

http://WWW.SCALEFORM.COM

P O S T M O R T E M

26		 Ubisoft	Montreal's	splinter	Cell	ConviCtion
Moving Splinter Cell's trademark stealth-based game play in an
action oriented direction without undermining the series was a tricky
problem for Ubisoft Montreal. The original game design for ConviCtion
was radically different from the franchise's traditional mechanics and
necessitated a mid-development reboot. Fortunately, clear direction
and a well-tuned production pipeline kept the team from being
knocked off balance by the shift.
By Patrick Redding, Alex Parizeau, and Maxime Beland

F E AT U R E S

9	 	 fragged
Big explosions with lots of fragmentation and debris are a video game
mainstay. But making them look convincingly unique is a tedious
process for artists. Here, the authors describe a procedural technique
for automatically generating fragmented meshes that can save both
time and sanity.
By Robert Perry and Peter Wilkins

15		 fUll	reaCtive	eyes	entertainMent
Are the now-ubiquitous Quick Time Events in games a lazy way to
keep players mashing buttons? Or, are they broadening the range of
expression for game designers? Using examples from the past and
present, this article looks to the future of QTEs.
 By Tim Rogers

22		 eleCtriC	eye
Kinect and Move have arrived, and with them comes a growing interest
in augmented reality. In this article, César Botana guides you step by
step through the basics of the OpenCV library, an essential tool for pat-
tern recognition in augmented reality games. Also covered is placement
of 3D objects in game worlds based on these patterns' orientations.
By César Botana

CONTENTS.1110
VOLUME 17 NUMBER 11

D E PA R T M E N T S

	 2		 gaMe	plan			By Brandon Sheffield [e d i t o r i a l]

Move Back to Kinect

	 4		 Heads	Up	display	 [n e w s]

IGDA Leadership Forum, the Automatypewriter, and Bunten papers
archived.

	
	 6	 	2010	front	line	award	finalists			 [n e w s]

The Award Finalists for Art, Audio, Game Engine, Middleware,
Networking, and Production/Programming tools.

33		 tool	boX			By Tom Carroll [r e v i e w]

Autodesk 3ds Max 2011

36		 piXel	pUsHer			By Steve Theodore	 [a r t]

 The Balkans

38		 tHe	inner	prodUCt			By Giacomino Veltri 	 [p r o g r a M M i n g]

Game Configuration at Crystal Lake

41		 aUral	fiXation		By Jesse Harlin	 [s o U n d]

 The Weight of Silence

	42		 design	of	tHe	tiMes			By Soren Johnson	 [d e s i g n]

Stop Making Sense

44		 good	Job!		 [C a r e e r]

 Bradley Johnson Q&A, who went where, and new studios.

45		 eye	on	gdC		 [g d C]

Independent Games Festival news and IGF China finalists.

46		 edUCated	play		By Jeffrey Fleming [e d U C a t i o n]

David Arenou’s immerSive rail Shooter.

48		 arrested	developMent			By Matthew Wasteland	 [H U M o r]

Our Last, Best Hope

www.gDMAg.COM 1

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD
Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

W W W . U B M . C O MGAME DEVELOPER | DECEMBER 20102

MOVE BACK TO KINECT
ARE THE NEW MOTION SYSTEMS INFLUENCING THEIR DEMOGRAPHIC BY PROXIMITY?

NOW THAT BOTH SONY’S MOVE AND MICROSOFT’S
Kinect have hit the market, we can take full stock of
the new kids on the motion control block. Where Move
goes for a “Wii plus camera plus greater precision”
setup, Kinect hopes to make your body the controller.

It’s no secret to anyone that these technologies
are spurred on by the success of Nintendo’s Wii. If
the drive to create the technology wasn’t necessarily
Nintendo-inspired, the desire to release it with such
pomp and circumstance certainly was.

Both companies have tried to get a drink of
Nintendo's milkshake in slightly different ways. Each
platform lends itself to a different experience, but
both companies have unfortunately gone straight for
the Nintendo-alikes.

KING OF THE ME TOOS
» Many developers have played with either or
both systems by now, but for those who haven’t, I’ll
explain a bit. The Move uses a camera to identify your
movements (in a 2D sense), and also to put you “in the
game” at times, like the EyeToy before it. It uses wands
to interact with objects and avatars on the screen, using
both motion control and buttons simultaneously.

With the Kinect, there are no buttons, just body
(especially hand) recognition through the 3D camera.
Menus are navigated and confirmed through swipes,
and holding your hand over an on-screen button for
a certain amount of time. In-game actions are all
performed with your body, and an avatar usually
does its best to mimic your movements.

These setups each lend themselves more
naturally to certain kinds of activities, and less well
to others. Let’s look at two genres—pets, and sports.

In the pets genre, Move has EYEPET, and Kinect
has KINECTIMALS. In both, you’re supposed to be
interacting directly with a little pet character. For the
Move, it’s a bit odd, because not only are you holding
this wand in order to interact with the pet most of the
time, your legs are physically in the picture, brought
in-game by the camera. This creates an illusion that
you could reach down and grab the pet, but of course
you’re always physically behind it in the screen, no
matter how close you get to the camera. The interface
doesn’t feel natural, and you don’t feel as connected
to your pet, even though it’s visually “in” your space.

With KINECTIMALS, there’s a clear distance between
you and the screen—you’re in your living room, and the
animal lives inside the TV. But it actually works much
better, because all your interactions with the animal
are done via virtual hand avatars that mimic your
actual hand movements. So it’s much easier to feel like
you’re really interacting with this little beastie—and the
minigames (for the most part) also take this interface
into account. In this camp, the Kinect wins.

Then there’s sports. Here, the Move makes great
sense. For many sports you have a bat, or a racket,

or a bow, so holding a physical object—the wand—
makes you feel connected to the world. With Kinect,
steering a car or holding a bat feels bizarre, because
you don’t have an actual “prop.” Whereas with
KINECTIMALS, the feedback was very positive, here it’s
much more difficult to feel connected to your actions,
because in reality these actions would center around
a physical object. Pantomiming them doesn’t cut it.

It’s clear that each solution has its strengths, and
areas in which it excels. But what I’m seeing right now
is some strong me-too-ism. The first titles offered on
both consoles are very much in the vein of Nintendo’s
biggest titles for the Wii, or the third party successes,
regardless of whether it fits the system. The dance,
exercise, minigame, and pets genres are all well
represented, and I guess that’s a start. But to really
succeed here, developers are going to have to figure out
how to maximize the unique qualities of these systems.

THE PROXIMITY PROBLEM
» One similarity between Move and Kinect, which
differentiate both from the Wii, is that they use
cameras. It’s interesting technology, but also
represents a curious limiting factor.

In order to get Move or Kinect to recognize you
correctly, you’ve got to be about seven-to-eight feet
away from your television. You also need to have a
clear, unobstructed view, meaning you’ve got to move
the coffee table or ottoman.

I live in an urban environment, as many game
developers do. I also am not the richest human being
on the planet. With that combination, getting seven feet
from my television is a bit of a challenge. I don’t have a
whole lot of space to move things around, and I really
don’t want to move my couch every time I play a game.

As the online space has taught us, any barrier to
entry significantly limits your audience. So instead
of potential players being those who own a Xbox 360
or PS3 and can afford a Kinect or Move (or buy the
whole package if they have neither), layered into who
actually wants the device, now you have the added
element of “can it function in my home?” That’s a big
deal. At each layer, you lose a portion of your audience.

Take the entire nation of Japan, for instance.
Very few people live in homes that are large enough
to accommodate a seven-foot buffer without
reconfiguring their entire living space. Urban dwellers
across the U.S. and Europe face similar issues.

In the U.S., the persons who will be most able
to use the Move and Kinect live in the suburbs, and
own or rent entire homes. This, by and large, means
families. Both companies have specifically singled out
families as the group they want to market their new
devices toward, but due to the space requirements,
they may accidentally be ensuring that those are the
only people who can play with these technologies.

—Brandon Sheffield

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
Giacomino Veltri
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Google
Carey Chico Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

MARKETING

MARKETING COORDINATOR Nahal Agahi
e: nahal.agahi@ubm.com

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
mailto:nahal.agahi@ubm.com
http://WWW.UBM.COM

http://gametreetv.com/competition

HEADS-UP DISPLAY

gAmE DEvELoPEr | DEcEmbEr 20104

/// The next time you find yourself
lost in a maze of twisty passages,
follow the sound of clacking
typewriter keys. Interactive text
adventures are moving off the
computer screen and into the real
world of ink and paper thanks to the
hacking skills of Toronto resident
Jonathan Guberman. Currently
in prototype phase, Guberman’s
Automatypewriter uses a modified
electric typewriter to output text
from Zork in real time, as well as
pass typed commands from the
user back to the program.

Working as a kind of electro-
mechanical puppet, each of
the electric typewriter’s keys is
connected via a network of fishing
line to banks of solenoid switches.

When the computer running Zork
sends out a signal for the typewriter
to type a line of text, a connected
Arduino board uses IC-based shift
registers to assign the key presses
to the appropriate solenoid switches.
When a given solenoid fires, it pulls
against the fishing line connected
to a key, resulting in a letter being
typed. A bit of timing correction on
the computer side ensures that
the automatic typing follows a
natural, human-like rhythm.

Because the Automatypewriter
is designed for playing Zork in real
time, resistors positioned under
each key of the typewriter can
detect commands typed in by the
user. Signals are passed through
shift registers back to the Arduino

board, which sends the key press
information to the computer.
Guberman wrote a Python script
to handle serial communication to
and from the Arduino board and
Zork runs in a slightly modified
version of the Rezrov (http://
edmonson.paunix.org/rezrov)
Infocom game interpreter.

An important design
goal on the project has been
Guberman’s desire to implement
the Automatypewriter’s controls
without significantly altering the
host typewriter’s mechanics—a
constraint that will allow him to
use a variety of antique typewriter
models. “Now that I have it working
successfully, I’ve invested in
an Oliver No. 9 typewriter that

dates circa 1915. The big issue
here is going to be the carriage
return, because on most manual
typewriters you had to do this by
hand. So, I’ve been working on
ways to attach a motor drive to
automate that process. That’s the
biggest change on the horizon,”
Guberman told us.

“I’m swapping out the fishing
line for metal jewelers’ wire, and
I’m changing the structural setup
to make it easier to adjust without
taking the entire thing apart and
putting it back together, a process
that currently takes me about four
hours. All of the mechanics are
going to be hidden to the user. It’ll
just look like a typewriter sitting on
a desk, that happens to be able to
type by itself,” he said.

While the Automatypewriter is
currently set up to run Zork, other
possibilities exist and Guberman
is collaborating with Jim Munroe
(EvErybody diEs) to create unique
interactive fiction for the machine.
“I’m planning to write it with Inform
7, probably as a z machine file as is
common for text adventures. We’re
going to test various approaches
extensively on the platform itself
rather than assume we know what
will work,” Munroe said.

To see the Automatypewriter in
action visit Jonathan Guberman’s
blog at http://upnotnorth.net/
projects/typewriter. Also check
out Site 3 coLaboratory (http://
site3.ca) and Hacklab.TO (http://
hacklab.to) to see what interesting
new projects Toronto’s vibrant
maker community is brewing up.

—Jeffrey Fleming

ghostwriter

/// The International Center for the History of Video Games (ICHEG) at the Strong National Museum of Play in New York has obtained
a collection of notes and papers documenting the career of gaming industry pioneer Dani Bunten Berry (Dan Bunten).

Bunten, a Hall of Fame inductee at the Academy of Interactive Arts & Sciences, created the landmark
multiplayer strategy title M.U.L.E. for computer platforms in 1983. Bunten was also involved in the development
of titles such as robot rascals, HEart of africa, and cartEls & cuttHroats.

Bunten’s children donated the papers to ICHEG and they have formed a company called Ozark Softscape
(www.ozarksoftscape.com) that is dedicated to Bunten’s legacy.

“It is a privilege to have our dad’s work at a place that truly understands what ‘play’ is all about and our dad
would be humbled and honored,” said Bunten’s daughter, Melanie Bunten Stark.

The Bunten donation follows ICHEG’s recent acquisition of a collection of personal notes belonging to simcity creator Will Wright.
ICHEG plans to display both collections at Strong’s upcoming eGameRevolution interactive exhibit (www.icheg.org).

—Danny Cowan

m.u.l.e. papers donated

http://site3.ca
http://site3.ca
http://hacklab.to
http://hacklab.to
http://upnotnorth.net/projects/typewriter
http://upnotnorth.net/projects/typewriter
http://edmonson.paunix.org/rezrov
http://edmonson.paunix.org/rezrov
http://www.ozarksoftscape.com
http://www.icheg.org

notes from the igda leadership forum
The annual IGDA Leadership forum was held this past November in Burlingame,
California. Here are some of the highlights from talks given at the two-day event.

(On Smart management)
/// Laura Fryer (WB Games
Seattle): Many leaders will
throw their team under a bus
in order to save themselves.
They hide information
because they’re afraid of
telling their team the truth.
By way of example, Fryer
discussed when she was
working on the Xbox 360
while in her former position at
Microsoft Game Studios. Epic
Games founder Tim Sweeney
came up and said, “You have
to add more memory to the
box.” It was a labyrinthine
structure at Microsoft, so
it was hard to know who
actually makes the choices. At
Microsoft, they call it “walking
the dog”—you walk around,
try to figure out who can help,
and find out who knows about
the problem you’re having.

People weren’t happy
to talk about it, and it was
"definitely a case of the
messenger repeatedly being
killed,” Fryer said. “I had one
executive say this was a big
CLM (career limiting move)
and I should just stow it. I said I
didn’t think I was going to have
a career if the Xbox 360 failed,
and I thought it was going to
fail if we didn’t get more RAM!”

(On managing r&D)
/// Lucien Parsons (4mm
Games): 3D Realms
announced Duke Nukem
Forever in 1997. “They’d
blown away the competition
with Duke Nukem, and they
wanted to do it again!” Parsons
said. But they kept trying to
leapfrog the competition, any
time something new came
out. “By focusing on always
trying to get the best possible

experience, the best possible
graphics,” they ignored the
immediate for the long term,
he said.

Companies that invest
more in R&D have better
margins than those who
spend less, he says, which
makes sense. But there’s no
actual correlation between
that spend and the overall
success, based on actual
data. “We’ve seen games that
come out and are based on
some new tech feature, and
it’s really cool ... for about
10 minutes,” said Parsons.
“Because if they let the
technology drive the game,
and not the gameplay drive
the game,” then nobody cares.

(On FinDing inSpiratiOn)
/// Don Daglow (Stormfront
Studios): “If I pick one thing
people have said to me—by
very famous game designers,
highly respected people—it’s,
‘I have to stop beating myself
up about ideas that don’t
work,’ or ‘I have to stop talking
myself out of good ideas',"
said Daglow.

He has heard many
people say “I’m having
internal dialogue with myself
and I’m talking myself out
of stuff.”

“It’s so easy to have
a self-defeating dialogue.
Deeply respected game
designers whose names are
famous are having these
same conversations.”

“Freeing the mad
scientist in you is when you
get the good moment that is
not on the chart. That’s when
you get Guitar Hero, WorlD oF
WarcraFt, games that change
the rules.”

“If I were to leave you with
no other thing than this—when
all of this logic brings you to
an obstacle, that is not the
moment to be stopped by logic,
that is the moment to be seized
by inspiration,” said Daglow.

(On the agile Way)
/// Kim Sellentin (Sega
Studios Australia) and Ike
Ellis (Zynga East): “Agile is
actually a mindset and an
approach to leadership,”
said Sellentin. The project
leaders learn how to listen to
the team’s needs, becoming
“servant leaders”, and that’s
important to the project.

Scrum also opens up
members of the team to
autonomy, and, Sellentin said,
“there is so much leadership
on your teams and you just
don’t know it yet.”

“When you’re starting
off with Scrum you’re
going to run into a lot of
misconceptions about
what you’re doing. One of
these is that scrum brings
unmanaged chaos. This is
really off-base,” said Ellis.

“You’ll know what people
are doing at a good level of
detail and, more importantly,
the people doing the work will
know what they’re supposed
to be doing.” However, it does
create more management
overhead—the producer
has to be totally aware of all
tasks and progress on all
tasks, for which Ellis relies on
an Excel spreadsheet.

“I’ve tried a bunch of
things for a backlog, but I
always come back to Excel.”
With the help of version control
and some macros, it is the
best tool—he totally dislikes

all custom Scrum tools he’s
tried for one reason or another.

While Scrum is full of
process, the “secret,” he said,
is that “it’s all about talking out
loud. All of the trappings, what
they have in common, are
that they foster conversation
between people who know
what they’re talking about.”

(On SOcial gaming)
/// John Vechey (PopCap):
While the era of “cheap,
free, easy traffic” is gone,
Vechey says the item-buy
business model was “first
really accepted in a broad
way in Western markets”
thanks to Facebook. And the
Social Graph, “the ease of
interacting with your friends”
is tremendously relevant.

“If you take advantage of
the Social Graph, then every
single game will be made
better,” said Vechey. Take, for
example, miNecraFt, “It may
be one of the most important
games of the decade.
miNecraFt would be better if
it had the Social Graph inside
of it. I don’t fault them for not
doing this, they’re indies.
WorlD oF WarcraFt would be
better with the Social Graph
from Facebook.”

That’s because interacting
with your friends through
games makes them more fun.
Vechey recounted how he
didn’t realize his friend was
playing leaGue oF leGeNDs for
months because of the lack of
Social Graph interaction, and
when he did, he felt cheated
out of fun experiences playing
together he could have had.

“PeGGle would be better
with the Social Graph, even if
you play through the single

player experience, to see your
friends’ best shots, their best
scores,” said Vechey.

(iF yOu Want tO DeSign
gameS, yOu ShOulDn’t Be
an executive)
/// Danny Bilson (THQ):
Ultimately, money-wise you
are a bit beholden to your
stockholders, he admitted.
“But there’s only one way
that I know of to make the
stock go up,” he said. “It’s to
make a great game. What is
your customer responding
to? This gets lost in all kinds
of nonsense.”

Games have to be led by
creative. “I don’t really believe
in collaborative art. But
people say ‘well we’ve got 200
people!’ There has to be one
vision though, and it has to
be communicated to all those
people. All those people have
the ability to create within
their disciplines.”

“There was this gag in
the past, where marketing
would make a forecast,” he
said. “The forecast would
dictate the budget. And the
budget dictates the features
and what you can do in the
game. So they can change the
forecast to manipulate what
they want. Why are the non-
artists in charge of the art?
Makes no sense to me.”

“I don’t think games
should be directed from
corporate in any way,” he
concluded. “If you want
to design the game, you
should get in the studio. You
shouldn’t be in the corporate
headquarters, and you
shouldn’t be an executive.”

—Brandon Sheffield
and Christian Nutt

www.gdmag.com 5

cOrrectiOn: In last month's "Game Developer 50" we incorrectly attributed the art direction for Volition's reD FactioN Guerrilla.
Jasen Whiteside is in fact the art director for the game and we deeply regret the error.

http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 20106

We're proud to announce the finalists for the 13th annual Game Developer Front Line awards—the essential awards
for tools and software that make the world's leading games possible—in the following categories: Art, Audio, Engines,
Middleware, Networking, and Programming/Production. In determining the winners of the 2010 awards we went
through a multistep process. Open nominations were held in October for software that had been released or had been
updated between September 2009 and August 2010. From that list we consulted with our advisory board to narrow
the results down to five entries in each category. We then handed the nominees to over to you, the readers of Game
Developer, via an online survey in November, so that you could have a voice in picking the recipients of the Front
Line Awards. As this issue goes to press, we’re compiling the results, and in our January 2011 issue we’ll reveal the
winners. We’ll also be inducting one special game development tool into the Hall of Fame that has been of enduring
importance to the development community. Because the editors of Game Developer decide the Hall of Fame winner, it
is not eligible in the regular categories.

A r t

Photoshop CS5
ADOBE SYSTEMS
www.adobe.com

/// With its broad feature
set and overall flexibility,
Adobe Photoshop CS5
improves upon the
established Photoshop
suite by adding features
that include the content-
aware fill, HDR imaging,
and puppet warp to supply
artists with even more
image manipulation tools.

Autodesk 3ds Max
2011
AUTODESK
http://usa.autodesk.com

/// The popular 3ds MAX
modeling, animation,
and rendering software
provides a variety of tools
for artists, with the latest
version adding a node-
based material editor, HDR-
capable compositing tools,
and other features to help
accelerate modeling and
texturing tasks.

Substance Designer 1
ALLEGORITHMIC
www.allegorithmic.com

/// Allegorithmic’s
Substance Designer is
a procedural texture
creation tool that uses

a node-based authoring
environment to quickly
generate complex texture
files. The resulting textures
are resolution independent
and can be dynamically
altered at any point in the
art pipeline including at
runtime with the addition
of Substance Air.

Autodesk Softimage
2011
AUTODESK
http://usa.autodesk.com

/// Softimage 2011 helps
3D artists create texture
maps, and features
a texture sequencer
that allows users to
manipulate bitmaps, vector
graphics, and procedural
elements to create more
complex textures.

ZBrush 4.0
PIXOLOGIC
www.pixologic.com

/// ZBrush is a digital
sculpting and painting
program that features an
interface that is more akin
to sculpting than other 3D
modeling software, allowing
artists to create assets
without getting bogged
down by menus and obtuse
options. The latest release
aims to provide more
features that allow artists
to bring their models from

concept to production
within ZBrush itself.

A u d i o

FMOD Designer 4.32
FIRELIGHT TECHNOLOGIES
www.fmod.org

/// FMOD Designer offers
a suite of options to help
create high quality game
audio. The software is fully
integrated into several
popular game engines,
including Unreal Engine
3, Unity, and Scaleform,
and allows bulk editing of
multiple sound files at once.

Miles Sound System 8
RAD GAME TOOLS
www.radgametools.com

/// The Miles Sound System
8 middleware provides
a versatile package that
supports many types
of audio files and runs
on nearly all available
platforms. RAD game
tools prides itself on the
software’s stability and
speed across all types of
hardware.

ProRemote 2.0.1
FAR OUT LABS
www.folabs.com

/// Available for iOS devices,
ProRemote provides 32
channels of remote control

for digital audio workstations
with a range of options
that allow users to easily
manipulate complex audio
via touch screen.

ProTools 8.0.4
AVID TECHNOLOGY
www.avid.com

/// The ProTools music and
audio production software
has become practically
an industry standard for
recording and editing audio.
It features a complete
suite of production tools,
including automatic delay
compensation, and allows
users to open projects
created in other video or
audio editing software,
offering high flexibility.

Wwise 2010.1.2
AUDIOKINETIC
www.audiokinetic.com

/// Audiokinetic’s Wwise
audio pipeline allows
sound designers and audio
programmers to prototype
projects quickly, and is
integrated into many
current game engines. Its
latest version includes
side-chaining for automatic
volume adjustment and
convolution reverb to
simulate the way sound
reverberates in an enclosed
space, along with a host of
new effects and options.

G a m e E n g i n e

CryEngine 3
CRYTEK
http://mycryengine.com

Crytek’s CryEngine 3 will
power the studio’s upcoming
CRYSIS 2, and is available to
license not only for game
development, but also for
interactive simulation and
education software. The
multiplatform engine allows
for real time editing of
game environments with its
Sandbox technology.

Gamebryo Lightspeed
3.1.1
EMERGENT GAME
TECHNOLOGIES
www.emergent.net

/// The Gamebryo Lightspeed
engine emphasizes rapid
prototyping, iteration, and
real time updates, enabling
developers to quickly put
together playable content
so teams can build upon
their own work throughout
the development cycle.

Unity 3
UNITY TECHNOLOGIES
http://unity3d.com

/// Unity Technologies’ Unity
3 game engine has been
engineered from the ground
up to provide an integrated
development framework

http://www.adobe.com
http://usa.autodesk.com
http://usa.autodesk.com
http://www.fmod.org
http://www.radgametools.com
http://www.avid.com
http://mycryengine.com
http://www.audiokinetic.com
http://www.pixologic.com
http://www.emergent.net
http://www.allegorithmic.com
http://www.folabs.com
http://unity3d.com

that features graphical
editing and live previews
during runtime. In addition
to a robust scripting,
programming, debugging,
and optimizing environment,
the engine provides
sophisticated rendering and
lighting capabilities.

Unreal Engine 3
EPIC GAMES
www.unreal.com

/// Epic’s Unreal Engine 3
has played a prominent
role in multiplatform
development over the past
several years, powering
a range of titles across
a variety of genres. The
engine builds upon previous
iterations of the Unreal
Engine, and supports
features that include High
Dynamic Range lighting,
per-pixel shading, and
dynamic shadows.

Vision Engine 8
TRINIGY
www.trinigy.net

/// Trinigy’s Vision engine
emphasizes developer
freedom, supporting
game development across
a range of genres and
platforms. The engine
boasts exporters for the
latest versions of 3ds Max
and Maya, a streamlined
scene editor, and
integration with a host of
middleware technologies.

M i d d l e w a r e

Box2D 2.1.0
BOX2D
www.box2d.org

/// Box2D is an open
source physics engine
for 2D games, and has
powered titles such as

CRAYON PHYSICS DELUXE and
FANTASTIC CONTRAPTION. While
the engine is primarily
used for 2D games, it
supports shapes including
convex polygons and
edge shapes, and applies
gravity, friction, and
resistance to objects.

Havok Physics
2010.1.0
HAVOK
www.havok.com

/// Havok Physics has been
used in a multitude of titles
across a wide range of
platforms, and has proven
to be flexible. According to
Havok, it’s designed “based
exclusively on customer
requirements.” Havok
Physics can be seen in
a number of high-profile
titles including UNCHARTED
2, DEMON’S SOULS, HALO:
REACH, and JUST CAUSE 2.

Scaleform GFx 3.2
SCALEFORM
www.scaleform.com

/// Scaleform GFx is a Flash-
based, vector graphics-
rendering engine that is
used for game elements
such as UI, HUDs, animated
textures, and minigames.
Games featuring the
Scaleform GFx middleware
include BATMAN: ARKHAM
ASYLUM, DRAGON AGE: ORIGINS,
and STARCRAFT II.

Simplygon 2.9
DONYA LABS
www.donyalabs.com

/// The Simplygon pipeline
toolkit aims to automatically
optimize 3D content by
automatically creating
LODs, meshes, and low-poly
models to help streamline
the resources used in
complex game scenes.

XaitControl 3.1
XAITMENT
www.xaitment.com

/// The XaitControl tool is
designed to help design
complex and streamlined AI
behavior, and lets developers
build behavior hierarchies
that allow for efficient reuse
of specific behaviors to
conserve resources.

N e t w o r k i n g

Facebook SDK
FACEBOOK
http://developers.facebook.
com

/// Facebook’s open source
SDK allows developers to
easily integrate the popular
social networking service
into a variety of apps
and games, on platforms
including mobile devices
and Facebook itself. The
Facebook SDK encourages
social network integration
and allows developers
relatively easy access to
player metrics.

GameSpy Technology
GAMESPY INDUSTRIES
www.poweredbygamepy.
com

/// GameSpy Technology
provides several important
services for online-
enabled games, including
multiplayer connectivity
via dedicated servers, peer-
to-peer matchmaking, stat
tracking, and cloud storage
for user-created content.

OpenFeint 2.6
AURORA FEINT
www.openfeint.com

/// OpenFeint provides a
persistent social network
across a range of Apps on iOS
and Android devices. It offers

achievements, leaderboards,
as well as features that allow
end-users to track their
friends across a range of
supported applications.

Plus+
NGMOCO
www.plusplus.com

/// Ngmoco’s Plus+ is a
third party social network
for Apps on iOS devices,
allowing players to
compete for high scores,
earn achievements, and
broadcast scores on Twitter
or Facebook. Users can
also challenge friends and
send push notifications to
challenge other users.

RightScale Cloud
Management
Platform
RIGHTSCALE
www.rightscale.com

/// RightScale provides cloud
management services that
allow developers to scale
the servers and resources
for their online game based
on user demand. Developers
can get their game running
on the cloud quickly, and
can then scale their game to
optimize running costs.

P r o g r a m m i n g
a n d P r o d u c t i o n

FlashDevelop 3.2.2
RTM
FLASHDEVELOP PROJECT
www.flashdevelop.org

/// The FlashDevelop open
source code editor is a free
Microsoft .NET application
that supports ActionScript 2,
ActionScript 3 & MXML, and
HaXe, and includes simple
integration with Flash and
command line compilers.

Graphics Performance
Analyzers 3.0
INTEL
http://software.intel.com

/// Intel’s Graphics
Performance Analyzers are
a suite of software tools
that provide performance
data across different types
of hardware in order to help
developers tailor their games
for the ever-evolving desktop
PC and mobile spaces.

Hansoft 6.1
HANSOFT
www.hansoft.se

/// Hansoft provides
infrastructure for more
efficient development,
and supports realtime
reporting, bug tracking,
workload coordination, and
portfolio and document
management. The software
aims to manage the
complex elements of game
development within a single
system to create better
scheduling and productivity.

Perforce 2010.1
PERFORCE SOFTWARE
www.perforce.com

/// Perforce is a scalable
source code management
system that helps organize
digital assets by storing
them on a server and
tracking user activity to
help teams easily access
their art assets, code, bug
reports, and more across
Windows, OS X, and Linux.

XNA Game Studio 4
MICROSOFT
http://create.msdn.com

/// Microsoft’s XNA Game
Studio 4 allows indie
developers to easily publish
their games on the Xbox
360 and PC using a simple,
yet flexible toolset.

WWW.GDMAG.COM 7

http://www.unreal.com
http://www.havok.com
http://www.xaitment.com
http://www.plusplus.com
http://software.intel.com
http://www.trinigy.net
http://www.scaleform.com
http://www.rightscale.com
http://www.hansoft.se
http://www.donyalabs.com
http://www.flashdevelop.org
http://www.perforce.com
http://www.box2d.org
http://www.openfeint.com
http://create.msdn.com
http://WWW.GDMAG.COM
http://www.poweredbygamepy.com
http://www.poweredbygamepy.com
http://developers.facebook.com
http://developers.facebook.com

W W W . E P I C G A M E S . C O M

NINJA THEORY USES
UNREAL ENGINE 3
TO DOUBLE DOWN
ON CREATIVITY
Coming off the success of their critically acclaimed
PlayStation 3 action game, Heavenly Sword, the
developers at Ninja Theory had a slightly diff erent
plan in mind for their next adventure. “With Heavenly
Sword, we had developed the engine and toolset
entirely ourselves,” says Mike Ball, co-founder and
chief technical offi cer. “That required a large amount
of resources, and it would take just as much eff ort to
update the technology, improve the toolset and add
the new features we needed for our next game.”

Once Ninja Theory decided to go multi-platform with the
new game, Enslaved: Odyssey to the West, they made the
move to Unreal Engine 3. This time around, Ninja Theory
had 80 people on hand for the production period, and
would be able to use all that talent to focus on creativity
rather than engine technology. “Unreal Engine 3 allowed
us to start iterating on the gameplay much more quickly,”
Ball says. “We needed to maximize our production time
by making sure the team’s workfl ow was eff ective, and
UE3 was the right choice to do that.”

Using UE3, the Ninja Theory team was able to improve
on many of the lessons they learned with their previous
game. “We wanted an engine that was truly focused
on getting the most out of designers and artists,” ex-
plains Ball. “Despite the awesome results we achieved
with Heavenly Sword, that was really the weak point of
our own engine. It just didn’t scale.”

ADVERTISEMENT

Ninja Theory also wanted to improve on the total length
of gameplay with Enslaved, which is where Unreal Kismet
came into play. Ninja Theory’s designers used Kismet’s
visual scripting tools to build much larger play
environments for players to explore. Kismet also enabled
the team to create a wider variety of gameplay across the
greater game length, which Ball said is ultimately the key
to keeping the player attached to the story.

Ninja Theory has built a reputation for creating beauti-
ful environments – an ability that would be put to the
test with Enslaved. Enslaved is based on a 400-year-old
Chinese novel called Journey to the West, which is itself
based on much older folklore. Enslaved brings this
ancient story to a future New York City. To do justice
to this rich source material while bringing it to life in
a hyper-modern environment, the Ninja Theory team
knew it needed to push its graphics capabilities as far
as they could go.

Ball says that UE3 gave the artists much more control,
and with its advanced production tools the team
was able to pack more detail into the environment.
“This was really important for the portrayal of the
New York we wanted to build,” says Ball. “Through
elements of the environment, we wanted the player
to experience the story of people in the past, caught in
destruction and trying desperately to escape. Giving
the art team control over shaders and post-processing
chains allowed us to set up some beautiful scenes that
contrasted well with the scenes of destruction.”

Ninja Theory also built on top of UE3’s advanced
combat capabilities. “We did a lot of experimenting
with the camera to make every hit feel like it counts
and draw you into the drama of combat,” said Tameem
Antoniades, Ninja Theory co-founder and chief design
offi cer. “We used close-up shots during takedowns and

Canadian-born Mark
Rein is vice president and
co-founder of Epic Games
based in Cary, North
Carolina. Epic’s Unreal
Engine 3 has won Game
Developer magazine’s
Best Engine Front Line
Award four times along
with entry into the Hall

of Fame. UE3 has won three consecutive Develop
Industry Excellence Awards. Epic is the creator
of mega-hit “Unreal” series of games and the
blockbuster “Gears of War” franchise.
Follow @MarkRein on Twitter.

BY Mark Rein
Epic Games, Inc.

fi nishing moves to really show the emotional impact
combat has on Monkey, the main character. It’s more of
a cinematic twist on combat mechanics.”

Along the way, the Ninja Theory team was able to connect
with other Unreal licensees through the Unreal Developer
Network. In fact, Ball says that the extensive community
support has been a strong point of working with UE3.
Other developers were always happy to help with tough
questions, and Ball recalls lots of occasions where a techni-
cal query was answered by a studio on the other side of
the world before anyone else even touched it.

The result? One of the freshest, most beautiful games
of 2010, boasting longer, more intense gameplay than
any of Ninja Theory’s previous games. The game was
launched in October to wide acclaim.

Thanks to Ninja Theory for talking with freelance
reporter John Gaudiosi for this story.

UPCOMING
EPIC
ATTENDED
EVENTS

Montreal International Game Summit
Montreal, Canada - Nov. 8-9, 2010

Game Connection
Lyon, France - Nov. 16-18, 2010

Dubai World Game Expo
Dubai, UAE - Nov. 29-Dec. 1, 2010

DICE Summit
Las Vegas - Feb. 9-11, 2011

GDC
San Francisco, Calif.
Feb. 28-Mar. 4, 2011

Please email: mrein@epicgames.com for appointments.

© 2010, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, Unreal, Unreal Engine, Unreal Kismet and Unreal Matinee are trademarks or registered trademarks of Epic Game Games, Inc. in the United States and
elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

http://www.epicgames.com
mailto:mrein@epicgames.com

pr
oc

ed
ur

al

ge
ne

ra
tio

n
of

fr

ag
m

en
te

d
m

es
he

s
R o b e R t P e R R y a n d P e t e R W i l k i n s

////////////////////// Procedurally generating fragmented meshes for in-game destruction
can reduce costs and imProve game aPPeal. the generated meshes need not be blocky or
boring. new concePts Provide increased flexibility and control over current techniques
while decreasing Production time.

e X P l o s i o n s a R e F U n

Everyone likes explosions in games. Good explosions are big, noisy, and throw rubble everywhere.
Explosions can be a powerful way to communicate excitement, risk, drama, and scale to the player.
Games are filled with explosions both big and small that emphasize story moments and draw the player’s
attention. For example, rocks tumble from cliffs, barrels explode, pipes burst, bridges collapse, and bombs
detonate. Unfortunately, game explosions can draw a player’s attention for the wrong reasons. Barrels
and crates, in particular, tend to break in exactly the same pattern. Overly repetitive explosions can be a
distraction that damages player immersion and game appeal.

C R e a t i n g C o n t e n t F o R e X P l o s i o n s i s n o t F U n

Watching or causing explosions is fun. Creating lots of fragmented pieces for an explosion is not fun.
Splitting meshes with binary operations or cutting tools is time consuming, labor intensive, and tediously
repetitive. Many simple tools can be created to accelerate the process, but generally fragmenting meshes

www.gdmag.com 9

http://WWW.GDMAG.COM

game developer | december 201010

remains an arduous task that no one wants
assigned to them.

Cost and schedule constraints often limit
the number of iterations possible for a given
object as well as the number of unique objects
that can be prepped for destruction. As the
complexity of the original geometry increases,
so does the cost of creating the destructible
content that goes with it.

T h e M a k i n g s o f a g o o d
e x p l o s i o n

Explosions are often implemented with
a model swap where the mesh for the
undamaged object is hidden, and meshes
for the broken fragments are made visible
in a single frame. Almost inevitably, there
is a visible “pop” as the new pieces come
into view. This is caused by the fact that the
fragmented pieces don’t perfectly match the
original profile of the object being destroyed.
In some cases, they don’t really match at
all. For example, several wooden shacks
of different size and proportion may use
identical fragments when they collapse.
Some of the discrepancy can be hidden from
the player by adding particle effects to cover
things up. This can easily end up being a
balancing act between covering the “pop” and
obscuring the fragments altogether.

In order to avoid most of the “pop,” the
resulting fragments need to fit together tightly.
Even if lots of smoke and dust particle effects
are involved, the fragments need to at least
maintain the original object’s profile when
assembled. Ideally, the fragments would fit
together seamlessly. The exterior faces should
have UV coordinates and materials that match
the original. This makes for a fragmented
mesh that’s nearly indistinguishable from the
original before being blown apart.

For an explosion to fit in context, the
resulting fragments should reflect the material
of the original object. Glass, stone, wood,
metal, plastic, and other materials make up
the objects that surround the player in a game
world. If the fragments are only on the screen
briefly, their shape may not be important, as
they can be considered a large particle effect.
However, if rubble stays persistent in the world
after an explosion, then shapes that are true
to the material of the original object become
more important. Since many of these meshes
will only be visible for a few seconds at a time,
it’s hard to justify the time and cost required
for detailed modeling. The whole process begs
for automation.

e n T e r V o r o n o i

3D Voronoi graphs provide an easy way to
automate much of the mesh fragmentation
process. Particle systems can be used to place
points in a model that are then used as seeds
for the Voronoi graph. A graph is generated
and used to subdivide the model. The graph is
generated by identifying the region of space
where a given point has an influence greater
than any other. The result is a collection of
convex cells with planar faces that looks
somewhat like a honeycomb. A series of cuts
can be made on the planar faces of each cell
in the graph. This can be implemented easily
using binary operations on the original mesh.
The resulting fragments fit together tightly.

Another benefit of the Voronoi graph
is that it allows for the creation of entirely
interior fragments. This is a great feature for
making rubble more realistic and interesting.
Unfortunately, Voronoi graphs have some
specific limitations. Voronoi cells are always
convex and always have planar faces. The
result is that Voronoi-generated fragments
tend to be blocky and uniform, much like
breaking salt. This works well if the original
material is granite or safety glass, but does
not work as well if the object is wood or plastic.
Games are rarely full of objects made out of
granite, so it would be convenient to be able
to automate the generation of appropriate
fragments for other materials. Figure 1 shows
a two-dimensional Voronoi Graph.

M o V i n g B e y o n d V o r o n o i

In order to create fragments with more complex
shapes, a different mathematical approach
is required. Fortunately, an alternative that
is fundamentally very similar can be used.
Electrical potential fields provide all of the
functionality of a Voronoi graph, and allow for
new possibilities as well. Electrical potential
fields can create complex and concave
geometry with a simple input set similar to
what would be used to generate a Voronoi
graph. This can be accomplished by adding
a small amount of additional data to the very
same input set that would be used to generate
a Voronoi graph. The additional data is easily
generated and takes little or no work on the
part of an artist. For quick review, the electrical
potential at a point in space is:

Where q is a point charge, E0 is the electric
constant (permittivity of free space), and r
is the distance to the point charge. If there
are multiple point charges in the field, they

figure 1 shows a two-dimensional Voronoi
graph.

2a 2b 3a 3b

figures 2a and 2b show the effects of varying the charge of a point charge in two dimensions.
figures 3a and 3b show the effects of polarity on a two-dimensional electric field.

obey superposition, and the potential at
any point in space is simply the sum of the
individual potentials.

It is now easy to subdivide the space by using
the electrical potential field. Each point charge
is assigned to own the region of space where
its influence is greater than that of any other
point charge. Using these equations and
this one rule produces results identical to a
Voronoi graph, assuming that all of the point
charges in the field have uniform charge. Like
a Voronoi graph, the electrical potential field
is deterministic and will produce consistent
results from a given input set.

The electrical potential field reaches
beyond the limitations of the Voronoi graph
by allowing for each point charge to have a
different charge. This allows for the creation of
curved fragments. Figure 2 shows the effects
of varying the charge of a point charge in two
dimensions. The red line shows part of the
bounding line between subdivisions.

In the first case, both point charges have
equal charge. In the second case, the point
charge at the bottom has twice the charge
of the point charge at the top. The boundary
between the subdivisions moves and becomes
curved under the increased influence of the
point charge at the bottom. As this concept is
extended to a large number of point charges
and three dimensions, it provides for the
creation of interesting and varied geometry.
The result is that each point charge produces
a manifold instead of a line.

An electrical potential field, working on an
input set used for a Voronoi graph, can produce
a nearly limitless number of results by
simply modifying the charge of the individual
point charges. This is a powerful feature that
gains strength as other features are added
to the system. For example, an artist could
determine how many fragments are desired
and place point charges to approximately
locate the centroid of each fragment. The
artist can then iterate on the final result by
generating charge values pseudo-randomly,
or by directly modifying them. This hybrid
approach allows artists a great deal of control
without spending large amounts of time on
each object. It also allows for significantly
more iterations than would be possible if the
mesh were being fragmented by hand.

N o r m a l s

One major issue with the electrical potential
field as used so far is that while it defines a

bounding volume, it doesn’t provide surface
normals. Without normals, many geometric
operations, such as meshing, become difficult.
Surface normals can be produced using the
vector form of the previous equation or the
electric field equation.

Since the electric field equation introduces
a direction to the field, polarity must now be
dealt with. In the calculation of the potential
field, it was easy to assume that all charges
were positive in order to calculate the region
of greatest influence. If the electric field were
calculated in the same manner, all of the field
vectors at the surface would lie tangent to the
surface and not normal to it.

An easy remedy to this issue is to set the
point charge of interest to be positive and all
others to be negative. This directs the field so
that the electric field vectors will be normal
to the potential surface. Not only does this
provide surface normals, but it also defines a
full three-dimensional vector field throughout
the volume of the electric field. Figure 3 shows
the effects of polarity on a two-dimensional
electric field.

G r o u p s a r e m o r e p o w e r f u l
t h a N I N d I v I d u a l s

Electric fields provide increased flexibility over
Voronoi, as they allow each point charge to
have an individual charge that acts as a weight
in addition to the packing of the points. This is
a noticeable improvement, but the electric field
has more potential to unlock (pun intended).
Whereas, Voronoi graphs generally only deal
with points—any arbitrary geometry can be
electrically charged.

It stands to reason that seeding the
subdivision with geometries other than
points will create more interesting results.
This turns out to be a valuable concept, as it
allows for the creation of complex geometries
from relatively simple ones. In order to treat
arbitrary geometries through constructive
analysis, each geometry will be considered
a collection of a finite number of point
charges. The resulting geometry is simply the
superposition of the constituent point charges.

There are many useful geometries that
can be generated in a pseudo-random manner
to create interesting shapes. One geometry
in particular that’s both easy to generate and
effective in creating a wide range of shapes
is a spline. A cubic Bezier spline only requires
the generation of four control points. Splines
can be used to approximate a wide range of

www.gdmag.com 11

fIGure 4a shows a cube fragmented using
four splines. fIGure 4b (inset) shows the

interior detail on one of the fragments.

http://WWW.GDMAG.COM

geometries. A spline is sampled along its length
to produce a group of point charges. The number
of point charges used to represent the spline
is a function of the desired resolution. Figure
4 shows a cube fragmented using four splines,
including interior detail on one of the fragments.

Splines make the automated generation
of smooth organic shapes easy and fast. They
can also be authored by hand quickly, allowing
artists control over the resulting shapes
without spending time on details. They also
provide fast and easy iteration. An artist can
author splines to fragment a mesh and edit

the splines afterwards, reprocessing until a
satisfactory result is achieved.

I m p l e m e n t a t I o n

The implementation shown here is generally
used as a rubble generator, and as such,
produces rough and blocky seams. This is not a
mathematical limitation of the electric field, but
a practical limitation of the mesher that is used
to create the rubble. Still, it provides a means to
visualize the results. In this implementation, an
entirely new mesh is generated using the union

of the original mesh and the potential field.
The resolution is intentionally limited, and this
limitation contributes to the blockiness of the
result. For the purposes of rubble, it works well.

U V m a p p I n g

Automated UV mapping is a crucial feature
for the automated fragmentation of meshes.
UV mapping can be terribly time consuming.
Also, it can be highly obvious if the mapping
on the fragments was rushed and doesn’t
match the original. If the meshes are very
similar, the mapping can be copied from one
mesh to the other. If the meshes are dissimilar,
an interpolation scheme is required. Here is
a simple method that works well with some
limitations. In the described implementation,
it’s assumed that meshes contain only
triangles and the vertices are unique to each
face. The concepts can be extended to handle
quads and other polygons as well as triangles.

Vertices in the new mesh are iterated over
by face. Faces in the original mesh are ranked
against vertices in the new mesh using values
produced by a routine called FaceDotDist().
FaceDotDist() compares the distance from
the vertex in the new mesh to the centroid of
the face in the original mesh, and the normals
of the faces in both meshes. The face with
the lowest returned value is used for the
interpolation. See listing 1.

Once a face in the original mesh is selected
to interpolate from, the UV values at each of its
vertices are used to perform the interpolation.
The vertex from the new mesh is parametrized in
the space of the face of the old mesh as a linear
combination of two of the edges. See below:

p = se1 + te2

Where p is the vertex from the new mesh, and e1
and e2 are edges in the triangle from the original
mesh, s and t are parameters along e1 and e2 .
This parametrization is commonly used in ray-
triangle intersection tests and can also be used
to verify that the vertex being parametrized
is inside the triangle from the original. This
verification is usually not necessary. While
interpolation works best when the vertex falls
inside the triangle, extrapolations a short
distance outside the triangle are generally
well behaved. The final UV value assignment
is handled by the following function. Note that
v1, v2, and v3 are UV values and not geometry
vertices. See Listing 2.

This is an effective method for automatically
transferring UV mappings between meshes. The
primary limitation is that it cannot properly
handle a face in the new mesh if it crosses
a seam in the original mesh. In this case, it

game developer | december 201012

l I s t I n g 1

float Destruction::TransferUV::FaceDotDist(const Vector3& v1, const Vector3& v2,
const Vector3& v3, const Vector3& point, const Vector3& normal)
{
 Vector3 edge1 = v2 - v1;
 Vector3 edge2 = v3 - v1;

 Vector3 faceCentroid = v1 + v2 + v3;
 faceCentroid /= 3.0f;

 Vector3 faceNormal = edge1.Cross(edge2);

 return (faceCentroid-point).Length()/fabs(normal.Dot(faceNormal));
}

l I s t I n g 2

struct UV{
 float u,v;
};
struct ST{
 float s,t;
};
void Destruction::TransferUV::TriangleST_ToMeshUV(const UV& v1, const UV& v2, const
UV& v3, const ST& st, UV& o_uv)
{
 Vector2 edge1 = v2 - v1;
 Vector2 edge2 = v3 - v1;

 o_uv = v1 + st.s*edge1 + st.t*edge2;
}

FIgUre 5 shows a fractured crate with interpolated UV mapping.

produces obvious artifacts in the mapping.
Problems at the seams could be corrected
by identifying faces that cross seams and
splitting them at the appropriate location. Also,
it’s an m×n order routine, where m and n are
the number of faces in the respective meshes.
For small face counts, this is fine, but as the
meshes grow, run times can be a concern. This
can be avoided through the use of a bounding
volume hierarchy or similar construct to speed

up the search through the original mesh. Also,
if the new mesh is a lower resolution than the
original, there are limitations as to how well
the interpolation can cope with the reduced
resolution. Figure 5 shows the results of a
fractured crate with interpolated UV mapping.
Figures 6a and 6b show a simple UV map and
its interpolation onto a higher-resolution mesh.

This technique does not work in all cases,
but it works in many. Particularly for world

population items like barrels and crates, it
tends to work well. It’s also relatively easy to
author them so that issues with seams can
be avoided. In more complex cases, even
though there can be issues with seams, the
vast majority of the mapping can be properly
transferred, leaving only small amounts of
artist intervention to finish the process. This
still yields a significant time savings. Figure 7
shows typical artifacts when faces in the new
mesh cross seams in the original mesh.

F r e e d o m t o d e s t r o y

Automated generation of fragmented meshes
for destruction can not only reduce the costs
associated with explosions in the game, it
can do so while providing the opportunity
to increase the variety and depth of what
would otherwise be repetitive and potentially
boring experiences. Increased iteration and
variety with decreased production times are
all possible by turning most of the work over
to software. The price is that while there’s a
great deal of control over the process, it can
be difficult to use if very precise results are
required. The best fit is where the system can
produce results that mimic a natural process.

In gaming, explosions do much to add
interest, excitement, and drama to a game.
But, for the artists tasked with creating
realistic explosions, it can be difficult and
costly, in terms of production and time, to
fragment the meshes in unique and non-
repetitive ways. Fortunately, new approaches
now provide greater flexibility and control
for creating unique, realistic fragmentation
of meshes, thereby increasing game appeal,
decreasing production time, and lowering the
overhead typically associated with creating
game explosions.

robert Perry is a physics and simulation coder, and

biking enthusiast. Peter Wilkins is an animation

and rigging engineer at Dreamworks Animation. Both

previously worked at Disney's Avalance Software.

www.gdmag.com 13

Figure 7 shows typical artifacts when faces in
the new mesh cross seams in the original mesh.

Figure 6b shows
the simple uV map

from Figure 6a
interpolated onto a

higher-resolution
mesh.

Figure 6a shows a
simple uV map.

http://WWW.GDMAG.COM

http://www.naturalmotion.com

www.gdmag.com 15

T i m R o g e R s

f u l l r e a c t i v e e y e s
e n t e r t a i n m e n t

i n c o r p o r a t i n g Q u i c k
t i m e e v e n t s i n t o

g a m e p l a y
////////////////////// A “Quick-Time evenT” (QTe) is An evenT in A
gAme where The plAyer musT press A buTTon To perform A
cinemATic AcTion ThAT cAn oTherwise noT be performed in
ThAT gAme in An ordinAry conTexT.

usually, when a Qte occurs in a game, normal controller inputs are
overridden. if the X button on the playstation controller is usually used as
the jump button, during a Qte, the X button can be substituted for any action
the game designer requires. using the X button in a Qte might result in the
player character punching an enemy in the top of the head, dodging a bullet,
or splitting an intercontinental Ballistic missile in half with a samurai sword.

the sequence of a typical Qte involves normal controller input being
taken away from the player for an instant before the on-screen action snaps

into a cinematic camera angle. in an action game, this camera angle usually
reveals an enemy threat. next, a button icon appears somewhere on the
screen. this icon stays in place only for an instant. if the player presses the
button in time, the player character will avoid or neutralize the threat.

for example, in Uncharted (naughty Dog, 2007), at one point,
the hero nathan Drake falls from a ledge and onto his back. control is
overridden; the camera angle swings up to show a large piece of rock
breaking off the side of a cliff face and sliding toward the ground. a
button icon appears. if the player presses the button, Drake rolls out of
the way and the rock crashes violently onto the ground where he had
just been. if the player doesn’t press the button in time, a brief cutscene
plays, portraying Drake’s tragic death.

iL
LU

sT
R

AT
io

N
 B

Y
jU

AN
 R

Am
iR

ez

http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 201016

More complicated QTEs
might involve threat after
threat raining upon the
player. In this case, the
player must press numerous
buttons in sequence.
Missing a button-press
results in instant failure
and possibly death. Some
games, like NINJA BLADE
(From Software, 2008),
will allow the player to
immediately restart the
QTE upon failing once. Other
games, such as SHENMUE
(Sega, 1999), the game
whose director Yu Suzuki
coined the terms “Quick-Time
Event” and “QTE,” are not so
forgiving. Failure at a QTE will
result in player death and a
game over condition.

Of Ninja Theory’s game
HEAVENLY SWORD (2007), in
which QTEs are called “hero
events,” NINJA GAIDEN and
DEAD OR ALIVE series director
Tomonobu Itagaki told
consumer magazine EGM
that he had “never played
a good game where the
developers put a big icon of
the button you’re supposed

to press onscreen.” He said
the game seemed “really
half-assed, because it’s
asking you to do all these
button-timing sequences,”
and the player is not “getting
much payoff from it.”

HEAVENLY SWORD director
Kyle Shubel, in his game’s
defense, replied that “the
intent of the hero sequences
is to empower the player
to experience events that
would be nearly impossible to
play in a natural platforming
state ... for example, making
the player run down ropes,
leaping from rope to rope
as they’re being cut from
underneath you, all while
dodging other objects—that
would be a frustrating
experience to 99 percent of
our users if we were to force
them to do that manually.”

This certainly seems
to be the trend. QTEs
replace actions that
would otherwise be more
complicated than any player,
even the skilled ones, are
able or willing to input with
the basic methods allowed

by an analog stick and a
couple of buttons.

It’s perhaps interesting
to note that, despite their
vocal stance on the virtue
of QTEs, Ninja Theory’s next
game, ENSLAVED: ODYSSEY TO
THE WEST (2010) employs
not a single QTE, not even
the kind where you hammer
a button to open a heavy
door. What happened?

C U T S C E N E W I T H A
K N I F E

After hours of satisfying
shooting at virus-infected
high-speed-sprinting
zombie-intelligence psycho-
freaks, RESIDENT EVIL 4
(Capcom, 2003) climaxes
in an extended knife fight
between a hero and a
villain. The exact nuances
of a military-grade knife
fight as seen in the climax
of cinematic masterpiece
Under Siege were, for certain,
simply not expressible with
then-modern video game
control inputs. Knives are
short blades, a fraction of

the length of a human arm.
The arm acts as a whip;
the wrist rotates; the mind
manipulates the blade to
clash with the opponent’s in
defense, to feint, or to make
a desperate stab. You really
can’t express this one-to-
one in a video game using
only buttons and analog
sticks. The fight is long and
elaborate—some critics
might say too long, and
fantastically elaborate.

The RESIDENT EVIL 4 knife
fight takes place during a
heated dialogue between the
protagonist and antagonist.
The dialogue involves the
revelation of important story
information—why who has
been doing what to whom
For All This Time, and what
he wants to convince him to
stop. Effectively, it serves
a purpose of a cutscene. As
a climactic moment in the
story, it’s a cutscene that
players most likely wouldn’t
want to skip.

Players that do want to
skip the cutscene are unable
to though. The sequence

contains a series of precise
button-press prompts. If the
player fails at inputting a
button press, the antagonist
kills the protagonist, and
it’s game over. The knife
fight QTE is the most-
hailed example of both the
positives and negatives of
the form. The suspense of
the unraveling dialogue and
story revelations place extra
pressure on the antagonist’s
coming knife-lashes; the
potential for quick death
means the player may be
forced to repeat the QTE, the
cutscene, and the dialogue
again from the start.

Other QTEs act to replace
or supplement cutscenes. In
SHENMUE, QTEs often occur
at the height of a dramatic
cutscene. Unlike the knife
fight in RESIDENT EVIL 4, QTEs
in SHENMUE are all action.
In one scene, the hero (Ryo
Hazuki) is chasing a group
of biker gang members out
of a bar and down an alley.
The chase comes after a
small conversation in which
Ryo attempts to wrangle

F U L L R E A C T I V E E Y E S
E N T E R T A I N M E N T

GEARS OF WAR's chainsaw
attack is essentially a QTE.

GOD HAND's QTEs are
contextual.

Avoiding deadly boxes in SHENMUE.

DRAGON'S LAIR.

information out of the gang
members. The chase occurs
as a spectacular action
payoff. Unlike the knife fight
in RESIDENT EVIL 4, the story
revelations are over when
this QTE begins. Also unlike
the knife fight, if you miss
a prompt during this QTE,
you still have a chance to
win. The QTE branches: at
one point, the man you’re
chasing knocks over a box
of fruit; if you don’t dodge
it, and instead trip, the QTE
is effectively lengthened as
you’re offered opportunities
in the form of more button
prompt situations. In the
context of the story, this
means that the chase is
longer, and the hero doesn’t
look as impressive as he
would had he captured the
character quickly.

Similarly, SHENMUE
contains many QTE fight
scenes full of intricately
detailed karate maneuvers—
grabs, holds, throws,
dodges—that would be
difficult to map to specific
controller inputs. Miss a

prompt, and the hero is
punched in the face. That
doesn’t necessarily mean
game over. The player has
plenty more opportunities
to win the fight. The fight
grows long, the hero lands
punches, misses punches,
dodges punches, and takes
punches. The longer the
QTE, the more interesting, if
not impressive, the fight. Of
course, if you miss enough
prompts, the hero goes
down, and it’s game over.

In both of these
examples, the QTE is
“replacing” a cutscene—in
SHENMUE, it often replaces a
cutscene that would follow
another cutscene. The
talking cutscene ends, and
the punching QTE begins.
This type of cutscene-
replacement QTE is primarily
a means for developers
to impress players with
dynamic action scenes. The
knife fight scene in RESIDENT
EVIL 4, on the other hand,
is “enhancing” a cutscene.
In an “enhancement” QTE,
the developer is providing

the player with a reason to
invest himself in the story
revelations of the cutscene.

Other games, such as
METAL GEAR SOLID 4 (Kojima
Productions, 2008), will
occasionally provide players
with an on-screen prompt,
which sometimes lasts no
more than a fraction of a
second. Press the action
button during one of these
prompts to view an alternate
angle of the cutscene,
or maybe view a piece of
concept art of the character
talking. In METAL GEAR SOLID:
PEACE WALKER, succeeding at
one such on-screen prompt
results in the player being
treated to a view of a female
character’s underwear. In
this case, QTEs are rewards
to the player for steadfastly
paying attention to the
game’s narrative. In this
way, perhaps QTE are used
to safeguard against the
common complaint that
games like METAL GEAR SOLID
feature too many cinematic
sequences and not enough
game-playing. This use of

the QTE has created many
critics’ impressions that
QTEs as a game-mechanic
are interaction on the fringe
of passivity.

F A I L U R E I S N O T A N
O P T I O N

The very first QTEs were,
in fact, a replacement for
in-game action. The most
obvious example is also
the genesis of the modern
concept of the QTE: the
Laserdisc-based DRAGON’S
LAIR (Cinematronics, 1983).
In DRAGON’S LAIR, the player
controls a knight on his quest
to rescue a princess from a
dragon. Though the story was
common fare for any type of
adventure story, the graphics
were superbly unique
compared to other games at
the time. DRAGON’S LAIR was
a lovingly hand-animated
cartoon featuring the work
of renowned animator Don
Bluth. DRAGON’S LAIR’s secret
was that its data was stored
on a Laserdisc. Player control
inputs were limited to actions

that, effectively, changed
the chapter being played. At
certain points in the action,
an arrow or on-screen object
flashes, either to the hero’s
left or right. The player has
to respond in a split second.
If we succeed, we see a
brief animation detailing our
hero’s triumph. If we fail, we
see our hero’s demise. This
game mechanic would be
offensively shallow if it were
the core of any games today.
But at the time, with graphics
so astounding, it worked. Part
of DRAGON’S LAIR’s appeal was
that the hero’s deaths—not
just his triumphs—were
unique animations. Dying
is part of the game. Seeing
each of the hero’s deaths
is as essential to earning
encyclopedic knowledge of
the game as seeing each of
his triumphs.

We don’t see games fully
made up of QTEs anymore.
However, we occasionally
see games where the QTE
becomes the main format of
the game-action for an entire
set piece.

WWW.GDMAG.COM 17

The BURNOUT series took
the fun of ROAD BLASTER
and made it interactive.

http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 201018

One infamous example
of such a QTE usage comes
in the game SHENMUE II
(Sega, 2001)—the sequel
to the game that brought
the QTE abbreviation into
the mainstream. At one
point in the story, the hero
and his buddy arrive at a
dilapidated tenement building
in Kowloon. The goal is to get
to the tenth floor, where they
have an appointment to meet
someone. The hero goes
ahead alone. Upon reaching
the second floor, he finds
that the floor is caved in, and
the only way to get to the
other side is to walk across a
precariously positioned plank
of wood. Step onto the wood,
and the action QTE begins.

The camera is positioned
just above the hero’s
shoulders as he stands on
a thigh-wide wooden plank
spanning a black hole in a
gray-floored, brown-aired

tenement building devoid of
other life or sound. Arms held
out at his sides, putting one
foot in front of the other, he
baby-steps forward across
the plank. Every few steps, at
randomly staggered times,
he leans to one side or the
other. An on-screen prompt
urges you to press either left
or right on the control pad.
Soon, these prompts are
coming in relentlessly. Miss
just one, and the hero falls
to his death. Falling to your
death means game over. You
reload the game, you endure
the journey from your save
point to the place of your
death, and you try again.
Succeeding at this particular
mission flawlessly takes
10 grueling, palm-sweaty
minutes of your life. Failing at
it might take a dozen hours.

You have to walk across
planks—sometimes two of
them—on each of the ten

floors of the building. This
might be where you give up
on the game, either because
it’s too difficult or because
you’ve smashed your
controller. If you succeed,
the other character is waiting
for you at the top. The hero,
confused, asks how he got
up there. He explains that he
took the elevator.

The player has no option
to take the elevator.

G O D O F B U T T O N S

SHENMUE II’s example of using
QTE to replace game action,
in theory, is purely out of
DRAGON’S LAIR. In practice,
it offers no neat graphical
payoffs. Even death is
unceremonious: the hero
is swallowed into the void.
It’s a chore that must be
completed to move forward
in the game. QTEs are a
powerful game mechanic in

that they offer developers
the opportunity to show
the player something really
cool—and that’s why gamers
play games: to see really
cool things. Making a game
sequence entirely out of
QTEs means everything has
to be very cool, and it’s hard
to make everything cool. It’s
like writing a sentence using
only exclamation points.
People get tired of that after
a while.

The secret, then, is
to use QTEs to enhance
in-game action.

In GOD OF WAR (Sony,
2005), a shining example of
enhancing in-game action,
QTEs most often arise in
the middle of climactic
battles—not the cutscenes
before or after said battles.
In an early boss battle
against a hydra, the player
must dodge the enemy’s
attacks while attacking its
weak points. Hit the weak
points enough times, and
you induce a vulnerable
state. The player has a few
moments to reach and
attack the hydra head during
this induced vulnerability.
He must continue to dodge
attacks while climbing the
mast of a ship to reach the
hydra’s head.

Once in place, the player
presses a button to initiate
a QTE during which the hero
lambastes the beast’s head,
swings around in an acrobatic
arc, and ultimately pulls the
head down with great force,
impaling it on a broken, spiked
wooden pole. Success at the
QTE means destruction of one
of the parts of the boss. If this
were a game on the Nintendo
Entertainment System, the
boss’s life meter would be
made up of four rectangular
segments: attacking the boss
outside of the QTE would not
decrease his life meter, while
successfully completing the
QTE would erase an entire
segment.

The penalty for missing
a prompt in the GOD OF WAR
during-boss-fight QTE is

ejection from the QTE: miss a
move during the hydra fight,
and Kratos plummets back
to the deck of the ship. The
hydra recovers his strength.
You must now attack the
boss as before until he’s in a
vulnerable enough position
to initiate the QTE again.

F I N I S H H I M !

QTEs aren’t just for bosses.
They can happen in the
middle of typical underling
fights as well. GOD HAND
(Capcom, 2006) employs
QTEs of the button-mashing
variety in the middle of
standard fights. Sometimes,
your hero will have an
opportunity to get an enemy
in a headlock. Press the
button displayed on-screen
with the proper timing to
initiate the headlock. Now
pound that button as hard as
you can in the ensuing lock-
up to inflict damage on the
enemy. The faster you press
the button while gripping the
enemy, the faster the hero
pummels, the more your
controller vibrates, the more
damage you do, and the more
satisfied and inspired to
pump your fist you become.

The crux of this kind of
QTE is that it requires a timed
button-press to initiate, and
that that button is always the
same button. In Japanese
game development, all QTEs
are most often referred to as
“Action Button Events”—as
in, you press a button, and
you get action. Meanwhile,
in games like THE LEGEND
OF ZELDA: OCARINA OF TIME
(NINTENDO, 1998), an all-
purpose, context-sensitive
button is called the “Action
Button.” For the GOD HAND
flavor of QTE, where the same
context-sensitive button is
always used to enter these
pummeling scenarios, the
description “Action Button
Event” is more apt than it
may be elsewhere.

Compare the GOD HAND
example with the “torture
attacks” in BAYONETTA (Sega,

F U L L R E A C T I V E E Y E S
E N T E R T A I N M E N T

BAYONETTA.

NINJA BLADE.

2009). The player plays the
part of a witch who pummels
angels to death with her hair
in a fantasy realm. Every
once in a while, during an
angel-pummeling situation,
a large button icon appears
above the enemy. Press the
button in time, and a large
guillotine or iron maiden
materializes surrounding
the enemy. The blade falls,
or the iron maiden snaps
shut, and the enemy dies
in a geyser of blood. It’s like
a MORTAL KOMBAT “Fatality,”
except it’s happening during
in-game action. It involves
complicated machines
materializing out of thin air,
and it only requires a single
button press. And that single
button press is indicated on
the screen, unlike MORTAL
KOMBAT’s arcane, mysterious,
complicated Fatalities.

This reminds us that,
even in the GOD HAND
pummeling example, the
button icon remains on
the screen throughout the
pummeling. This makes
us realize why the button
appears on the screen at
the time of initiating the
pummeling: otherwise, the

player wouldn’t know it was
time to pummel. The enemies
generally have no tells.

One game far ahead of
its time with regard to this
type of QTE was BERSERK: THE
THOUSAND-YEAR OATH (Sammy,
2003). In that game, enemies
have tells that indicate when
the player can press the
action button—normally the
block button—to execute a
spectacular parry and score a
massive attack on the enemy.
The tells are neither so subtle
that you can only learn them
through rote memorization
(as in an old-school MEGA
MAN game), nor are they so
blatant that they see fit to
throw a button icon up on
the screen. Rather, they’re
near-subliminal: an ogre
might raise a club above his
head, and bring it crashing
down toward you. If you’re in
range of receiving the attack,
the screen action will freeze
for the sticky, frictive instant
before impact. This is your
cue to press the block button
and initiate the brutal, fast
action button attack.

In light of this type of QTE,
we could say that traditional
QTEs, which halt the game

to display button icons, are
micro-tutorials. These micro-
tutorials teach you how to
do the precise thing the hero
needs to do in the context of
the current, complex situation
a microsecond before he has
to do it—or die. If the current
situation calls for the hero to
roll beneath a demon beast’s
blade before cartwheeling
back in the opposite direction
and then running up the blade
toward the beast’s face, the
QTE-as-tutorial will instruct
the player, for a moment, how
to do that—with an alarming,
screen-filling “X” button icon.
This is directly in line with
Ninja Theory’s descriptor of
QTEs as allowing the player to
do things they couldn’t do in
regular game-action.

It might be construed
that a QTE-as-tutorial is
“introducing” a new action
element to a game long after
the traditional tutorial phase
has ended. STAR WARS: THE
FORCE UNLEASHED (LucasArts,
2008) often employs QTEs
where the player character
jumps about as high as he
can jump in regular play,
levitates objects about as
heavy as he can levitate in

regular play, or lightsaber-
slashes about as ferociously
as he can in regular play. As
a tutorial, the QTE is merely
“teaching” a nuance—one
which will not be displayed
elsewhere in the game.

B U T T O N S O N A
S T R I N G

It’s possible to employ a
“triggered” QTE like this
simply, with great flair, with
equal risk and reward, and
in a manner that doesn’t
interrupt the game. A good
example would be the
chainsaw kills in GEARS OF
WAR (Epic, 2006). You might
not think of these as QTEs,
but what else would you
call them? In GEARS OF WAR,
both you and the enemies
have guns. You can shoot
each other from a distance.
Enemies can take four to five
dozen bullets before dying.
You and the enemies can
crouch behind walls for cover
from unfriendly gunfire.
To arrange a chainsaw-kill,
you need to orchestrate the
situation. The entire level
design is like an on-screen
button prompt. Its geometry

tells you where you need
to be to stay out of enemy
sight while your teammates
suppress him. He’s not going
to stand up or leave cover,
because that would be stupid.
Jet-engine-volume gunfire
echoing out your surround
system, you sneak around,
holding the chainsaw-revving
button. You approach the
enemy and are treated
to a sudden, fast, furious,
satisfying spray of blood.

Then we have the weird
little disconnected button-
mashing events. UNCHARTED
has plenty of them: the player
arrives at a door that cannot
be opened. It’s too heavy. It
opens upward. The character
puts his hands under the
door. The character says
“This door is heavy.” Now a
square-button icon appears
on the screen. Hammer the
square button, and our hero
exerts himself until the door
is open. The problem with
these events is that they
usually occur during a time
of no conflict. The enemies
are dead—or else we’re in an
undiscovered ancient ruin,
and the developers feel the
need to make the players
push a whole lot of buttons
furiously every once in a
while or they’ll get bored.
(An aside to Naughty Dog:
UNCHARTED’s quiet parts are
fascinating. It’s cool; you don’t
need to punch them up.)

Then there are context-
related situations, where
a door requires cranks on
either side to be rotated at
once. This means you have
to finish an ongoing fight in
order to convince the non-
player-controlled character
to come to the door to aid in
its opening. Once the fight
is completed, the button-
mash to open the door feels
like dead air. The conflict is
what kept you from doing
it. Now that you can take
your time, maybe the game
should let you relish your
victory instantly.

It’s actually quite
possible to place button-

WWW.GDMAG.COM 19

ROAD BLASTER.

http://WWW.GDMAG.COM

mashing QTEs in a strategic
context. One fantastic
example is in GEARS OF
WAR 2 (Epic, 2008). Your
characters are ambushed
while standing in the middle
of a circular elevator. The
enemies are in the circular
hall surrounding the elevator
shaft. In the center of the
elevator is a round wheel. Get
to this wheel and hammer
the action button to raise
the elevator above the heads
of the enemies. Now you
have the high ground. The
enemies, however, have
access to a crank handle
all their own, and they can
pump it to lower your high
ground. Now we have to keep
our eye on the enemies’
handle to pick off anyone
trying to kill our advantage
while also dealing with
enemies around the circle.
While dealing with those
other enemies, one of them
out of your sight range might
get to the enemy crank and
start lowering your elevator.
It’s a fast, maddening,
excellent level design.

GOD HAND plays with the
idea of opening a door with a
QTE even while stopped at a
conflict-free dead end. It does
this by turning the event into
a mini-game. Locked doors
in GOD HAND often feature a
large, smiley-faced button
with a wide mustache made
of maces. As you pummel
the button, it turns from
green to red. You can see its
facial expression quaking.
The face soon gets angry.
This is your cue to tweak the
right analog stick to dodge:
its mace-mustache is about
to clap your ears, doing big
damage. Dodging forward or
backward offers a slimmer
margin for error than dodging
left or right, though it is also
quicker, and buys you more
time to pummel the door-
button. (Any time you’re not
pummeling the button, its
color slowly fades from red
to green.) Though the level
design may be no more than
hollow boxes full of enemies,

the fights are fantastic,
and even the simple act of
opening a door includes
unforgiving mini-games
involving punching. It’s no
wonder scientists recently
proclaimed GOD HAND the
Best Game Ever. (Editor’s
note: they didn’t actually.)

A pattern that emerges
in the analysis of game-
enhancing, progressive QTEs
is that they involve using
buttons on the controller
for the same purpose that
they’re used in regular play.
In the GOD HAND example
above, the player uses the
punch button to punch and
the dodge button (actually an
analog-stick swipe) to dodge.

Another excellent
example is the first boss in
NINJA BLADE, a game that
otherwise features bland
(if forgiving) cutscene-
replacement QTEs. The first
boss is a massive spider
monster at the end of a
corridor. The player must
traverse that corridor,
dodging left and right to avoid
the shock waves the boss is
spitting. If a shock wave hits
the player, it hurts him, and
knocks him back. The corridor
is long and treacherous.
When the player successfully
reaches the end of the
corridor, he can now attack
the spider’s face. He does
this by pounding the attack
button. Eventually, the boss
doesn’t like this, so he emits
a super-powered shock wave
that knocks the hero back
with intensity. The camera
zooms in to the hero’s face.
He’s holding up his sword-
edge against the shock wave.
This is your cue to press
the sword button rapidly to
fight back the shock wave.
No matter how many times
you press the sword button,
you’re not going to conquer
the shock wave. It’s going to
knock you back. The question
is how much it’s going to
knock you back. With a less-
than-stellar button mashing
performance, you might
be all the way back at the

beginning of the corridor. With
a great performance, you
might only be 10 feet away.

JOHN WOO’S STRANGLEHOLD
(Midway, 2007), likewise,
exclusively employs such
progressive QTEs. The most
striking of them are the
standoff situations. A group
of enemies surround the
hero. They point guns at him.
They tell him to negotiate.
He’s played by Chow Yun
Fat and wearing sunglasses
at night, so he is definitely
not going to negotiate. The
camera slides into a first-
person view. Time slips into
super slow motion. Using the
right analog stick, we perform
the usual right-analog-stick
motion of aiming the hero’s
guns. We pull the right
trigger, and it does what the
right trigger always does:
we fire our guns. In the first
slow-motion microsecond,
the enemies begin to fire
their guns. The first-person
camera snaps from attacker
to attacker. The crosshair is
always a bit off of the deadly
pressure point. You move
it manually, at just slower
than its usual speed, as you
savor the super slow motion
reaction time of the enemy
in front of you. You pull the
trigger. The camera follows
the bullet impact. The enemy
flinches, deforms, crumples,
or explodes backward with
terrific physics calculated by
the impact point of the bullet.
This is as exciting as QTEs
can possibly get: the action
fits story context, character
context, and game control
context, and the payoff is
visceral and instant. Much
as games like GEARS OF WAR
and HALF-LIFE phased out
the cutscene by making the
narrative “happen” in the
world as the player plays,
STRANGLEHOLD shows that
QTEs can be part of a game
and not be sudden, intrusive,
demanding situations.

In STRANGLEHOLD, physics
is the payoff. Everywhere
you go, you’re shooting neon
signs and watching them

fall onto enemies. Objects
that can be shot glint at
appropriate times. Shoot
them, and they’re bound to
fall on an enemy position. The
“glint” is the game’s way of
temporarily, instantaneously
gifting the player with the
hero character’s superhuman
skill of destruction-minded
creative perception. Shoot at
the glint, and something will
happen. Shooting the glint is
accomplished by aiming and
shooting your hero’s gun in
the same way as you’d aim
and shoot the gun in any
other context.

For the moment, let’s
ignore the way STRANGLEHOLD
jumps the shark one-
sixteenth of the way through
stage two, and say that it
might just be the future of
action games. STRANGLEHOLD
presents a genre where the
game world itself is a QTE.

P R E S S A T O D I E

So we’ve come full circle.
Game graphics today are
incredibly impressive, even
if the things we do with them
are something obtrusive and
weird. Eight-year-olds who
gawked at DRAGON’S LAIR in
1983, if shown STRANGLEHOLD,
would likely scream until they
spontaneously combusted.
The amazing thing, way
back then, was that games
could look this good while
simultaneously portraying
complex, dynamic, cinematic
action on the screen.
We’ve evolved much since
then. We’ve learned how to
make graphics equally as
impressive as those cartoons
of the 1980s, and we’ve
learned how to make games
so incredibly interesting to
play that we’re willing to get
online and play them with
profane 12-year-olds, if we
have to.

Consider ROAD BLASTER
(Data East, 1985), which
depicts high-velocity cartoon
car chases from a driver’s
seat view. In ROAD BLASTER,
your only input is pressing

right or left on the controller
at excruciatingly specific
times. Your reward for
enough precise inputs is
to watch an enemy car fly
off the road, smack into a
mountain wall, and explode
in a ball of fire—or to watch
your own car drive up a ramp
and fly over some impossible
ravine. A decade and a half
later, we have BURNOUT 3 and
BURNOUT PARADISE (EA, 2004
and 2008), games about
driving at criminally insane
speeds and performing
ridiculous maneuvers, where
the central play mechanic
involves knocking cars off
the road to their death. What
we’ve done in this modern
age is perfectly recreate the
thrill of piloting a speeding
automobile, and married it
seamlessly with the crazy
action of sideswiping some
dude off the road and into a
mountainside.

Unlike ROAD BLASTER,
BURNOUT, using only its
vehicle native controls
and no on-screen button
icons, lets us finely control
the velocity of our car and
minutely consider the angle
and ferocity of our approach.
And when we succeed in our
favorite in-game action of
death-delivery, all kicks into
slow motion and the camera
swivels to bring the road
behind us into view to show
our soon-to-be-late rival
slowly careening toward
some form of demise, the
physics of his flight perfectly
calculated uniquely, just for
our current performance.
Compare that to the game-
length QTE that is ROAD
BLASTER. (Please ignore ROAD
BLASTER’s killer soundtrack
and wicked-sweet character
designs.) Which one is
more exhilarating to play?
Be honest. If QTEs are a
“problem,” we might be
millimeters away from a
global solution.

TIM ROGERS is a freelance writer

and game designer. He recently

worked on NO MORE HEROES 2.

GAME DEVELOPER | DECEMBER 201020

F U L L R E A C T I V E E Y E S
E N T E R T A I N M E N T

celebrating

Game Developers Conference®

February 28–March 4, 2011

Moscone Center | San Francisco, CA

Visit www.GDConf.com for more information.

http://www.GDConf.com

pattern recognition in augmented reality

game developer | december 201022

C É s a r B o t a n a

////////////////////// In sImple terms, augmented realIty Is the projectIon of an InteractIve graphIc over a
vIdeo feed of a real-world physIcal envIronment. recent tItles such as eyepet and eye of judgement for the
playstatIon 3, or InvIzImals for the psp are examples of games that use augmented realIty technIques as the
basIs for play.

An important key to these games is the process of pattern recognition. Using a camera, a pattern printed on a card can be
recognized by the game, and on the card some play elements can be superimposed, such as the pet from EyEPEt. Cards can be
used to place virtual characters, or used to define a playfield in which virtual elements from a game are kept oriented to the real
world surface they are projected over.

Here we’ll examine how to recognize a pattern on a card, and how to detect its position and orientation. To make this task
easier, we’ll make use of the OpenCV library. This library has many functions for solving problems related to computer vision, but
we will only use a small portion for our interests. OpenCV is written in C and includes the source code. Because OpenCV is BSD
licensed, it is free in principle to port to almost any platform, as well as for use in commercial projects.

C r e a t i n g t h e P a t t e r n

As shown in Figure 1, the basic pattern card which we want the computer to recognize is a simple image on a white background
surrounded by a black border. The black border and white background is common to all pattern cards, and the image in the center
will be what differentiates one from another. Some considerations to take into account when creating a pattern card are:

» It must be a white square with a black border (the width must be equal to the height).
» The image in the center needs to be grayscale, and it’s preferable to use only the absolute

white and black. It’s possible to use shades of gray that are extremely close to these
values, but avoid middle tones, or use them in a very specific way (such as at the edges
of the image) to avoid aliasing.

» The interior image should not be too close to the edges. If the pattern card is moved,
the image may blur, making it impossible for the computer to differentiate between the
interior drawing and the pattern card’s black border.

Once we’ve created a pattern card, we need to define the pattern associated with it, so it can be recognized by the computer.
Begin by dividing the space within the black borders into NxN cells so that each cell can have its average color calculated.

To calculate the average color, add up the color values of all pixels inside a given cell, then divide by the number of pixels
within that cell. If the value is less than 127, we will call the cell black. An average equal to or higher than 127 will be considered
white. As shown in Figure 2, at the end of the process, we will have a pixilated image, in pure black and white, of the original image.

The maximum number of patterns that can be defined, and the ease with which we will be able to detect them depends on the
choice of N. If we choose a lower resolution N such as eight, which results in only sixty-four squares, we will have little variety when
it comes to defining, patterns and different images can look similar when pixilated. However, there is an advantage in averaging

pattern recognition in augmented

www.gdmag.com 23

pattern recognition in augmented
a large number of pixels per cell, as individual pixels will have very little
influence on the total—two erroneous pixels are nothing compared to one
hundred valid ones.

On the contrary, if we choose a higher resolution N—let’s say eighty—
we have a greater number of cells with which to generate different patterns.
The disadvantage is that a single pixel now counts very much towards the
calculation of the value of a cell—two erroneous pixels out of eight can
cause the average value of the cell to be miscalculated.

We will have to repeat this process with the original image rotated 90,
180, and 270 degrees. Each of these will be called a rotations pose. Because
a pattern card can face any direction in the real world, we need to know
which of the four poses it’s in if we want to calculate its orientation correctly.

D e t e c t i n g t h e P a t t e r n

 For every image we want to analyze through the camera, we’ll have to follow
the same operations:

First, we convert the image to absolute black and white. To do this,
simply call the function OpenCV cvCvtColor (OriginalImage, GrayImage,
CV_BGR2GRAY) to convert the image to grayscale. Once converted to
grayscale, we call the function cvThreshold (GrayImage, BinaryImage, 127,
255, CV_THRESH_BINARY) to convert it to a binary image. These parameters
indicate that if the color of the pixel is greater than 127 (remember that we
are working on the grayscale image, which is over eight bits), the pixel will
be considered white (255); otherwise, it will be considered black (0).

Keep in mind that environmental lighting can modify the view that the
camera has of the pattern card. If the card is in shade, white can be taken as
black, or if a light shines directly on the pattern, the brightness on a black area
may be understood as white. Because of this, it is recommended to work with
patterns that are absolutely black and white in order to minimize this problem.

Next, we calculate the contours of the image. A contour is only a list
of points that indicate the border between black and white areas. To do
this we call the function cvFindContours () and indicate through the
flag CV_RETR_TREE that we want the contours to be listed hierarchically.
If a contour is inside another, it will appear as a child on the list. This is
useful because our original image's black border and its internal white
area creates another four-sided contour which is a child of the previous
one. Use cvApproxPoly () to convert a “rough” contour into a straight line,
“poly” contour (see Figure 3).

The points defining a contour can be ordered in the list either clockwise
or counter-clockwise. This will depend on whether the contour marks the
boundary between a white area and a black one (clockwise) or between a
black area and a white one (counter-clockwise). As shown in Figure 4, there
are two contours highlighted in red. The arrow indicates the direction in
which points are defined.

Once we have the list of contours, we can exclude those that do not fit the
contour of the pattern we are seeking to recognize. A simple test is to check
that the contour has four sides and the points that define it are clockwise.

Also it should have a child (remember that you obtained a hierarchal list
of contours) with four sides, and the points of its child should be counter-
clockwise. Our pattern will meet these conditions because the outer black
border will create a four-sided clockwise contour and its inner white square
will generate a four-sided counter-clockwise contour. Additionally, we
can check whether the adjacent sides of the contour create an angle of
approximately 90 degrees.

At this point, we will have a list of contours that may fit the pattern we’re
looking for. For each possible contour, we will perform a series of actions to
finally recognize it.

First, from the points that make up the contour, we build another list in
which the points appear, ordered so that they are always clockwise, and the
first point on the list corresponds to the top left corner of the image. This
is necessary because the contour that OpenCV returns may be clockwise
or counter-clockwise, and the first point on the contour is dependent on its
orientation. When we recreate the list of points that compose the contour,
we should always know how it is defined, as this makes working with them
easier. For example, Figure 4 represents the position of the contours before
reordering—the blue dots refer to the first point on the list.

Next, check the captured image to determine whether the area within
the coordinates of the contour matches the pattern we are trying to
recognize. To do this, we will represent this area using a homography matrix.
In computer vision, homography is the process of projecting the mapping of
a plane to a different plane. For example, the flat 2D view that the camera
obtains of a real-world 3D object is an example of plane homography. We can
calculate a matrix that relates these two planes by taking the image from
the camera’s plane of vision and converting it to one of our pattern’s four
rotation poses (see Figure 5).

To calculate the homography matrix, we begin by creating two lists of
points. In the first list we will introduce the eight vertices of the contour we
are working with (the four from the black edge and the four from the inner
white square). This defines our origin plane. The second list will have the
points of the pattern at the destination plane we seek—that is, the actual
positions and dimensions in pixels of the black border and the inner white
square from the original image pattern.

It is necessary to enter a coordinate Z in the second list, and we should
always set it to 0 (Figure 6 shows the eight vertex values). Call the function
cvFindHomography () and as parameters, give it the two lists of points we’ve
created, and a matrix in which to store the result.

Once the matrix has been calculated, we apply it to the binary image
captured by the camera (see the results of the operation in Figure 5). On
the image generated from homography, we should do the same calculations
we did when creating the pattern. We divide the inner white square into NxN
cells and for each cell we calculate its absolute color (black or white). Once
we have the calculated values, we simply compare them against the black
cells of the four poses of the pattern that we have loaded into memory. We
only need to compare against black cells because the white cells define the
background of the pattern.

http://WWW.GDMAG.COM

game developer | december 201024

Once the black cells are compared, we will get a percentage of similarity
(number of coincidences / number of black cells). Then, we check to see
if this percentage is greater than a certain threshold that we have defined
(such as 90 percent) and if so, the pattern has been recognized. We always
need to compare against a threshold, because in practice we are never going
to obtain a 100 percent correspondence. When calculating the homography,
the results will depend on variables such as size, orientation, lighting, and
the image on the pattern card.

We can also employ a heuristic to decide which pose of the pattern to
compare first. We can start by checking against the pose the pattern had the
last time it was recognized, and if the pattern is not found to be using that
pose currently, it can be compared against the preceding and following poses.

At this point, we will have detected the pattern in the frame of the camera.
In addition, we have its base pose that will be needed to properly calculate
its orientation. We will only need to get the positions and orientation of the
pattern in 3D coordinates.

C a m e r a e y e

Rays of light colliding with the objects around us form our view of the
world. In such collisions, some light is absorbed and some is reflected. This
reflected light is collected by our retina and defines the color that we see
reflected from an object.

A camera functions very similar to the eye—light enters through the
lens of the camera and is projected onto a plane that collects the image.
To project a 3D point from the world onto the 2D plane of a camera, two
matrixes are used to transform the origin coordinates.

The first matrix is the camera matrix, or the intrinsic parameters matrix.
In it, the values for the focal length are defined—meaning the distance from
the point where the light enters the camera, and the plane where the image
is recorded.

There is a focal length for x and another for y. This is normally because the
pixels of the camera plane where the image is recorded are rectangular rather
than square. The other two values that are used are the displacement of x and

y, from the center of the projection plane to the
center of the camera. Under perfect conditions
both would be 0, but low-cost cameras rarely
have the millimetric accuracy needed to correctly
place the projection plane right in the center of
the focal point. These values are given in pixels,
so if we calculate the values for a resolution of
640x480, and we change the camera resolution
to 1280x960, we need to multiply the values by 2
for them to be valid.

The second matrix is a matrix of extrinsic
parameters that are the product of a rotation
matrix and a translation matrix. These indicate
the rotation and translation from the coordinate
origin of an object in the real world toward the
coordinate origin of the camera.

Initially, each camera has some intrinsic
parameters that differ from model to model.
To obtain these values, it is necessary to

FIGUre 1 (top) shows the format for a basic pattern
card. FIGUre 2 (bottom left) shows the original
image and its binary representation (bottom right).

FIGUre 3 shows the detection process starting with the camera image (top left), the binary image (top right), the
rough contour (bottom left), and its converted "poly" contour (bottom right).

sample applications
To get more insight into pattern
recognition, we’ve provided sample
programs available at www.gdmag.
com/resources/code.htm that use
OpenCV for computer vision and
OpenGL for graphic representation.
They are compiled using Visual
Studio 2005 Express for use with
Windows. The window initialization
and the event management of the
application are set for Windows,
so you will need to make some
changes in this regard if you want
to port to other platforms.The first
sample is a command line program
called Creator. The first parameter
introduced should be the name

of the file with the image pattern,
and the second parameter should
be the name of the file where
the pattern information will be
stored once it’s processed. Visual
feedback in Creator shows how the
program processes the image so
you can see the original image, its
contours, and the four poses of the
image converted to cells.

The other sample program is
called Recognizer. When running,
it will display a window that shows
what the camera is capturing.
By using the example pattern
that comes with the program,
Recognizer will place a virtual

cube over the pattern that adjusts
to position and rotation.

In Recognizer’s debug window,
you can see the steps that the
application follows in order to detect
a pattern. Press F1 with the focus
on the recognition window, and you
can see how the binary image is
calculated, followed by the contours,
the homography of the possible
contour, and finally the pattern in
the form of cells. In addition, at the
bottom, a percentage indicates the
degree of similarity found between
the pattern taken from the frame
of the camera and the pattern read
from disk.

http://www.gdmag.com/resources/code.htm
http://www.gdmag.com/resources/code.htm

calibrate the camera. Using a well-defined pattern such as a checkerboard,
images of the pattern in different positions and rotations are taken by the
camera. Then by using the cvCalibrateCamera2 () function, we obtain the
intrinsic matrix.

C a l C u l a t e P o s i t i o n a n d o r i e n t a t i o n i n t h e
P a t t e r n ’ s 3 d C o o r d i n a t e s

In order to overlay 3D graphics onto the camera feed, we need to know the
position and orientation of the pattern relative to the camera. This allows us
to, for example, draw a 3D model on top of the card and have it look like it fits
into the scene.

The first thing to do is to build two lists of points in the same way we
did when calculating the homography matrix. The values of the points are
the same as in the previous case; the only difference is the order in which
we define the points of the pattern in the frame. When we calculated the
homography matrix, the first point was always located at the top left of the
contour, and the others were clockwise.

The first point is given by the pose in which the pattern has been
found. If the pose is 0 (original image without rotation), the order of the
points is the same as when we calculated the homography matrix. If the
pose is 1 (image rotated 90 degrees), the first point on the list will be
the last point of pose 0. If the pose is 2 (image rotated 180 degrees), the
first point will be the last point of pose 1. For pose 3, which is the image
rotated 270 degrees, the first point will be last point of pose 2. For the
second list, we use the list of points that we built when calculating the
homography matrix.

Once we have the two lists of points and a matrix of intrinsic values,
we call the function cvFindExtrinsic () and pass these values to it. It
will return rotation and translation vectors for the object we have been
analyzing that relates to the coordinate’s origin (the camera’s focal point).
The units in which these values are given are the same ones we used to
indicate the coordinates in the second list of points.

Remember that we introduced the values in pixels, so the values we
obtain in return will also be expressed in pixels. In this way we can get the
distance in depth between the camera and the pattern, and if we divide by

the size of the inner white square, it will give us the depth in units of the
world where we would place a 3D model.

For now, we only have the depth of the 3D object. To calculate the remaining
two coordinates, we pass the x and y position from the center of the pattern
on-screen (simply add the values of the four vertices and divide by four) to 3D,
and throw a ray according to the orientation of the camera to the depth we have
calculated. With this operation we will have the three world coordinates.

The orientation is given in a 3x1 vector. The three values indicate an
axis of rotation, and the magnitude of the vector represents the angle of
rotation. To make these values easy to use, OpenCV provides a function to
convert this rotation vector to a classic 3x3 rotation matrix. This function is
cvRodrigues2 (RotationVector, RotationMatrix). If we are working with
OpenGL, we should reverse the rotation in X before calling the function, and
after calling it, we will have to transpose the matrix.

These are the steps necessary to detect a pattern and obtain its position
and orientation in the 3D world.

Throughout this article, I used less than a dozen OpenCV functions. If you
want to continue working with augmented reality, it is worth investigating
this fantastic library. For example, you could obtain the brightness of a
camera frame, and depending on the lightness or darkness, apply a shade
to your 3D models so that they integrate better with the real world. Another
example could be tracking the user’s head movement in order to rotate our
models, as well as detecting hand movements and gestures. There is a
world of possibilities within this library.

C é s a r B o t a n a h a s b e e n w o r k i n g a s a g a m e p r o g r a m m e r s i n c e 2 0 0 1

i n c o m p a n i e s s u c h a s P y r o S t u d i o s a n d Z i n k i a E n t e r t a i n m e n t . H e

i s n o w l e a d p r o g r a m m e r a t Te q u i l a W o r k s .

FiGure 5 (top) to calculate a matrix that relates
these two images, take the image from the camera’s
plane of vision and convert it to one of the pattern’s
four rotation poses. FiGure 6 (bottom) shows the
eight vertex values.FiGure 4 shows the two contours highlighted in red. the arrows indicate the direction in which points are defined.

www.gdmag.com 25

openCV http://opencv.willowgarage.com/wiki
learning openCV: Computer Vision with the openCV library

by Gary Bradski and Adrian Kaehler, O’Reilly Media, 2008

resources

http://opencv.willowgarage.com/wiki
http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 201026

B Y P A T R I C K R E D D I N G , A L E X P A R I Z E A U , A N D M A X I M E B E L A N D

WWW.GDMAG.COM 27

B Y P A T R I C K R E D D I N G , A L E X P A R I Z E A U , A N D M A X I M E B E L A N D

////////////////////// WITH THE 2002 RELEASE OF TOM CLANCY’S SPLINTER CELL, UBISOFT MONTREAL
ANNOUNCED ITSELF AS A STUDIO, AND UNDER UBISOFT, PRESENTED ITS INDUSTRY CREDENTIALS AS
A DEVELOPER-PUBLISHER OF SERIOUS AAA TITLES. TWO SEQUELS FOLLOWED IN RAPID SUCCESSION,
WHICH SOLIDIFIED THE FRANCHISE AS A LEADER IN THE STEALTH-ACTION GENRE.

After the fourth game in the series—SPLINTER CELL: DOUBLE AGENT (2006)—a new thematic direction
had been established. Grizzled intelligence operative Sam Fisher was on the run and at odds with his
former employers in the wake of a devastating loss. This reset offered both promise and peril for the
next production, which wound up becoming SPLINTER CELL: CONVICTION. The SPLINTER CELL team set out
to redefine the core gameplay away from traditional light and shadow stealth mechanics, and toward
disguise, crowd concealment, improvisation, and dynamic environmental action. When the results fell
short of the publisher’s standards for its flagship titles, it meant the binning of over two years worth of
work and the restructuring of the team.

This was the situation that confronted the title’s new producer and creative director at the start of
2008. Having previously worked together on TOM CLANCY’S RAINBOW SIX VEGAS, Alex Parizeau and Maxime
Beland understood the challenges of reinvigorating an established brand with extensive history and
fiercely passionate fans. They were also starting their involvement at a time when the clock had already
been run down by two years, representing a body of work that would be largely invisible to an end
consumer. This was on top of the quality expectations that would come with a second outing on the
current generation of consoles.

At the request of the company’s Paris HQ, Beland steered the game back to its roots, and at the same
time recalibrated the working model of shadow stealth to give the player faster movement, more visceral

http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 201028

action, and explicit, presentation-layer cues for
preying on AI enemies. Parizeau drew talent from
Ubisoft’s entire operation to grow the team, which
at its peak numbered 200 developers in Montreal,
Bucharest, and Paris. Ramping up through an
accelerated pre-production, they delivered a
vertical slice in November 2008, and pitched a
full game walkthrough that deviated from the
shipped content by only a single scripted event.

Reaction to CONVICTION upon its release in
April 2010 reflected both the players’ hunger for
variety in the modern action-adventure milieu,
and the relatively hardcore tastes of many
bloggers and reviewers. SPLINTER CELL: CONVICTION

dropped as an Xbox 360/PC exclusive and was
the best-selling console game in the U.S. for that
month, according to NPD.

W H A T W E N T R I G H T

1) CLEAR AND FOCUSED DIRECTION (ONCE THE
VISION WAS SET). Beland established a standard
language for describing the target experience,
and that message was applied consistently both
internally within Ubisoft and externally during
the marketing of the game. Sam would move and
behave like the proverbial “panther.” This was the
reference point in the character’s animations, and
for new game mechanics designed to empower
the player with a credible approximation of
Fisher’s ruthless super-spy efficiency.

Clear player experience targets gave the
team the confidence to make decisions and to

tweak the game’s systems in support of Sam’s
predatory aspect. The result was a player fantasy
that lived as much in the depth of CONVICTION’s
systems as it did in the fiction surrounding
Sam’s work for Third Echelon.

But that fiction also did its part to shift the
game’s emotional center out of the geopolitical
spaghetti of most CLANCY titles, by focusing
on the apparent death of Sam’s daughter in a
drunk-driving incident. For a character that had
previously been defined as a self-aware chess
piece, this made his concerns and anxieties
immediately more relatable.

The decision to ship CONVICTION as an Xbox
360-exclusive title brought increased support
from Microsoft. This working relationship proved
vital when submission schedules were shifted
around late in production to allow for more polish
time. Having been briefed on the overarching
intentions for the title, Microsoft was in a better
position to offer flexibility. By the time the game
was revealed on the Microsoft stage at E3 2009,
content for the single-player campaign had been
precisely scoped. The demo itself showcased
real systems and data. What was shown was
what shipped.

2) THE COOPERATIVE MODE STOOD ON ITS OWN
MERITS. A late addition to the game’s official
planning, co-op became the focus of a dedicated
team that was quickly assembled and given a
mandate to deliver within less than a year. The
result was several game modes, a two-player

story, and new characters that fit the SPLINTER

CELL universe (providing some of the classic
mission-based structure loved by fans of the
earlier games) while setting up background for
the solo campaign.

Because key time constraints and the
needed autonomy were established up front,
the co-op group could pick its battles judiciously.
Associate producer Sebastien Ebacher brought
on Patrick Redding as game director, and the
two of them collaborated closely to set quality
benchmarks and dial the scope of content up or
down as needed.

The designers focused on the core
mechanics of single-player that best scaled up
to two players, and they avoided overextending
the design. Since they weren’t locked into
using existing single-player map geometry or
assets, designers were able to tailor the level
design blueprint to the unique needs of two-
person multiplayer. The artists had the freedom
to develop a unique visual aesthetic for the
campaign, and were given room in the production
schedule to iterate on level art and assets.

The resulting work extended the overall
replay value of the game, and drew substantial
praise from critics and players. Ubisoft leveraged
this through a DLC strategy that delivered new
DENIABLE OPS maps for months after the game’s
initial release.

3) THE TEAM INCLUDED THE RIGHT MIX OF
EXPERIENCE. At the time of the game’s shift

PUBLISHER
Ubisoft

DEVELOPER
Ubisoft Montreal

NUMBER OF
DEVELOPERS
200 at peak

RELEASE DATES
April 13th

(Worldwide Xbox
360), April 27th
(Worldwide PC),

2010
PLATFORM

 Xbox 360, PC

WWW.GDMAG.COM 29

in direction, there were developers assigned
to the project who had worked on all four of
the previous SPLINTER CELLs and had already
devoted over two years to CONVICTION. The new
team retained a number of these veterans,
particularly those with engine experience.
Others arrived off lengthy productions such as
ASSASSIN’S CREED, RAINBOW SIX VEGAS, and FAR CRY

2. As the team grew to full capacity, it absorbed
a substantial share of new talent arriving at
the Montreal Studio, particularly programmers,
artists, level designers, and level scripters.

Of particular note, game design lead Steven
Masters helped develop player character actions
for RSV, and was part of the fight team for
ASSASSIN’S CREED. There were key contributions
from ASSASSIN’s alumni in gameplay animation,
giving Sam’s “predatory” athletic moves,
takedowns, and 3D navigation some Altair-style
grace. CONVICTION’s ad hoc co-op group was a
major beneficiary of this mix: lead designer
JP Cambiotti and level design director Jason
Arsenault previously worked on RAINBOW SIX:
VEGAS and RAINBOW SIX: VEGAS 2, where they built
their expertise at creating environments and
gameplay around two-man units.

Because the Montreal studio is “engine
agnostic,” the most experienced of the
CONVICTION newcomers had already worked with
the SPLINTER CELL tech and tools, or their recent
forerunners. This helped to reduce the ramp-
up time, especially if new developers could be
placed near those who had been involved since
the beginning. The management team worked
especially hard to retain the knowledge of the
original CONVICTION crew, shifting people as
needed to reduce project fatigue and opening up
new roles whenever possible.

4) THERE WAS A CLEAR PIPELINE IN PLACE FOR
DELIVERING FEATURES AND CONTENT. The path
from concept to completion was understood
well, and understood early, before the team
was fully ramped up. Once pre-production
began, CONVICTION’s direction did not change. We
delivered a publishable vertical slice halfway
through the new production schedule, which
contained all the features that shipped in the
final game, in part because the team had already
spent a year of rapid prototyping and knew how
to plan and what to include.

Content development was streamlined
through a blueprint process that allowed the
level designers to begin iterating on their maps
even while the gameplay team was doing
the same for mechanics. The approach was
unabashedly top-down, producing a timeline
of the game’s timeline in layers of increasing
granularity, from story beats through locations,
down to individual blocks of action.

CONVICTION also inherited a philosophy of
design documentation that originated with
ASSASSIN’S CREED and was put to good use on

RAINBOW SIX. Feature Sign-Offs (FSOs) did away
with unread, bloated Word docs and required
designers to rigorously define the game’s features
in terms of testable requirements. The FSOs
continued to live well past Alpha, and became the
basis for the game’s final closing plans.

5) THE PRODUCTION SUCCEEDED IN INNOVATING
ON IN-GAME PRESENTATION ELEMENTS. Graphics
were a key pillar of SPLINTER CELL from the very
start of the series. In the intervening years,
graphical fidelity has become a commodity of
AAA games, essentially the price of admission
for any title that hopes to compete. This raised
the bar for the CONVICTION team as we worked to
push the production values on scripted events
and other story-driven moments in the game.

CONVICTION’s visual signature is probably the
use of projected media—movie clips and text
splashed across in-game environments for the
player to see at the right moment. Projections
allow the game to show important dramatic beats
without resorting to non-interactive cutscenes.

This technique also helped preserve the
seamlessness of in-game continuity, further
supported by delivering the game without cuts,
hiding load-times behind continuous camera
transitions that follow Sam from location to
location, or offering a preview of the next
chapter’s objectives. This fed stylistically into
the game’s relentless forward momentum,
reinforcing the theme of Sam’s personal
mission and the aggressive, strike-from-the-
shadows dynamics.

W H A T W E N T W R O N G

1) THE GAME’S MECHANICS WERE RESTARTED
FROM SCRATCH. CONVICTION’s original direction,
while intriguing as a concept, proved to be
unworkable as a fully-featured game experience.
When Parizeau and Beland joined the team in
early 2008, the game as it existed then was
so far removed from the core mechanics of the
series that Ubisoft felt one of its key franchises
was in potential jeopardy.

http://WWW.GDMAG.COM

GAME DEVELOPER | DECEMBER 201030

Even though the “panther” concept was
envisioned and documented relatively quickly,
implementation could only be accelerated
by so much. Many features that are a given
in a SPLINTER CELL game, such as dynamic
lighting, two-handed weapon firing, and gadget
management literally needed to be recoded
from scratch. Any new mechanics needed to
sit on top of these must-have features, putting
further pressure on the timetable and creating
considerable bug risk.

For example, the black and white filter
that tells the player they are hidden from
nearby AI was functionally dependent on the
restoration of the light and shadow system. It
was impossible to make changes to ambient
lighting or the nuances of shadow gradation
without impacting the logic of the black and
white filter, which made it harder to debug and
prevented us from giving the effect the degree
of visual polish we wanted.

Unfortunately there wasn’t time to rebuild
everything. Analog movement speed was
abandoned in favor of a simplified run-walk
system. The ability to pick up and hide dead
bodies was never recreated, nor was lockpicking,
nor the full variety of door-entry mechanics.

2) TARGETING ACCESSIBILITY PUT THE GAME IN
CONTENTION WITH HARDCORE PLAYERS. Stealth
games in general occupy a relatively narrow niche,
and Ubisoft needed to expand the franchise’s
appeal or risk it falling between the cracks,
pleasing no one. Earlier chapters in the SPLINTER

CELL series had emphasized a fairly punishing
model of stealth play that required painstaking
observation and concealment, and which
generally ended badly if the enemies’ suspicions
were ever aroused to the point of violence.

Opening the series up to new players
who were wary of its reputation meant
devising completely new mechanics and

streamlining much of the complexity from
the original systems. Unfortunately, some
much-appreciated features—like the ability to
move dead enemies, or use a knife for close-
quarters kills—fell by the wayside because
they were never included in the original design
requirements, and there wasn’t sufficient time
left to reintegrate them and polish them to the
standard of the earlier games.

Among other things, the compounding
development pressures left the team without
enough time to implement and polish a true
“realistic-hardcore” difficulty setting that
would have better satisfied the desire of
some players to tackle the game in a more
traditional way.

3) CHANGING DESIGN, TEAM, AND TECH AT THE
SAME TIME CREATED SIGNIFICANT PRODUCTION
RISK. As experienced as the team was, most of
us were new to the franchise and needed a crash

course in the engine and tools at a stage when
our time was at a premium. This was further
complicated by the fact that the technology itself
was in flux, and engineers had to respond to the
revised vision by integrating significant changes
to 3D, rendering, animation systems, and AI.

Feature-specific teams were forced to
make hard prioritization calls even before the
project entered full production, in order to
meet the twin goals of updating the mechanics
and restoring key gameplay pillars. Rather
than risk shipping legacy features in a half-
baked form, the team chose to limit scope.
The must-have Spies Vs Mercs adversarial
mode became one of the first casualties in this
process, which undoubtedly alienated core
fans of the series.

Changing all three points on the “iron
triangle” introduced continuous stress into
the working lives of the entire team. The new
direction still needed to be presented, explained,
and evangelized to the team, and unsurprisingly,
not everyone on CONVICTION understood the
intention immediately. People were frequently
blocked by a lack of stability in the engine and/
or tools, since the responsible groups were
scrambling to meet their new requirements
within a compressed timeframe. And finally, the
team wasn’t afforded enough time to become
acquainted with each other, and to adapt to their
respective strengths and weaknesses.

4) THE ENTIRE LIGHTING SYSTEM NEEDED TO
BE RECREATED FROM SQUARE ONE. If any one
system represents a non-negotiable pillar of
the SPLINTER CELL series, it has to be light and
shadow, which is a critical affordance for stealth
play. Without the shadows, Sam loses his most
powerful weapon, and the experience begins to
resemble a generic third-person shooter. When
this was restored to the game’s direction, there
was no cheap fix.

CONVICTION’s more kinetic play style also had
an impact. Previous implementations of light
and shadow worked well in small spaces and
at slower movement speeds, but a heightened
pace of action demanded larger spaces and
more enemies to engage the player. Those two
factors stressed the budget of dynamic light
sources in many areas.

Fur thermore, as runtime effects go,
dynamic lighting is processing-intensive but
not necessarily visually spectacular. In 2010,
it’s a stretch to position “light and shadow” as a
quality differentiator. By eliminating this type of
lighting, CONVICTION’s original direction planned
to rely heavily on ambient occlusion and static
bounce illumination to create a more nuanced
look for outdoor and daytime settings.

With shadow stealth back in play, level
teams needed to light first and foremost
for aesthetics, and then iterate extensively
in response to playtests to get the setups

working, both for the players and for the
designers’ gameplay intentions. Since the
player has the ability to shoot out lights,
ambient lighting was kept subtle, to avoid
prohibitive runtime recalculations. Ultimately,
the 3D group had to rework many renderer
internals to support moving dynamic lights like
flashlights, and enable large-scale, directional
outdoor shadows. Because the game’s stealth
system determined the player ’s visibility
based on actual illumination thresholds, small
tweaks to the map lighting could easily break
gameplay, and the group spent a frustrating
amount of time creating debugging aids for
artists and the AI programmers.

5) THE GAME’S EXISTENCE WAS REVEALED TOO
EARLY. After the UbiDays 2007 reveal, the web
was flooded with images of Sam in his tousled-
haired “fugitive hobo” guise, a character design
that was ultimately discarded in the context of
the new direction. This created an automatic

disconnect in the minds of players and
journalists when the revised game was publicly
announced.

During the major press and publicity
events in support of CONVICTION, Ubisoft reps
would routinely spend half of an interview
explaining the checkered history of the project,
time that might have been better showcasing
key features. In the final analysis, the game
might have been best served by giving it a
completely new title to further distance it from
its muddled origins.

S I N G L E C E L L O R C H E S T R A

We, as a team, are extremely proud of what was
accomplished in just two years.

In spite of the challenges, SPLINTER CELL:
CONVICTION ultimately released with solid
marketing buzz and consistently positive
reviews. Post-launch survey data suggests that
established SPLINTER CELL fans still made up the
majority of players, and that their appreciation of
the new mechanics was a lot better than had been
originally expected. We realized that the franchise
can be moved in a more accessible direction
without losing longstanding fans of the series.
With our approach vindicated, it now falls to us to
take it further and reach out to new players.

More than anything else, CONVICTION

represents a solid technical foundation on which
to continue to build. The mistakes, missteps,
and glitches have been accurately accounted
for and can be resolved with very little risk.
More importantly, we now have the opportunity

to iterate on an already successful game
by focusing on content, variety of play, and
enhanced player choice.

The next game in the series is now under
development at Ubisoft’s new Toronto studio,
with many of the same development leads. The
direction and technology are in place, so the
challenge for the moment is to build up a new team
of experienced and passionate developers and
continue to evolve the tools and methodologies
that proved successful on CONVICTION.

By PATRICK REDDING, ALEX PARIZEAU, and MAXIME BELAND.

WWW.GDMAG.COM 31

http://WWW.GDMAG.COM

Game Developers Conference™ China

December 5–7, 2010
Shanghai International Convention Center | Shanghai, China

Visit www.GDCChina.com for more information

Learn. Network. Inspire.

http://www.GDCChina.com

www.gdmag.com 33

TooLBoX

While 3ds Max has seen
revisions on an almost yearly basis,
it’s important to say right up front
that 3ds Max 2011 is a significant
update. So often software companies
get into releasing new revisions
when they’re simply not worth the
time or the money, like buying a new
Lexus when really, only the trim and
the taillights have changed.

This isn’t the case with 3ds
Max 2011. To continue with the
automobile references (because
I can), the release ships with a
new user interface (UI) that is as
intuitive as a cup holder, dynamic
workflow streamlining, luxurious
additions to the modeling tools,
a new and improved system for
building materials, integration
of CAT (that’s Max’s Character
Animation Toolkit, not videos of
adorable felines playing with yarn),
and even a best of class 3D/2D
paint system.

And about that UI ...
Lest I begin the review sounding

like the curmudgeon I am not, who

provided guidance on that color
scheme for the native viewports?
Darth Vader? I can hear it now in the
production meetings:

Minion: “Lord Vader ...
what colors should the
interface be?”
Vader: “Geev them any
color as long as it’s
blaaack!”
Minion: “But Lord Vader ...
black is ... well, black.”
Vader: “I find your lack of
confidence in dark color
schemes ... disturbing.
Make it charcoal gray
then ... dark charcoal.”

While I can anticipate the avalanche
of emails wondering if my own 2011
viewports have been redecorated to
conform to Dora the Explorer or My
Little Pony, let me just counter that if
the worst negative you can find about
3ds Max 2011 is the viewport color
scheme, the rest of it must be pretty
damned good. It is.

The first note is that it is possible
to save assets back to the 2010
version of 3ds Max. This means that
teams that might have been skittish
about upgrading to a new level can
now do so without any qualms (if
they’re using 2010, that is). And
there are a lot of reasons teams
would want to do so. For example,
3ds Max 2011’s Object Paint tool and
updated Viewport Canvas give game
developers Toyota hybrid economy
with Lamborghini styling. By
themselves, these two features will
help game artists save a ton of time,
and that’s no lie.

Let’s see why ...

OBJeCT PainTinG
» I find that Object Painting is one
of the best new features in 3ds Max
2011. It's tops because it allows
you to do something you’ve always
wanted to do, and it does it very,
very well. And that is to paint parts
of your scene with objects.

The Object Painting tab is on the
Ribbon. To paint with objects, you

pick a 3D object and paint into your
scene with your mouse. The controls
let you adjust scale and spacing on
all three axes, and as objects are
painted into the scene, they can
be adjusted on the fly to prevent
them from being too uniform. You
can even paint with more than one
object at a time. Painted objects
remain live (you can continue to
tweak them until your middle mouse
button falls off) until you commit
them within the scene. Artists will
thank the 3D gods in the sky.

Common environment tasks
such as placing foliage, patches of
grass, and various sizes of rocks,
bricks, tombstones, fence posts,
bollards, etc., will not only become
less repetitive, but may actually
allow artists to get their art groove on.

Object Painting also allows for
various kinds of object filling. For
instance, let’s say you’re working
on some kind of killer steampunk
zeppelin and you want to put low
poly rivets along the structural lines
on the outside of the covering. In the
past, you might have toiled away in
relative obscurity, eating cold pizza
and drinking Mountain Dew for a
day and a night while placing those
rivets by hand, or you might have
taken a shortcut by painting them
into a normal map, and then tried to
make them appear in the render.

With Object Painting in 3ds Max
2011, simply select an edge or a
loop on the zeppelin, turn the edge
into an editable object, then pick
a rivet object and use Object Fill
to place rivets along the edge. The
rivets adjust automatically, so the
amount you preselected via the
Ribbon will be spaced out nice and
even.

VieWPORT CanVas
» Viewpoint Canvas was a part of
3ds Max 2010, and it allowed you
to paint on the diffuse channel of
objects directly in the viewport.

aUTOdesK

3ds max 2011
R e v i e w B y T o m C a R R o l l

The slate Material editor in 3ds Max 2011.

http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | decemBer 201034

In 2011, it has been ‘roided up a
bit. Without question, the biggest
change is being able to paint on
any map type, including on bump
maps directly in the viewport.
The Canvas palette also includes
options for loading and painting
with bitmap images and masks, as
well as with colors.

A new layer manager in
Viewport Canvas mimics the layers
you find in Photoshop, and what
could be better than that? This
layer manager lets you create new
layers (and turn them on and off
as needed), adjust the blending
mode and opacity of each layer,
and apply image adjustments such
as brightness, contrast, levels, and
color balance.

Viewport Canvas also has
several new brushes to Clone, Fill,
Gradient, Blur, Sharpen, Contrast,
Dodge, Burn, and Smudge; also,
the brush radius, opacity, spacing,
and color can be randomized to add
essential variety to your work.

CAT-TASTIC!!
» 3ds Max’s Character
development tools have always
been advanced and developer

friendly. When Character Studio
first appeared, it was "the bomb."
Automatically creating walk cycles
by placing footsteps quickly
became the industry standard. But
it’s tough to stay on top, and the
complex and convoluted nature
of Character Studio became its
Achilles' heel.

Now, 3ds Max 2011 has
integrated CAT into the tool suite
and it’s a breath of fresh air.

This CAT is really simple and
effective. Creating and animating
rigs of various standard sizes and
complexities is now super simple. If
you’re an animator, you now have
the ability to change a rig to match
another character, and you can do
it even if the new character has a
different number of legs, arms, tails,
tentacles, you name it. CAT’s wide
variety of default rigs are ideal for
a wide range of human characters,
and also for an even wider range of
malformed trolls, creepy monsters,
or scary creatures.

CAT is also smart. You can
use standard transform tools to
position and orient bones, and CAT
automatically knows what section of
the character you are working on. For

instance, if you create and position
one arm, then create a second
arm, CAT positions the second arm
automatically as a mirrored copy of
the first. CAT also correctly names
all rig bones by default, and if you
change the adult name, it correctly
modifies the names for all children
bones as well.

Part of CAT’s brilliance is that
it retains a lot of the best Max
features so today’s animators don’t
have to relearn the whole thing. I
could go on and on, but animators
should find a way to experience the
new version, I’m sure they’ll see the
clear advantages.

PRICE

› 3ds Max 2011: $3,495
› Upgrade from 2009 or 2010: $1,745

SYSTEM REQUIREMENTS

Microsoft Windows 7 Professional, Microsoft Windows Vista Business (SP2 or higher), or
Microsoft Windows XP Professional (SP2 or higher). Intel Pentium 4 1.4 GHz or equivalent
or AMD processor with SSE2 technology.
2 GB RAM, 2 GB swap space, 3 GB free hard drive space. Direct3D 10 technology,
Direct3D 9, or OpenGL-capable graphics card.

PROS

1 Ability to save assets back to the 3ds Max 2010 level.
2 Object Painting is a real time saver.
3 Viewport Canvas toolset promotes the artist within 3D art.

CONS

1 3ds Max 2011 seems a little slower than 2010 and before.
2 The charcoal color scheme. How fast can one adjust that?
3 Extrapolating on rev level naming sees 2012 hitting the market in about a month.

AUTODESK 3DS MAX 2011
Autodesk, Inc., 111 McInnis Parkway, San Rafael, CA 94903
http://usa.autodesk.com

New Version of
NavPower
BABelFlux
www.babelflux.com
/// Middleware developer
BabelFlux announced
a new version of its
NavPower AI pathfinding
software, which will be
used in upcoming games

such as eA’s DeaD Space
2, DarkSpore, and Square
enix’s Dungeon Siege iii.

Pathfinding algorithms
in the new version allow
for AI-controlled characters
to negotiate moving
platforms, fly over buildings
or through windows, and

navigate crowded MMO
environments, according to
BabelFlux.

The update also
optimizes the middleware’s
performance on the
PlayStation 3, using the
system’s multiple cores
more efficiently to reduce
memory consumption and
improve response time, the
company says.

3D Flash Game
Hardware
Acceleration
ADOBe SYSTeMS
www.adobe.com
/// Adobe announced a new
set of APIs enabling large-
scale, hardware-based 3D
acceleration on its popular
Flash and AIR platforms.
Code named “Molehill,” the
company’s new APIs will be

available as a public beta
starting in the first half of
2011.

They will provide low-
level programmable shader-
based engine features
including z-buffering,
stencil color buffering,
fragment and vertex
shaders, and cube textures,
all of which will use the
GPu “where possible” for
“significant performance
gains.”

Developers are told
to expect “hundreds of
thousands of z-buffered
triangles to be rendered at
HD resolution in full screen
at around 60 Hz” under
the new APIs, compared
to “thousands” of un-z-
buffered, 30Hz triangles
under the current Flash
Player 10.1.

The acceleration will
rely on Directx 9 standards
on Windows, OpenGl eS
1.3 on Macs, and OpenGl
eS 2.0 on mobile platforms,
and potentially puts
Flash more directly into
competition with 3D-centric
web game engines such
as unity.

Beast Lighting
Middleware
AuTODeSk
www.autodesk.com
/// The Autodesk Beast
lighting middleware is
now shipping and is the
first release of the product
under Autodesk since the
company acquired Beast
creator Illuminate labs in
July this year.

Autodesk Beast allows
for light bouncing, color

bleeding, soft shadows,
and other lighting-related
effects in games.

The company claims
that Beast streamlines
the lighting process in
game development with
its liquidlight Global
Illumination engine
and real-time lighting
visualizer eRnsT. The tool’s
DistriBeast distribution
engine can be used to
quickly distribute renders
on multiple machines.

Other key features of
Autodesk Beast include
precomputed global
illumination, the ability
to adjust overall scene
lighting without bounce
lights or ambient fills, and
an API that allows users to
more easily integrate Beast
into a game engine.

p r o d u c t n e w s

Dungeon Siege iii.

http://www.babelflux.com
http://www.adobe.com
http://www.autodesk.com
http://usa.autodesk.com

www.gdmag.com 35

SLATE MATERIAL EDITOR
» Next in the conga line of new
features in 3ds Max 2011 is the
Slate Material Editor. I place it
second after Object Painting
because of the increasingly
complex nature of today’s
materials, even more so for video
game work. Slate is an expansion
of the Compact Material Editor
(previously known simply as
the Material Editor). While Slate
incorporates portions of the old
system, it is miles ahead because
of its highly visual node-based
material editor. The fact that you
can see at a glance the numerous
components comprising a material,
the relationships between them,
and each shader channel puts the
old system to shame.

Another huge addition under
Slate is the inclusion of the
Autodesk Material Library within the
Material/Map Browser. Thousands
of ready-made materials can be

immediately applied to objects,
which is especially useful for
environment artists that need
to start working right away with
various real-world architectural
materials like tile, ground, metal,
water, and glass.

INTERACTIVE TEXTURE DISPLAY
» In a tie for third with the Slate
Material Editor is the ability in 3ds
Max 2011 to view many 3ds Max
texture maps and materials within
the viewport to help develop and
refine scenes in a higher-fidelity
interactive display environment
without the constant need to
re-render. Tell me that you enjoy
sitting at your desk at 11:59 PM,
trying to dial in those texture UVs
on your model but constantly
struggling with the low-res nature
of the display. 3ds Max 2011 gives
you the poison dart to take that
beast down. The more I talk about
it, the more I want to bump this

feature into second place, but I’ll
move on.

QUICKSILVER
» The Quicksilver hardware
renderer is a new multithreaded
rendering engine that uses both
the central processing unit (CPU)
and the graphics processing unit
(GPU) to deliver rendering PDQ
(Pretty Damned Quick). The new
setup achieves up to 10 times
faster rendering than traditional
techniques on common graphics
cards. You can’t necessarily say
that this is a benefit to video
game developers because many
cutscenes that used to be rendered
are now done within the game with
real-time processing. However, with
such an unsteady job market, no
one in the industry will begrudge
being able to more quickly render
out asset turnarounds, animation
cycles, and full scenes to appear in
their demo reels and websites. At

the same time, in terms of overall
performance, 3ds Max 2011 seems
a little slower than 2010 and before.

TO UPgRADE OR NOT TO
UPgRADE ...
» Overall, I’ve found that Object
Painting and Viewport Canvas
are worth the upgrade fees by
themselves. Add in everything else,
and while you may not quite be
willing to relegate that legacy copy
of Max 2010 to the scrap heap (like
your old Pinto), it makes the decision
not to upgrade a lot tougher than it
usually is. But if you’re working with
characters, then the integration of
CAT will deliver a beat down like Rey
Mysterio driving through your studio
in a monster truck.

And when have you ever seen that
metaphor in a software review?

TOM CARROLL is a freelance video game

artist and a contributor to myIPD.com, an

intellectual property portal.

Download your FREE digital
edition of the 2010
Game Career Guide online at:
www.gamecareerguide.com

I’ll match your interests and
goals with the right game

related programs and schools
from around the world.

www.gamecareerguide.com

Downloa D anD Play the l atest stuDent Games!GEt youR GamE on!
EvERythInG you nEED to know to
GEt Into thE GamE InDustRy!
• news and features for students and educators

• Getting started section — an invaluable how-to guide

• message Boards

http://myIPD.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://WWW.GDMAG.COM
http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM

pixel pusher // steve theodore

game developer | december 201036

The Balkans
Living and working in a fragmented medium

nearly 10 years inTo The
seventh console generation,
we’ve gradually become
accustomed to a lot of things that
once seemed exotic and scary.
There aren’t a lot of we-don’t-
need-no-steenking-normal-maps
holdouts anymore, and plenty
of artists can toss off terms
like “spherical harmonics” with
the kind of casual nerdiness
that once belonged only to the
ensign Wesley Crushers of the
multiverse. It’s kind of shocking
nowadays to roll back the clock
and look at titles that represented
the peak of graphics in 2002 or
2003; without the gauzy haze of
fond gaming memories, many of
those AAA stalwarts would look
more at home on a handheld or
a smartphone.

One of the peculiarities of
this generation of tech is that
the advances seem to come in
fits and starts. One game has
really swanky effects shaders,
with water ripples or caustic
lighting or buttery smooth
subsurface scattering. Another
has a brilliant lighting model,
with a huge dynamic range and
ultra-sophisticated radiosity
mapping that captures all the
subtleties of indirect lighting.
A third may have real-time soft
shadows or ambient occlusion
helping to define its forms and
tie its disparate pieces together.
But no game really does it all
(which is probably good news;
would you want to compete
against the game that really
did everything?).

a compromising posiTion
» Modern hardware can do
remarkable things, but the hard
limits of memory and processing
power still force us into some
awkward compromises. You
might, for example, go with a

deferred renderer that gives you
lots of lights, but doesn’t handle
multiple layers of transparency
well. Or, you could plug in a fancy
offline radiosity solution and store
tons of spherical harmonic light
probes for a really rich indirect
lighting solution‚ but you might
not have enough memory left
over for anti-aliasing at 1080p, or
the ability to change the time of
day dynamically.

Obviously, the tradeoffs that
define any engine are (or let’s
say they should be) driven by the
nature of the game you’re trying to
make. A moody film noir mystery
game should obviously be investing
more in dynamic shadowing than
a flight sim, while a tunnel shooter
can probably rely a lot more heavily
on pre-baked lighting than an open-
world game with weather effects.

Sometimes these choices
are simply budgetary ones: will
dynamic reflection maps leave
enough memory in the budget
for a fancy texture-based skin
shader? Sometimes the choices
are architectural: If you want to
have a lot of dynamic lights, you’re
probably not going to get MSAA or
cool transparency effects. One way
or another, it’s the game artist’s
eternal pride and perennial curse:
you can’t have it all.

Balkan deaTh grip
» The interesting side effect of
this overstocked buffet of graphics
techniques is balkanization: every
project comes with its own unique
way of doing things. Many artists
who’ve finally settled down into
a comfortable co-existence with
the “next” generation of graphics

don’t even realize how little their
particular brand of “next-gen”
resembles those of other games
and other platforms. Context is
everything in art, and when the
context is some crazy one-off
proprietary tech, your art must
struggle to adapt.

Consider how even something
simple like environment texturing
interacts with the complex weave
of lighting and shaders that
make up an engine. Perhaps I can
rely on screen-space ambient
occlusion: this means I get a
lot of the visual definition in my
environment for free, so I don’t
have to bother with a lot of extra
tricks for darkening corners and
emphasizing intersecting forms.
You, on the other hand, spend most
of your time finessing the way your
materials bounce photons around

to get precisely the subtle radiosity
effect you need, because your fancy
lighting makes mine look like crap.
(But hey, at least I don’t have to
wait two hours for the light farm
to process my changes whenever
I move a light!) Meanwhile, the
driving game team up the hall
uses simple direct lights because
they need dynamic shadows for
night races, and they can’t spare
the memory for lots of ambient
textures. So they kick it 1999 style,
with a ton of baked-in lighting in
their textures.

Now, imagine that management
has reassigned us all. How long will
it take us to be productive in each
other’s working environment? And
that’s just for texturing!

Migrant Labor
» For the working artist, this is not
just an annoyance. If you’re too tied
to the ins and outs of one particular
engine, your career mobility can
be at risk. When the rules of the
game vary so much from studio to
studio, your work can be devalued
by viewers who don’t understand
its technical constraints. It’s hardly
surprising, either, that candidates
who’ve worked with familiar tools
and techniques have a leg up
over those with very different
experience‚ but it’s not much fun to
miss out on an interesting project
because you know the “wrong”
lighting model or software package.

Technical balkanization
exaggerates the industry’s tendency
to value computer bullet points over
the artistic side of art. How many of
us have sailed through a portfolio
check and a phone screen only to
run smack into something like “of
course, you know we’re really looking
for somebody who’s done Mudbox
sculpting” or “we loved your work but
we need somebody who has more
experience in HDR lighting.”

Now, to be fair, this kind
of job-search triage isn’t just
random cruelty. The art director or
producer looking to fill a hole on a
production team has a legitimate
reason for preferring candidates
who’ll be ready to go from the day
they show up instead of requiring
weeks or months of ramp-up time.

We all know that it’s the artist,
not the tools—but too few of us
feel like waiting for said artist to
actually learn the tools. It’s the
same thinking that has led a lot of
us to half-consciously segregate
ourselves into Max- or Maya-
centric career tracks. It's the path
of least resistance.

Unfortunately, the logic may be
impeccable but it comes with some
serious costs. For individuals, the
costs can be pretty brutal: losing
out on a job that you know you could
ace solely because you haven’t
spent a few weeks with a particular
set of sliders is pretty galling.
Technical decisions that your studio
make to service a particular project
(or satisfy a publisher’s whims) can
have a serious but silent impact on
your career.

UniversaL stUdios?
» For the industry, the costs
are more subtle, but also more
far-reaching. Our heterogeneous
ways of making things reinforce
our business model‚ even when a
lot of people think that model is in
need of an overhaul. We’ve spent
years trying to figure out whether
we ought to organize in Hollywood
fashion, combining small core teams
with a cloud of freelancers and work-
for-hire production houses rather
than our long-term studio model
(see Pixel Pusher’s March 2010
column “Zombie Apocalypse”). Love
it or hate it, the Hollywood model
has sustained several generations
of huge franchises successfully,
while our business has struggled
awkwardly to handle the huge
content costs of modern graphics.

There are many reasons why
games haven’t gone Hollywood
yet, from culture to unionization
to geographical concentration. The
fragmentation of our art pipelines
and engine technologies also
plays an important role. If you
want to build a production team
from scratch every time you spin
up a project, standardization has
obvious attractions. The perennial
complaint that Hollywood “doesn’t
have to re-invent the camera for
every movie” doesn’t just explain
our penchant for missing deadlines,

it also explains why we stick with
a studio model that looks more like
the 1930s than the 21st century.

It doesn’t take much effort
to prove that the crazy welter of
different techniques and tools
we use is a hassle. Whether it has
interfered with your career plans
or simply forced you to waste time
learning a succession of quirky
approaches to common problems,
you already know that life would be
a lot easier if we didn’t have such
a bewildering variety of tools and
techniques to keep up with.

what standards?
» Unfortunately, standardization
may be attractive but it’s not going
to happen any time soon. As the
current console generation matures,
we will probably see some progress
toward common ways of getting
things done.

In the early days of any tech,
there’s a lot of experimentation. The
early days of normal mapping, for
example, involved lots of custom
tools and incompatibilities. Who
can forget their first time trying
every one of ZBrush’s annoying
tangent-space and UV-winding
options to find the magical
combination that would actually
produce a working result?

Over time, though, the
experimental processes tend to
simplify and become more robust.
Nowadays, it’s pretty much a given
that any working artist can figure
out how to crank out a normal map
without special instructions and a
PhD in math. Other technologies,
from motion capture to high-level
shading languages, show a similar
progression from the exotic to the
merely mundane. Hopefully, in our
gradually aging console generation,
we’ll see more tech becoming
de-mystified.

Nonetheless, the main reason
for our lack of standards isn’t going
away. That is to say, our ambitions
are, and probably always will be,
far grander than our hardware can
support. We’re constantly trying
to strike a balance between the
shifting, conflicting demands of
gameplay, graphics technology, and
art. Our need to make things cooler

means we’ll always be trying new
ways to get more and better art
out of those damn machines‚ and
inevitably this will mean we strike
out in different directions and make
different, incompatible discoveries.

extra-CUrriCULar aCtivity
» Because the career impacts of
all this helter-skelter technological
change can be pretty severe, it’s
important to have at least a basic
familiarity with the way things
work outside your particular studio
setup and pipeline. Game Developer
postmortems, Gamasutra, and
particularly the GDC are great
ways to take the pulse of how the
production landscape is changing.
And of course, in the Internet era,
you can always find somebody out
there who’s willing to do a step-by-
step tutorial on every new trick in
graphics or content creation.

You can also help yourself
by doing a little work on the side.
Artists who freelance in their spare
time pick up valuable intelligence
on different studio cultures and
techniques as well as a little extra
cash. Even experimenting at home
with techniques you don’t get to use
at the office is valuable. If nothing
else, a few hours of learning the
ropes on a new process is great for
handling awkward interviews: “We
don’t use it on my team, but I’ve
done a lot of work with it in my side
projects” is often enough to nudge a
wavering interviewer back onto more
positive topics like your portfolio.

If this sounds like a lot of
hassle ... well ... it is. But it’s also
a critical consideration for the
long-term health of your career.
Technologies, even companies,
come and go. The only thing you
can be sure of is the life of a
modern games artist demands you
be a jack of all trades as well as a
master of one.

steve theodore has been pushing pixels for

more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress,

counTer-sTrike, and halo 3. He's been a

modeler, animator, and technical artist,

as well as a frequent speaker at industry

conferences. He’s currently the technical art

director at Seattle's Undead Labs.

www.gdmag.com 37

http://WWW.GDMAG.COM

THE INNER PRODUCT // GIaCOmINO VElTRI

GamE DEVElOPER | DECEmbER 201038

Game ConfiGuration
at Crystal lake
Loading and Processing configuration data with Json

a new BeGinninG
» When determining the configuration data
pipeline in our new tools and engine, one of the
first decisions we needed to make was where the
source data would come from. Would configuration
data be stored in an internal format and edited
using a proprietary tool, or would it be imported
from some third-party application? In our case,
the answer was straightforward enough—our
current method for getting configuration data into
the game was to use Excel as the source, convert
it to CSV, and then parse it in the game (with a
special binary version of the data used in final
builds). Overall, designers like using Excel, and
it’s available on all our machines, so using Excel
requires no additional installation process for us.
While both writing a proprietary tool and using
Excel have their pros and cons, a custom tool
that is basically a spreadsheet (which is the user
interface the designers want) would require more
effort in the short term and take longer to mature
than writing an add-in for Excel, which has a well-
known interface with plenty of features.

Once we decided on Excel as the source
of our configuration data, the next step was
to determine how it would make it into the

game. The use of JSON with the configuration
data stems from our use of JSON in other
aspects of the codebase. At Insomniac, we’re
currently creating a new toolset in Flash to
provide our team with a richer user interface for
development, and JSON provides a convenient
method for sending data from Flash/ActionScript
into our C/C++ code and back. To support this on
the C/C++ side, we created several utilities (the
main one is called Data Description Language, or
DDL) that provide functionality to convert JSON
both to and from an arbitrary C/C++ structure.

On the Flash/ActionScript side of the code,
ActionScript objects can be converted both to
and from JSON in JavaScript, and thus shared
with the C/C++ code. It is this data path from
ActionScript to C/C++ and back that forms one
of the backbones of our new toolset. Because
JSON serialization is widely supported in our C/
C++ code via the DDL utility, we adopted its use
for a variety of other tasks. For example, game
object properties are specified in the level editor
and parsed at runtime into our game object
structure using JSON. Our level data structure is
saved as JSON. We use JSON to store our asset
metadata on disk and to store asset changes

in our asset editor’s undo queue. We use JSON
to send generic events in our event system.
We even use JSON from Perl scripts to help
automate a few processes in the new toolset.
Thus, it seemed only natural to use JSON as our
method for getting configuration data from Excel
into the game.

Json lives
» Writing an Excel add-in was not without its
(minor) challenges. The first thing to address
was the choice of language—a C/C++ plug-in
or a Visual Basic add-in. Although I’m far more
familiar with C/C++ and generally prefer it over
Visual Basic, the process for getting a C/C++
plug-in into Excel is daunting, and involves
writing some sort of plug-in shim. In the past,
we wrote an Excel plug-in for localization (and
its corresponding plug-in shim) using C/C++, but
it had its share of problems. It was complicated
to set up the environment, was difficult to debug
(the debug build of the plug-in would not load
on some systems), and every update required
the users to re-install the plug-in. After having
to deal with those issues, I have been wary of
shimmying anything into anything else—it just
sounds bad.

In contrast, writing the plug-in as a Visual
Basic add-in made the setup as simple as saving
the Excel file as an Excel Add-In (.xla/.xlam)
file. Updating the plug-in only required that we
replace the .xla/.xlam file (provided Excel is not
running at the time of update). However, I still
had to deal with the occasional cryptic Visual
Basic error message, such as “Only User Defined
Types Defined In Public Object Modules Can Be
Coerced To Or From A Variant Or Passed To Late
Bound Functions.”

It’s difficult to export an arbitrary Excel
spreadsheet to some sort of structured and
meaningful JSON, so to narrow the scope of this
problem, we placed certain rules on how the
Excel spreadsheet needs to be structured. The
spreadsheet structure was created to suit the
needs of our designers, and while it can change
from game to game, it usually does not. Most
of these rules already existed in the previous
system (which used Excel and exported to CSV)

Game configuration is a problem that is both ubiquitous and arbitrary. Every studio
needs to configure some aspects of its games, and the data used to configure each
aspect can come in various shapes and sizes. This can lead to customized solutions for
loading and parsing different types of configuration data. The Excel JSON Exporter is
meant to help simplify and unify how our configuration data is loaded and processed.

JavaScript Object Notation (JSON) is an open-standard text format for describing
objects. It’s basically text that defines a set of key-value pairs, where values can either
be scalars, arrays of values, or other objects. Because it is an open standard, a wide
range of tools are available for use with JSON. Our new toolset makes heavy use of JSON
for asset metadata, game object properties, and so on, which made JSON a natural fit
for storing our game configuration data. The JSON Exporter is an add-in for Excel that
converts a specially-formatted spreadsheet into a JSON text file for use in our game.

fiGure 1 shows the configuration data for a Pistol weapon.

www.gdmag.com 39

and are things the designers are already familiar with. The basic rules are
as follows:

• The name of the sheet will be the name of the top-level object.
• A main header row must be present to indicate the start of the

configuration data. This header row must contain “Variable,”
“Comments,” and “Value(s)” in the second, third, and fourth columns
respectively.

• At least one object header row must be present, and is determined by
having the name of the object in the first column. In addition, if a data
member can have more than one value, the names of those values
start at the fourth column.

• Each row after the header row will specify object data members and
their values. If a data member is also a nested object, its members can
be accessed using a C-like syntax.

An example set of configuration data for a Pistol weapon can be seen in
Figure 1. The light blue row is the main header row. The main header row is
determined by columns two, three, and four having the values “Variable,”
“Comments,” and “Value(s)” respectively. The “Comments” column is
ignored by our format, and designers can do whatever they want with it. The
“Value(s)” column is used to indicate the starting column for all the values for
a given row. Everything above the main header row is ignored by the parser;
this gives designers the ability to put notes at the top of the file. The dark
blue row is the object header row, which indicates that the current object is
“Pistol,” and that it will have values for both “SinglePlayer” and “Competitive.”
The object header row is determined by the name of the class being in the
first column (and of course being after the main header). The green rows
represent the data members of “Pistol,” such as “Pistol.damage” and “Pistol.
clip_size.” Member variable rows are determined by having the member
variable name in the second column (and nothing in the first column), which
is placed after a valid object header. All other rows are ignored.

The New Blood
» In practice, the spreadsheet in Figure 1 may contain several sets of
rows for additional weapons such as the Shotgun, Rocket Launcher, and
so on. Each weapon may have a different set of member variables as well;
there are no limitations on what objects can have what data members. Note
that cell color and other cell formatting have no effect on how the cells are
interpreted—they are formatted such that the spreadsheet is easier for
designers to read. The meaning of a cell is derived from its row number,
column number, and the most recent object header.

The Excel JSON Exporter converts this specifically-formatted
spreadsheet to JSON. It works by processing each row one at a time and
then converting it into a string containing a C-like syntax that describes
the member variable to be set. This string is then used to add a node to a
tree that describes the final JSON data. In particular, when the exporter
encounters a new object header row, it remembers the object name. In
Figure 1, the object name is “Pistol.” For each row beyond that until the next
object header row, it generates the C-like string by concatenating the sheet
name, each value type, the object name, and the member name. For the
Pistol example, if the Excel worksheet were named “Weapons,” the C-like
string generated for each row would look like this:

Weapons.SinglePlayer.Pistol.damage
Weapons.Competitive.Pistol.damage
Weapons.SinglePlayer.Pistol.clip_size
Weapons.Competitive.Pistol.clip_size
Weapons.SinglePlayer.Pistol.xp.level[0]
Weapons.Competitive.Pistol.xp.level[0]
Weapons.SinglePlayer.Pistol.xp.level[1]
Weapons.Competitive.Pistol.xp.level[1]

The values do not need to be part of this string since they can be read
directly from the appropriate cell. Once this string is generated, it’s parsed
into a tree structure that is grown over the course of the export. In the
example above, after parsing “Weapons.SinglePlayer.Pistol.damage,” the
tree would contain four nodes. The root node would represent an object
named “Weapons,” and it would have a single child—a node that represents
an object named “SinglePlayer.” A node beneath the “SinglePlayer” node
would be a child node representing the object named “Pistol.” Finally,
“Pistol” would have a single child node named “damage,” which would
contain the scalar value “2” (extracted directly from the cell), which
represents how much damage the pistol does in a single player game.

Figure 2 shows the
string to node process.

http://WWW.GDMAG.COM

THE INNER PRODUCT // GIaCOmINO VElTRI

GamE DEVElOPER | DECEmbER 201040

As subsequent lines are parsed, nodes are
added accordingly to the tree in a similar fashion.
This process can be seen in Figure 2. After all
lines are parsed, the final tree is traversed and
JSON text is output to a file specified by the user.
The resulting JSON for the tree in Figure 2 can be
seen in Listing 1. This JSON is a representation
of how the Pistol weapon should be configured
for both the single player and competitive modes
of the game. The value types “SinglePlayer”
and “Competitive” are grouped in this manner
so that it is easy to switch between weapon
configuration sets during the game.

After the JSON text is exported, it must
be loaded into the game. Fortunately, as
previously described, our C/C++ code provides
functionality for loading JSON data into
structures (the main utility, which we call DDL,
is outside the scope of this article). The key to
loading JSON data into a C/C++ structure is to
make sure the fields in the structure match up
with the JSON data accordingly. The C/C++ code,
if desired, will use default values (specified by
a programmer) for any field that is not present
in the JSON data. Furthermore, fields present

in the JSON data—but not present in the C/C++
structure—are ignored.

Listing 2 shows the C/C++ structures
that can be used with the JSON in Listing 1. In
practice, programmers usually create these
structures first, and then tell designers which
fields are available for configuration. Once
these structures are in place, programmers
can use the C/C++ functionality to load JSON,
and the member variables will be set (this
is basically a function call on the structure).
In general, we have two ways of processing
the JSON data—initializing and updating.
When initializing a structure, any member
variable that is not specified in the JSON data
will receive a default value specified by the
programmer. When updating a structure, any
variable that is not specified in the JSON data is
simply not updated at all. This makes it simple
to pass changes to objects back and forth in
the tools and game as JSON containing a partial
description of the object. One thing that stands
out when comparing the structures and the
JSON data is that all structure member variables
are prefaced with “m_,” whereas in the exported
JSON data (and the Excel spreadsheet) they
are not. This is intentionally built into our C/C++
utility; it automatically appends “m_” to variable
names to keep the JSON data (and thus Excel
configuration data) more human-readable while

allowing the C/C++ structures to adhere to our
coding conventions.

The Final ChapTer
» While it is still in its infancy, the Excel JSON
Exporter plug-in has proven useful, and has a
few advantages over our previous CSV-based
system. The previous system used the Excel
built-in CSV exporter. On rare occasions, Excel
files would get filled with an unreasonably large
amount of empty rows and columns, which made
the CSV files take excessively long to load. While
the solution is simple enough (just get rid of the
excess rows and columns), it’s annoying to have
to re-export the data and restart the game.

The JSON Exporter deals with this problem in
two ways. First, it only parses a fixed number of
columns. The JSON Exporter knows how many
columns it needs to process based on the header
row. Secondly, it will stop processing rows after it
hits an arbitrary (but high enough) consecutive
number of blank rows. While this is not the
greatest solution ever (and may actually be the
most embarrassing), it does avoid the problem
of Excel sometimes keeping around unused rows

and columns.
Another advantage

over the previous
system is that the
CSV data needed to be
loaded and parsed by
a special system at

runtime that used Lua. While we are still parsing
data in the new system, the system used to
parse JSON is generic and written in C/C++, so
the process of loading the configuration data
becomes greatly simplified, and most likely faster
during day-to-day development since we are not
running any Lua scripts in this process.

JSON is a widely supported open standard
text format. We use it for loading a variety of data
in our new toolset because it’s so simple and
straightforward, that using JSON as our format
for game configuration data came naturally.
Our loading code for game configuration
data is greatly simplified by our C/C++ utility
that matches fields from JSON data to C/C++
structures, and the JSON Exporter for Excel
enables us to unify our configuration loading
code while allowing designers to work in the
environment they prefer.

Excel files and sample data for JSON are available for

download at http://www.gdmag.com/resources/code.htm.

A version of this technique was previously published as

part of Insomniac's Nocturnal Initiative.

GiaComino VelTri is a programmer on the core team at

Insomniac Games. His recent work includes the animation

editor in the new toolset and prototyping gameplay in the

new engine. Giac is also a graduate of UCLA—go Bruins!

[Editor’s note: go Trojans]

l i s T i n G 1

	 {
	 		"Weapons"	:
	 		{
	 				"SinglePlayer"	:
	 				{
	 						"Pistol"	:
	 						{
	 								"damage"	:	"2",
	 								"clip_size"	:	"10",
	 								"xp"	:
	 								{
	 										"level"	:
	 										[
	 												"100",
	 												"200"
]
	 								}
	 						}
	 				},
	 				"Competitive"	:
	 				{
	 						"Pistol"	:
	 						{
	 								"damage"	:	"1",
	 								"clip_size"	:	"15",
	 								"xp"	:
	 								{
	 										"level"	:
	 										[
	 												"150",
	 												"300"
]
	 								}
	 						}
	 				}
	 		}
	 }

l i s T i n G 2

	 struct	XpData	
	 {	
	 	int	m_level[2];	
	 };	
	
	 struct	WeaponData	
	 {	
	 	int	m_damage;	
	 	int	m_clip_size;	
	 	XpData	m_xp;	
	 };	
	
	 struct	WeaponSet	
	 {	
	 	WeaponData	m_Pistol;	
	 	//	Any	other	weapons,	such	as:	
	 	//	WeaponData	m_Shotgun;	
	 	//	WeaponData	m_RocketLauncher;	
	 };	
	
	 struct	WeaponConfig	
	 {	
	 	WeaponSet	m_SinglePlayer;	
	 	WeaponSet	m_Competitive;	
	 };	
	
	 struct	Configs	
	 {	
	 	WeaponConfig	m_Weapons;	
	 	//	Other	config	data	
	 };

lisTinG 2 C/C++ structures that
correspond to the Json data in listing 1.

We use [JSON] for loading a variety of data
in our new toolset because it’s so simple and
straightforward, so using JSON as our format
for game configuration data came naturally.

http://www.gdmag.com/resources/code.htm

jesse harlin // aural fixation

www.gdmag.com 41

The WeighT Of Silence
How Silence can indicate a cHaracter'S importance

nOne Of The WOrldS
that we deal with exist. Our
artist colleagues carve
dynamic spaces out of thin
digital air. Our engineering
brethren wrap those spaces
in Newtonian physics and
breathe artificial life into an
artificial populous. These
digital universes, rich with
puzzles, platforms, and
protagonists though they
may be, are 100 percent
silent without us.

Silence is negative
space, and just as in fine
art, negative space is an
essential tool of contrast.
In interactive audio, we
can divide sound into two
categories: sounds that
happen because of the player
and sounds that happen in
spite of the player. The way
sound designers handle the
balance between silence
and these two categories
of sound can be a useful
tool in helping to establish
the weight of the player
character’s importance
within the game world.

leSS iS MOre
» Uncharted 2: among
thieves has become one
of those must-play games
in our industry, and with
it, Nathan Drake has
arguably become one of this
generation of gaming’s most
iconic characters. Drake’s
snarky banter is a well-
implemented counterpoint
to the pop of his M4. Take
another detailed listen
to the game, though, and
an interesting portrait
emerges. Despite crumbling
buildings and dangling
train cars, Drake’s world is
actually very quiet.

In Uncharted 2, not only
is Nathan Drake the center
of the game’s story, he’s also
the focal point of nearly all
the game’s sound. Listen
to the way urban combat
is handled in the Nepalese
section of the game. As
Drake and Cloe attempt a
full-frontal assault on an
occupied temple, there are
three primary elements to
the mix: weapons fire, music,
and dialogue, in descending
order of importance.

Drake’s weapons cut
through everything with a
Hollywood punch. There’s
never any doubt as to when
the player is firing their
weapon. Nor is there any
doubt as to when Drake is
being fired upon, as enemy
weapons have a similar bite.
The music is interactive
and kicks into action as
Drake does. Accompanying
the gunfire and music is
the interweaving dialogue.
AI speech is focused on
either taunting Drake or
death utterances. For his
part, Drake has his own set
of utterances as well as
the intermittent requisite
snark. If Cloe speaks at
all, it’s to give the player
critical gameplay dialogue.
Everything on-screen is
either happening to or
because of Nathan Drake.

The moment combat
stops, however, silence
begins to intrude. Music
drops out quickly without
threats to Drake. Some
initial dialogue points the
player in the story’s next
direction, but then Drake
and Cloe spend large
sections without speaking.
As the player is allowed

to explore the scene and
treasure hunt, it becomes
apparent that almost all
of the sound comes solely
from Drake’s actions.

Footsteps and foley are
quite loud and take center
stage alongside the vocal
exertions of exploration. If
Drake stands still, the world
goes quiet. There are short
bursts of distant gunfire,
but these are infrequent
and also quiet. There are
occasional point source
emitters for effects like small
fires, but these are very

quiet as well, even when
beside them. It’s as if the
world waits for Nathan Drake,
and as such, all of this silent
negative space isolates him
as the single most important
element of the game.

MOre iS leSS
» For the sake of
comparison, listen to a
different take on urban
warfare. At the start of call
of dUty: modern Warfare
2, the player steps into
the combat boots of Pvt.

Joseph Allen as he fights
his way through the
war-ravaged streets of
Afghanistan. Although he is
fighting in close quarters
with automatic weapons
just like Nathan Drake,
Pvt. Allen’s world is one
of complete chaos. Pvt.
Allen is literally a faceless
grunt, intentionally
indistinguishable from the
rest of his platoon.

When Allen stands
still, his world remains a
constant buzz of weapons
fire—both near and far—and

ever-present radio chatter.
Rocket-propelled grenades
fire and explode. Jet aircraft
scream through the skies.
Characters shout dialogue
at each other from all sides,
occasionally including
orders for Allen. Platoon
members engage the
Afghani militia in a constant
hail of AK-47 rounds. The
player character’s own
actions are frequently
lost within the din. Foley,
reload sounds, and even the
faloomp of Allen’s grenade

launcher can be nearly
inaudible beside the chaos
of the world around him.

At its calmest, there
is no silence for Pvt. Allen.
Instead, Pvt. Allen finds
himself awash in the sounds
of a world fighting around
him and in spite of him. If
he takes part and adds to
the sounds of combat, it
barely affects the mix. Only
between levels is there a
sense of tense quiet in the
form of secret backroom
conversations, but even
then, Allen is merely a cog in

the larger machinations of
politicians and generals.

Who controls the
silence controls their
own destiny, and sound
designers shouldn’t be
afraid to use silence—or
the lack thereof—as a
tool to help indicate a
character’s importance
within their own world.

j e S S e h a r l i n has been

composing music for games since

1999. He is currently the staff

composer for LucasArts.

Call of Duty: MoDern Warfare 2.

http://WWW.GDMAG.COM

Game stories have fared no
better. Mario’s canonical plot
sounds like nonsense from Lewis
Carroll: the plumber punches
bricks to find magic mushrooms
that double his size, so that he
can battle an evil turtle who has
kidnapped the kingdom’s princess.
The less said about the Metal Gear
Solid franchise’s various twists
and turns—including the infamous
possession of Revolver Ocelot’s
mind by Liquid Snake’s old arm—
the better.

Still, games have their own
internal logic, which is much
more important than whether the
game’s story makes sense, or even
whether the game’s mechanics hold
together logically. The traditional
concepts of levels, lives, and

respawns are ultimately constructs
that support a designer’s vision,
regardless of whether they have
any logical real-world parallel or
thematic metaphor.

Why, for example, should
players respawn—come back to
life—after being killed in a team-
based shooter? Shouldn’t players
expect their dead character to stay
dead after being killed? The reason
is that the respawn mechanic
matches the inviting tone the
game’s designer wishes to strike. By
softening the blow of death, gamers
are free to play aggressively,
which rewards risk and even
experimentation.

A place exists for games which
do not allow respawning—Counter-
Strike being the most successful
example—but the designer chooses
this mechanic not in pursuit of
realism, but to strike a different
tone. When characters stay dead,
players feel more tension during the
match, which encourages them to
play more carefully and with greater
precision. Thus, games without
respawns simply occupy a different
location on the play spectrum.

Be True To The Game
» Sometimes these imaginary
design constructs are necessary for
the existence of entire genres. The
classic real-time strategy design
pattern, with peons, base-building,
and rush/turtle/boom dynamics,

bears little resemblance to actual
warfare, even when ignoring the
common fantastical themes. In what
type of war does each side construct
army barracks to train troops—and
even research labs to discover
technologies—on the very field of
battle? Indeed, why is every scientific
breakthrough forgotten between each
scenario of a fictional campaign?

Ultimately, these questions
are subsumed by the genre’s
needs. Strategy games work
because players are forced to
make tough choices between a
number of options, each with its
own set of trade-offs. Although the
environments of most real-time

strategy battles often contain
nonsensical elements, such as
economic infrastructure and
research facilities, these elements
each create important mechanics
that increase strategic depth.

Creating infrastructure gives the
player an actual location on the map
to defend; without it, armies could
roam freely across the map with
no consequences for abandoning
a certain location. Discovering
technologies creates short-vs-
long-term trade-offs for the player
to balance—should resources be
invested in science for a long-term
payoff of stronger units or spent on
new units to attack the enemy and
press an early advantage?

These trade-offs make sense
in a fundamental way—players

understand that location should
matter and that making long-term
investments should succeed under
the right circumstances. Therefore,
the gameplay itself makes sense,
even if the game’s world does not—
workers planting farms within sight
of a pitched battle and all.

Too much consisTency
» Indeed, designers who worry
too much about a consistent world
can often hamstring their own
work. In StarCraft, the designers
had no qualms allowing Terran
players to team up with the Zerg in
multiplayer, even if fighting against
other Terrans. However, CoMpany of

HeroeS only allows matches with
the Axis on one side and the Allies
on the other. Clearly, this decision
makes sense thematically, but does
it make sense that players never get
to pit identical sets of virtual army
men against each other?

aSSaSSin’S Creed famously
went to great lengths to cover
up as many standard game
conventions as possible. A frame
story put the player in the shoes
not of a 12th-century Middle
Eastern assassin (as the game’s
advertisements featured) but of
his 21st-century descendant who
is somehow reliving the former’s
life with advanced memory
reconstruction technology.

This conceit aims to explain
a number of typical design
constructs. Discrete game levels
are simply different memories,
while all character deaths must
be false memories. The assassin’s
movements are mapped to a physical
gamepad because he is actually
the puppet of a latter-day character
trying to relive his memories.

Did these rationales broaden
the game’s appeal by explaining
supposedly arbitrary gaming
cliches? Or did they unnecessarily
burden the game’s narrative with
a convoluted and unnecessary
frame story that distanced
players from the fantasy of being
a medieval assassin? Surely, the
average console owner would
not be surprised that the game
required controlling the character
with a gamepad.

Indeed, the early arcade
industry was a font of creativity
largely because the games were not
expected to make any sense—think
of the dot-eating paC-Man, or the
cube-jumping Q*Bert, or the ray-
running teMpeSt. As graphics became
more realistic, almost all arcade
cabinets were ghettoized into just
a few concrete categories —racing,

sTop makinG sense
Matching theMe to Mechanics

design of the times // soren Johnson

game developer | december 201042

One great advantage of not worrying about a game
making sense is that designers are free to use the
theme which best matches the game’s mechanics.

Some of our industry’s most beloved games make precious little sense. Why, for example, do players
battle the trolls, goblins, and skeletons of puzzle QueSt by challenging them to a two-player version
of Bejeweled? Similarly, success in profeSSor layton’s world seems to revolve disproportionately
around one’s ability to solve classic logic and deduction puzzles, no matter the reason.

www.gdmag.com 43

IL
LU

ST
R

AT
IO

N
 c

O
U

R
Te

Sy
 O

f
Pe

N
N

y
AR

cA
d

e

fighting, and shooting—because
the higher-resolutions discouraged
bizarre, abstract games. Only now
that downloadable, mobile, and Web-
based gaming have brought back the
use of lower resolutions is the old
eccentric energy returning.

GO yOUR OwN wAy
» Sometimes, manipulating
a game’s story to paper over
unusual design concepts can work.
Certainly, the Dagger of Time’s
ability to rewind time for a few
seconds in Prince of Persia: The
sands of Time was an elegant way
to integrate a quick-save system
into the game’s core functionality.
In the recent TorchlighT, the
character’s pet can run back to
town to sell loot, nicely shortening
a time-consuming element of most
action-RPGs while also staying
within the game’s fiction.

Still, designers should feel
comfortable going their own way
if a mechanic makes sense for
the game they want to make.
shiren The Wanderer is a roguelike
dungeon crawler, which means
that all character deaths are
permanent as progress cannot be
saved. Roguelikes are meant to be
played repeatedly, with the player
improving purely through increased
knowledge of the game’s rules.

However, shiren does allow
a very unusual type of progress
by letting the player stash loot—
including powerful weapons and
armor—in various caches found
throughout the game that have
persistence between sessions.
Thus, although a character might
die an unlucky death, he still
contributes to advancing the game
by leaving a supply of potions for
the next character’s playthrough.

This strange mechanic, where
most (but not all) of the world
resets on death, has few parallels
either inside or outside of gaming,
and the story makes no attempt
to explain it. Truly, no explanation
is necessary because the game is
being true to itself; the designers
wanted a game that combined the
tense atmosphere of permadeath
with a touch of power progression
from a traditional RPG.

Bioshock is another game which
gave no explanation for an absurd
element—the audio diaries which
are littered about the underwater
city of Rapture. These bits of
recorded speech from the game’s
main characters provide important
backstory for this Objectivist
dystopia. Still, what type of person
would, after putting their personal
thoughts onto tape, decide to break
up the tape into pieces and then

scatter those pieces around the
world like junk?

That the player discovers these
scattered bits of audio in roughly
linear order allows the designer
to tell the story without relying
on stodgy cutscenes, but their
placement in the world simply
doesn’t make sense. This doesn’t
mean that the designers made
the wrong choice; perhaps a more
elegant solution was possible, but
better to allow a little inelegance
than to turn the player into a non-
interactive viewer who must be
force-fed the story.

The PeRfecT Theme
» One great advantage of not
worrying about a game making
sense is that designers are free to
use the theme which best matches
the game’s mechanics. The tower
defense genre emerged from user-
created scenarios designed for real-
time strategy games like sTarcrafT
and WarcrafT iii.

The limitations of these
platforms gave the genre a
distinct set of conventions—
stationary defenses vs. mobile
“creeps”—which had little
narrative justification. Why must
all defenses be static? Why are
the creeps so slow and mindless?
If only a thematic environment

existed which matched this set of
game mechanics.

In fact, one did, but the
designers just needed the
confidence to pull it out of thin air.
What type of life-form can grow
but can’t move? Plants! What
type shambles along slowly in
a straight line without a brain?
Zombies! Naturally, the answer
was to pit these two groups against
each other.

With PlanTs vs. ZomBies,
PopCap found the perfect theme
for a tower defense game. The fact
that it completely defied common
sense was beside the point. Why
are players battling zombies with
mutant plants, after all? That
doesn’t matter; the important
thing is that even someone who is
unfamiliar with the tower defense
genre would have an intuitive
understanding of what to expect
simply from the game’s title, all
because the designer wasn’t afraid
to stop making sense.

SOReN JOhNSON is a designer/

programmer at EA2D, working on web-

based gaming with strategystation.

com and Dragon age LegenDs. He was the

lead designer of CiviLization iv and the

co-designer of CiviLization iii. Read more

of his thoughts on game design at www.

designer-notes.com.

http://www.designer-notes.com
http://WWW.GDMAG.COM
http://www.designer-notes.com
http://strategystation.com
http://strategystation.com

Good JoB Hired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

whowentwhere
Neonga, the free-to-play game company
formed by Frogster’s ex-CEO, has added
another Frogster veteran, Stefan Hinz, to its
staff as chief marketing officer.

Just after the launch of his latest project,
Vanquish, renowned Resident eVil creator
Shinji Mikami became part of the ZeniMax
Media family—the Bethesda Softworks
parent has acquired his new Tokyo-based
development house, Tango Gameworks.

Microsoft executive Scott Henson has
assumed the role of studio manager of
Microsoft-owned UK developer Rare.

Hoping to travel in Asia with his family, Take-
Two CEO Ben Feder has stepped down from
his executive role at the GRand theft auto
publisher, and the company’s chairman,
Strauss Zelnick, will assume the chief
executive role.

MeGa Man creator and 23-year Capcom veteran
Keiji Inafune has left his position as head of
global production at the company, and has yet
to announce his plans for the future.

The Academy of Interactive Arts and
Sciences announced today that Joseph
Olin has stepped down as president of the
organization, and taking his place is former
Sunleaf Studios CEO Martin Rae.

new studios
Continuing its rapid expansion, faRMVille
developer Zynga is opening a Seattle office
and hiring a team of web engineers for the
new location.

Following news of Zynga’s plans to found a
Seattle studio, the developer of faRMVille and
Mafia WaRs said it is continuing to expand its
operations into Ireland.

Following his recent departure from Namco
Bandai, KataMaRi daMacy creator Keita
Takahashi has announced his new studio,
Uvula, which offers services in art, music, and
video games.

THQ has opened a new development studio
in Montreal, including talent such as Ubisoft
veteran Patrice Desilets, the former creative
director of the assassin’s cReed franchise.

From Lara CroFt to Lame CastLe
CrystaL dynamiCs veteran goes indie

Brad Johnson went from lowly tester, to basic scripter, to full fledged programmer, fighting
his way up through the ranks in classic style. But after completing work on Lara Croft:
Guardian of LiGht, he realized it was time for a change, and went independent with his new
company Be-Rad Entertainment. We spoke with Johnson about his leap to freedom.

Game Developer: What made you go from Lara Croft: Guardian of LiGht to the iPhone/Android
space?
Bradley Johnson: We made a great game, but it wasn’t a cakewalk getting there. Overtime
coupled with a 45 minute commute each way began to drain my soul. I’d come home unhappy
and pissed off at the world. I was tired of feeling that way and always wanted to make my own
games, so I left and started my own company.

My goal with Be-Rad Entertainment is to make a larger scale game for XBLA/PSN/Steam, but
the way I’m going to get there is to take components that the larger game will use, create the
component, and then make a smaller game out of it. This way I can work out any kinks in the
system, and if it’s designed correctly it will allow me to easily plug it into another game. On top
of that, I’ll have a finished product to show for it, which will hopefully help fund the big one. Once
I create all the small components necessary for the larger game I’ll start cranking it out. Until
then I’m really enjoying the freedom being an indie gives me—creating my own schedules and
developing whatever games I want to work on.

Game Developer: Did you already know what you wanted to make, or did you just know you
wanted to go indie?
BJ: Sort of not really! But it came together fast. About two weeks after I quit my job to go indie
I started working on a prototype for an iPhone game. This game involved a ninja and lots of

jumping. After about two weeks of work my buddy sent me an
email with a link to a PSP ad and wrote, “We should make this
game.” In the ad they’re making fun of what looks like an iPhone.
The guy in the ad is holding his phone with a game called laMe
castle on it. Once I saw that I wrote back and said, “Yes, we’re going
to make that game.”

That PSP ad gathered a decent amount of exposure on the web
from various blog sites so I knew if we made the game we could
leverage that to our marketing advantage. I immediately squatted
on the iphone app name and domain name.

We wanted to pump a game out quick so that people wouldn’t
forget about the ad, so we had to act fast. Since I already had a prototype for another game we
decided to use what was there and turn it into what’s become laMe castle.

A week into development we had a pretty decent prototype. A week after that we found an
artist and a sound guy and started plugging everything in. A couple weeks after that we were in
the final stages of polish. It’s been a very quick development cycle, but it’s been quite smooth.

Game Developer: Any rough spots in moving from being part of a team to full development on
your own?
BJ: The best thing we did was to get it in peoples’ hands for playtesting. Watching people play
the game for the first time made us quickly realize we had several things in the game that people
just didn’t understand. One of them was a chicken leg pickup that gave you boost power. When
we first put it in we thought it would be funny to have a “MEAT-er” for your power meter. Get it?
But people just didn’t make the connection, so we turned the pickup into a lance with a little
explosion on the tip, and now people get it.

Making iPhone games is quite a bit different than console games. If the audience can’t pick
up your game and figure out what’s going on in 30 seconds then you’ve probably already lost 95
percent of your audience. That’s why playtesting has been so important, so that we can recognize
how people play the game and fix the problem areas.

Game Developer: Any advice for those thinking of making the jump?
BJ: Looking back I can easily say I wish I had gone indie sooner.

Game developer | decemBer 201044

mailto:editors@gdmag.com

WWW.GDMAG.COM 45

THE ORGANIZERS OF THE 13TH ANNUAL
INDEPENDENT GAMES FESTIVAL—THE
LONGEST-RUNNING AND LARGEST
FESTIVAL RELATING TO INDEPENDENT
GAMES WORLDWIDE—ANNOUNCED
ANOTHER YEAR OF RECORD ENTRY
NUMBERS FOR IGF 2011'S MAIN
COMPETITION.

In total, this year's Main Competition took in just
under 400 game entries—many of them new
titles from leading indie developers—across all
platforms.

This includes 150 entries for mobile
hardware like the iPhone, iPad, DS, PSP and
Android devices, with all mobile entries now
eligible for all IGF 2011 prizes, including a
unique Best Mobile Game award.

In-depth information and entrant-provided
screenshots and videos on each of the IGF Main
Competition entries are now available on IGF.
com, a feature unique to the contest.

Some of the titles entered in the IGF Main
Competition this year include SuperMono's real-
life RPG tasklist EPICWIN, Monobanda's zen-like
BOHM, indie party game hits like Copenhagen
Game Collective's B.U.T.T.O.N. and Messhof's
NIDHOGG, Vblank Entertainment's parodic
8-bit revival RETRO CITY RAMPAGE, and Matt
Gilgenbach's A MOBIUS PROPOSAL, a game created
specifically to (successfully!) propose to his
girlfriend.

In addition, a number of returning developers
previously honored at the Independent Games
Festival have entered new games, including
LIFE/DEATH/ISLAND, the latest from 2010's Nuovo
Award winner Cactus, and both KOMETEN and SHOT
SHOT SHOOT from 2009 Grand Prize winner Erik
Svedang. This year also sees a number of prior
IGF Mobile winners and finalists joining the main
festival—with entries like Steph Thirion's FARAWAY,
Mobigame's PERFECT CELL, and Gaijin Games' new
console port of Different Cloth's LILT LINE.

Some of the other games previously known
to the indie community and entering this year
include two entries in the BIT.TRIP series by
Gaijin Games, ROLANDO creator HandCircus' first
non-iDevice game, OKABU, Nicalis's re-imagined
version of foundational indie title CAVE STORY, and
Mojang's recent headline-grabbing surprise-hit
MINECRAFT.

In addition, several teams made up of
formerly 'mainstream' developers have also
chosen the 2011 Independent Games Festival
to debut new indie works—with SuperGiant's
BASTION, Haunted Temple's SKULLS OF THE SHOGUN
and former Maxis developer Chris Hecker's SPY
PARTY being just a few of the entered titles.

These titles are just a fraction of the
games that are debuting for the first time as
an Independent Games Festival submission.
In fact, history has shown that some of the
most notable and award-winning games—from
AUDIOSURF through WORLD OF GOO and beyond—

were relatively unknown at the time of their
submission, so indie game aficionados should
carefully browse all titles to find the many
hidden gems.

"I'm thrilled with both the growth and the
diversity that the Independent Games Festival
has shown in its 13th year," said festival
chairman Brandon Boyer. "This year's entrants
happily cover the entire spectrum from more
polished and commercial works to smaller, more
personal and artistic statements to entries
geared toward the resurgence of more social,
new-arcade-type play. We're all looking forward
to sitting down with each game and starting the
conversation as we determine finalists!"

This year's IGF entries will be distributed
to more than 150 notable industry judges for
evaluation, and their highest recommendations
passed on to a set of elite discipline-specific
juries for each award, who will debate and
vote on their favorites, before finalists are
announced in January 2011.

In turn, winners will be awarded at the
IGF ceremony during the Game Developers
Conference 2011 in San Francisco next March,
and all finalists in the Main Competition
(including the art-centric Nuovo Award) and the
Student Showcase (which is due for submission
by November 1st) will be showcased on the GDC
Expo Floor from March 2nd–4th, immediately
following the 4th Annual Independent Games
Summit on February 28th and March 1st.

2011 Independent Games Festival

The organizers of the
second annual Independent
Games Festival China
have revealed finalists for
both the Main and Student
competitions, which
included submissions from
across Asia.

High-quality
submissions for the second
iteration of the event—a
newly formed sister
competition to the main
yearly Independent Games
Festival in San Francisco—
were received from multiple
Chinese provinces, Hong
Kong, Taiwan, Singapore,
South Korea, Australia, New
Zealand, Iran, India and
beyond.

Finalists were chosen

by a panel of distinguished
local judges, including
representatives from
Shanda Games, Tencent,
IGDA Shanghai, TipCat
Interactive and more.

IGF China finalists
are invited to Shanghai
for the Game Developers
Conference China event
from December 5–7, where
they will be showing their
games at a special Pavilion
on the Expo Floor, open to
all GDC China attendees.

In addition, finalists are
eligible to win up to RMB
61,000 ($9,100) in cash
prizes, as well as specially
created awards and All
Access Passes to GDC
San Francisco 2011 worth

thousands of dollars.
The Main Competition
finalists for the 2010
Independent Games
Festival China are:

 SUGAR CUBE (Turtle Cream,
South Korea)
HAZARD: THE JOURNEY OF LIFE
(Alexander Bruce, Australia)
TRAIN CONDUCTOR 2 (The
Voxel Agents, Australia)
CUT & PASTE (Turtle Cream,
South Korea)
SKILLZ: THE DJ GAME
(Playpen Studios, Hong
Kong)
BUTAVX: JUSTICE FIGHTER
(Nekomura Games,
Singapore)
CROSSOUT (Coconut Island
Studio, China)

The Student Competition
finalists for this year’s IGF
China event are as follows:

 ZONELINK (Huazhong
University Of Science And
Technology, China)
DEAD STEEL (Media Design
School, Auckland, New
Zealand)
AFTERLAND (Singapore-
MIT GAMBIT Game Lab,
Singapore)
THE WHITE LABORATORY
(Huazhong University of
Science & Technology,
China)
PONLAI (National Yunlin
University of Science and
Technology, Taiwan)

The winners of IGF China in

categories including Best
Game, Mobile Best Game,
Excellence in Art Direction,
Excellence in Visual Arts,
Technical Excellence, and
Student awards will be
announced during the
2010 Game Developers
Conference China at
a special IGF Awards
ceremony.

The Independent Games
Festival’s outreach into Asia
is part of GDC China, which
returns to the Shanghai
International Convention
Center on December 5-7th,
and early registration is
open until November 5th.
Further information on IGF
China can be found at the
event’s official website.

2010 Independent Games Festival China Finalists

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

http://WWW.GDCONF.COM
http://WWW.GDMAG.COM
http://IGF.com
http://IGF.com

EducatEd Play!

Jeffrey Fleming: How
quickly were you able
to go from concept to a
working prototype?
David Arenou: It took me
almost four months from
the birth of ImmersIve
raIl shooter to the end

of the programming. I
wrote the concept basics
for two months. Then, I
spent a month and a half
in full-time to program
the prototype. Let me
add that before these two
phases, I had two other
months where I did a lot
of research and analysis
in order to position my
diploma proposal.

JF: What tools did you use
to create ImmersIve raIl
shooter?
DA: I’m used to working
with 3DVIA Virtools, an
environment that allows

you to create 3D real-time
applications. It’s easy to
get convincing results with
it, so I naturally headed
toward it to make the core
of my game.

JF: Tell me about some of
the technology driving
ImmersIve raIl shooter.
Are you using any special
cameras?
DA: As an interaction
designer, I’m used to
doing rapid prototyping
and taking advantage
of simple and already
working technologies. So
I didn’t use any special
cameras or algorithms
written by myself.

JF: How does the
computer recognize the
marker cards that are
placed in the play area?
DA: I used an existing
library, ARToolKit, which
detects and tracks the
position of special patterns
that you print out and
stick to objects in your
environment. With a simple
webcam, the library, and

Virtools, half of the work
was already done!

JF: What about the Wii
remote? How is that
integrated?
DA: Thanks to Bluetooth
and the GlovePIE software,
I was able to connect my
Wiimote to my PC.

Finally, I bought a
cheap infrared sensor bar
so I could use the remote
as a pointer. I could build it
myself, but it was cheaper
and way faster to order it
from Amazon!

Building ImmersIve raIl
shooter wasn’t a question
of extremely complicated
technologies, but more
a matter of composing
accessible stuff.

JF: The possibilities in
ImmersIve raIl shooter
for versus play against
another person seem
like a lot of fun. How far
along are you toward
implementing that?
DA: Versus and cooperation
modes are pretty exciting
mods! Unfortunately,

these ideas were just a
post proposal to my main
concept. I considered them
during the design phase
of the project in order to
present a full experience
that answers to both solo
and multiplayer play, but in
the end, I put them aside for
the purpose of focusing on
the single-player prototype.

JF: We used to hear a lot
about virtual reality but
most of that work was
never really suited for
the masses. However,
augmented reality
seems to be much more
accessible. What do you
think is driving that?
DA: Indeed, augmented
reality is more accessible

than virtual reality
because AR systems are
really light and efficient:
a camera and a good
algorithm are enough
to create the expected
results. I’m not saying
that you don’t need good
ideas anymore, but from a
technology point of view,
you will rapidly have nice
feedback with AR.

Furthermore, people
like AR because they really
are in the center of the
application. They see their
own environment and
can interact directly with
any kind of virtual object.
It’s easy to understand,
immersive, and fun!

—Jeffrey Fleming

immersive rail shooter

S T U D E N T g A m E P R O F I L E S

DaviD arenou’s ImmersIve raIl shooter is an augmenteD reality project that cleverly allows players to Duck behinD their living room furniture
in orDer to avoiD incoming fire from their viDeo game enemies. using a variety of off-the-shelf components anD open source libraries, arenou
createD ImmersIve raIl shooter for his Diploma project at l’ecole De Design nantes atlantique in nantes, france. the result is a fascinating
example of how low-buDget, existing technology can be combineD to create raDically new game Designs.

gamE dEvEloPEr | dEcEmbEr 201046

B U I L D I N g A V I R T U A L P I LLO w FO R T

ImmersIve raIl shooter
http://portfolio.davidarenou.com/video-game/immersive-

rail-shooter
3DVIA Virtools

www.3dvia.com/products/3dvia-virtools
ARToolKit

www.hitl.washington.edu/artoolkit
glovePIE

http://sites.google.com/site/carlkenner/glovepie

http://portfolio.davidarenou.com/video-game/immersive-
http://www.3dvia.com/products/3dvia-virtools
http://www.hitl.washington.edu/artoolkit
http://sites.google.com/site/carlkenner/glovepie

©
 2

01
0

Fu
ll

S
a

il,
 I

n
c

.

Game Art
Bachelor’s Degree Program

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design
Master’s Degree Program

Campus

Game Design
Bachelor’s Degree Program

Online

fullsail.edu

Winter Park, FL

800.226.7625 • 3300 University Boulevard

Financial aid available to those who qualify • Career development assistance

Accredited University, ACCSC

Campus Degrees

Master’s

Entertainment Business

 Game Design

Bachelor’s

Computer Animation

Digital Arts & Design

Entertainment Business

Film

Game Art

 Game Development

Music Business

Recording Arts

Show Production

Web Design & Development

Associate’s

Graphic Design

Recording Engineering

Online Degrees

Master’s

Creative Writing

Education Media
Design & Technology

Entertainment Business

Entertainment Business:
with a Sports Management

Elective Track

Internet Marketing

Media Design

Bachelor’s

Computer Animation

Entertainment Business

Game Art

 Game Design

Graphic Design

Internet Marketing

Music Business

Music Production

Web Design & Development

Epic Games .8

Full Sail Real World Education . 47

Havok. C3

Natural Motion. 14

Rad Game Tools. C4

Scaleform Corporation . C2

Transgaming .3

COMPANY NAME PAGE

ADVERTISER INDEX

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Francisco, CA 94107, (415) 947-6000.

Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No.

2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in

U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical postage paid

at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER

SERVICE: For subscription orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928

or fax (1) (847) 647-5972. Send payments to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785)

838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate Game Developer on any correspondence. All content,

copyright Game Developer magazine/United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

47W W W . G D M A G . C O M

GDP GE RHP TEMPLATE 11/9/10 9:33 AM Page 47

http://fullsail.edu
http://WWW.GDMAG.COM

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | DEcEMbER 201048

Our Last, Best HOpe
The ProjecT ThaT Will Save our STudio

Hi everyOne, and weLcOme tO tHe cOmpany meeting. yOu cOuLd caLL
this the fun-size company meeting, I guess. But hey, look on the bright
side: if we hadn’t had those layoffs last week, we wouldn’t all fit into this
conference room right now.

Rough crowd! Okay ... Well, let’s just get right down to brass tacks then,
shall we? I know a lot of you have questions on your mind, like, are we going
out of business, what’s going on, why did my paycheck bounce, and so on.
I’ll take a brief moment to address those rumors: they aren’t true. We’re still
going strong and charging ahead at full speed on our new project. I’ll get to
that in a moment.

I know some of the recent turbulence might have given you a bad
feeling regarding our future. I won’t lie to you, we’re going through a
challenging period. But we’re not alone: it’s everyone. That’s right, the whole
game industry is suffering right now. Valve is laying off employees left and
right. Blizzard is close to shutting down. And over at Zynga, they’re boiling
grass and wood chips just to stay alive. That’s secret information, so don’t
tell anyone I said that.

My point is that there’s nothing we could have done. Even if we had the
best management team in the world, which, I dare say, we are pretty close to
having—right, Fred?—you can’t avoid layoffs once in a while. That’s just how the
system works! If it were up to me, I’d have given everyone a big raise. Honest!

On that note, it’s time to get to the exciting part of the meeting: the
new project. There’s been a lot of buzz building about it amongst the team
members, and now we’re finally ready to reveal the full plan. Now, I don’t like
to exaggerate, but this game is going to rocket us out of these tough times
and straight to the top of the heap. If you could get the lights, Fred? Some
d-bag made off with the projector—oughtta sue his ass—uh, so I’ll just turn
my laptop around here, and if you could all sort of crowd in together? Let
me load up the presentation.

Here we go: World of Alien fArm Crime. As you probably already guessed
from the name, it’s a massively multiplayer, open-world farm simulator set
against the backdrop of a brutal alien invasion. Let me read from the pitch
document a bit: “You, along with hundreds of thousands of your friends, are
humanity’s last hope. Complete quests, commit crime sprees, grow crops,
and participate in a dynamic, constantly changing interstellar war!”

I can see from the looks on your faces you’re already completely
amazed. But it gets better: “World of Alien fArm Crime will have the grand
scope of an MMO, the balanced competitive multiplayer of an FPS, and the
open-world freedom of, uh ... of an open-world game!" Hmm, should have
re-written that. "It has co-op, downloadable content, social networking,
a guitar peripheral, and motion control. The game boasts 19 distinct,
completely unique races, 43 character classes, and a dialogue script that is
3,000 times as long as the 1974 edition of the Encyclopedia Britannica.”

Guys, you would not even believe how excited our publishing partners
got for this pitch. I told them to imagine how much money HAlo has made,
and then multiply that figure by how much money World of WArCrAft has
made, and that’s how much money World of Alien fArm Crime will make.
Then, to clinch the deal, I said we could make it for half the price and in half
the time of our nearest competitor. Because I know we can.

Needless to say, they signed us up on the spot. Fastest deal I’ve ever
done, in fact. Now we’ll move on to—sorry, a question? Technology, you
say? Well ... tech is, you know, just one of those bridges that we’ll cross
when we get to it. You know? I’m sure the tech team here will work out all
the details, because they’re a really talented, great group of guys. Actually,
all of you are, everyone at this company. With your talent, your dedication,
your drive, anything is possible. I mean it.

Where was I? Right. So the technology will sort itself out, but what about
the important stuff—the corporate philosophy that will guide us to victory
over the big boys? As it happens, I have an answer for you, and that’s right
here on the next slide. Pay attention, please.

e F F i c i e n c y
And there we go. “Efficiency” is the key concept that we’re going to be
focusing on from here on out. I’ve been thinking long and hard about this,
and I came to the realization that as long as we’re efficient, we can cut costs
without cutting corners. We can develop big, triple-A games at a fraction of
the cost and time spent by our soon-to-be dinosaur competitors.

With that in mind, starting today, I want each and every one of you to
think constantly about how we can improve efficiency across the company.
You’ll find that there’s efficiency to be gained everywhere. It could be
something as simple as moving the trash can nearer to your desk, so you
don’t lose time walking over to it. Or it could be developing a way to create
large, detailed, and optimized level environments with the touch of a button.

We’re already part of the way toward realizing the goal with our new
streamlined, refocused team size. So all we need to do now is batten down
those hatches, make World of Alien fArm Crime, and ship that sucker.

Questions? Concerns?
I didn’t think so. Let’s get to work!

mattHew wasteLand writes about games and game development at his blog, Magical

Wasteland (www.magicalwasteland.com).

http://www.magicalwasteland.com

http://www.havok.com

http://www.radgametools.com/telemetry

	Contents
	POSTMORTEM
	UBISOFT MONTREAL'S SPLINTER CELL CONVICTION

	FEATURES
	FRAGGED
	FULL REACTIVE EYES ENTERTAINMENT
	ELECTRIC EYE

	DEPARTMENTS
	EDITORIAL
	GAME PLAN

	NEWS
	HEADS UP DISPLAY
	2010 FRONT LINE AWARD FINALISTS

	REVIEW
	TOOL BOX

	ART
	PIXEL PUSHER

	PROGRAMMING
	THE INNER PRODUCT

	SOUND
	AURAL FIXATION

	DESIGN
	DESIGN OF THE TIMES

	CAREER
	GOOD JOB!

	GDC
	EYE ON GDC

	EDUCATION
	EDUCATED PLAY

	HUMOR
	ARRESTED DEVELOPMENT

