your new company and in

particular the game you are working on is

vital. This kind of attitude reassures your

employers that they made a good choice

in hiring you, something that they might

be nervous about until you prove yourself.

It’s also a form of positive feedback for

your coworkers, indicating that you like

their work and are happy to be part of

what they are creating.

As with most things, it’s possible to

overstep the mark. A new employee is

not best advised to charge into a new job

with such overwhelming joy that other

artists are swamped by your tide of

eagerness. When joining a new company,

there will be a natural period of acclima-

tion as everyone works out what kind of

person you are. When enthusiasm is

taken to the extreme, it can be seen as a

negative, or interpreted as an attempt to

gain favor with the boss, so moderation

is advisable.

Respect and Credibility

I t’s almost impossible for me to say the

word “respect” without lapsing into a

Marlon Brando parody. And while some

game companies may feel like they are

operated by the Corleone family, gaining

respect for your work as an artist is a

legitimate concern.

Respect, however, can be a difficult

thing to pin down. In many walks of

life, respect is a result of status and a

person’s achievements. This translates to

some extent to the game development

industry, and particularly as an artist, a

large part of the respect you command

comes from the quality of your work.

Every artist you work with has his or

her particular skills and areas of expert-

ise. It’s part of the natural process of

interpersonal assessment that your work

will be used to inform other artists’

opinions of you, and vice versa.

As a professional you will have to earn

the respect of those that you work with

through your conduct and attitude.

Respect is most effectively built on a

mutual basis, and demonstrating that

you respect the work of others around

you is an important step in this direction.

Acceptance and
Change

B eing accepted into the team is about

more than just the allocation of

work and a name on the credits. As with

any social grouping, there are unwritten

rules about how the group works, who

fits into which role, how different per-

sonalities interact, and the inevitable

degree of company politics to negotiate.

One important way to gain acceptance

is to ensure that your priority on arrival is

to learn rather than attempting to instigate

changes. Whether you’re a junior artist or

the newly arrived creative director learning

about the team, the game, and how every-

one currently operates is certainly the place

to start. The fact that you can see improve-

ments that can be made from day one does

not necessarily mean that immediately

pointing those needs out is the most pro-

ductive approach to take, even if you are

in a position to do so.

It’s true that as a group of profession-

als, everyone should be able to accept sug-

gested changes that will benefit the proj-

ect, even if they come from the new guy.

But human nature cannot be discounted,

so a “settling in” period is advisable. This

time can also be used to build a more

complete picture of your new company

and new position. Having a solid feel for

these areas will help you suggest changes

in the most effective manner.

Conflict and Criticism

W hile it’s best to avoid workplace

beatings whenever possible, artists

have the difficult job of dealing in an area

that is essentially subjective in nature. For

programmers, code tends to either work

correctly or not. Artists, however, are

subject to opinions of a more ethereal

nature. Whether you are giving opinions

or receiving them, you need to be tactful,

measured, and able to accept opinions

with which you don’t agree.

New artists especially can be subject to

a large amount of feedback (some of it

negative, while they find their footing).

Newcomers must accept this as guidance

more than criticism as they learn new

stylistic and methodological processes.

There is also a tendency for senior mem-

bers of a team to feel that they need to

be seen as having input, which often

comes in the form of requested changes.

This is hard to counter but will usually

diminish noticeably once you have been

there for a while. Overall, it’s vital to

take criticism well regardless of its origin,

and to discuss changes rather than argue

about them.

First Impressions

Don’t arrive at your new job with the

intention of putting your stamp of

ownership on the game. Every developer

I have talked to has expressed dislike of

the prima donna attitude sometimes dis-

played by those who believe they are

A R T I S T ’ S V I E W

j u n e 2 0 0 3 | g a m e d e v e l o p e r26

special. Even if you are special, making

a game always has to be a team effort.

Anyone who works against this, espe-

cially if they are new, is unlikely to be

appreciated.

Dangerous comparisons. One of the

most counterproductive things a new

employee can do is to constantly harp

back to a previous job, especially when

the comparisons are unfavorable to one’s

present employer. Statements like “At

my last place that was all taken care of

in the editor, which was so much better

than what you have here” don’t help,

and referring to your present employer

as “you” rather than “we” is never a

good thing.

Mouthing off. Our industry may be

large in terms of revenue, but it’s surpris-

ingly small and incestuous in terms of the

workforce. With this in mind, it’s never a

good idea to bad-mouth people you may

have worked with previously, chances are

that you’ll be working with someone

who knows them and may well not share

your opinion. This is not to say that you

need to be the epitome of sweetness and

light, it’s simply a case of using discretion

when telling your story about “John and

the transsexual hooker.”

Politics and power struggles. If your

new company has a lot of that kind of

thing going on, there is no easy way to

avoid office politics. If you are an art

lead, it’s important not to distance your-

self from the art team by taking the

“executive lounge” route. The best lead-

ers have always led from the front and

by example, which is particularly appli-

cable to the collaborative nature of

game art. If you are the new artist on

the team, it’s important that you are not

projecting an image of being in competi-

tion with the other artists; once this

begins to happen, the team loses its

coherence in the face of one-upmanship,

which always builds resentment.

The Employer’s Role

S imilar to the points made about the

new employee’s role, there are sev-

eral things that an employer needs to

consider when dealing with a new

employee’s transitional period. The fol-

lowing advice has been collected mainly

from the experiences of those I have

spoken with as they themselves have

moved into new jobs over the years. The

following illustrates the reciprocal

importance of a new employee’s transi-

tional period. The new employers also

need to help make the transition smooth

if they want to get the best out of their

new hire.

Be prepared. Preparation is a basic

point, but it’s often overlooked when

developers are deeply occupied in actual-

ly making a game. Little is more frus-

trating for a new employee, ready and

raring to go in a new position, than

turning up for work and finding that a

computer hasn’t even been ordered, let

alone set up. My informal research sug-

gests over half of the artists beginning

work have faced delays ranging from a

few days to over a month while waiting

for hardware.

Moreover, a top-of-the-line PC is of

little use if the none of the software the

new artist needs is on it. Add to this the

availability of scanners, digital cameras,

graphics tablets, and basic furniture

needs, and it becomes clear that

employers need to be on the case before

the artist steps through the doors, ready

to work. Not only do delays like this

waste the artist’s and the company’s

time, but first impressions matter for

employers too.

Beyond software and hardware needs,

an employer needs to have informed the

relevant people (ideally the whole com-

pany) of any new arrival so that there is

a plan in place ready to streamline the

integration process. Sitting in front of a

screen, waiting for someone to figure out

what to do with you is not the best

introduction to your new job, but unfor-

tunately, it happens all too often.

Because there are no hard lines between

what’s right and what’s wrong in art, it’s

even more important that a new artist be

given the necessary information and

guidance to learn what he needs to.

Details such as acceptable polygon count

will be dependent on the specifics of the

game, its engine, and the platforms it’s

running on, and should be communicat-

ed as soon as possible.

Be open and inclusive. Sometimes game

companies (especially larger ones) treat a

new employee as if they are some kind of

intruder. Secrecy is usually a tool of man-

agerial manipulation and an indication of

a lack of trust. While that’s another topic

entirely, employers need to be as open

and honest as possible if they expect their

new employee to trust them and be hon-

est in return. I am not talking about dis-

closure of the owner’s salary, but things

that need to be made clear are important

issues, such as an explanation of the real

chain of command. Every company, even

those that deny it, have some form of

hierarchy; the more covertly this system

operates, the harder it is for a new

employee to understand who reports to

whom and more importantly, who actual-

ly has the final word. Pretending that per-

son A is the one to sign off on your new

character design is a pointless exercise if

in reality, his or her superior can decide

it’s unacceptable later that week.

Employers must also remember to

include a new employee as much as pos-

sible. Not knowing the routine can iso-

late new staff, so the employer should

actively attempt to involve them in as

much as possible both during and after

work if necessary (for example, if they

are new to the area).

Transition Is Short,
Success Is Long

W hile the sensitive artist stereotype

is largely fictitious, and no one

that I know would burst into tears if

they found it difficult to transition into

a new job (well, maybe I can think of

one person who might), both employer

and employee can learn from the experi-

ences of others to make a transition

period more successful. Hopefully the

considerations presented here will make

your next transition, whether from the

employer’s or the employee’s perspec-

tive, more profitable in the long run by

helping avoid common mistakes and

frustrations that often get things off to a

bad start. q

A R T I S T ’ S V I E W

j u n e 2 0 0 3 | g a m e d e v e l o p e r28

G ame audio elements are

typically created and

mastered independently

of one another. Within a

game, any number of

these independent sound effects, voice

tracks, and music tracks are played

simultaneously. In a situation where the

order and layering of these elements is

not predetermined but rather determined

by player interaction, a nonlinear mix

occurs. In this situation, problems may

arise causing balance issues between

sound effects, music, and dialogue.

Furthermore, unforeseen combinations

of sounds that are dominant in similar

areas of the frequency spectrum can cre-

ate a mix that sounds “muddy” or “clut-

tered.” While the actions of the game

player determine the timing of certain

audio events — and in many cases the

frequency at which those events occur —

the sound designer has control over each

element’s amplitude, its spectral content,

and the texture or timbre of the overall

game soundtrack. With some forethought

given to texture, spectral, and level man-

agement, sound designers can reduce the

common problems that result from a

nonlinear mix.

Texture management. Texture manage-

ment is the organization of the audio

assets. By examining the overall style and

audio requirements for the game and sub-

sequently its individual levels or subsec-

tions, it’s possible to determine the game’s

overall sonic texture. Some questions to

consider include: Should the ambient

sound effects dominate, or is the game-

play music-driven? What role will spoken

dialogue play, and what is the priority of

that role? Will triggered, event-driven

sounds interrupt the dialogue or disrupt

the music tracks? The answers to these

types of questions will help determine the

overall texture of the soundtrack. Based

on these answers you can focus the audio

design for each segment of the game to

highlight those key audio elements or tex-

tures deemed most important.

Level management. Level management

refers to the amplitude of individual

sonic elements or classes of sonic ele-

ments within the overall soundtrack of

the game. Fundamentally, level manage-

ment describes the volume levels of the

sound effects, music, and dialogue, as

well as the overall dynamic range of the

game’s soundtrack (that is, the difference

between the loudest and softest sounds in

the game). More in-depth level manage-

ment includes looking at the amplitudes

of sound element groups. For example,

how loud are the footsteps in relation to

the ambient sound effects in relation to

an NPCs’ sound effects in relation to the

NPCs’ dialogue? So while texture man-

agement determines what sounds should

be occurring on a per-level basis, and the

player determines when those sounds are

playing, level management establishes rel-

ative amplitudes for those sounds.

The implementation of level manage-

ment occurs at several stages within the

game development process. The first set

of amplitude decisions are made when

the sound elements are mastered as indi-

vidual files. Level management occurs

again when the sounds are integrated

into the game during the audio coding

process. Playback levels are set to be

executed by the audio engine during

gameplay. Finally, some game titles dele-

gate a portion of audio level manage-

ment to the game player, giving the play-

er overall balance control between voice,

music, and sound effects from a sound

options menu.

Spectral management. Spectral man-

agement relates to the allocation or con-

sideration of the spectral content of

sounds or groups of sonic elements with-

in the game. Some nonlinear mix prob-

lems can be reduced or eliminated

through the use of creative equalization

or pre-allocated frequency bandwidths

on specific audio elements. For example,

in areas with constant music, heavy

ambient sound effects, or both, an equal-

ization curve could be applied to those

elements allowing more room in the

spectrum for additional event-based

sound effects or dialogue. Attenuation in

the lower-mid-range frequencies could

allow for additional intelligibility in the

dialogue track. Another notch in the

upper end of the spectrum could help

accommodate transient sound effects

that might be triggered.

While the concepts of texture, level,

and spectral management are not new to

the audio mix environment, careful

attention must be paid to these concepts

in the early stages of sound design. Early

and thorough planning will reduce later

headaches and result in a more cohesive

and well balanced nonlinear mix. q

M I K E V E R R E T T E | Mike is the audio director for Wicked
Noise and member of the Game Audio Network Guild. When not
managing his spectrum he can be reached at mike@wickednoise.com.

Managing the

m i k e v e r r e t t eS O U N D P R I N C I P L E S

Nonlinear Mix

j u n e 2 0 0 3 | g a m e d e v e l o p e r30

j u n e 2 0 0 3 | g a m e d e v e l o p e r32

A minor trivia game for

your enjoyment. What is

“the hobgoblin of little

minds”? Two points for

the correct answer. Score

another three points if you know who

said it. And if you know the entire quo-

tation, give yourself a big five points.

The answer?

“A foolish consistency is the hobgoblin

of little minds, adored by little statesmen

and philosophers and divines.” — Ralph

Waldo Emerson

I only scored the first two points

myself. When I looked up the full quota-

tion, I was surprised to see that Emerson

was insightful enough to condemn not

consistency, but a foolish consistency.

That’s trumping information. Be con-

sistent, but don’t be foolishly consistent.

Is that one of the 400 Rules of game

design? I think it’s too vague. Foolish is

as foolish does. So I’m turning to you for

help in clarifying it. I’ve been admon-

ished for taking the obvious direction

with my choice of the rules I’ve pub-

lished here, and I think rightfully so. I

started with the easier ones that were

hard to argue with, thinking that was a

good way to prime the pump with rules.

But now that there’s a steady flow, it’s

time to risk a little more controversy.

It’s obvious that some consistency is a

good thing. You wouldn’t want a game

that showed every enemy unit in red and

every friendly unit in green — except for

a friendly medic unit with a big red cross

that you blew up the first time you saw it

approaching. And consistency for control

interfaces is important too, you wouldn’t

want one part of the game to have one

interface and then suddenly change to a

different one.

Or would you?

If you have a platform game and

you’re happily running and jumping but

then get the magic hat that lets you fly,

don’t you need to change the interface, at

least a little? If you switch from a first-

person view to a 3D strategic map view,

you have to change the way the player

selects a target — don’t you?

So perhaps the rule is “Be consistent in

interface as long as the context of what

the player controls remains constant.”

And yet if you can remain consistent

even when the context of control has

changed — perhaps by turning that jump

button into a flap button — isn’t that

even better?

Let’s look at it from a slightly differ-

ent perspective. One reader suggested to

me that a good rule would be “Be con-

sistent in player feedback.” If smashing a

crate (to take an original example) gives

you something useful, don’t have the

200th crate you find blow up in your

face and take away a life.

That seems obvious. But at the recent

Game Developers Conference, I had an

interesting conversation with Mark

Cerny, a designer who has been a design

contributor to games totaling over $1 bil-

lion in sales (that’s billion with a b).

Regarding that very issue of rewards, he

told me that he thinks that every once in

a great while you should blow the player

up for no reason. My first reaction was,

“He’s lost his marbles!” But having rea-

son to believe Mark is quite aware of

where his marbles are, I started to think

about the player’s experience.

Let’s say the player is an hour or two

into a game and has opened 200 crates,

all with good stuff in them. The initial

thrill has probably long since worn off,

and opening crates has become rote,

even boring. Then, with no warning, the

next crate blows up in the player’s face,

costing a life. What’s the player going to

think? The player won’t stop opening

crates — after all, 200 had rewards in

them. But the player will approach every

subsequent crate with more care and

more excitement. When crate number

600 blows up, the player may even think

there’s a pattern. But Mark insisted there

must be no pattern. I like that — it fits

in with the AI rules I mentioned in my

January 2003 column (“AI Without

Pain”) about a little randomness and the

power of suggestion. And it suggests that

the really interesting and useful guidance

to a game designer about consistency is

when to break that consistency.

Or to put it another way, when does

too much consistency become foolish?

I have some ideas about that, but I’d

like to turn to you, the readers. Send me

some one-sentence imperative rules that a

fellow designer can actually implement,

and perhaps some associated simple

exceptions. Please refrain from long dis-

courses, I’m hoping to boil these down

into a few simple, clear rules and infor-

mation about when to trump them, and

why. I’ll discuss the most provocative

ones in a future column. Who knows, we

might even find one consistent rule about

consistency. That would be a good thing

— wouldn’t it? q

The Hobgoblin of
Little Minds

NEVERWINTER NIGHTS may not always be consis-
tent, but it does have lots of hobgoblins!

n o a h f a l s t e i nB E T T E R B Y D E S I G N

N O A H F A L S T E I N | Noah is a 23-year veteran of the game

industry. His web site, www.theinspiracy.com, has a description of

The 400 Project, the basis for these columns. Also at that site is a

list of the game design rules collected so far, and tips on how to

use them. You can e-mail Noah at noah@theinspiracy.com.

m e l i s s a f e d e r o f fU S E R T E S T I N G

j u n e 2 0 0 3 | g a m e d e v e l o p e r34

GGeettttiinngg
BBeetttteerr

DDaattaa
EEaarrlliieerr

IImmpprroovviinngg GGaammeess
wwiitthh UUsseerr TTeessttiinngg::

Ill
us

tr
at

io
n

by
 D

om
in

ic
 B

ug
at

to

w w w . g d m a g . c o m 35

MM
ost game designers do

not acquire major

feedback on their

products until beta,

when quality-assur-

ance representation on a given product

increases. QA testers are trying to break

the game: they’re finding bugs, they’re

finding balancing issues, they may even

be finding major gameplay problems. But

even if they can offer feedback on design

problems, the game is meant to ship in a

matter of a few short months, so it might

be too late to fix most of them.

How can game teams get design feed-

back earlier, when the game isn’t in final

form yet? Several possible methods come

from a discipline called usability. Central

to the concept of usability is the evalua-

tion of users, or target audience. By bor-

rowing concepts from the field of usabili-

ty and applying them to games, designers

can get ongoing data on how to improve

their games right from the consumer.

What Is Usability?

U sability is a field of study where a

product is tested on actual users

for efficiency, effectiveness, and satis-

faction throughout development. These

three measures help to determine if the

design goals of a product are being met.

In the case of productivity software,

testing these elements of usability helps

to ensure that the user can meet the

product’s goals, that the user can

achieve them in a way that expends the

least amount of energy, and that the

software provides an overall satisfacto-

ry experience to the user. Often in pro-

ductivity software, efficiency and effec-

tiveness are the focus of testing,

because these are the main selling

points for businesses, the major buyers

of the products.

How Usability Applies
to Games

W ith games, we have an entirely

different situation from produc-

tivity software. By selling to individuals

rather than businesses, there is an incredi-

ble amount of competition, both from the

vast amount of games on the market and

from all the other types of entertainment

consumers can choose to buy and engage

in at any given time. We are also selling

an experience, not a tool. We want play-

ers to be able to interact with the game’s

interface efficiently and effectively, and

we want them to play through levels as

close to our ideal path as possible. Above

all else, we want them to have fun.

Using usability terms, then, we can

and should be testing for effectiveness

and efficiency, but for games we want

to focus our efforts on measuring satis-

faction. These usability measures can

help us to judge whether players are

able to use the controller adequately,

check their status in the game correctly,

use menus without frustration, make

their way through levels successfully,

learn skills as they progress, be chal-

lenged appropriately, and have a desire

to keep playing because they are experi-

encing the type of entertainment and

amount of fun they expect.

Test Early, Test Often

G ame designers are no different from

other types of designers. They gen-

erally think they can judge the quality of

their own project and anticipate how

their audience will perceive it. Though

sometimes it is possible to guess how

someone else will interact with a prod-

uct, design choices can only be verified

through testing.

A full-scale production is too large of

an investment to base on hunches or

artistic desires. Commercial game devel-

opment is not creating art for art’s sake;

it’s creating a product to sell to a con-

sumer. Therefore, developers need to test,

at every stage of development, whether

the product is reaching its goals.

Usability vs. Quality
Assurance

In order to assess whether a design is

working well, it needs to be tested on

the target audience — those who are like-

ly to buy and use it after it is released. QA

testers are not representative of the target

audience of a game, because they are pro-

fessional game players. The vast majority

of game consumers do not get the level of

exposure to games that a QA tester has.

Therefore, testers are unlikely to interact

with a game in the way a nonprofessional

player would. Also, since QA testers are

often a part of the actual game team, they,

like designers, are often too close to a

game to judge it in an objective way.

M E L I S S A F E D E R O F F | Melissa works for LucasArts Entertainment Company. She
began her study of the usability of games as a graduate student in the MIME (Master’s in
Immersive Mediated Environments) program at Indiana University. Her thesis, which is an
expanded version of this article, can be found at www.melissafederoff.com/thesis.html.

Volunteer participant Lily Childs plays RTX RED

ROCK during an in-house test at LucasArts.

Getting accurate impressions of a

design is critical, and so is getting the

feedback in a timely way. Acquiring

information about a design late in devel-

opment can mean one of two things:

either the necessary changes are not

made and the product is not improved,

or changes are made and the product is

derailed from its production cycle. If

feedback is acquired about design deci-

sions as they are being made, before

large investments of time are made in

them, the product will more easily be

improved.

Implementing Usability
Techniques

U sability offers the game development

industry different methods from

which to choose for evaluating games.

These methods vary in the type and qual-

ity of data they produce based on the

resources available to implement them.

Some methods — such as expert evalu-

ations — do not require the cost of labs

and participant compensation, but they

do require the cost of having a usability

professional run the tests. Other meth-

ods, like play-testing, can be done in-

house to avoid participant compensation

and coordination costs, but still require

employee time.

No matter what method is chosen,

usability testing costs money up-front,

but investing in it can save time by

avoiding costly mistakes and should

increase the overall quality of products if

performed correctly.

Beginning Steps

B efore engaging in any usability tests,

it’s best to incorporate extra time

into the production cycle for testing and

fixes so that changes can be made as

problems are found. Doing multiple

rounds of testing is important for finding

new problems as they arise, as well as for

verifying that any changes that have been

made are working.

Concept testing. Ideas can be tested

even before they hit the digital realm.

Reading story scripts or showing concept

art to members of the identified target

audience can help display what ideas are

resonating and what ideas are not getting

across the way the designer intended.

Prototyping. After an idea is concept

tested, it can be prototyped. This can be

on paper, such as a story flowchart or an

interface mock-up, or it can actually

involve creating a mini playable version

of the game. A playable version could

involve designing a level that incorpo-

rates all of the important components of

j u n e 2 0 0 3 | g a m e d e v e l o p e r36

U S E R T E S T I N G

Microsoft Game Studios User-Testing Group Usability Lab: observer side.

Microsoft Game Studios User-Testing Group Usability Lab: participant side.

the game. When a playable prototype is

developed, any technological or strategic

concepts can be tested for viability. But

the benefits go far beyond that.

With a prototype, all critical game ele-

ments can be analyzed before they are

invested in too greatly. These elements

are all created during preproduction with

a smaller team, which should save the

cost of developing them. Any major

obstacles should be found early so that

fixes or alternate paths can be deter-

mined before the production is fully

underway. Since the preproduction team

is small, it also gives the core team time

to gel together and figure out their

processes before taking on the added

responsibilities of team management.

Play-testing. Once a playable build

exists for a game, play-testing can begin.

During a play-test, someone plays a game

and offers feedback on their experience

with it. This can be done with in-house

participants or out-of-house participants

and can range from formal to informal.

For instance, at LucasArts there is an

informal in-house play-test group. Any-

time a team wants feedback on their

product, they can call on a group of vol-

unteers to play their game for them.

Recently, play-testers were requested to

play an original action-adventure title,

RTX RED ROCK. Volunteers were sched-

uled for sessions at a level designer’s desk

and asked to play a specific level of the

game for two hours while members of the

game team watched and took notes. The

participants were asked to think out loud

while they played so that the team could

gain better insight into what choices they

were making as they progressed through

the assigned level.

The game team felt that the feedback

improved the levels greatly, and plan to

do more testing in the future. Overall,

the cost and time involved was low, and

the impact on the game was high.

Mainly, the team laments not having

begun these tests earlier and not having

enough time to address everything the

tests revealed about the game.

Play-testing can help teams in seeing

how actual players interact with the

product. The team is too close to the

design to see objectively, and the data

collected from these exercises can be

very enlightening.

Offering the opportunity for open-

ended feedback at the end of a play-test

can elicit even more insight into the

experience with the product. Asking

questions such as “What did you like

best (or least) about the game?” can

allow teams to anticipate what is or is

not fun about the game at a point when

gameplay can still be adjusted.

Advanced Measures

I n-house play-testing provides valuable

feedback, but the information gath-

ered still isn’t as accurate or helpful as it

could be if greater resources were avail-

able. This type of testing is not truly

reflective of a target audience, because

even if the participants fall into the cor-

rect demographic (genre of game, age,

gender, and so on), they are still coming

to the test with much more game knowl-

edge than an average consumer would

have. They know more about games and

game development in general, and they

are within the company, which means

they inevitably are bringing some precon-

ceived notions about the product with

them to the play-testing session.

Play-testing with outside users. Using

outside participants instead of people in-

house requires greater resources. First of

all, compensation is required to encour-

age people to attend sessions. Money,

copies of games, or other company mem-

orabilia can serve this purpose. The sec-

ond expense is the overall effort it takes

to schedule participants in a timely way.

Before testing begins, the facility in

which the participant is to be tested has to

be determined. They can simply play at a

designer’s desk, although such a setup

potentially skews the data. Participants

may feel compelled to try to please the

designer, since he or she will be present,

which can alter how they evaluate the

product and what sentiments they choose

to express while thinking aloud. The

designer may also find it extremely diffi-

cult not to intervene in the test in some

way. To keep designers from altering the

test process and results, they ideally

j u n e 2 0 0 3 | g a m e d e v e l o p e r38

U S E R T E S T I N G

Lily Childs thinks aloud while playing RTX RED ROCK during an in-house LucasArts test, as team
members Harley Baldwin, Tim Miller, and Shara Miller take notes.

should observe from a separate room

either through one-way glass or on video.

Play-testing doesn’t have to be a one-

on-one experience with a designer. A par-

ticipant can play a portion of the game

for a given time frame and then offer

feedback through a questionnaire. Once

participants get a taste of the game, they

can offer a subjective perception about

the product’s overall fun factor.

Questionnaires. Creating a scientifically

sound questionnaire is a tricky business

and ideally requires a psychology expert.

Depending on how a question is phrased,

it will generate a different answer. In order

to get the most accurate data possible,

questions have to be developed with the

least likelihood of leading the person to

answer in an anticipated or predictable

way. Getting someone to create question-

naires and analyze the data is expensive.

The data resulting from this type of test,

though, will be quantitative and better

able to guide the design revision process.

Knowing the percentage of people who

felt positively or negatively toward certain

facets of the game can help the team pri-

oritize which changes to make in the

amount of time available.

Structured usability evaluations. While

play-testers can work en masse in a big

enough lab, structured usability tests are

run individually. In a structured usability

test, information can be acquired about

efficiency and effectiveness, rather than

satisfaction as in play-tests. If designers

want to know whether users are learning

required tasks as they are playing, whether

tasks and or levels can be completed with-

out too much confusion, or whether a con-

trol scheme feels intuitive, structured

usability testing is a great method to use.

To use this method, tasks to be per-

formed are established prior to testing.

Usually, someone familiar with the game

will run through the tasks and establish

an ideal time for each one. Then, a user

is asked to perform them while thinking

aloud. As the participants progress, the

following is noted: whether they can suc-

cessfully accomplish each task, how long

they take to accomplish it, and anything

they say or do to indicate how they are

working to achieve each goal. In the

usability field, six to eight users can

uncover the vast majority of usability

problems with each task. While it’s

promising that so few users are needed to

find the majority of design problems,

there is no guarantee that the solution

implemented for any problem is success-

ful unless it too is tested.

For game development, a variation

called RITE (Rapid Iterative Testing and

Evaluation) might solve some of the time

issues with finding and resolving usability

issues using the standard method. In this

technique, developed by Microsoft Game

Studios User-Testing Group (see For More

Information), a participant engages in

particular tasks and then the design is

changed immediately based on the results

before another user is run. This way, a set

of users are not experiencing the same

problems over and over again, but rather

verifying whether past issues have been

resolved. This method yields fast results

and makes the most of each participant’s

involvement, but requires the develop-

ment team to have time as testing occurs

to make the ongoing changes.

Expert evaluations. Beyond user-testing

w w w . g d m a g . c o m 39

F O R M O R E I N F O R M AT I O N

GAME-SPECIFIC USABILITY RESOURCES
Microsoft Game Studios User-Testing
Group:
www.microsoft.com/play-test/publication
Federoff, Melissa. “Heuristics and Usability

Guidelines for the Creation and
Evaluation of Fun in Video Games.”
Master’s thesis, Indiana University, 2002.

www.melissafederoff.com/thesis.html

GENERAL USABILITY RESOURCES
Dumas, J., and J. C. Redish. A Practical

Guide to Usability Testing. Norwood, N.J.:
Ablex, 1993.

Nielsen, J., and R. Mack. Usability
Inspection Methods. New York: John
Wiley and Sons, 1994.

Norman, Donald. The Design of Everyday
Things. New York: Doubleday, 1990.

Jakob Nielsen’s Web Site
http://useit.com

ONLINE GUIDE TO USABILITY RESOURCES
www.usabilityfirst.com

Microsoft Game Studios User-Testing Group Play-test Lab cubicle.

methods there are expert evaluation

methods, which can be utilized by

usability professionals. These evaluations

do not require users, but do require

someone who knows how to anticipate

user behavior. While these methods do

not yield data with the same amount of

validity as user testing, they can help to

uncover usability problems in a faster,

cheaper way when necessary.

One of the most common expert eval-

uation methods used by usability profes-

sionals is the heuristic evaluation.

Heuristics are agreed-upon standards

that are used to evaluate a design. To do

a heuristic evaluation, the usability pro-

fessional makes one pass through the

product to become familiar with it, and

then makes a second pass to determine

whether it is meeting or failing each

heuristic. Jakob Nielsen has created

heuristics for software interfaces, but an

agreed-upon list of heuristics does not

exist yet for games. Table 1 shows one

possible list of heuristics for games.

Another expert usability evaluation

method that could be applied to games

is the cognitive walkthrough. During

this technique the usability professional

walks through a scenario and tells a

convincing story about whether the

determined path for players would be

the one they would actually take. This

would be a particularly strong method

to use with games that have a linear

structure to make sure that the expected

path for the players is the one they will

likely follow.

Raising the Bar

T he field of usability offers developers

many methods to determine the effi-

ciency, effectiveness, and satisfaction of

product designs throughout development.

The data resulting from the empirical

testing of users can help designers to

make informed decisions and improve

the overall quality of their games. Many

games are already taking advantage of

usability testing to improve player expe-

rience and satisfaction, which will ulti-

mately raise the bar for all games in

terms of consumers’ expectations. q

j u n e 2 0 0 3 | g a m e d e v e l o p e r40

G A M E H E U R I S T I C S

TABLE 1. Game heuristics developed during a thesis case study performed by the author. They
were compiled after reviewing relevant literature and observing and interviewing a develop-
ment team. They are a starting point for discussion; further research is required in order to ver-
ify them. The project is available online in its entirety at www.melissafederoff.com/thesis.html.

1 Game Interface Controls should be customizable and default to industry-
standard settings

2 Game Interface Controls should be intuitive and mapped in a natural way
3 Game Interface Minimize control options
4 Game Interface The interface should be as non-intrusive as possible
5 Game Interface For PC games, consider hiding the main computer interface

during gameplay
6 Game Interface A player should always be able to identify their score/status

in the game
7 Game Interface Follow the trends set by the gaming community to shorten the

learning curve
8 Game Interface Interfaces should be consistent in control, color, typography,

and dialog design
9 Game Interface Minimize the menu layers of an interface
10 Game Interface Use sound to provide meaningful feedback
11 Game Interface Do not expect the user to read a manual
12 Game Interface Provide means for error prevention and recovery through the

use of warning messages
13 Game Interface Players should be able to save games in different states
14 Game Interface Art should speak to its function
15 Game Mechanics Mechanics should feel natural and have correct weight

and momentum
16 Game Mechanics Feedback should be given immediately to display user control
17 Game Mechanics Get the player involved quickly and easily
18 Gameplay A clear, overriding goal of the game should be presented early
19 Gameplay There should be variable difficulty and multiple goals for

each level
20 Gameplay “A good game should be easy to learn and hard to master”

(Nolan Bushnell)
21 Gameplay The game should have an unexpected outcome
22 Gameplay Artificial intelligence should be reasonable yet unpredictable
23 Gameplay Gameplay should be balanced so that there is no

definite way to win
24 Gameplay Play should be fair
25 Gameplay The game should give hints, but not too many
26 Gameplay The game should give rewards
27 Gameplay Pace the game to apply pressure to, but not frustrate the player
28 Gameplay Provide an interesting and absorbing tutorial
29 Gameplay Allow players to build content
30 Gameplay Make the game replayable
31 Gameplay Create a great storyline
32 Gameplay There must not be any single optimal winning strategy
33 Gameplay Use visual and audio effects to arouse interest
34 Gameplay Include a lot of interactive props for the player to interact with
35 Gameplay Teach skills early that you expect the players to use later
36 Gameplay Design for multiple paths through the game
37 Gameplay Players should be rewarded with the acquisition of skill
38 Gameplay Build as though the world is going on whether your character is

there or not
39 Gameplay If the game cannot be mode-less, it should feel mode-less to the

player

U S E R T E S T I N G

g u i l l a u m e p r o v o s tM A X I M I Z I N G E F F I C I E N CY

j u n e 2 0 0 3 | g a m e d e v e l o p e r42

L ast month, we reviewed per-

formance at a high level,

and we looked at how level

design and environmental

interactions affect it. Since

most of the theory was also explained in

the first part, I strongly suggest that

readers get familiar with the concepts

introduced last month before reading this

section: you’ll need to know when and

what to optimize before making any use

of ‘how’ to optimize.

We saw last month that meshes could

be transform-bound or fill-bound. I’ve

given a more complete picture of the pos-

sibility space here through the generic

hardware pipe shown in figure

3D_Pipe_2C.

If you are data-bound, then the

amount of data transferred is probably

also causing transform problems (too

many vertices) and/or fill problems (too

much texture data). Data-related prob-

lems generally arise through a collection

of objects, and not by single objects in

isolation. If you find that you’re clogging

the BUS, then you should redistribute

your texture and vertex densities across

your scene (See last month’s description

of this). If you are CPU-bound, then it’s

basically out of your hands: the pro-

gramming team will need to take a hard

look at their code.

Optimizing transform-
bound meshes

I f design wants marching armies of

zombies attacking the player, you’ll

need to make sure they don’t put the ren-

derer (and artist) on death row by mini-

mizing their transform cost.

We saw previously that the cost of a

transform-bound mesh is:

Transform cost ≈ Vertex Count *

Transform Complexity

Hence, we need to reduce the trans-

form complexity or the number of ver-

tices. You can somewhat reduce the

transform complexity by plucking out

bones you don’t really need, but you

should consider using a less expensive

type of transform first. If you can

approximate a morph target accurately

enough with a few bones, you’ll save on

transform complexity. If you engine is

optimized for non-weighted vertex blend-

ing – where vertices can be affected by

only one bone – see if you can’t substi-

tute your vertex-weighted mesh with a

clever distribution of bones that take no

vertex weights. In any case, take the time

to consult with the programmers as they

may have insights on better transform

techniques you can use to lower your

transform complexity.

Space-farers make
babies

B efore you go on plucking vertices

out of your mesh, I’ll let you in on a

secret: the vertex counts in your typical

modeling package don’t reflect reality. As

they travel down the pipeline, vertices get

split, and re-split, ad nauseaum. Vertex

splits adversely affect transform-bound

meshes by adding spatially redundant

vertices to transform. In theory, vertices

can get split as many times as they touch

triangles, but in practice, total vertex

counts generally double or triple. If

you’re smart about it, you can lower this

G U I L L A U M E P R O V O S T | Originally hired at the age of 17 as a lowly system pro-
grammer writing BIOS kernels for banks, Guillaume has been trying to redeem himself
ever since. He now works as a 3D graphics programmer at Pseudo Interactive and sits on
his local Toronto IGDA advisory board. You can contact him at depth@keops.com.

The Hardware
Pipe

Beautiful,
Yet Friendly

Part 2:

w w w . g d m a g . c o m 43

split ratio dramatically and make your

mesh a whole lot more performance-

friendly without removing a single vertex.

Let’s first examine the nature of the

splits. As I mentioned before, graphic

hardware thinks in terms of surfaces1,

not objects. So the first vertices that get

‘split’ are those lying on the boundaries

of two different surfaces. Think of it in

your head as: a vertex cannot be shared

across multiple materials (figure

ALL_SPLITS_1C – slot B)

Similarly, renderers typically do not

allow vertices to share polygons with dif-

ferent smoothing groups, or vertices that

have different UV Coordinates for differ-

ent triangles. So vertices that lie on the

boundaries of two different smoothing

groups are split, and vertices that have

multiple UV coordinates (they lie on the

boundaries of discontinuities in UV

Space) will also cause splits2 (figure

ALL_SPLITS_1C – slots C and D).

There are several ways to simply mini-

mize individual types of splits.

Intelligently combining and stitching tex-

tures together, for example, can help

minimize material based-splits.

UV space discontinuities tend to be a

bit trickier. Mapping an element without

any UV break means that you’ll have to

find either an axis of symmetry, or at the

very least a ‘wrapping point’ on your

mesh.

If you can get away with using map-

ping generators, such as planar, cylindri-

cal or cubic mappings, you can minimize

or altogether eliminate UV space discon-

tinuities. Ball-jointed hips and shoulders,

for example, can make the resulting arm

and leg elements ideal candidates for

such techniques.

If you need to split the mesh in UV

space, both 3DStudio Max 5.0™ and

Maya™ have elaborate UV mapping

tools that permit you to stitch UV seams

in order to minimize the damage3. Its

generally well worth spending the time to

optimize your mapping in UV space since

it will also both simplify your texturing

pass and minimize the texture space you

will actually need for the object. When

no axis of symmetry existed, we found

that treating the texture as pieces of cloth

that you ‘sow’ up worked well to mini-

mize UV splits when texturing

humanoids. (Figure UV_SPLIT_2C)

If you are building a performance criti-

cal mesh, then it’s probably best that you

fine-tune and optimize the smoothing

groups by hand. Remember that the goal

isn’t to minimize the number of different

smoothing groups, but rather the number

of boundaries that separate those

smoothing groups. You can also ‘fake’

smoothing groups by using discrete color

changes in the texture applied to it,

avoiding splits altogether, although this

may not result in the visual quality you

are attempting to achieve.

Another way to look at it altogether is

to ‘reuse’ vertex splits. For example I

said earlier that renderers allow one

material per vertex and one smoothing

group per vertex. In other words, if you

have a smoothing group and a material

id group that occupy the same set of

faces, they’ll get split only once. The

same goes for UV discontinuities: if they

occur at smoothing group boundaries,

then they won’t cause an extra split to

occur.

For the record, if your mesh is defi-

nitely transform-bound then it is general-

ly more important for you to save on

vertex splits than to save on texture

memory. If that means authoring an

extra texture for the mesh in order to get

rid of individual diffuse-color based

FIGURE 1. The visibility spectrum in a portal-enabled visibility engine. In camera A and B, the vis-
ibility spectrum is closed off using a door that disables the portal. In camera C, transition zones
keep the player from seeing into the next area. The very small visibility spectrum in C lets us
place a highly detailed statue that we could not afford in the other areas.

AA

AA

BB

BB

CCCC

materials or UV breaks, then it’s a fair

trade-off.

This brings us to normal maps and the

general – and increasingly popular – con-

cept of using high detail meshes to render

out game content. Normal maps are tex-

tures for which every texel represents a

normal instead of a color. Since they give

extremely fine control over the shading

of a mesh, you can replicate smoothing

groups and add a whole lot of extra

shading detail by using them. Since nor-

mal maps are generally mapped using the

same UV coordinate set as the existing

diffuse texture, they do not cause extra

vertex splits to occur, and are in effect

cheaper for transform-bound meshes –

and much better looking – than smooth-

ing groups.

Unfortunately, normal maps cannot

really be drawn by hand: they require

specialized tools to generate them and

higher resolution detail meshes if you

want to take full advantage of their

potential. Because of the involved pixel

operations required to support them,

they are also not supported on all hard-

ware platforms.

At the end of the day, make sure you

absolutely avoid checkerboard-like mate-

rial switches, where you consistently

cycle between materials and, unless your

programmers specifically support it, set-

ting whole objects as flat-shaded by hav-

ing every individual faces be a different

smoothing group (Figure FLAT-

SHADE_1C).

If they strip well, GPUs love them

When I originally set out writing this

article, I was actually naïve enough to

think I could safely cover solid guidelines

that covered all mainstream console sys-

tems, and all recent PC-based video-cards

without encountering critical system spe-

cific guidelines. Then reality hit: I was, as

always, overly optimistic.

Some systems don’t support indexed

primitives, and some don’t have a T&L

transform cache. In either case, your sur-

faces’ transform cost will be significantly

affected by their ‘strip-friendliness’. If

your hardware does support both, then

strip-friendliness is less of a performance

issue.

A triangle strip is a triangular repre-

sentation some systems use in order to

avoid transforming a vertex multiple

times if it’s shared amongst one or more

triangle(s). In a triangle strip, the first

three vertices form a triangle, but every

successive vertex also forms a triangle

with its two predecessors. When graphic

processors draw these strips, they only

need to transform an additional vertex

per triangle, effectively sharing the trans-

form cost of the vertices with the last

(and next) triangle.

Stripping algorithms ‘close a strip’

(effectively increasing transform time)

when there are no vertices they can

choose in order to form a new triangle.

This typically happens at tension points

(Figure STRIP_1C), where a single vertex

is shared amongst a very high number of

triangles (8 or more triangles).4

Since tension points are always con-

nected to a series of very thin triangles,

avoiding sliver triangles and distributing

your vertex density as equally as possible

on the surface of your mesh will general-

ly help the stripping process.

Most good triangle stripping algo-

rithms will automatically re-triangulate

triangles lying on the same plane5, but

they cannot reorient edges binding faces

on different planes.

Transform bound meshes conquered

Okay, so knowing about all these tech-

nical details can make a transform-bound

mesh up to three times more efficient if

you’re smart about what you’re doing,

but it’s a lot of work. Remember to

always ask yourself if you need to opti-

mize a mesh before you go on with all

the hard work. Otherwise, use these tech-

niques opportunistically. In the end, hav-

ing a tool that helps visualize where ver-

tex splits occur is tantamount to building

truly optimized meshes. As a summary of

things to look out for, here’s an optimiza-

tion checklist for transform-bound mesh-

es:

Build one or more LOD (Level of

Detail) meshes for the object

Use as few bones and vertices as you

can, try decreasing the transform com-

plexity

Use as few material surfaces as you

can get away with; consider texturing

your mesh instead of using several differ-

ent diffuse colors.

Use UV generators to minimize UV

discontinuities

Get rid of smoothing group breaks you

don’t really need, or use discreet color

changes to fake them, or use a normal

map

Match the remaining material bound-

aries, UV-space boundaries and smooth-

ing group boundaries

Validate your invisible edges and look

out for tension points.

Avoid sliver triangles and try to make

the vertex density as uniform as possible

across the surface of the mesh.

If you think that your mesh is fill-

bound instead of transform-bound, then

do not do any of the above. Combining

materials into a single texture applied to

a fill-bound mesh, for example, might

actually hurt your performance by caus-

ing cache misses to occur more frequent-

ly.

Optimizing Fill-Bound meshes

We saw earlier that the cost

associated with drawing fill-bound mesh-

es was a function of three things:

Fill cost ≈ pixel size * draw complexity

* texel density

You can’t exactly make your

walls any smaller than they are, but you

j u n e 2 0 0 3 | g a m e d e v e l o p e r44

C O N T E N T O P T I M I Z AT I O N

should avoid overlaying sev-

eral large surfaces within the

same visibility space. A typi-

cal example of this would be

to have an entire room’s wall

covered with an aquarium

(the back-wall and the glass

window create two layers), or

successive sky-wide layers of

geometry to simulate a cloudy

day. Transparent and additive

geometry tends to accumulate

on-screen, potentially creating

several large layers of geome-

try the renderer needs to

draw, and creating a fill-relat-

ed bottleneck.

If your export

pipeline supports double-

sided materials, be wary of

using them arbitrarily on

large surfaces: you can easily

double your fill rendering

costs if you are forcing the

render to draw wall segments

that should be culled. On

some platforms, back-face

culling is not an integral part

of the drawing process, and

culling individual polygons

becomes a very expensive

task; if you are authoring

content for such platforms,

you should ensure that walls

that don’t need back faces

don’t have any.

The bigger the trian-

gles, the less texture space you want to

address. Unfortunately, in practice, mesh-

es that take up the largest portion of

screen space also tend to also gobble up

the most texture space, and so they are

prime targets for being fill-related bottle-

necks.

There are two things you should do to

minimize your texture space: make sure

you are using/generating mip-maps, and

choose your texture formats and size

intelligently.

A simple table illustrates simple sav-

ings you can do by making smart choices

about your texture formats (Figure

DXTC_2C). Note that, if your textures

are smaller than 32x32 texels, it’s proba-

bly not a good idea to palletize them,

since the cost associated with uploading

and setting up the palette is larger than

just using the un-palletized version. If

your hardware supports native compres-

sion formats, such as DXT1 (DirectX

Texture Compression), it’s probably a

good idea to use them over palettes.

If you can get away with using diffuse

colors only on a fill-bound surface, so

much the better: on several

platforms, drawing un-tex-

tured surfaces is faster then

drawing textured ones.

As a general rule we

mentioned earlier that it

was a fair trade-off to sac-

rifice texture space in order

to prevent UV splits in

transform-bound meshes.

When you mesh is fill-

bound, the contrary rule

applies: if splitting the ver-

tices in UV space will help

you save texture space, it’s

also a fair tradeoff.

Finally, making conserva-

tive decisions on the nature

of the materials you apply

to fill-bound meshes will

pay off in performance.

The number of texture

passes and the complexity

of their material properties

will always be the biggest

factor at play when dealing

with fill-bound surfaces.

Texels miss the boat

Some of us deal with

the ‘crème de la crème’

when it comes to hardware,

but the vast majority of us

need to contend with mar-

ket realities. In the console

market, teams get to really

push a system to its limits,

but they are also stuck with those limits

for a very significant time period.

If you count yourself in that situation,

then chances are you need to take texel

cache coherency into account.

Graphic Processors typically

draw triangles by filling the linear, hori-

zontal pixel strips that shape them up in

screen-space. Almost all current hard-

ware can do this by ‘stamping’ several

pixels at a time, greatly decreasing the

time it takes to fill the triangle.

j u n e 2 0 0 3 | g a m e d e v e l o p e r46

C O N T E N T O P T I M I Z AT I O N

FIGURE 2. Transform/fill parallelism.

TRANSFORM BOUND

MESH1
XFORM

MESH1
FILL

MESH2
FILL

STALL STALL STALL

Frame Rendering Time

Rendering Time Rendering Time

MESH3
FILL

MESH2
XFORM

MESH3
XFORM

MESH1
XFORM

MESH1
FILL

MESH2
FILLSTALL STALL

Frame Rendering Time

MESH3
FILL

MESH2
XFORM

MESH3
XFORM

FILL RATE BOUND

NON-OPTIMAL OPTIMAL

For every textured pixel the

card draws, it needs to retrieve a certain

amount of texels from its associated tex-

ture6. It does this through a texel cache,

which is just basically a scratchpad on

which the card can pastes texture blocks.

Every-time the card draws a new set of

pixels it looks into its cache. If the texels

it needs are already present in the

‘scratchpad’, then everything proceeds

without a hitch. If some texels it needs

are not in the cache, then the card needs

to read in new texture chunk(s) and

place them in the cache before it can pro-

ceed with drawing. This is a texture

cache miss.

A good texel cache coherency

means few texture cache misses occur

when drawing a surface. A bad texel

cache coherency will significantly

increase the time it takes to draw a sur-

face. Most PC-based systems and a few

of the current high-end consoles will

automatically ensure a good texel cache

coherency by choosing the proper mip

level at every pixel they draw.7 But other

systems rely on the fact that the texel

density across the surface area of a mesh

in geometric space is constant for their

pixel choice to be correct.

On such systems, non-uniform

texel densities will cause the card to

‘jump’ in texture space from pixel to

pixel. This can cause both severe texture

aliasing problems, and will consistently

cause texture cache misses to occur as

the card tries to fetch texels that are not

in its ‘scratchpad’.

As an artist, you can solve both those

visual artifacts and performance prob-

lems by ensuring you uniformly distrib-

ute texel density across your mesh

(Figure TEXDENS_2C). You can do this

by ensuring the size and shape of your

faces in UV space is roughly proportional

to their counterparts in geometrical

space. This is a concept that makes sense

on an artistic perspective as well: if a

face is bigger, it should get more texture

detail (a larger UV space coverage) than

a smaller one.

The concept extends to objects too: if

an object is smaller, it’s likely to be

smaller on screen as well, and should get

a smaller (less-detailed) texture.

Fill-Bound surfaces Conquered

Here follows the list of things to look

out for when constructing fill-bound

geometry:

Build mip-maps for all textures

Shy away from large surfaces with

complex material properties (such as

bump-maps, and glossy materials)

Do not overlay several very large

transparent or additive layers.

Don’t make large wall/ceiling segment

double-sided unless you absolutely have

to. If your engine doesn’t support back-

face culling, make sure to get rid of large

unnecessary back faces.

Choose your texture formats intelli-

gently to save texture space. If you do

not have access to compression formats

such as DXT1, see if you can’t palletize

textures.

Use small texture swatches or diffuse

materials instead of larger textures, even

at the expense of vertex splits.

Tweak your UV maps to distribute

your texel density as uniformly as possi-

ble across the surface.

The good news about fill-bound sur-

faces is that, although adding more ver-

tices probably won’t help8, it probably

won’t make much of an impact until

your vertex density is high enough for

your mesh to become transform-bound.

Conclusion

If your head is spinning by now, fol-

low Douglas Adams motto: don’t panic.

Although there is a lot more to perform-

ance-friendly content than meets the eye,

building efficient content can become an

intuitive, natural process.

Whether they are vertices, texels,

objects or textures, it’s more about uni-

formly distributing them then about

plucking out detail. This is a very power-

fully intuitive concept: things that are

smaller on screen should get less detail

then things that are bigger on screen.

Programmers can always optimize

their code to go just a little bit faster. But

there’s a hardware limit they can never

cross without sacrificing visual quality. If

you are pushing the limits of your sys-

tem, chances are that it is your content –

not code – that drives the frame-rate in

your game.

1 A surface, as reviewed last month, is

the set of all faces in an object that share

the same material properties.

2 If you have objects with multiple UV

channels, the splits will occur successive-

ly through every channel.

3 Maya™ even has a UV-space vertex

counter, which should reflect the number

of vertices in your mesh after UV splits.

4 Certain renderers support triangle

fans. Fans make tension points very effi-

cient. But given that current hardware

only supports one type of primitive per

surface, they tend to rarely be supported

in practice.

5 Verifying this with the programmers

is safer.

6 Since the pixels are unlikely to fall

directly on a texel, renderers typically set

up video-hardware for bi-linear filtering,

which fetches and blends four texels for

each texture involved.

7 Some systems also support Tri-linear

filtering, which blends texels across mip-

map levels at every pixel for maximum

image quality. Tri-linear filtering (also

referred as linear mip-filtering) pulls in

more texels, and is significantly more

expensive for fill-bound surfaces.

8 This isn’t entirely always true. Very

large polygons can trash the texture

cache on some systems, effectively

increasing fill-time. In such cases, tessel-

lating the polygons will actually help.

j u n e 2 0 0 3 | g a m e d e v e l o p e r48

C O N T E N T O P T I M I Z AT I O N

j u n e 2 0 0 3 | g a m e d e v e l o p e r50

C O N T E N T O P T I M I Z AT I O N

FIGURE 3. The fill cost of a mesh decreases with distance, while the
transform cost does not. This can cause meshes to shift from being fill-
bound to being transform-bound as they recede into the distance (cen-
ter). If a mesh has a very high vertex density, then its cost may stay the
same regardless of distance (right). To reduce the associated transform
cost of a mesh in conjunction with its diminishing fill costs, lower-level-
of-detail meshes are used (left).

FAR
TRANSFORM TRANSFORM TRANSFORM

FILL FILL FILL

RENDER TIME RENDER TIME RENDER TIME

FAR FAR

NEAR
TRANSFORM TRANSFORM TRANSFORM

FILL FILL FILL

RENDER TIME RENDER TIME RENDER TIME

NEAR NEAR

w w w . g d m a g . c o m 51

FIGURE 4. Non-uniform density mesh.

TRANSFORM
BOUND

FILL RATE
BOUND

ACKNOWLEDGEMENTS

Thanks to Danny Oros for providing both
the illustrations and several rounds of
feedback. Thanks also to Benoit Miller
from Matrox, Sébastien Dominé and Sim
Dietrich from Nvidia, Guennadi Riguer
from ATI, and Ryan McLean from
MagiTech, for kindly answering ques-
tions and reviewing the article. And last
but not least, thanks to the rest of the
Pseudo team, for playing the guinea pigs
on this article.

F E A T U R E A R T I C L E

m o n t h 2 0 0 2 | g a m e d e v e l o p e r52

t e d p r i c e

j u n e 2 0 0 3 | g a m e d e v e l o p e r52

T E D P R I C E | Ted is president and founder of Insomniac Games.

Insomniac Games’

T he scene: Twenty develop-

ers lounging on a sun-

drenched porch overlook-

ing Barham Boulevard in

Los Angeles, drinks in

hand, enjoying the warm breeze and lis-

tening to traffic rumble by below. The

occasion: Our first post-SPYRO brain-

storming meeting.

It was late spring 2000, and even

though we were still in production for

SPYRO: YEAR OF THE DRAGON (our last

SPYRO), we knew we had to start plan-

ning for our first PS2 project. Our prob-

lem was twofold: we had decided not to

develop any more SPYRO games, and we

were deciding whether we wanted to stay

with the platform-action genre. It’s a

familiar scenario for game developers:

the road is wide open, but figuring out

which direction to travel is excruciating.

We had meeting after meeting trying to

narrow down the choices — and with 20

people involved, things got tense and

sometimes depressing. I was driving hard

to move us away from the platform genre

because Al Hastings, our vice president of

technology, had very astutely suggested

that this was the perfect opportunity not

only to expand our abilities but to address

other niches in the console market cur-

rently overlooked by U.S. developers.

After coming up with and discarding

countless ideas, we settled on a concept

best described as a dark adventure. We

wanted to try a game with a bit more

realism and immersion than our previous

efforts. This meant moving away from

bright environments, cartoony charac-

ters, and platform mechanics. This also

meant creating a macro design and story

that were far deeper than those of the

SPYRO series.

We called the concept “I5” (for

Insomniac game #5), and the main char-

acter was a human girl with a staff. She

would fight with the staff as well as use

it to activate magic with special katas —

martial arts moves performed using

directional input. There was a strong

Mayan influence to the overall look of

the game, and the characters and envi-

ronments we planned were more realistic

than anything we had attempted since

our first game, 1996’s DISRUPTOR.

We pitched our game idea to SCEA

and were fortunate to strike a deal very

early in preproduction. Once we had

Sony’s backing, our preproduction team

dove in and began working on PS2 tech-

nology, final macro design, and all of the

elements that would help us create our

first playable.

Within a couple of months, however, it

was clear that things weren’t going well.

First, we couldn’t nail down the main

character. She was too cartoony, and

then too mundane; the colors we chose

ended up looking weird on-screen, and

we couldn’t get the proportions right. In

the past, proportion had never been a

problem, since we had always worked

G A M E D A T A

PUBLISHER:Sony Computer
Entertainment America

NUMBER OF FULL-TIME DEVELOPERS: 40
NUMBER OF CONTRACTORS:1

LENGTH OF DEVELOPMENT: 18 months
RELEASE DATE: November 5, 2002

TARGET PLATFORM:Playstation 2
DEVELOPMENT HARDWARE: PS2 Dev Tools,
PCs: avg. dual 800MHz–1.2GHz with 1GB RAM

DEVELOPMENT SOFTWARE USED:
Insomniac’s own tools suite, Maya,

Photoshop, ProDG, MS Visual Studio,
CodeWright, Deep Paint, ProTools,
Sound Forge, Premiere, Illustrator

NOTABLE TECHNOLOGIES: Much of the
engine technology was developed in-house,

but some very important renderers were
developed by Naughty Dog; sound licensed

from Sony

P O S T M O R T E M

w w w . g d m a g . c o m 53

with nonhuman characters. But we

quickly realized that it’s easier

to spot flaws in human charac-

ters than in nonhuman ones.

Even though our main character

eventually looked acceptable,

she still lacked that je ne sais
quoi which would make her stand out.

Then there was the hardware. We

were making the jump from PSX to PS2

in very little time, and Al Hastings was

shouldering the entire burden with some

help from Mark Cerny, who had written

the original VU code used on the first-

ever PS2 engine. Al and T.J. Bordelon,

tools programmer, were, at the time, try-

ing desperately to get the engine and

tools to the point where the artists could

use them to build and prototype envi-

ronments and characters. Looking back,

I can’t believe they actually got every-

thing to work, and work well, in a mat-

ter of months. Still, the technology was

not yet state-of-the-art, and we all won-

dered how it would fare against the sec-

ond generation of PS2 titles.

But the worst part of the process was

the entire team’s ambivalence about the

project. No one was truly excited about

the game or where it was heading. We

were making it work through sheer

effort. My job was to be the concept’s

champion, but maintaining a positive

demeanor was proving more and more

difficult. Morale was at its lowest in

Insomniac’s nine-year history.

We eventually ground out a first

playable, and while it wasn’t bad, it

P O S T M O R T E M

j u n e 2 0 0 3 | g a m e d e v e l o p e r54

wasn’t great either. And we wanted

something great. Our Sony producers,

who were very polite about their reser-

vations, confirmed our feelings.

Nonetheless, they had reservations. At

one point Connie Booth, our SCEA

executive producer, suggested that we

might want to rethink the direction we

were taking. While being very clear that

Sony would support us with whatever

we decided, she pointed out that not

only would the PS2 adventure category

be crowded upon our planned release

date, she also believed that we were no

longer playing to our team’s strengths.

After digesting her words, Al Hastings,

Brian Hastings — Insomniac’s vice presi-

dent of programming — and I (the three

partners in the company) did some soul

searching and realized that Connie was

right. By pushing on, we could release a

solid adventure game, one that might

even do well. But slogging through anoth-

er year of developing a game no one was

excited about would kill the team.

So on March 20, 2001, we stopped

preproduction of I5 and started over. We

would be going back to our forte, action-

platforming. This announcement moved

the team’s mood lever from reverse to

overdrive. Everyone was energized

and excited about the new

prospects.

Within two weeks of

this decision, we

developed RATCHET

& CLANK’S basic

concept. In a mat-

ter of days, Dave

Guertin, our lead

character design-

er, nailed the two

main characters,

and soon we were brainstorming on the

weapons and gadgets that players would

be using.

Once we got started, we never looked

back. That isn’t to say problems didn’t

exist during the process, but it was the

best and most enjoyable production

experience we’ve had at Insomniac.

What Went Right

1. Prototyping. We had been pro-

totyping gameplay since SPYRO

THE DRAGON, but never to the extent that

we did with RATCHET & CLANK. The

game featured more than 35 weapons

and gadgets, all of which had to be fun

to use. The big problem we faced was

that every weapon and gadget was

woven into the macro design and the

story. If we had to pull one out during

production, the macro design would col-

lapse, which would be disastrous for the

production schedule.

We spent three months building and

programming the weapons and gadgets.

Many of them didn’t survive the proto-

type phase because even though they

sounded good on paper, we

just couldn’t make them

work. A good example was

the Revolverator, a weapon

featuring a large drill bit

which would spin enemies

around and fling them

away. We discovered

that the spinning

slowed down game-

play, and that it

was difficult to

hit enemies,

since the

collision for the drill bit had to be nar-

row to be believable. Another good idea

on paper was the Mackerel 1000, a fish

that would be a replacement for Ratch-

et’s wrench. It sounded funny, but when

we put it in the game the humor lasted

for about three seconds.

We also prototyped enemy layouts and

behavior to a much greater extent on this

project. The majority of our enemies were

well tested and tuned before each level

went into production. This process saved

us a massive amount of time, since we

only built final models and did final cod-

ing once we were sure that the enemies

would work. Conversely, on the Spyro

series we were always ripping things out

and starting over during production, since

we rarely prototyped gameplay. With

RATCHET & CLANK, and for all of our

future projects, gameplay prototyping has

now become an ongoing process.

Finally, to clearly establish the look of

the game, we used our I5 engine to pro-

totype two of the game’s planned envi-

ronments before we had the real RATCH-

ET & CLANK technology up and running.

It was all smoke and mirrors, but it

allowed us to show on-screen what we

imagined the final game would look like

and put to rest a lot of our own fears

about whether or not the game would

stand out visually.

2. Sharing technology with
Naughty Dog. Shortly after

we decided to start over, Jason Rubin,

Naughty Dog’s co-founder, called me and

asked if we’d be interested in checking

out the technology they developed for

JAK & DAXTER. He explained that

Naughty Dog didn’t want anything from

us other than a gentlemen’s agreement to

Some early concept sketches for Ratchet.

P O S T M O R T E M

share with them any improvements we

made to whatever we borrowed plus any

of our own technology we felt like shar-

ing. In an industry as competitive as

ours, things like this just don’t happen.

We went over to Naughty Dog’s

offices and took a look, particularly at

their background renderer. They had

developed some incredible proprietary

techniques to render smoothly transition-

ing levels of detail and instanced objects

very quickly. We brought the code back

to our offices, spent some time getting a

handle on their techniques, and then we

were up and running with a much more

powerful environment engine.

Needless to say, Naughty Dog’s gen-

erosity gave us a huge leg up and

allowed us to draw the enormous vistas

in the game. In return, we’ve shared with

them any technology in which they were

interested, but so far we’ve been the clear

beneficiary of the arrangement.

3. Setting reasonable design
goals. Even though the con-

cept behind RATCHET & CLANK was

ambitious for us (integrating RPG ele-

ments into an action-platformer), we

were careful not to cram too much stuff

into the initial

design.

We had never

made a game

before where we didn’t have to axe one

or more levels at some point in the pro-

duction process because we were out of

time. The RATCHET & CLANK macro

design was more complex, so we could-

n’t afford to rip out a level at the last

moment. Sony had created a tremendous

marketing campaign that relied on a spe-

cific release date, so missing our delivery

dates was not an option. Plus, we were

already releasing pretty late in the year,

and to miss one week of precious pre-

Christmas sales would prove very costly.

For these reasons, we planned the

game layout much more carefully than

we had on past titles. We had a pretty

good idea of how long it would take to

build each level, but we also knew that

plenty would go wrong during the pro-

duction process. So even though we had

time to do 20 levels, we cut back to 18

at the very beginning.

We also made sure that nothing went

into the design unless we were very sure

that it was going to work. Early prototyp-

ing was key here, but so was an attitude of

general restraint. There were a few wild

concepts that everyone was excited about,

but had we integrated them into the

macro, the project probably would have

slipped. Ultimately we were able to put

about 90 percent of what we planned into

the game — a record for us.

4. Focus testing. Most games

go through focus testing at

some point. Publishers and developers

alike want to see how people react to the

game and whether it’s too difficult or too

easy. Because it’s the best way to tune

the gameplay, we’ve focus-tested our

games since the first SPYRO. But with

RATCHET & CLANK we went overboard.

We had four major focus tests during

production. Each focus test featured

another 25 percent of the game until we

were testing the full game at alpha.

More than 200 consumers got to play

the game before release, and the feed-

back we collected was invaluable. By

recording and charting data from the

game, we were able to tune item prices,

adjust challenge difficulty, and change

monetary rewards. Without this exhaus-

tive process the game would probably

have been unplayable.

Just as important, though, was the fact

that each focus test forced us to get the

game working. Along with the other

deadlines it sometimes felt that we were

One of the game’s early production design sketches.

j u n e 2 0 0 3 | g a m e d e v e l o p e r56

always in crunch mode. The gameplay

programmers in particular lived a night-

mare existence between fixing bugs for

the next focus disc and trying to move

ahead with the new levels. But the con-

stant burns kept us on track and on

schedule. Given RATCHET & CLANK’s

scope and complexity, if we had waited

until the end of the project to burn

playable discs, the bug list would have

been overwhelming and we would have

missed our ship date by months.

5. Collaborative design. Every-

one in the company has always

been free to contribute creatively to the

projects. It’s not a requirement, but for

those who are interested it’s an opportu-

nity to affect the direction our games

take. Programmers are encouraged to

contribute to story, artists are asked for

ideas on design, and so on. During

RATCHET & CLANK, a large percentage of

the team contributed ideas outside of

their particular areas of expertise, mak-

ing the game one of the deepest and most

varied titles we’ve developed.

This does not imply that we design by

consensus. There’s a solid structure in

place to ensure that we adhere to the

macro design and remain consistent

with the game’s “flavor.” But adopting

an approach that encourages design par-

ticipation gives us a real wealth of cre-

ativity from which to draw while enhan-

cing the sense of ownership everyone

feels in our games.

What Went Wrong

1. Poor disc-burning process.
Making the switch from CD-

ROMs on the PSX to DVDs on the PS2

sounded like it would be easy. After all,

we survived the challenge of recording

PSX discs with quirky burners and non-

intuitive burning software. What we did-

n’t account for was the incredible

amount of time that building and burn-

ing the DVDs would take.

We had to first transfer the code and

data to the PC on which we would gener-

ate the files necessary to create a playable

disc. Next we’d have to transfer the files

to the burner PC. Then the burner soft-

ware would have to create a disc image,

and finally we could burn the disc. By the

end of the project we were working with

4GB of data. Combining those steps with

slow connections and a burner that we

had to use at only double speed to pre-

vent errors, the entire process took more

than four hours to generate one disc. And

there were many, many places along the

way where something could go wrong,

forcing us to start over again.

There were countless instances where a

level would be out of memory or some-

one would change the memory card for-

mat, breaking everything. But we would-

n’t know about it until the final disc had

popped out of the tray and had been

booted up on a test station. Two mis-

takes like this would cost an entire day.

So why didn’t we change the process?

Based on our PSX-burning experience,

where the system was extremely finicky,

when we had things working on the PS2

we didn’t want to touch it and risk

breaking everything. This was especially

true near the end of the project.

As a result, a few of us didn’t go home

for days at a time near the end of the

project. I remember promising our testers

that if our first gold burns worked, I

would do circuits of the office singing

Britney Spears songs as loud as I could.

Fortunately for everyone in the office,

they didn’t.

The result of our disc-burning pain is

that we’ve now completely overhauled

our system. We believe we’ve halved the

overall disc production time for our cur-

rent project.

w w w . g d m a g . c o m 57

A concept sketch for a location that would eventually serve as planet Eudora.

2. Late start on cinematics.
RATCHET & CLANK has a much

more lengthy and involved story than

any of our previous projects. Oliver

Wade, our animation director, compiled

the scenes and found that we’ve got

more than 60 minutes of movies. Even

though most of them are about 30 sec-

onds long, that’s a lot of animation time.

The problem was that we only gave our

team of seven animators five months to

animate them. That doesn’t sound too

bad until you consider that the anima-

tors creating the movies were also

responsible for the in-game animations.

Therefore they effectively had 2 and a

half months. If you don’t include week-

ends, that’s about 10 seconds per anima-

tor per day. And that’s a lot.

Fortunately, the animators had fin-

ished most of the in-game animations by

the time the movies were in full swing.

But it was still a real challenge. Further-

more, animating the scenes was just the

first step. We had to add programmatic

and 2D effects and convert many of the

animations into MPEGs before alpha,

which stretched many people to the limit.

We got such a late start because we

had to finalize the story, write the

scripts, audition the actors, record the

dialogue, and put the final sound files

together before starting the animation. It

helped somewhat that we took an itera-

tive approach — starting animations as

soon as the first scenes were recorded —

but in general the tardy start created a

lot of stress.

3. Immense level designs. Even

though we tempered our ambi-

tions for the macro design, sometimes we

cut loose and created some absolutely

huge level designs. We had a habit of

wanting to make each level better than

the last, and a few times this tendency

resulted in layouts that made the artists

want to kill the designers.

Early on, we didn’t have a good under-

standing of what “too big” meant. The

first level designs we created were rea-

sonable, but then we decided that we

really needed to show off the power of

the RATCHET technology. We also had

some ambitious gameplay ideas involving

a fight on a moving train and a hover-

board race. This resulted in the Metro-

polis and Blackwater City levels, two of

the biggest in the game. When the artists

saw the layouts they said, “Are you nuts?

There’s no way we can build this in six

weeks!” So the designers went back to

the designs and tried to edit them, but

the levels still ended up being massive.

To the artists’ and gameplay program-

mers’ credit they made these and other

huge levels work, and they did it on time.

And to the designers’ credit, they contin-

ued to find better and better ways to put

more gameplay into smaller areas with-

out sacrificing creativity. In the end, our

level design ambitions pushed the limits

of time and resources we had allotted.

Out of this stress came a more team-

oriented approach to level design, where

we now involve a large number of people

— artists, programmers, sound engineers,

and others — earlier in the design

process. Whether or not levels in our

future games will be smaller remains to

be seen. But with more people involved

at the beginning stages, we can find solu-

tions sooner to balancing the need for

gameplay space in levels with the time

we have available to build them.

4. Maya issues. Maya is a

superb tool for building polyg-

onal environments and characters, and

it’s also great for animation and for pro-

totyping particle effects, rendering, and

many other things. However, early in the

project we had decided to use Maya as

our construction, texturing, lighting, and

gameplay placement tool. We had aban-

doned our in-house tool, Karma, which

we had used previously to do gameplay

placement, texturing, and lighting. What

we didn’t realize was that with the size of

our levels, we would push Maya past the

breaking point.

Even though we set people up with

dual 1.2GHz Dells with superfast graph-

ics cards and a gigabyte of RAM, Maya

would still chug and frequently crash

P O S T M O R T E M

j u n e 2 0 0 3 | g a m e d e v e l o p e r58

A panoramic shot of Kyzil Plateau, on Planet Veldin. Rendering of the Gagdgetron Headquarters, located on Kalebo III.

whenever our levels got up to

around 40MB. And forget

making all 500K poly-

gons in a level visible.

Fortunately, Al

Hastings and T.J. Bdelon

worked valiantly to cre-

ate a suite of plug-ins

and tools that worked with

the Maya API. This solution

didn’t always prevent the crashes that

plagued the artists or the occasionally

corrupted level, but it kept us running

and allowed us to create finished levels

every six weeks.

While Maya has always been and

probably will still be our first choice for

art creation, we’re moving back to our

original approach of using proprietary

tools for things like gameplay setup,

lighting, and texturing.

5. Localization woes. From the

beginning we planned to include

the NTSC and PAL versions of the game

on one disc. This plan created two prob-

lems for us. First, we had to send all of

our assets to Europe for localization in

French, Italian, German, and Spanish as

early as possible. In most cases this meant

pre-alpha, which really put the squeeze on

the animators who were working on the

movies. Second, we knew that we would

end up fixing both functionality and local-

ization bugs at the same time. We antici-

pated that this would create even more

chaos during the last few weeks before we

went gold. And we were right.

Surprisingly, the biggest nightmare for

us was the text localization. We had made

the decision to allow subtitles for all of the

movie scenes; plus we had a lot of text for

the help system and a ton for the menus.

We used spreadsheet databases to ensure

some organization for all of the text (as

opposed to entering localized text in the

actual code, which we did on the SPYRO

series), and this allowed us make updates

and changes quickly. But the system was

also prone to user error when cutting and

pasting changes into the database.

Because we were still fixing TRC

(technical requirement checklist) bugs —

things like memory card messages — we

were making text changes up to a couple

of weeks before gold. We had also added

some text late in the process to support

some of our postgame features.

We made mistakes, and the localiza-

tion folks in Europe made mistakes

when putting fixes into the database. In

addition, it took forever to transfer our

discs to Europe once they were burned

(eight hours to FTP if nothing crashed,

24 hours for a courier). These facts

combined meant that we were still des-

perately trying to resolve some TRC

issues hours before the gold disc was

due. Fortunately, the game shipped on-

time in all territories, but I think it pre-

maturely aged our producer in Europe,

as well as a few of us here.

The Will to Kill

W ith this project, we had to fail to

succeed. Had it not been for the

pain we went through on I5, RATCHET &

CLANK might have never emerged. In

the six months of preproduc-

tion on I5 we learned how

to make games on the PS2,

and we were able to hit the

ground running when we

switched to RATCHET & CLANK.

Most importantly, we were very fortu-

nate to have an extremely supportive

publisher in Sony. SCEA’s Shuhei Yoshida

and Connie Booth helped us make the

agonizing decision to shoot I5 in the

head. But they made sure

we understood that if we

wanted to continue down

that dark path of developing I5 for

release, they would still support us.

Furthermore, Sony never once

threatened to cancel the I5 project or

sever our relationship. Instead, they

helped us to develop what Mark

Cerny calls “the will to kill” —

meaning we grew the balls to vol-

untarily throw out everything we had

worked so hard on for six months and

start over.

The development process that

RATCHET & CLANK represents as a finished

game is the ultimate example of how

developer-publisher relationships can and

should work. Sometimes good teams make

games that aren’t good. When a developer

has the support of a great publisher and

can cut off a nonperforming project in pre-

production without fearing reprisals,

everyone can save millions in production

costs and apply the lessons learned to the

next project. Doing so

may cost money in

the short term, but

ultimately it may

give birth to a

blockbuster,

strengthen the

development

team, and solidify

the relationship

between the developer

and publisher. q

P O S T M O R T E M

j u n e 2 0 0 3 | g a m e d e v e l o p e r60

S O A P B O X b e n s a w y e r

j u n e 2 0 0 3 | g a m e d e v e l o p e r72

Y ou never know

when serendipity

will strike. One

day you’re trying

to figure out

what to do, the next moment the

phone rings and you’re on a

plane to New York to meet with

a major foundation. That was

my situation two years ago, and

now I’m in the middle of what

could be a potentially explosive

new outlet for game developers

and publishers.

The result of that phone call

and airline trip was VIRTUAL U, a

college administration simulation

developed by Trevor Chan and

Enlight Software for the Alfred P.

Sloan Foundation. Today that sin-

gle game, in use at dozens of col-

leges, has pushed me onto the

Serious Games Initiative at the

Woodrow Wilson Center. Serious Games is establishing a series of

projects leading up to the sustained creation of policy and man-

agement games for government and nongovernmental organiza-

tions. Dave Rejeski, leader of the Serious Games Initiative, calls it

“gaming our way to a better future,” a better future for the world

in general. In VIRTUAL U’s case, the better future is someone’s col-

lege education. In a game developer’s case, it’s about a better

future for the individual, the industry, and our society.

The idea behind both projects is that games, or in these

cases, game-based simulations built by game developers, can be

a compelling new generation of entertaining and effective expe-

riential tools for people dealing with complex systems and sys-

tems management issues. The bigger scope is that games as a

media form are serving to disseminate information, knowledge,

and critical thinking. This epiphany isn’t new to game fans or

developers, but it’s quietly becoming such to the world at large,

its governments, and other major forces.

I am not proposing that until VIRTUAL U came along a game

developer hadn’t earned substantial revenues developing a game

for non-entertainment purposes, nor would I suggest game skills

haven’t been applicable to other endeavors. However, what’s

happening now is not the sporadic or disconnected nature of

things in the past or the

second wave of READER

RABBIT eduware. It’s bigger

than that; it’s multi-faceted,

organized, and aimed at

new targets. As Rejeski

points out, “Our govern-

ment spends billions each

year on simulation games

alone.” That’s just one

market, and now the mili-

tary is getting serious about

games (AMERICA’S ARMY is

the tip of the iceberg). As

others have evangelized,

including Digital Game-
Based Learning author

Marc Prensky, the lucrative

corporate market, once

stung by poor e-learning

offerings during the

Internet bubble, is now

waking up. To put some

numbers behind the corporate opportunity, according to free-

lance game consultant (and Game Developer design columnist)

Noah Falstein, Shell Oil spends close to a billion dollars a year in

training and corporate learning. A supermarket chain I met with,

once I told them a game might cost two million dollars, replied,

“That’s what we spend on toilet paper.”

From previous hits or misses in years past, several threads and

a growing history are earning emerging recognition. We are bet-

ter able to preach new applicable uses of games. The Serious

Games Initiative is indicative of this, and we are working to pro-

vide improved visibility for games to be seen as tools, including

ways to see more projects in the mold of SIMHEALTH, VIRTUAL U,

or AMERICA’S ARMY be created. Nor are we alone. M.I.T.’s

Games-to-Teach project is organizing research on an entire

matrix of demonstrated learning capabilities of games. Carnegie

Mellon University’s Entertainment Technology Center is becom-

ing a hotbed of applied game-technology transfer. Both the

International Game Developers Association and the Interactive

Digital Software Association are also making contributions, and

were present at a conference on this subject last February in

Washington, D.C. They know a sustained flow of such products

continued on page 71

Gaming Our Way
to Our Better Future

Ill
us

tr
at

io
n

by
 T

yr
on

e
M

cC
ar

th
y

New Organizations and Pioneering Initiatives
Are Creating New Outlets for Game Developers

and initiatives will pay off exponentially

for the industry. This mix of research and

coordinated outreach, combined with

other initiatives, will burst open the dam.

So what does this mean for your better

future as a game developer? It means

possible new avenues of revenue and a

stabilizing second market to steady

things amid the unstable world of game

development. No doubt there will even-

tually be games — built and funded for

“serious” purposes — achieving

crossover commercial success.

What should your role be? First, you

should realize that this is a different busi-

ness. Serious games require adjusted

practices, which could include forgoing

royalty upside, publicly releasing source

code, creating features for instructors as

well as players, entirely different funding

means (including government contract-

ing), and looking at projects that while

potentially significant, may not result in

a blockbuster payday. Also, project

ramp-ups may be longer, and the clients

may need some “What’s a game and how

does it work?” hand-holding. Many proj-

ects may be smaller in revenue, but there

already exist project budgets with seven

figures attached to them. So if you want

to participate in this new arena, bring

your skills, but adapt your methods.

Finally, Serious Games needs your

help. If we are to bring the full force of

the game industry into new areas, be

they to create simulations for policy

makers and the public or to show that e-

learning can be truly fun, it has to be an

organized vocal effort. You can help by

getting involved with projects such as

ours. We are announcing a number of

initiatives via SeriousGames.org, the

IGDA, and elsewhere, giving you ample

opportunities to contribute, and likewise

benefit. The rewards, besides new rev-

enue, just might include helping to build

a better world. q

B E N S A W Y E R | Ben is president of
Portland, Maine–based Digitalmill, Inc. He
assists several “serious game” projects and
spearheads outreach efforts for the Woodrow
Wilson Center’s Serious Games Initiative.
Contact him at bsawyer@dmill.com.

S O A P B O X

w w w . g d m a g . c o m 71

continued from page 72

F O R M O R E I N F O R M AT I O N
Serious Games Initiative:
www.seriousgames.org
VIRTUAL U: www.virtual-u.org
IGDA: www.igda.com
MIT’s Games-to-Teach:
http://cms.mit.edu/games/education/

	04gameplan
	06indwatch
	08prodrev
	14profile
	18innerp
	24artview
	30soundp
	32betterby
	34f-federoff
	42f-provost
	52postmort
	72soapbox

	return:

