
DECEMBER 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

I magine that you and your friends

could go to the movie theater, and

alongside your Hollywood fav-

orites were additional movies that

were interactive. These I-movies

would be similar to movies in that they

have a narrative structure, a high-resolu-

tion and high-fidelity presentation, and

actors you know. But there the similarities

end. To the side of the theater sits a guide,

a person who plays the I-movie like a jazz

musician plays an improvisation. The

guide uses interactivity with the audience

and his or her own personal whims to con-

struct a linear narrative from the structure

that is unique for each viewing. The partic-

ipants get some control over the experi-

ence, like a game, and a satisfying linear

narrative, like a movie.

It’s been ten years since I first came across

this concept, proposed by virtual reality pio-

neers such as Jaron Lanier. I’ve had it stuck

in my mind ever since, and I subconsciously

use it as a metric for the interactivity of

films and games. What I’m talking about is

a convergence of art forms, to create some-

thing new which has an interactivity level

somewhere between zero (movies) and lots

(games). The I-movie would be defined less

rigorously in a narrative sense than a tradi-

tional movie or game, but the experience of

it as played by the guide would be as linear

as a movie. The guide would be someone

who has been specially trained to deliver a

compelling experience to the participants

given the parameters laid out by the I-movie

creator. Each I-movie would have a narra-

tive direction and fundamental story line,

but it would be open enough to allow for a

unique experience each time.

New Technologies

W e’ve all seen our fair share of

movies with minimal (dorky) inter-

activity, and games that have so much FMV

they’re effectively interactive movies. We

haven’t found the sweet spot yet, but this

convergence is heading for us at full steam.

Sony recently announced new technolo-

gy which gives this concept a big powerup.

They are in a unique position to promote

real-time digital theater entertainment,

having strong foundations in movies,

games, and music, as well as the coffer to

support a hefty R&D investment. This

year at Siggraph, Sony demonstrated the

GScube, a box resembling a Borg Cube

that’s been fitted with 16 modified Play-

station 2 chipsets. This beast’s theoretical

performance is over one billion polygons

per second. With this kind of power, we

suddenly have the ability to create new

real-time entertainment experiences.

There are some other great technologies

being developed which also support this

convergence. Vicon has a mo-cap system

which SCEE’s Soho Studios is using to do

motion capture of four actors simultaneous-

ly. It can also be used for facial capture and

the results synched with a voice recording.

There are video cameras available that

record color and distance from the camera;

they are great for chromakey-style effects

using real actors and rendered 3D environ-

ments. With wrap-around camera systems

like those used in The Matrix (designed by

Manex Visual Effects), it’s possible to visu-

ally motion-capture a 3D sequence and con-

vert it to real-time 3D for view-independent

playback. It’s truly an exciting time in the

movie and game industries!

Welcome

T his month marks a changing of the

guard in our art column. Last month

you experienced Mark Peasley’s fabulous

article on multi-legged animated critters.

This month Maarten Kraaijvanger passes

the art column over to Mark, who brings a

wealth of experience with him from over

ten years in the game industry. He has

worked on such games as RED BARON, ACES

OF THE PACIFIC, and (my personal favorite)

STELLAR 7. Mark is currently the art director

at Gas Powered Games. Find out more

about Mark for yourself at his web site,

www.pixelman.com. Welcome, Mark!

Convergence

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer is
BPA approved

W W W . C M P G A M E . C O M4

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Patent Holders
Respond to Editorial

I n Alex Dunne’s September editorial

(“Patents, Patterns, and Other Patter,”

Game Plan), he cited my patent as one

that Game Developer readers should be

aware of. While there’s a respectable anti-

patent position, usually it’s heard from

advocates of free software, not commer-

cial game developers, who already license

everything from characters to the right to

run on a platform. We’re willing to con-

sider licensing our patents for free for 100

percent GPL’d free software projects.

Commercial developers must license on

commercial terms.

As for our physics technology being

innovative, we’re the first ones to make

the hard cases work. We’ve been throw-

ing high-poly jointed characters down cir-

cular staircases for years now and making

it look right; others are still banging

boxes around.

And as Jeff Lander and Chris Hecker’s

review showed (Product Review, Sep-

tember 2000) major packages are having

trouble doing even that. Nor is this

vaporware; we sell a plug-in for Soft-

image 3D and give away a free version,

something MathEngine announced at

Siggraph in 1999 but never shipped. It’s

easy to do bad physics; it’s much harder

to get it right.

We’re in negotiations with various

developers, but are not releasing details

until the deals close. We expect this to be

a significant technology for years to come,

as platforms get faster and good physics

becomes a standard part of games.

John Nagle

Animats

via e-mail

I just read your “Patents, Patterns, and

Other Patter” editorial concerning GE

Marching Cube software that appeared in

the September 2000 issue of Game Devel-
oper. We appreciate your recognition of

General Electric’s work in this technology,

and would like to take this opportunity to

further clarify this matter.

You should know that GE has made

other significant contributions in visuali-

zation technology as a result of its re-

search in med-

ical diagnostic

imaging and

aerospace. The

GE Marching

Cubes algo-

rithm described

in U.S. Patent

4,710,876 is

just one exam-

ple. Some other

examples of

GE’s contribu-

tion to this

technological

area are cap-

tured in U.S.

Patents

4,719,585;

4,729,098;

4,751,643;

4,791,567;

4,821,213; 4,879,668; 4,914,589;

4,984,157; 4,985,834; 5,166,876;

5,561,749; 5,542,036; and 5,590,248.

They are also described in the book The
Visualization Toolkit: An Object-Ori-
ented Approach to 3-D Graphics
(Prentice Hall, 1987), and in the article

“Marching Cubes: A High Resolution 3D

Surface Construction Algorithm” (ACM

Computer Graphics, 1987), written by

the inventors of this technology.

You should also know we have been

granting licenses under these and other

patents for various applications on fair

and reasonable terms.

Thank you for taking the time to issue

this clarification. We believe these addi-

tional comments will also be informative.

Jerald E. Roehling

GE Technology Development Inc.

via e-mail

Content More Worthy
Than Form

Greg Costikyan’s article on games and

stories (“Where Stories End and

Games Begin,” September 2000) is, as

always, insightful, analytical, and illumi-

nating. After much effort, I was able to

discern only two points to disagree with.

First, Greg holds that game and story

are antithetical and must be traded off

against each other;

I hold that story

emerges from

game. A game is a

story-generator —

a single playing of

a game constitutes

a story. Thus, I

don’t see game

and story as anti-

thetical; I see them

as different levels

of abstraction. A

game is one level

of abstraction

higher than a

story, just as

“addition” is one

level of abstrac-

tion higher than

“three and two

make five.”

Second, Greg’s arguments on art and

emotion strike me as unnecessarily defen-

sive. His overall thrust seems to be that

games are every bit as good and worthy

as stories or any other form of expres-

sion. I argue that the worthiness of any

particular expression arises less from its

form than its content. There are lots of

unworthy novels, puerile paintings, and

vulgar movies. There is nothing intrinsic

to games as a form of expression that

requires them to be unworthy, puerile, or

vulgar. These adjectives must be applied

to individual games or to particular

groups of games, not to the medium in

general and certainly not to its potential.

Thus, I find no contradiction in the

claim that the content of most games is

unworthy, puerile, or vulgar, while games

as a form of expression could certainly be

interpreted as noble, edifying, or worthy.

Indeed, some of Greg’s own games

demonstrate the potential of the medium;

would that they weren’t swamped by the

teeming masses of unworthy, puerile, and

vulgar games.

Chris Crawford

via e-mail

C
Let us know what you think: send us an

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r6

8 d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

Z
F R O N T L I N E T O O L S

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | dan ie l huebner & mark de loura

3DMENOW DELIVERS
LIP SERVICE

B iovirtual is adding lip-synching to its

3DMeNow package. 3DMeNow

allows users to quickly create lifelike, ani-

mation-ready 3D models from source pho-

tographs by mapping the

2D photographs onto the

features of a generic 3D

template. The resulting

models can be manipu-

lated with 3DMeNow’s

3D morphing, subdivi-

sion surface, and texture-

blending tools and can

be output as low-resolu-

tion game models or in a

more highly detailed ver-

sion. Biovirtual is ex-

tending the functionality

of the package by using

LIPSinc’s technology to

add accurate lip-synching

with the input of any

suitable .WAV file. 3D-

MeNow Pro is available

for $1,999.

3DMENOW | Biovirtual | www.biovirtual.com

GUITAR RHYTHMS FROM
MUSIC LAB

MusicLab has

released its

guitar rhythms

plug-in for

Cakewalk Pro

Audio. Rhy-

thm’n’Chords

comes with a

guitar rhythm

library of more

than 700 patterns. Pre-recorded patterns

cover more than 60 accompaniment

styles. Rhythm’n’Chords includes 22 gui-

tar stroke types, such as down strums, up

strums, muted strums, grace strums,

slides, and plucking, with additional con-

trol parameters for strum velocity, bal-

ance, arpeggiation time, and polyphony.

The plug-in includes a chord chart view

as well as chord menu for the creation of

chord progressions, and chord banks for

storing chord configurations arranged by

users. Rhythm’n’Chords for Cakewalk

Pro Audio 9 for Windows 98 or NT is

available from MusicLab for $99.

Rhythm’n’Chords l MusicLab l
www.musiclab.com

NVIDIA’S MULTIMEDIA
XBOX PROCESSOR

Nvidia has provided de-

tails about the second

processor it is supplying

for Microsoft’s Xbox con-

sole. Dubbed the Xbox

Media Communications

Processor (MCPX), the

part handles the broad-

band connectivity, commu-

nications, and audio capa-

bilities of the Xbox. The

MCPX includes dual DSPs,

an audio processor, a

Dolby Digital encoder,

USB controller, modem

interface, and an Ethernet

controller to support home

networking. Nvidia plans

to begin selling an inte-

grated chip late next year,

which will feature a modified version of

the MCPX with additional memory con-

troller functions.

MCPX l Nvidia l www.nvidia.com

HYBRID RELEASES
VISIBILITY OPTIMIZER

Hybrid Holding has released

SurRender Umbra,

a visibility optimizer

designed to identify visi-

ble objects in dynamic

3D environments as

quickly as possible,

without any scene pre-

processing. Once Umbra

has completed its tasks,

the application can con-

tinue by drawing only

the visible objects, lead-

ing to a savings in rendering time. The

system works with environments of any

topological structure and can be plugged

into any game engine. The visibility

queries are output-sensitive, meaning that

SurRender Umbra’s work time is depend-

ent on the number of visible objects in the

scene. Umbra is available for multiple

platforms with end-product, royalty-free

licenses running from $10,000 for a sin-

gle platform license with no support, to

$150,000 for all platforms with support.

SurRender Umbra l Hybrid Holding Ltd. l
www.hybrid.fi

NEW SOUNDBLASTERS
LAUNCHED

C reative Technology has launched a

new line of SoundBlaster cards, the

Live! 5.1 series. This new series of sound

cards supports 6-channel audio to deliver

true Dolby Digital 5.1-channel surround

sound via analog or digital connections.

The Live! X-Gamer 5.1 and Live! MP3+

5.1 both address specific gaming and

music needs, while the Live! Platinum 5.1

offers consumers a high-end choice for

digital audio creation and playback. The

Live! Platinum 5.1 comes with the Live!

Drive IR,

which allows

simultaneous

connection of

multiple

audio devices

through a

panel mount-

ed in a drive

bay. The

Live! Plat-

inum 5.1 also

ships with a

wireless

remote con-

trol for easy navigation of audio and

video playback utilities.

SOUNDBLASTER LIVE! 5.1 | Creative
Technology | www.creative.com

SurRender Umbra identifies visible objects in
dynamic 3D environments.

Rhythym’n’Chords deliv-
ers access to 700 guitar
rhythm patterns.

Creative Technology’s
X-Gamer 5.1 addresses spe-
cific gaming needs.

Two examples of 3DMeNow
creating ready-to-animate
3D models from photographs.

10 d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Game restrictions. The Federal Trade

Commission report on entertainment

marketing is having a clear effect on

the gaming industry. K-Mart and

Wal-Mart are joining Toys R Us in

restricting the sale of mature-rated

games. K-Mart and Wal-Mart have

announced plans to restrict sales of

M-rated game titles to anyone under

the age of 17, and a number of

regional department stores are plan-

ning to follow suit. The stores will

use a barcode scanner to remind

clerks to check customer IDs.

While an Indianapolis ordinance

governing the display and use of

mature arcade games is being

reviewed by the courts, a San Diego coun-

cilman is proposing a similar measure in

that city. As in Indianapolis, games featur-

ing violent or sexually explicit themes

would need to be clearly marked and kept

at least ten feet away from non-offensive

games. Penalties include fines up to

$1,000 and revocation of game operator

licenses. GameWorks, a chain of arcades,

is introducing a new policy to restrict play

of games identified as containing mature

content. All 20 U.S. GameWorks and

GameWorks Studio locations will only

allow the sale of a limited-access debit

card to patrons under the age of 16.

International debates are raging on the

subject as well, though violence and

mature subject matter are not in the spot-

light. Officials in the southern Chinese city

of Guangzhou have announced a plan to

shut down more than 1,500 videogame

arcades because of concerns about their

influence on children. Parents and teachers

in the region believe that the game parlors

are distracting students from their studies

and causing them to make friends with the

wrong crowd. The crackdown affects

almost 80 percent of Guangzhou’s

arcades, most of which are being cited for

breaking the age restrictions. Many in the

region, however, are calling for a total

ban. In Malaysia, Home Minister

Abdullah Ahmad Badawi has ordered that

all arcades must close in two months. The

primary motivation in that country centers

on addiction and gambling as the reasons.

Learning Company details. Mattel won’t see

any immediate payment in its recent sale

of The Learning Company, which it

acquired for $3.5 billion in May 1999.

Instead, the deal will allow Mattel to

share in profits from future sales of The

Learning Company’s licensed products,

and grants Mattel a chance to end the

estimated $60–90 million quarterly losses

associated with The Learning Company.

The buyer, Gores Technology Group,

hasn’t disclosed any immediate plans for

The Learning Company, but has hinted

that layoffs are likely on the way for

some of the company’s 1,500 employees.

Aureal buyout approved. Creative Tech-

nology has announced that its purchase

of beleaguered audio hardware maker

Aureal Semiconductor has been approved.

The U.S. Bankruptcy Court for the

Northern District of California, Oakland

Division, entered the final order approving

the sale of substantially all Aureal’s assets

to Creative, including patents, trademarks,

and other intellectual property. The sale

also includes settlement of all outstanding

litigation claims between the two compa-

nies. Creative will pay $28 million in cash,

plus two new shares of Creative stock for

every 100 outstanding shares of Aureal

stock, which amounts to 208,079 shares of

Creative, valued at approximately $4.35

million based on the fair market value at

the time of the sale.

Infogrames merger complete. Infogrames

has finished consolidating its North

American operations. The complex deal,

involving nearly 50 million shares of

Infogrames Inc. stock and the retirement

of $128.6 million of debt, effectively

combines the operations of the for-

mer GT Interactive with those of the

Infogrames SA’s North American

subsidiary. The newly merged com-

pany will finally shed its outdated

GTIS Nasdaq symbol in favor of

IFGM. Infogrames also made

changes in the management of its

newly unified North American oper-

ations, adding Paradigm Enter-

tainment’s Dave Gatchel as senior

vice president of development, and

Cathy Tische from 3DO as vice pres-

ident of licensing.

ATI posts loss. ATI Technologies has

reported its second straight quarterly loss.

The company saw revenues for the fourth

quarter drop to $290.2 million for a net

loss of $45.2 million. ATI posted earnings

of $16.8 million on revenues of $304.7

million in the same quarter last year.

After a difficult summer that included

both the resignation of the company’s

chief financial officer and a third-quarter

loss that triggered a stock slump, ATI is

predicting 30 percent growth, quarter

over quarter, for the first part of its 2001

fiscal year. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r & j e n n i f e r o l s e n

M A C W O R L D E X P O
MOSCONE CONVENTION CENTER

San Francisco, Calif.
January 9–12, 2001
Cost: $25 and up (early-bird dis-
counts available)
www.macworldexpo.com

I D E A 2 0 0 1 & G A M E
T E C H N O L O G Y
C O N F E R E N C E
HONG KONG CONVENTION AND

EXHIBITION CENTRE

Hong Kong
Conference: January 17–21, 2001
Expo: January 18–21, 2001
Cost: (exhibits only) HK$20 per day

(conference) HK$3,700
www.idea-expo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

DUKE NUKEM FOREVER. This game’s probable M-rating would
keep it from being sold at K-Mart and Wal-Mart stores.

w w w . g d m a g . c o m 13

z
P A T T E R N S

G A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | e d i t e d b y c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

w w w. g a m a s u t r a . c o m / p a t t e r n s

State Decision and
Consequence Separation

a.k.a. Duplicated State Decision Points
s u b m i t t e d b y d a v e w e i n s t e i n

Introduction

N ot only is this our first pattern to be

selected from our readership, it is

also our first “anti-pattern.” Not long

after the release of the infamous Design
Patterns book, another popular book,

AntiPatterns, followed which enumerated

patterns of software failure. Not surpris-

ingly, it is often more valuable to know a

problem than to know a solution.

Problem

G ames frequently consist of large num-

bers of interrelated state transitions.

The complexity of such state machines is

difficult to manage, and this is especially

true for multiplayer games where the likeli-

hood of clients receiving messages inappro-

priate for their state must be addressed.

A common method of implementing

such state transitions, usually because of

lack of time or laziness, is to separate the

decision-making process from the resulting

consequences. For example, when a packet

arrives, a flag is set in one module while

several remote modules monitor that flag

to modify their behavior.

This anti-pattern captures the complex-

ity that results as such related code frag-

ments increase. The greater the separa-

tion, both in terms of location in the

source code and in logical association

between decisions and consequences, and

the more such code is part of ad hoc

development rather than coherent design,

the worse the anti-pattern gets.

Common problems include: difficult to

follow code flow; state errors introduced

as old functions are used as boilerplate

for new code; the flow of state transitions

is spread across the entire codebase lead-

ing to difficulty in changing or introduc-

ing new states; and code changes are

increasingly vulnerable to human error

because the distributed nature of the anti-

pattern makes individual changes appear

reasonable.

Examples

One common form of the anti-pattern is

created by repeated state checks at the be-

ginning of functions, aborting the function

if the state is inappropriate. For example:

onMenuSelect() {

if (! inMenuMode) return;

}
This construct is initially a straightfor-

ward way to monitor state and may work

well for small codebases containing a lim-

ited number of states. However, it

becomes increasingly vulnerable to failure

as numerous ad hoc decision points accu-

mulate. This is especially true when other

programmers integrate code and blindly

copy poorly understood code fragments,

propagating state decision points into

places with unexpected and difficult to

test results.

Solutions

S olutions involve minimizing disjoint

decision and consequence processing.

A common implementation combines the

two operations (decision and consequence)

into one module with related data struc-

tures or a class responsible for the entire

state transition sequence. This should be

bolstered with a well-documented process

for how state transitions are to be added

and how state-dependent code is to be inte-

grated into this scheme. As an example,

consider a multiplayer game which upon

transitioning state also filters those packets

which are irrelevant to the state. This

might be done with an array of valid pack-

ets as in the following pseudocode:

changeState(newState) {

switch(newState)

case mainMenuMode:

validPacketsPtr =

mainMenuModeValidPackets;

}

An alternative solution is to define a

uniform interface that allows state-depend-

ent objects to be tested in a centralized

manner. For example:

processMessage(Msg *msg) {

if (msg->isValid()) msg->process();

}

// ChangeEquipmentMsg

// inherits and extends Msg

ChangeEquipmentMsg::isValid() {

return state == inventoryMode;

}

In this example, the is-message-valid rules

are encoded into the message class. On the

surface this seems to suffer the problems of

the anti-pattern by distributing state deci-

sions and consequences, but the code can be

considered easier to follow because of the

single point where message processing is

aborted depending on the state checks.

Issues

I t is crucial to document how to add and

change states, and how to query them in

your game to avoid ad hoc solutions like

this anti-pattern describes. However, inter-

nal documentation is always the first thing

to give when a schedule begins to slip, so

this is a hard issue to overcome.

Related Patterns and
References

Solutions to this pattern are related to

the State and Strategy patterns. See

AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis by

William Brown and others (Wiley &

Sons, 1998).

Credits

T hanks to Dave Weinstein from Red

Storm Entertainment for submitting

this anti-pattern! Be sure to follow up with

Dave on www.gamasutra.com/patterns. q

Send your patterns and idioms to us at

patterns@d6.com.

P R O D U C T R E V I E W

w w w . g d m a g . c o m 15

T here are so many programming

editors out there: VI, Emacs,

Notepad, Edit, Brief, Jed, Zeus,

Epsilon, KEdit, CodeWright,

FTE, GWD, Multi-Edit, Visual

C++’s editor, and many others. With so

many options available, what features dif-

ferentiate them from each other?

If you’re a Windows programmer,

you’ve probably learned to get along with

the Microsoft Visual C++ (VC) editor, so

any replacement editor will have to get

along with VC very well. On game con-

sole or handheld projects, you may not

have an IDE or editor provided, instead

you get to roll your own environment.

For cross-platform projects, having one

editor that works the same for each oper-

ating system and development environ-

ment would be fabulous. If you’re a Unix

hacker but you have to work under

Windows, wouldn’t it be great to have

something with a bit more functionality

than VI, perhaps something that has func-

tion prototype tooltips?

In this article I’ll examine Visual Slick-

Edit 5.0 (henceforth known as Slick), a

multi-platform editor which incorporates a

great many programmer-friendly features.

Because Slick has so many features, I’m

going to concentrate on those parts which

are particularly useful or innovative to you

as a programmer.

Visual C++ Integration

L et’s start at the top. Paramount for

any editor is interoperability with VC,

because VC is the dominant development

environment for Windows. Most of you

are familiar with the VC IDE and editor.

How well does Slick cooperate?

In an ideal world you could use Slick in

the VC editor pane. There are packages

that do this, but I have yet to see any that

work properly. Slick runs as a separate

application, and it has many hooks to

facilitate cooperation with VC.

Most important is Slick’s ability

to dissect workspace (.DSW) and

project (.DSP) files. As you can see

in Figure 1, the Files tab on the left

pane of Slick looks very similar to VC’s.

Unfortunately, Slick doesn’t let you change

or save workspace and project files for

VC. This is perhaps the most annoying

thing in Slick, so it’s all uphill from here.

But this means any time you want to add

a file to your project you have to go back

to VC and do it from there. Fortunately,

Slick will detect the modification and

auto-load the updated files. Projects which

aren’t VC (such as GCC projects) can be

easily modified in Slick.

Building, debugging compiler errors,

and executing your application all can be

done from within Slick. Slick calls the VC

command line utilities for each of these

operations, and you stay within the editor.

You can also configure the menu options

to execute your own compilers and tools

for custom projects. The regular expres-

sions used for parsing the compiler errors

can even be changed.

Slick doesn’t do program debugging,

profiling, or resource editing, so you’ll still

have to rely on VC or other packages for

that functionality. Slick does integrate well

with a variety of source code control sys-

tems, including SourceSafe, RCS, and

PVCS.

Flexibility

T he absolute best feature of Slick is its

amazing flexibility. Everything is con-

figurable. The primary configuration

change you’ll make is what editor should

be emulated: CUA (standard Windows

interface), Slick text edition, Brief, Epsilon,

VI, Emacs,

VC, or ISPF (an OS/390 editor). I tested

most of these and discovered them to be

very useable emulations. Being a die-hard

Unix hacker, I was most interested in the

VI and Emacs modes. VI emulation worked

very well and even emulated some of the

more esoteric regular expression features.

Emacs emulation was similarly well done,

except many of the extended functions nor-

mally provided through Emacs Lisp were

missing.

Extensive configurability is built into the

core of Slick. Hotkeys are bound to macros

(functions), and the macros can also be

called up from the editor’s command line.

The macros are written in Slick-C, an inter-

preted C-like language. It’s easy to modify

existing macros or create new ones, bind

them to hotkeys, and tie them to particular

file types. You can also modify all of Slick’s

forms and dialog boxes. Slick includes a

complete form editor, and you can edit any

available form, or create new ones.

I’m completely stunned by the configu-

ration capabilities of Slick. It’s possible to

tune the entire editor for any development

kit, allowing you to use the editor as a

“home base” to compile and execute from.

This is truly an editor designed by pro-

grammers, for programmers.

Language Support

S o how easily will Slick let you work

with your code? Well, remember that

this is an editor, not an IDE, though some-

M A R K D E L O U R A | Mark is the editor-in-chief of Game Developer magazine. He has learned far too many editors and still falls back to VI
when in a hurry. Harass him at the old Unix hackers’ home via mdeloura@cmp.com.

Never Learn
Another Editor!
MicroEdge’s Visual SlickEdit 5.0

b y m a r k d e l o u r a

XXT H E S K I N N Y O N N E W T O O L S

XP R O D U C T R E V I E W XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

16 d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

times that’s easy to forget with so much

functionality. You won’t get to step

through your code, peer at variables, or

dump the register set. Slick does do a lot

of things that you’d expect from an IDE

though, and you’ll be pleasantly surprised

by many of the additional features that are

included in this editor.

When you start Slick for the first time,

it will prompt you for the location of your

C/C++ header files and Java Development

Kit in order to create tag files. Slick sup-

ports many languages, but particularly

well supported are C/C++, Java/Javascript,

HTML, and Slick-C. Of course, if your

favorite language isn’t supported, it’s rela-

tively simple to add your own macros to

support syntax coloring and the like.

After Slick creates the tag files, you’re

ready to program. All my examples from

here on will be regarding C++ support.

Let’s say you’re working on a console title

and need to link with the operating system

libraries provided to you. The next thing

you’ll want to do is add all the OS code

that you have available to the C tag file —

from then on you’ll get tooltips for all of

your OS functions.

As you enter code, Slick parses it

dynamically so that it can keep track of

function prototypes, comment blocks,

classes, and symbol references. If you cre-

ate comment blocks above your func-

tions, Slick automatically includes those

comments in the function tooltips. You

can also use Javadoc-style comments to

include information for your functions.

Using Javadoc you can add HTML-for-

matted comments to each function. This

is amazingly useful: you can comment

each parameter required for a function

call and include clickable

links (for additional infor-

mation), which pop up in

the function tooltip.

As you enter code, the

lower pane of the Slick inter-

face seems to psychically in-

terface with you in order to

display useful information. If

you have the Symbol tab se-

lected, the lower pane will

dynamically display informa-

tion that Slick thinks you

need to know. For example,

type a class variable and the

file containing its class declaration will

automatically open to help you select the

proper member or function. If you have

the References tab selected instead and hit

Control-/, the lower pane will display all

references to the symbol your cursor is on.

Features I Now Can’t
Live Without

A very useful and simple concept in

Slick is “Selective Display.” Selective

Display modifies what you can see in the

edit pane based on preprocessor defini-

tions or function boundaries. I use this

feature to collapse every function down

to a simple “plus” box (like a Windows

Explorer folder) with the function decla-

ration. This does wonders for improving

the readability of code. Just click the plus

by the declaration to pop a function

open, then edit it and click the plus again

to close the function up.

Slick also performs code beautification.

Set up your preferred tab spacing and

curly bracket positions, then click “beauti-

fy” to apply those settings to all your

existing code. All code that you type or

paste in after beautification will also auto-

matically adjust to your beautification set-

tings and current tab level. This is espe-

cially useful when you have a team of peo-

ple working on the same code.

Moving code between Windows and

Unix is a breeze. Slick determines which

OS the code came from based on line-

ending character sequences, and then dis-

plays it without the nasty control

sequences or merging the entire file into

one long line. When saved, the code is

then written out in its native format

regardless of the OS you’re running on.

Some of the other very useful features

in Slick include: an integrated FTP client

which allows you to load-edit-save with-

out ever saving to your local disk; a very

full-featured differencing/merging utility

(DIFFzilla); and a built-in hex editor.

Ballistics Report

T he team at MicroEdge clearly under-

stands what developers find useful in

an editor. You can download a 30-day

demo version of Slick from MicroEdge’s

web site.

I can’t recommend it enough for its func-

tionality as an editor. Using it under Linux,

or with custom console compilers and link-

ers, is a dream. But when programming

under Windows, working simultaneously

with VC and Slick rapidly begins feeling

like a chore. It would be nice to have just

one tool, and even though the VC editor is

inferior, it’s often easier to just open VC for

a quick edit and compile. q

STATS
MicroEdge Inc.
Apex, N.C.
(919) 303-7400
www.slickedit.com
PRICE

$295 for Windows or Linux versions; $395
for other Unix versions.

SYSTEM REQUIREMENTS
Windows: 486DX or higher, 16MB RAM,
28MB hard disk
Linux: 486DX or higher, 24MB RAM, 40MB
hard disk

PROS
1. Extensive configurability.
2. Huge feature set with innovative tooltip

useage.
3. Great for Linux and console build envi-

ronments.

CONS
1. Troublesome to use with Visual C++.
2. Hard to find what you’re looking for in

the GUI.
3. On the pricey side.

VISUAL SLICKEDIT 5.0 XXXX

FIGURE 1. You can load Visual C++ workspace files into Visual
SlickEdit. This is the Windows version, demonstrating the use of
the References tab.

w w w . g d m a g . c o m 19

L ike many kids who grew up in

the suburbs, I spent the hours

after school looking for some-

thing to keep me from having

to confront my homework.

The rule was, “Be home when the street-

lights come on.” I would get home from

school, chow down a quick mini-pizza (you

gotta eat), then head out to basketball court

to shoot hoops with the gang. This time of

year was a bit of a drag. Growing up on the

West Coast, I never needed to worry much

about the cold in December, but the days

were definitely getting shorter. We would

just barely get a couple of games in before

we had to pretend we could actually still see

the basket. The streetlights would flicker on

but that was easy enough to deny. It gener-

ally took a loud whistle from someone’s

parent to break up the game.

I usually brought my own ball. If every-

one brought a ball, we would never have a

situation where we didn’t have one. Once

everyone was there, the inspection began.

Various qualities of faux leather were dis-

cussed. Overly worn or glassy-smooth balls

were immediately discarded. The merits of

over- and underinflating were then debated.

We were all avid bike riders, so we had our

pumps ready to correct any inflation issues.

Usually the problem was that no one could

find one of those magic inflation needles.

We could never find one of them when we

needed it, even though I think I personally

had bought dozens of them. Many nights

we had to play with a “clunker” because

no one had one of those damn needles. To

this day I still treat those things with an

odd kind of reverence. When I find one in

the back of a drawer, I attempt to put it

somewhere where I will immediately be

able to find it when I need it. This in-

evitably means that I immediately lose it

again. I am sure there are dozens of those

things lying around here somewhere.

Why am I thinking about this? Well,

some of my 3D models are looking a bit

deflated lately, and I could really use one

of those needles to pump them up.

Where’s Dig-Dug When
You Need Him?

T he image in Figure 1 is the cartoon taxi

I created for this column in June (“In

This Corner, the Crusher!”). In that col-

umn, I described the use of a dynamic

mass-and-spring system connected to a

matrix deformation lattice. This allowed

me to make a polygonal mesh squash and

stretch like a cartoon object. The technique

worked well, but there was a bit of a draw-

back to the system that I tried to pass off

as a feature. The mesh system would occa-

sionally collapse in on itself and stay that

way, as you can see in Figure 2. For a car,

that may be acceptable, but for many

objects it would not work.

To solve the problem, I need to under-

stand the reason this happens in the first

place. My dynamics model is composed of

a grid of point masses connected by

springs. The springs initially attempt to

keep each point the same distance away

from each other. Let me take a cube as an

example. The cube is composed of four

point masses in each direction, making a

total of 64 mass positions. Each of these is

connected by a spring to each of its neigh-

bors along the axes, as you can see in

Figure 3. This gives me 27 smaller cube

elements that make up the larger object.

When it’s just resting there, these springs

are enough for the object to hold its shape.

I call these structural springs. Unfortu-

nately, those springs alone are not enough.

I need to add springs across the diagonals

to keep each small cube element from

shearing or stretching too much. Those

springs are enough to keep each small cube

Pump Up The Volume
3D Objects That Don’t Deflate

J E F F L A N D E R | When the streetlights are not on, Jeff can be found playing with all sorts of high-tech toys at Darwin 3D. Drop him a note
at jeffl@darwin3d.com and make sure he gets home before it’s too late.

j e f f l a n d e r G R A P H I C C O N T E N T

FIGURE 1. The crusher. FIGURE 2. The crushed.

Pump Up The Volume

element from col-

lapsing on itself.

However, there is

still a pretty big

problem. Because the

system is just a series

of point masses con-

nected by springs, it

doesn’t really repre-

sent a solid (but

compressible) vol-

ume. Each element

can pass through

another one or occu-

py the same space

with no penalty. As

long as the connect-

ing springs are at their rest length, all is

well as far as the simulation is concerned.

The image, however, looks plenty wrong,

as you can see in Figure 4. The original

cube is no longer discernable, even though

the simulator has reached equilibrium.

Throw Me a Volume
Preserver

C learly, I need to make the simulator

aware that each element contains a

volume of material that would like to

return to its rest position. Initially the

impulse is simply to start adding more

springs all over the place; connect every

other mass node, then every third mass

node, and so on. It should be obvious that

this could rapidly degenerate into a situa-

tion where every mass node was connected

to every other node by a spring. Extra

spring calculations are a hit on perform-

ance, so it seemed that I should attack the

problem from a different angle.

In mechanical engineering applications,

the finite element method is often used for

problems of deformation analysis. However,

the method is fairly computationally expen-

sive and difficult to implement for arbitrary

models. For right now at least, I am not

ready to give up on the mass-and-spring

method. The goal for my deformable model

is that is should deform naturally but tend

to return to its initial shape when forces are

not applied to counteract that tendency. The

distance relationship between the mass

nodes is initially given at load time. I really

want those mass nodes not only to maintain

equal distance between each other, but also

to maintain their locations relative to the

initial local origin of the object. The prob-

lem with this is that because the object is

free to move and tumble about in 3D space,

I cannot simply pull the nodes back to the

initial starting place. I need to create a local

origin for the deformable object. For a rigid

3D body, this is easy. The object has both a

center of mass (COM) and an orientation

about that center. However, my soft-body

object doesn’t have a rigid COM or orienta-

tion, as that is constantly changing as the

object deforms. I need to find a way to

determine the center and orientation for the

deformable object.

Journey to the Center
of the Object

O nce I determine the center of mass

and orientation of a deformable body,

it will be useful for a variety of things.

Collision detection comes to mind right

away. Determining whether two rigid bod-

ies have collided is difficult. However, colli-

sion detection between two deformable

bodies can become even more complicated.

The bounding box of the object is not stat-

ic. This provides me with a clue for how to

determine the orientation of the object.

An oriented bounding box (OBB) is a

box that surrounds an object in an orienta-

tion that provides a nice, tight fit around

the object. I could use the orientation and

center of an OBB for my local object axis.

For an arbitrary set of 3D points, an OBB

can be created by first finding the center of

the box. The center of the box is deter-

mined by averaging the points in the

object. This average point is now consid-

ered the center of mass. That was the easy

part; now it gets a bit trickier.

To determine the axes of the bounding

box, I need to create a covariance matrix

of the points in the model. The unit-

length eigenvectors of this matrix are the

axes of the OBB. If you are confused by

terms like eigenvectors, you should pick

up a linear algebra book. I never thought

I would use it back when I was attending

college, but more and more I find myself

looking to linear algebra for all sorts of

game applications. I’ve also found Dave

Eberly’s new book, 3D Game Engine
Design (see “For More Information”),

very useful for calculating the OBB. His

samples are very easy to adapt to situa-

tions like this. I’m not going to go into

the OBB stuff this month because there

was another problem once I had it work-

ing. (Isn’t that always the way? Oh well,

now I have the OBB generation code

ready to go when I need it.)

The problem with the OBB code is while

it returns a box that contains the object,

the bounding box can be created in an

arbitrary orientation as long as it contains

the points of the object in a fairly efficient

way. There is not necessarily any corre-

spondence between the initial object orien-

tation and the orientation of this bounding

box. This is not a problem with the OBB

algorithm. It works exactly as advertised;

however, it caused me to refine my defini-

tion of what information I actually needed

to solve the problem. I need an orientation

with a correspondence to the initial

object’s fixed reference.

20

G R A P H I C C O N T E N T

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

FIGURE 3. The spring cube. FIGURE 4. The collapsed cube.

Second Attempt at a
Tumbling Axis

T he next step was simply to consider

the outer hull of the object and deter-

mine the principal axes from the orienta-

tion of the hull nodes. Let me first look at

the left and right sides of the cube. I can

calculate the average of the nodes on each

side and create a vector between those

two averaged points. This vector corre-

sponds to the X-axis vector of the object’s

local coordinate frame. You can see this in

Figure 5.

I can then do the same for the top and

bottom nodes. This will give me the Y-axis

vector for the object. To get the Z-axis, I

can then just cross the X- and Y-axes

using the cross product operator, giving

me a Z-axis perpendicular to the two

other axes. Because the X- and

Y-axes might not be perpendicu-

lar to each other in a deformable

model, I need to do another cross

product to make sure I have a

valid rotational matrix. This

matrix is representative of the

deformed object in an arbitrary

orientation. The code to calculate

the transformation matrix for the

deformable object can be found

on the Game Developer web site.

The center of mass position is

stored in the translation portion

of the matrix so the vertices can

be easily transformed between

coordinate frames. You can see

the rotation axis in action in

Figure 6.

Pump You Up

N ow that I have a local trans-

formation matrix for my

deformable object, I can try to re-

inflate my crushed cube. The ini-

tial mass node positions are

transformed through the object

matrix. This tells me where the

nodes should be in the current

orientation. I then use a spring

for each node to pull the object

back to its original shape. The

strength of these springs is the

strength with which the object

regains its original shape. The

springs should be strong enough

to keep the object from collapsing on

itself, and can be used to simulate different

types of materials which have different

snap back properties.

Other Simulation
Changes

W hile I was noodling in the dynamics

simulation code, I changed a few

things around from what I had been using.

I changed the collision response system to

use the penalty method instead of backing

up the simulator to find the exact time of

collision. When a collision is detected, a

strong impulse is applied to the point of

collision to force the objects apart. This

system allows some penetration of the

objects into the boundaries, but this is

minimal. It also means that I don’t need to

back up the simulator and search for the

time of collision. I will discuss this system

more next month.

I also changed the numerical integrator.

If you remember my article on integration

techniques (“Lone Game Developer Battles

Physics Simulator,” Graphic Content, April

1999), I had implemented several numeri-

cal integrators. I read about a variation on

one in Jack Crenshaw’s Math Toolkit for
Real-Time Programming (see “For More

Information”) that I thought was interest-

ing. If you recall from that column, the

dynamics simulator uses an integrator to

integrate the acceleration on a body for a

timestep, h, to determine the velocity, and

integrates the velocity for the timestep to

determine the new position of the object.

In that article, I treated both integration

steps as separate operations. However,

Crenshaw’s book points out that dynamics

simulations such as this use a second-order

differential equation:

We reduce this to two first-order equations

by introducing the variable, v, for velocity:

Crenshaw uses a predictor-corrector for-

mula where the velocity is calculated using

the previous acceleration and this gener-

ates the next step’s velocity, which is used

in the acceleration integration:

This integration technique seems to per-

form solidly and is very fast to calculate.

Grab the source code and executable demo

off the Game Developer web site at

www.gdmag.com. q

v v
h

f f

x x
h

v v

i i i i

i i i i

+ −

+ +

= + −()

= + +()

1 1

1 1

2
3

2

dx
dt

v

dv
dt

f t x v

=

= (), ,

d x
dt

f t x
dx
dt

2

2
=

, ,

w w w . g d m a g . c o m 21

FIGURE 5 (top). Center vector found.
FIGURE 6 (bottom). The rotation axis in action.

F O R M O R E I N F O R M AT I O N

Crenshaw, Jack W. Math Toolkit for Real-Time
Programming. Lawrence, Kans.: CMP Books, 2000.

Eberly, David H. 3D Game Engine Design. San
Francisco, Calif.: Morgan Kaufmann, 2000.

m a r k p e a s l e yA R T I S T ’ S V I E W

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r22

P hotoshop has been around for

a long time, and has reigned

supreme for most of that time.

There is a good reason for that.

In a word, it’s “depth.” Photo-

shop is one of those programs that seems to

have more and more features and functionali-

ty the deeper you dig into it. Like peeling an

onion, it reveals new and amazing things with

each new layer that is exposed.

In this month’s column, I’ll explore some of

the more advanced uses of layers and how a

game artist might be able to take advantage of

them in the everyday production environment.

Some of the most powerful aspects of Photo-

shop are often not utilized by artists simply

because they’ve not been exposed to where

they might be useful in their everyday work.

Let’s take a familiar-sounding scenario and

bring some advanced layering to bear on it in order to expose

some of the flexibility.

Our story unfolds as our hero, Joe the artist, sits down in front

of his computer for his morning coffee and e-mail routine. In

rushes the designer/producer/art director (you choose) and says,

“Sorry to dump this on you, Joe, but we need a logo for our new

game idea, GUMBO’S REVENGE. I was thinking of a metallic, sort of

old-world look and, you know, don’t spend too much time on it,

but make it look cool.”

“Oh, and we need it by noon.” (Insert big, heartfelt grin here.)

After a momentary bout of panic, Joe pops on his headphones

and starts to build the ultimate layered Photoshop file (see ex-

ample, above right). His goal is

to create a document that is

flexible, and can be altered eas-

ily without too much trouble.

By using layer masks and clip-

ping groups, he can create a file

that is nondestructive. This

means that it can be changed

with little effort while main-

taining its original look.

Here’s how he did it:

First, an appropriate photo

source for both the wood and

the metal layer needs to be found

(see Figures 1 and 2). There is a ton of source material available

from texture CDs, personal collections, or the web, but make sure

that you know the copyrights associated with whatever file you

choose. Another alternative is to use a program such as Bryce 4 or

Corel Texture and make your own metal using some of the proce-

dural textures applied to simple primitives. If you have access to a

digital camera, a short walk around the building can glean a sur-

prising number of high-quality textures.

We’ll start out by creating a new file in Photoshop called

GUMBO and then do a copy/paste of our source textures into the

new file as layers. We will also add our logo elements on separate

layers to make building our masterpiece easier.

Unmasking Photoshop’s
Layers

M A R K P E A S L E Y | Mark has been in the game industry since the late 1980s and is currently the art director at Gas Powered Games. When
he’s not cracking the art whip, he referees three boys at home. Visit his web site at www.pixelman.com or e-mail him at mp@pixelman.com.

FIGURE 1 (above left) & FIGURE 2 (above right). Wood and metal photo sources used as a starting point.

23

Open up the wood source file and copy its contents into

the clipboard. Paste this into a layer in your new GUMBO

file and label it “Wood Base.” It’s a good idea to start out

with labeling each new layer, as it will save time later.

Next, copy the metal texture you have and paste it into

the document as a new layer. Label it “Steel Base.”

Now we’ll add our speedily done logo to the mix (see

Figure 3). In a vector program of choice, create a black

and white version of the logo or graphic to be used. In

this case, it was created in Coreldraw and exported as

an Adobe Illustrator file. Over the years, I’ve found that

it’s generally easier to do all of my more advanced typo-

graphical manipulations in a vector-based program. They

offer a much higher degree of control than can be found in

the base Photoshop application. I highly recommend that game

artists familiarize themselves with one of the main vector pro-

grams (such as Adobe Illustrator, Macromedia Freehand, or

Coreldraw) and add them to your creative arsenal. A firm grasp

of the basics and the ability to control the vector aspects of

these programs can lead to untold hours of time saved in the

raster arena.

I usually break any main graphic or logo elements out into indi-

vidual files so that they can be imported into Photoshop on differ-

ent layers. This is especially important if the various elements stack

on top of one another in the design. In the case of our GUMBO

logo, the elements don’t overlap, so we can bring it in as one layer.

The files from the vector program need to be saved as either

.AI (Adobe Illustrator) or .EPS (Encapsulated Postscript) files.

Once in this format, they can be added as a new layer in Photo-

shop by using the Place command. The layer name is generated

automatically based upon the vector file name. The advantage of

using vector files and the Place function is that they are only ras-

terized when you have finally sized them to your desired width

and height. This gives you the cleanest version of the rasterized

logo, and it comes in with a transparent background. The color

of the vector files is relatively unimportant, as we will be using

these layers for selection sets for the most part.

Now that the base layers are in the file, we can begin to do

some specialized work on the individual layers. First, let’s look at

our wood. It came in O.K., but we want to add some tooth or

depth to the grain to make it pop a bit more.

In the Layers palette, Alt-click on the eyeball of the layer labeled

Wood Base. This hides the other layers and makes only the Wood

Base layer visible. Duplicate the wood layer (drag the layer down to

the Create New Layer icon on the bottom of the palette window),

and label the duplicate “Wood Grain.” In order to see what is hap-

pening in the next step more easily, Alt-click on the eyeball of

Wood Grain. This will make it the only visible layer (see Figure 4).

Now, double-click on the layer itself right over the label. This

brings up the Layers Options window, which we need for the next

step. Leave the default settings as they are and select the twin

black pyramids below the grayscale bar labeled This Layer. Slide

them to the right and notice what happens to your image. It begins

to clip the black areas out of the image, leaving them transparent.

Slide it to the right until about half of the dark area is transparent.

Select the twin white pyramids to the right and begin to slide them

towards the left.

Eventually, you

will see clipping

of the white areas

of the wood.

Move the twin

white pyramids

to the left until

you have dropped

out about half of

the remaining

white area. The clipping effect threshold for each range can be

softened by pressing the Alt key while sliding the pyramids left or

right. This splits each one into two parts and will give you a “soft”

selection. Slightly soften each range (see Figure 5).

Now lock this transparency into your Wood Grain layer. Even

though you see the effect on the screen, if you look at the layer’s

thumbnail, you will notice that it isn’t displaying any transparen-

cy. Add a new layer between the Wood Base and Wood Grain lay-

ers, select the Wood Grain layer, and collapse it down to the

empty layer (the shortcut for this is Control-E).

You should now see the new layer has the transparency we

wanted locked down. A quick check of the layer icon will verify

that it has the alpha applied. Unfortunately, when we collapsed

it down the layer lost its name, so rename the new layer “Wood

Grain” again.

Now for some fun — turn on the eyeball of both the Wood

Grain and Wood Base layers. This makes the effect easier to see.

Right-click on the Wood Grain layer and select Effects. Turn off

FIGURE 3 (above).
The black and white
version of the logo.
FIGURE 4 (right).
The wood layer is
duplicated and re-
named Wood Grain.
FIGURE 5 (lower
right). The layer is
split and blended in
the Layer Option
panel.

w w w . g d m a g . c o m

the Apply toggle on the Drop Shadow effect. In the pull-down

menu, select Bevel and Emboss. Toggle the Apply on and start

playing around with the various settings on the different pull-

down menus. You will see some fairly dramatic effects that can be

achieved easily (see Figure 6).

Another thing you can do is to add a layer mask to the Wood

Grain layer. To do this, make sure the layer is selected, and then

click on the lower-left icon on the Layers palette. This will add an

alpha channel that is linked to the RGB layer, and flood-fill the

alpha channel with white. The net result of this is no apparent

change to the RGB image. However, what has happened is that an

active, linked alpha channel has been created for that specific layer.

To see what that means, select black as your foreground color, and

select the paint tool of your choice. By painting with black on the

layer mask, you are making that part of the image transparent.

Conversely, by painting back in with white, the RGB portion of

the image is brought back. The advantage of using a layer mask as

opposed to just using an eraser on the RGB layer is that it is non-

destructive. You can always go back into the layer mask and paint

white back into the image, and it will become visible again.

Metal Effect

N ow that you have the wood layer looking like you want, it’s

time to start working on the metal part of the logo. On our

GUMBO logo, I’ve decided I wanted a base metal plate that the

entire thing sits on, so I’ll take the Steel Base layer and duplicate

it. Rename the duplicate layer “Plate” and add a layer mask.

Hold the Alt key down and click on the eyeball to make it the

only visible active layer. Now, with the Control key depressed,

click on the logo layer that was a result of the imported vector

graphic. In the case of this file, it’s called GUMBO.AI. When you

do this you should see the hand cursor change to one with a

small marquee added to it as you roll over the logo layer. This

loads the transparency values of the layer as a selection set into

the layer you are currently on.

Because we want to make this a plate that extends beyond our

letters, we need to grow or expand the selection set. Go to the

Select>Modify>Expand menu available from the main menu bar.

In the case of this logo, I chose 15 as the number of pixels to

expand the current selection. Now, invert the selection by pressing

Control-Alt-I. The last step is to fill black into the Plate layer

mask with the selection we have. The result is a plate that sur-

rounds where our logo will be (see Figure 7).

We can now add some layer effects to increase the visual

interest of the plate. Right-click on the Plate layer in the Layers

palette and select Effects. Bear in mind that the numbers are

pixel-based. So if you are working on a high-resolution image,

you will need to crank the numbers up quite a bit beyond what

is being done on this 640×480 image. Also, click on the eyeball

of both the Wood Base and Wood Grain layers. It makes it easi-

er to see the results of the next step.

Leave the Drop Shadow toggle on, and set the distance to 5,

the blur to 30, and the intensity to 100. Now, go to the main

effect pull-down and select Bevel and Emboss. With this effect

toggled on, set the style to Inner Bevel. Also set the depth to

around 10 pixels and the blur to 5 pixels. Leave all other set-

tings at their default values.

You should now see a plate of metal lying over the wood base.

Depending upon the lettering style or logo, there may end up

being some unwanted holes in your steel plate. This is easy to fix

by going directly into the layer mask and painting with white to

remove the holes. An easy way to see just the active layer mask is

to Alt-click directly on the Plate layer mask thumbnail in the

Layers palette. This will turn all other layers off and display only

the layer mask. Alt-clicking again on the same thumbnail returns

you back to where you started.

Adding the Logo

N ow that we have the Plate layer in reasonable shape, let’s

add the logo and play around with how that’s going to

look. An easy way to get started is simply to drag the Plate layer

down to the Create New Layer icon at the bottom of the Layers

palette. This will create a duplicate layer with all effects and

masks intact. Rename the copy “Letters” and fill its active layer

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r24

A R T I S T ’ S V I E W

FIGURE 6. A Drop Shadow and a Bevel and Emboss effect are added to the layer. FIGURE 7. The Plate layer is duplicated and renamed “Letters.”

w w w . g d m a g . c o m 25

mask with black. This will give you a layer that is

visually empty, but has all of the settings we creat-

ed for the Plate layer just waiting to be used. Make

sure that the only visible layers are Letters, Plate,

Wood Grain, and Wood Base.

Now load up the logo as a selection set. Do this by

Control-clicking on the logo layer. Make sure that

you have the Letters layer mask selected by clicking

on the black thumbnail. It’s sometimes easy to have

the RGB channel selected instead of the layer mask.

Visually, your only clue as to which one is active is a

small black outline around the thumbnail itself. So,

with the Letters layer mask selected, fill the selection

set with white. You should immediately see a raised-

letter version of the logo become visible. I readjusted

the drop-shadow effect to a distance setting of 0 and

a blur setting of 15 for better visual appeal.

Adding Another Plate Level

A fter a quick critique of the logo, I decided that an additional

metal plate was needed between the word “Revenge” and

the plate we just made. Once again, simply select and drag the

Letters layer down to the Create New Layer icon and rename it

“Plate 2.” Select the layer mask for Plate 2 and fill it with black.

The newly created layer also needs to be placed in the correct

order in the layers stack. To do this, select and drag the Plate 2

layer between the Plate and Letters layers.

Now we need to create a layer that will be used as a selection

set for our new Plate 2 layer. I could always just load my logo

layer up and do some fancy selecting and de-selecting, but if a

mistake is made the penalty is starting over. An easier method is

to build temporary layers that are used only for selection sets.

These layers can be left invisible when not in use.

With that in mind, create a new layer and call it “Plate Selec-

tion.” In this layer, create a shape for the second plate and fill it

with black. With the visibility of the Plate Selection layer turned

off, make the Plate 2 layer active. Control-click on the Plate

Selection layer to load it up as a selection set. Make sure the Plate

2 layer mask is selected (click on the thumbnail) and fill the selec-

tion with white. Just like that, we have another plate in the image

that is fully editable.

Finishing Touches

A s the noon hour draws near, Joe the artist puts on some finish-

ing touches to give the image some pop. Once again, a non-

destructive approach gives him the most flexibility with the file.

After some quick evaluation, Joe decides that the word

“Gumbo” needs some color. He can take advantage of layer

masking in another powerful way: clipping groups.

First, add a new layer above the Letters layer and call it

“Gradient.” Make Gradient the active layer and fill it with a trans-

parent ramp to red. Accomplish this by selecting the linear gradient

tool, making red the foreground color, and setting the Options tab

from Foreground to Transparent under the Gradient pull-down.

Once this is done, select Overlay from the layer blending

mode pull-down at the top of the Layers palette. We now want

to have this red gradient effect only visible in the word

“Gumbo.” This can be accomplished easily by making the

Gradient layer a clipping group of the Letters layer. Alt-click on

the line between the Gradient layer and the Letters layer. When

you have the Alt key depressed, the cursor will turn into two

overlapping circles with an arrow when it rolls over the line.

The successfully clipped layer can be identified by a dotted line

between the two layers.

The next-to-last step is to make the fish bones look better.

Duplicate the layer that contains the fish bones, which in our

case was the Letters layer. Rename it “Bones,” and drag it to the

top of the layers stack. Alt-click on the Bones layer mask to

make it more clearly visible. Select everything except for the fish

shape, and fill it in with black. Alt-click again to return the logo

to the normal view.

Finally, add an Adjustment layer. Go to the main tool bar and

select Layers>New>Adjustment Layer. Select Hue/Saturation

from the available choices, and set the Saturation to –100 and

the Lightness to +75. Make this a clipping group for the Bones

layer by Alt-clicking on the line between the Hue/Saturation

layer and the Bones layer (see Figure 8).

With only minutes to spare, our hero Joe has once again

pulled through in a clinch and delivered a file that is not only

flexible but easy to manipulate. This type of approach to build-

ing nondestructive graphics works extremely well when design-

ing graphical user interfaces or any other elements in Photoshop

that are prone to continual evolution and tweaking. The down-

side is that the file size becomes fairly large, but with today’s

systems, that is usually not an issue. By playing around with

some of these advanced layers techniques, you’ll find yourself

with an amazing amount of control, and be able to increase

your production speeds substantially. q

FIGURE 8. The Adjustment layer is merged with the Bones layer for the final image.

Discuss this article in Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r26

A . I . M A D N E S S j o e a d z i m a

J O E A D Z I M A | Joe has been an AI programmer at Angel Studios for three years. During that time, he architected and
implemented the entire AI system for MIDTOWN MADNESS 1 and 2 for PC and MIDNIGHT CLUB for Playstation 2. Joe thanks
Robert Bacon, Angel Studios’ technical writer, for the exceptional editorial efforts Robert has applied to this article.

ngel Studios’ MIDTOWN MADNESS 2 for

PC and MIDNIGHT CLUB for Playstation

2 are open racing games in which

players have complete freedom to

drive where they please. Set in “liv-

ing cities,” these games feature

interactive entities that include

opponents, cops, traffic, and pedestrians. The role of artifi-

cial intelligence is to make the behaviors of these high-level

entities convincing and immersive: opponents must be com-

petitive but not insurmountable. Cops who spot you break-

ing the law must diligently try to slow you down or stop

you. Vehicles composing ambient traffic must follow all

traffic laws while responding to collisions and other unpre-

dictable circumstances. And pedestrians must go about their

routine business, until you swerve towards them and pro-

voke them to run for their lives. This article provides a stra-

tegy for programmers who are trying to create AI for open

city racing games, which is based on the success of Angel

Studios’ implementation of AI in MIDTOWN MADNESS 2 and

MIDNIGHT CLUB. The following discussion focuses on the

autonomous architecture used by each high-level entity in

these games. As gameplay progresses, this autonomy allows

each entity to decide for itself how it’s going to react to its

immediate circumstances. This approach has the benefit of

creating lifelike behaviors along with some that were never

intended, but add to gameplay in surprising ways.

AI Map: Roads, Intersections,
and Open Areas

A t the highest level, a city is divided into three primary

components for the AI map: roads, intersections, and

open areas (see Figure 1). Most of this AI map is composed

of roads (line segments) that connect intersections. For our

purposes, an intersection is defined as a 2D area in which

various roads join. Shortcuts are just like roads, except they

are overlaid on top of the three main component types.

Shortcuts are used to help the opponents navigate through

the various open areas, which by definition have no visible

roads or intersections. Each of these physical objects is

reflected in a software object.

The road object contains all the data representing a

street, in terms of lists of 3D vertices. The main definition of

the road includes the left/right boundary data, the road’s

centerline, and orientation vectors defined for each vertex in

the definition. Other important road data includes the traf-

fic lane definitions, the pedestrian sidewalk definition, road

segment lengths, and lane width data. A minimum of four

3D vertices are used to define a road, and each list of ver-

tices (for example, center vertices, boundary vertices, and so on)

has the same number of vertices.

The intersection object contains a pointer to each connected

shortcut and road segment. At initialization, these pointers are sort-

ed in clockwise order. The sorting is necessary for helping the ambi-

ent traffic decide which is the correct road to turn onto when tra-

versing an intersection. The intersection object also contains a

pointer to a “traffic light set” object, which, as you might guess, is

responsible for controlling the light’s sequence between green and

red. Other important tasks for this object include obstacle manage-

ment and stop-sign control.

Big-city solutions: leveraging the City Tool and GenBAI Tool. Angel’s

method for creating extremely large cities uses a very sophisticated

in-house tool called the City Tool. Not only does this tool create

the physical representation of the city, but it also produces the raw

data necessary for the AI to work. The City Tool allows the regen-

eration of the city database on a daily basis. Hence, the city can be

customized very quickly to accommodate new gameplay elements

that are discovered in prototyping, and to help resolve any issues

that may emerge with the AI algorithms.

The GenBAI Tool is a separate tool that processes the raw data

generated from the City Tool into the format that the run-time code

needs. Other essential tasks that this GenBAI Tool performs include

the creation of the ambient and pedestrian population bubbles and

the correlation of cull rooms (discrete regions of the city) to the

components of the road map.

Based on the available AI performance budget and the immense

size of the cities, it’s impossible to simulate an entire city at once.

The solution is to define a “bubble” that contains a list of all the

road components on the city map that are visible from each cull

room in the city, for the purpose of culling the simulation of traffic

and pedestrians beyond a certain distance. This collection of road

components essentially becomes the bubbles for ambient traffic

and pedestrians.

The last function of the GenBAI tool is to create a binary version

of the data that allows for superfast load times, because binary data

can be directly mapped into the structures.

Data files: setting up races. The AI for each race event in the

game is defined using one of two files: the city-based AI map

data file or the race-based AI map data file. The city file contains

defaults to use for all the necessary AI settings at a city

level. Each race event in the city includes a race-based

AI map data file. This race file contains replacement

values to use instead of the city values. This approach

turns out to be a powerful design feature, because it

allows the game designer to set defaults at a city level,

and then easily override these values with new settings

for each race.

Some examples of what is defined in these files are

the number and definition of the race’s opponents,

cops, and hook men. Also defined here are the models

for the pedestrians and ambient vehicles to use for a specific race

event. Finally, exceptions to the road data can be included to

change the population fill density and speed limits.

Curves Ahead: Creating Traffic

Following rails and cubic spline curves. During normal driving

conditions, all the ambient vehicles are positioned and oriented

by a 2D spline curve. This curve defines the exact route the ambi-

ent traffic will drive in the XZ-plane. We used Hermite curves

because the defining parameters, the start and end positions, and

the directional vectors are easy to calculate and readily available.

Since the lanes for ambient vehicles on each road are defined by

a list of vertices, a road subsegment can easily be created between

each vertex in the list. When the ambient vehicle moves from one

segment to the next, a new spline is calculated to define the path

the vehicle will take. Splines are also used for creating recovery

routes back to the main rail data. These recovery routes are neces-

sary for recovering the path after a collision or a player-avoidance

action sent the ambient vehicle off the rail. Using splines enables

the ambient vehicles to drive smoothly through curves typically

made up of many small road segments and intersections.

Setting the road velocity: the need for speed. Each road in the AI

map has a speed-limit parameter for determining how fast ambient

vehicles are allowed to drive on that road. In addition, each ambi-

ent vehicle has a random value for determining the amount it will

drive over or under the road’s speed limit. This value can be nega-

tive or positive to allow the ambient vehicles to travel at different

speeds relative to each other.

When a vehicle needs to accelerate, it uses a randomly selected

value between 5 and 8 m/s2. At other times, when an ambient vehi-

cle needs to decelerate, perhaps because of a stop sign or red light,

then the vehicle calculates a deceleration value based on attaining

the desired speed in 1 second. The deceleration is calculated by

where V is the target velocity, V0 is the current velocity, and (X –

X0) is the distance required to perform the deceleration.

V V

X X

2

0

2

02

−()
−()

w w w . g d m a g . c o m 27

FIGURE 1. The AI map elements appear as green and blue
line segments for roads and sidewalks, 2D areas for intersec-
tions, and additional line segments for shortcuts across open
areas.

Detecting collisions. With performance times being so critical,

each ambient vehicle can’t test all the other ambient vehicles in its

obstacle grid cell. As a compromise between speed and comprehen-

siveness, each ambient vehicle contains only a pointer to the next

ambient vehicle directly in front of it in the same lane. On each

frame, the ambient checks if the distance between itself and the next

ambient vehicle is too close. If it is, the ambient in back will slow

down to the speed of the ambient in front. Later, when the ambient

in front becomes far enough away, the one in back will try to

resume a different speed based on the current road’s speed limit.

By itself, this simplification creates a problem with multi-car pile-

ups. The problem can be solved by stopping the ambient vehicles at

the intersections preceding the crash scene.

Crossing the intersection. Once an ambient vehicle reaches the end

of a road, it must traverse an intersection. To do this, each vehicle

needs to successfully gain approval from the following four func-

tional groups.

First, the ambient vehicle must get approval from the intersection

governing that road’s “traffic control.” Each road entering an inter-

section contains information that describes the traffic control for

that road. Applicable control types are NoStop, AllwaysStop,

TrafficLight, and StopSign (see Figure 2). If NoStop is set, then the

ambient vehicle gets immediate approval to proceed through the

intersection. If AllwaysStop is set, the ambient never gets approval to

enter the intersection. If TrafficLight is set, the ambient is given

approval whenever its direction has a green light. If StopSign is set,

the ambient vehicle that has been waiting the longest time is ap-

proved to traverse the intersection.

The second approval group is the accident manager. The accident

manager keeps track of all the ambient vehicles in the intersection

and the next upcoming road segment. If there are any accidents

present in these AI map components, then approval to traverse the

intersection is denied. Otherwise, the ambient vehicle is approved

and moves on to the third stage.

The third stage requires that the road which the ambient is going

to be on after traversing the intersection has the road capacity to

accept the ambient vehicle’s entire length, with no part of the vehi-

cle sticking into the intersection.

The fourth and final approval comes from a check to see if

there are any other ambient vehicles trying to cross at the same

time. An example of why this check is necessary is when an ambi-

ent vehicle is turning from a road controlled by a stop sign onto a

main road controlled by a traffic light. Since the approval of the

stop sign is based on the wait time at the intersection, the vehicle

that’s been waiting longest would have permission to cross the

intersection — but in reality that vehicle needs to wait until the

cars that have been given permission by the traffic light get out of

the way.

Selecting the next road. When an ambient vehicle reaches the end

of the intersection, the next decision the vehicle must make is which

direction to take. Depending on its current lane assignment, the

ambient vehicle selects the next road based on the following rules

(see Figure 2):

• If a vehicle is in the far-left lane, it can go either left or straight.

• If it’s in the far-right lane, it can go either right or straight.

• If it’s in any of the center lanes, then it must go straight.

• If it’s on a one-way road, then it picks randomly from any of

the outgoing roads.

• If it’s on a freeway intersection where on-ramps merge with

the main freeway traffic, then it must always go right.

• U-turns are never allowed, mostly because a splined curve in

this situation would not look natural.

Since the roads are sorted in clockwise order, this simplifies

selection of the correct road. For example, to select the road to the

left, just add 1 to the current road’s intersection index value (the

ID number of that road in the intersection road array). To pick the

straight road, add 2. To go right, just subtract 1 from the road’s

intersection index value.

Changing lanes. On roads that are long enough, the ambient ve-

hicles will change lanes in order to load an equal number of vehi-

cles into each lane of the road. When the vehicle has traveled to

the point that triggers the lane change (usually set at 25 percent of

the total road length), the vehicle will calculate a spline that will

take it smoothly from its current lane to the destination lane.

The difficulty here is in setting the next-vehicle pointer for colli-

sion detection. The solution is to have a next-vehicle pointer for

each possible lane of the road. During this state, the vehicle is as-

signed to two separate lanes and therefore is actually able to detect

collision for both traffic lanes.

Once a vehicle completes the lane change, it makes another deci-

sion as to which road it wants to turn onto after traversing the up-

coming intersection. This decision is necessary because the vehicle is

in a new lane and may not be able to get to the previously selected

road from its new lane assignment.

Orienting the car. As the ambient traffic vehicles drive around the

city, they are constantly driving over an arbitrary set of polygons

forming the roads and intersections. One of the challenges for the

AI is orienting the ambient vehicles to match the contour of the

road and surfaces of open areas. Because there are hills, banked

road surfaces, curbs separating roads and sidewalks, and uneven

open terrain, the obvious way to orient the vehicles is to shoot a

probe straight down the Y-axis from the front-left, front-right, and

rear-left corners of the vehicle. First, get the XZ position of the

vehicle from the calculated spline position and determine the three

corner positions in respect to the center point of the vehicle. Then,

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r28

A . I . M A D N E S S

FIGURE 2. In this case, the TrafficLight class is set to red for some vehi-
cles, which stop and wait. The other vehicles with green/yellow lights get
permission to cross the intersection. The vehicle crossing in the left lane
decides to turn left, while the vehicle in the right lane goes straight.

shoot probes at the three corners to get their Y positions.

Once you know the three corner positions, you can calculate

the car’s orientation vectors. This approach works very well, but

even caching the last polygon isn’t fast enough to do all the time

for every car in the traffic bubble. One way to enhance perform-

ance is to mark every road as being either flat or not. If an ambi-

ent vehicle drives on a flat road, it doesn’t need to do the full

probe method. Instead, this vehicle could use just the Y value

from the road’s rail data. Another performance enhancement is

to orient the vehicles that are far enough from the player using

only the road’s rail-orientation vectors. This approach works well

when small vehicle-orientation pops are not noticeable.

Managing the collision state. When an ambient vehicle collides

with the player, or with a dynamic or static obstacle in the city, the

ambient vehicle switches from using a partially simulated physics

model to a fully simulated physics model. The fully simulated mo-

del allows the ambient vehicle to act correctly in collisions.

A vehicle manager controls the activities of all the vehicles transi-

tioning between physics models. A collision manager handles the

collision itself. For example, once a vehicle has come to rest, the ve-

hicle manager resets it back to the partially simulated physics mo-

del. At this point, the ambient vehicle attempts to plot a spline back

to the road rail. As it proceeds along the rail, the vehicle will not

perform any obstacle detection, and will collide with anything in its

way. A collision then sends the vehicle back to the collision manag-

er. This loop will repeat for a definable number of tries. If the maxi-

mum number of tries is reached, the ambient vehicle gives up and

remains in its current location until the population manager places

it back into the active bubble of the ambient vehicle pool.

Using an obstacle-avoidance grid. Every AI entity in the game

is assigned to a cell in the obstacle-avoidance grid. This assign-

ment allows fully simulated physics vehicles to perform faster

obstacle avoidance.

Since the road is defined by a list of vertices, these vertices make

natural separation points between obstacle-avoidance buckets. To-

gether, these buckets divide the city into a grid that limits the scope

of collision detection. As an ambient vehicle moves along its rail,

crossing a boundary between buckets causes the vehicle to be re-

moved from the previous bucket and added to the new bucket. The

intersection is also considered an obstacle bucket.

Simulation bubbles for ambient traffic. A run-time parameter spec-

ifies the total number of ambient vehicles to create in the city. After

being created, each ambient vehicle is placed into an ambient pool

from which the ambients around the player are populated. This

fully simulated region around the player is the simulation bubble.

Relative to the locations of the player, remote regions of the city are

outside of the simulation bubble, and are not fully simulated.

When a player moves from one cull room to another, the popula-

tion manager compares the vertex list of the new cull room against

the list for the old one. From these two lists, three new lists are cre-

ated: New Roads, Obsolete Roads, and No Change Roads. First,

the obsolete roads are removed from the active road list, and the

ambient vehicles on them are placed into the ambient pool. Next,

the new roads are populated with a vehicle density equal to the to-

tal vehicle length divided by the total road length. The vehicle den-

sity value is set to the default value based on the road type, or an

exception value set through the definition of the race AI map file.

As the ambient vehicles randomly drive around the city, they

sometimes come to the edge of the simulation bubble. When this

happens, the ambient vehicles have two choices. First, if the road

type is two-way (that is, ambient vehicles can drive in both direc-

tions), then the vehicle is repositioned at the beginning of the cur-

rent road’s opposite direction. Alternatively, if the ambient vehicle

reaches the end of a one-way road, the vehicle is removed from the

road and placed into the pool and thereby becomes available to

populate other bubbles.

Driving in London: left becomes right. London drivers use the left

side of the road instead of the right. To accommodate this situation,

some changes have to be made to the raw road data. First, all of the

right lane data must be copied to the left lane data, and vice versa.

The order of each lane’s vertex data must then be reversed so that

the first vertex becomes the last, and the lane order reversed so that

what was the lane closest to the road’s centerline becomes the lane

farthest from the center.

Given these changes, the rest of the AI entities and the ambient

vehicle logic will work the same regardless of which side of the

road the traffic drives on. This architecture gave us the flexibility to

allow left- or right-side driving in any city.

City People: Simulating Pedestrians

In real cities, pedestrians are on nearly every street corner. They

walk and go about their business, so it should be no different in

the cities we create in our games. The pedestrians wander along the

sidewalks and sometimes cross streets. They avoid static obstacles

such as mailboxes, streetlights, and parking meters, and also

dynamic obstacles such as other pedestrians and the vehicles con-

trolled by the players. And no, players can’t run over the pedestri-

ans, or get points for trying! Even so, interacting with these “peds”

makes the player’s experience as a city driver much more realistic

and immersive.

Simulation bubbles for pedestrians. Just as the ambient traffic has

a simulation bubble, so do the pedestrians. And while the pedestri-

an bubble has a much smaller radius, both types are handled simi-

larly. During initialization, the pedestrians are created and inserted

into the pedestrian pool. When the player is inserted into the city,

the pedestrians are populated around him. During population, one

pedestrian is added to each road in the bubble, round-robin style,

until all the pedestrians in the pool are exhausted.

Pedestrians are initialized with a random road distance and side

distance based on an offset to the center of the sidewalk. They are

also assigned a direction in which to travel and a side of the street

on which to start. As the pedestrians get to the edge of the popula-

tion bubble, they simply turn around and walk back in the opposite

direction from which they came.

Wandering the city. When walking the streets, the pedestrians

use splines to smooth out the angles created by the road subseg-

ments. All the spline calculations are done in 2D to increase the

performance of the pedestrians. The Y value for the splines is cal-

culated by probing the polygon the pedestrian is walking on in

order to give the appearance that the pedestrian is actually walk-

ing on the terrain underneath its feet.

w w w . g d m a g . c o m 29

Each pedestrian has a target point for it to head toward. This

target point is calculated by solving for the location on the spline

path three meters ahead of the pedestrian. In walking, the ped will

turn toward the target point a little bit each frame, while moving

forward and sideways at a rate based on the parameters that con-

trol the animation speed. As the pedestrian walks down the road,

the ped object calculates a new spline every time it passes a side-

walk vertex.

Crossing the street. When a pedestrian gets to the end of the

street, it has a decision to make. The ped either follows the side-

walk to the next street or crosses the street. If the ped decides to

cross the street, then it must decide which street to cross: the

current or the next. Four states control ped navigation on the

streets: Wander, PreCrossStreet, WaitToCrossStreet, and CrossStreet

(see Figure 3). The first of these, Wander, is described in the previ-

ous section, “Wandering the City.” PreCrossStreet takes the pedes-

trian from the end of the street to a position closer to the street

curb, WaitToCrossStreet tells the pedestrian waiting for the traffic

light that it’s time to cross the street, and CrossStreet handles the

actual walking or running of the pedestrian to the curb on the

other side of the street.

Animating actions. The core animation system for the pedestrians

is skeleton-based. Specifically, animations are created in 3D Studio

Max at 30FPS, and then downloaded using Angel’s proprietary ex-

porter. The animation system accounts for the nonconstant nature

of the frame rate.

For each type of pedestrian model, a data file identifies the anima-

tion sequences. Since all the translation information is removed from

the animations, the data file also specifies the amount of translation

necessary in the forward and sideways directions. To move the

pedestrian, the ped object simply adds the total distance multiplied

by the frame time for both the forward and sideways directions.

(Most animation sequences have zero side-to-side movement.)

Two functions of the animation system are particularly useful.

The Start function immediately starts the animation sequence spec-

ified as a parameter to the function, and the Schedule function

starts the desired animation sequence as soon as the current

sequence finishes.

Avoiding the speeding player. The main rule for the pedestrians is

to always avoid being hit. We accomplish this in two ways. First, if

the pedestrian is near a wall, then the ped runs to the wall, puts its

back against it, and stands flush up against it until the threatening

vehicle moves away (see Figure 4). Alternatively, if no wall is nearby,

the ped turns to face the oncoming vehicle, waits until the vehicle is

close enough, and then dives to the left or right at the very last

moment (see Figure 5).

The pedestrian object determines that an oncoming vehicle is a

threat by taking the forward directional vector of the vehicle and

performing a dot product with the vector defined by the ped’s posi-

tion minus the vehicle’s position. This calculation measures the side

distance. If the side distance is less than half the width of the vehicle,

then a collision is imminent.

The next calculation is the time it will take the approaching vehi-

cle to collide with the pedestrian. In this context, two distance

zones are defined: a far and a near. In the far zone, the pedestrian

turns to face the vehicle and then goes into an “anticipate” behav-

ior, which results in a choice between shaking with fear and run-

ning away. The near zone activates the “avoid” behavior, which

causes the pedestrian to look for a wall to hug. To locate a wall,

the pedestrian object shoots a probe perpendicular to the sidewalk

for ten meters from its current location. If a wall is found, the

pedestrian runs to it. Otherwise, the ped dives in the opposite direc-

tion of the vehicle’s rotational momentum. (Sometimes the vehicle

is going so fast, a superhuman boost in dive speed is needed to

avoid a collision.)

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r30

A . I . M A D N E S S

FIGURE 3 (above). In this situation, the PreCrossStreet state has moved the
pedestrians next to the street curb, and now the WaitToCrossStreet state is
holding the peds in place until the light turns green. FIGURE 4 (top right).
When the oncoming player vehicle threatens these pedestrians, they decide
to hug the wall after sending out a probe and finding a wall nearby. FIGURE
5 (bottom right). The pink lines visualize the direction the peds intend to
walk. When a player vehicle introduces a threat, the pedestrians decide to
dive right or left at the last moment, since no wall is nearby.

Avoiding obstacles. As the pedestrians walk blissfully down the

street, they come to obstacles in the road. The obstacles fall into one

of three categories: other wandering pedestrians; props such as trash

cans, mailboxes, and streetlights; or the player’s vehicle parked on

the sidewalk.

In order to avoid other pedestrians, each ped checks all the pedes-

trians inside its obstacle grid cell. To detect a collision among this

group, the ped performs a couple of calculations. First, it determines

the side distance from the centerline of the sidewalk to itself and the

other pedestrian. The ped’s radius is then added to and subtracted

from this distance. A collision is imminent if there is any overlap

between the two pedestrians.

In order to help them avoid each other, one of the pedestrians can

stop while the other one passes. One way to do this is to make the

pedestrian with the lowest identification number stop, and the latter

ped sets its target point far enough to left or right to miss the former

ped. The ped will always choose left if it’s within the sidewalk

boundary; otherwise it will go to the right. If the right target point is

also past the edge of the sidewalk, then the pedestrian will turn

around and continue on its way. Similar calculations to pedestrian

detection and avoidance are performed to detect and avoid the

props and the player’s vehicle.

Simulating Vehicles with Full Physics

T he full physics simulation object, VehiclePhysics, is a base class

with the logic for navigating the city. The different entities in

the city are derived from this base class, including the RouteRacer

object (some of the opponents) and the PoliceOfficer object (cops).

These child classes supply the additional logic necessary for per-

forming higher-level behaviors. We use the term “full-physics

vehicles” because the car being controlled for this category be-

haves within the laws of physics. These cars have code for simu-

lating the engine, transmission, and wheels, and are controlled by

setting values for steering, brake, and throttle. Additionally, the

VehiclePhysics class contains two key public methods, RegisterRoute

and DriveRoute.

Registering a route. The first thing that the navigation algorithm

needs is a route. The route can either be created dynamically in

real time or defined in a file as a list of intersection IDs. The real-

time method always returns the shortest route. The file method is

created by the Race Editor, another proprietary in-house tool that

allows the game designer to look down on the city in 2D and

select the intersections that make up the route. The game designer

can thereby create very specific routes for opponents. Also, the file

method eliminates the need for some of the AI entities to calculate

their routes in real time, which in turn saves processing time.

Planning the route. Once a route to a final destination has been

specified, a little bit more detailed planning is needed for han-

dling immediate situations. We used a road cache for this pur-

pose, which stores the most immediate three roads the vehicle is

on or needs to drive down next (see Figure 6).

At any given moment, the vehicle knows the next intersection

it is trying to get to (the immediate target), so the vehicle can

identify the road connecting this target intersection with the in-

tersection immediately before the target. If the vehicle is already

on this “hint road,” then the cache is filled with the hint road

and the next two roads in the route.

If the vehicle isn’t on the hint road, it has gotten knocked off

course. In this situation, the vehicle looks at all the roads that

connect with the intersection immediately before the target. If the

vehicle is on one of these roads, then the cache is filled with this

road and the next two roads the vehicle needs to take in order to

get back on track. If the vehicle isn’t on any of these roads, then

it dynamically plots a new route to the target intersection.

Determining multiple routes. If there are no ambient vehicles in

the city, then there is only one route necessary to give to an op-

ponent (the computer-controlled player, or CCP), the best route.

In general, however, there is ambient traffic everywhere that

must be avoided if the CCP is to remain competitive. The choice

then becomes which path to pick to avoid the obstacles. At any

given moment, this choice comes down to going left or right to

avoid an upcoming obstacle. As the CCP plans ahead, it deter-

mines two additional routes for each and every obstacle, until it

reaches the required planning distance. This process produces a

tree of routes to choose from (see Figure 7).

Choosing the best route. When all the possible routes have been

enumerated, the best route for the CCP can be determined. Some-

times one or more of the routes will take the vehicle onto the

sidewalk. Taking the sidewalk is a negative, so these routes are

less attractive than those which stay on the road. Also, some

routes will become completely blocked, with no way around the

obstacles present, making those less attractive as well. The last

criterion is minimizing the amount of turning required to drive a

path. Taking all these criteria into account, the best route is usu-

ally the one that isn’t blocked, stays on the road, and goes as

straight as possible.

w w w . g d m a g . c o m 31

1

2

3
4

5

6

A

B

FIGURE 7. The purple lines on the road show the tree of possible routes
that this opponent vehicle is considering. The orange line shows the best
route — which is typically the one that isn’t blocked, stays on the road, and
goes as straight as possible.

FIGURE 6. The route
is defined by the roads con-

necting intersections 1 to 5, in order.
Vehicle A is on road 2-3, which is the “hint
road.” Vehicle B has accidentally been knocked onto
road 6-2. The immediate target is intersection 3 for
both vehicles. Thus, Vehicle A’s cache consists of
roads 2-3, 3-4, and 4-5. Vehicle B’s cache consists
of roads 6-2, 2-3, and 3-4.

Setting the steering. The CCP vehicle simulated with full phy-

sics uses the same driving model that the player’s vehicle uses.

For example, both vehicles take a steering parameter between

–1.0 and 1.0. This parameter is input from the control pad for

the player’s vehicle, but the CCP must calculate its steering

parameter in real time to avoid obstacles and reach its final des-

tination. Rather than planning its entire route in advance, the

CCP simplifies the problem by calculating a series of Steering

Target Points (STPs), one per frame in real time as gameplay pro-

gresses. Each STP is simply the next point the CCP needs to steer

towards to get one frame closer to its final destination. Each

point is calculated with due consideration to navigating the road,

navigating sharp turns, and avoiding obstacles.

Setting the throttle. Most of the time a CCP wants to go as

fast as possible. There are two exceptions to this rule: traversing

sharp turns and reaching the end of a race. Sharp turns are

defined as those in which the angle between two road subseg-

ments is greater than 45 degrees, and can occur anywhere along

the road or when traversing an intersection. Since the route

through a sharp turn is circular, it is easy to calculate the maxi-

mum velocity through the turn by the formula

where V is equal to the velocity, u is the coefficient of friction for

the road surface, g is the value of gravity, and R is the radius of

our turn. Once the velocity is known, all that the CCP has to do

is slow down to the correct speed before entering the turn.

Getting stuck. Unfortunately, even the best CCP can occasion-

ally get stuck, just like the player does. When a CCP gets stuck,

it throws its car into reverse, realigns with the road target, and

then goes back into drive and resumes the race.

The Road Ahead

I n the wake of the original MIDTOWN MADNESS, we wanted open

city racing to give players much more than the ability to drive

on any street and across any open area. In order for a city to feel

and play in the most immersive and fun way possible, many inter-

active entities of real cities need to be simulated convincingly.

These entities include racing opponents, tenacious cops, ambient

traffic, and pedestrians, all of which require powerful and adaptive

AI to bring them to life. MIDTOWN MADNESS 2 and MIDNIGHT

CLUB expand on the capabilities of these entities, which in turn

raises the bar of players’ expectations even further.

The future of open city racing is wide open — literally. Angel

Studios and I are planning even more enhancements to the AI in

any future games of this type that we do. Some ideas I’m planning

to investigate in the future include enhancing the opponent naviga-

tion skills of all AI entities, and creating AI opponents that learn

from the players. Additionally, I’d like to create more player inter-

action with the city pedestrians, and have more interaction

between AI entities. Anyone wanna race? q

V ugR=

A . I . M A D N E S S

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r34

G A M E D E S I G N e r n e s t a d a m s

E R N E S T A D A M S | Ernest is an American freelance game designer currently living in England. He was
most recently employed as a lead designer at Bullfrog Productions, and for several years before that he was the
audio/video producer on the MADDEN NFL FOOTBALL product line. He has developed online, computer, and
console games for everything from the IBM 360 mainframe to the Playstation 2. His e-mail address is
ewa@earthling.net, and his professional web site is at http://members.aol.com/ewadams.

w w w . g d m a g . c o m 35

hirty-five years ago,

when time-sharing

operating systems appeared

for mainframes and the print-

ing terminal became common, people began writ-

ing computer games. The game industry followed about five years later,

if we count the earliest arcade machines. In the course of the last three decades, we’ve wandered

down some strange paths, hit a few dead ends, and witnessed the evolution of a new entertainment

medium, perhaps even a new art form.

We’ve also slowly evolved a discipline of sorts, a

way of thinking about games and the

people who play them. Much of this

accepted wisdom is accurate, tuned by many years of

trial and error and filtered by the natural selection of the

marketplace. For example, we now know that great

graphics alone do not ensure a game’s success — the few games which violated that principle did

not survive or reproduce. But a few bad ideas have managed to

hang on as well, perhaps because they’re not quite lethal

enough to kill a company that relies on them. In

this article, I’m going to discuss four commonly

held beliefs about games and game design that are

erroneous. If we could get these ideas out

of the gene pool, we’d all be better off.

Myth #1: We Are Our Own
Audience

T he idea that we accurately represent our audi-

ence is the foundation of just about every belief

that we developers hold about games and game play-

ers. We think we know what our audience likes because

we know what we like. After all, we’re not just game

developers, we play games too, and we’re convinced that this pro-

vides us with the insight to understand all players — and potential

players — everywhere.

How many design discussions have you attended where some-

body, in criticizing an idea, started a sentence with the words

“Nobody cares about . . .”? If you’ve spent any time in the indus-

try, the answer is probably in the dozens. Nobody cares about

history (so the vast majority of games are set in science-fiction or

fantasy worlds). Nobody cares about acting (so the acting in most

games is abominable). Nobody cares about the story, everyone

clicks through it (so the plot is trivial and the text is badly writ-

ten). Girls don’t play games (so very few games of interest to girls

are produced). The list goes on and on. The basis for these sweep-

ing statements is seldom any concrete evidence; it’s just a belief

that as game developers, we know what players want.

This logic is profoundly flawed. We may play games ourselves,

but we are a peculiar class of gamers: those who also happen to be

game developers. We don’t represent those players who don’t want

to make computer games; there aren’t any of them among us. We

can’t assume that our interests are the same as theirs.

Computer gaming is unique among entertainment media for the

number of people that it inspires to want to make it their career.

Most people watch TV without wanting to produce TV shows, and

visit fairgrounds without wanting to run the carousel, yet a surpris-

ing number of people who play computer games also want to make

them. Why should that be? It’s because the games they’re playing

are designed for the kinds of people who are interested in making

games — that is, they’re designed by developers, for developers, or

at least potential developers.

In my experience, market research in this industry is little more

than a joke — and I used to work for one of the most successful

publishers in the business. There are a few nods in that direction;

every now and then somebody will collect up all the warranty

cards returned by the purchasers and read what they’ve said, but

any decent statistician would laugh out loud. Warranty card

returns come from a tiny, self-selected minority of the customers.

All they tell you is what the sort of person who returns warranty

cards thinks — hardly a random sample. Oh, and we hold focus

groups, but who do we invite to focus groups? Experienced

gamers — specifically, the kinds of players who would enjoy

spending an evening bending a publisher’s ear. Again, not a terri-

bly representative group. Other than that, the market research

I’ve seen has been based on little more than hunches, convention-

al wisdom, and Myth #1.

Worse yet, there’s another group of people we’re ignoring entirely:

the ones who don’t play any games at all. Right now, we developers

are all brutally clawing each other to sell more of the same kinds of

games in the same limited shelf space

to the same limited market of current

game players. The real opportunity lies

in selling to people who don’t yet play

games, but might start if they could find a

game that they liked. These “proto-gamers”

are the ones we should be reaching out to,

the people we should be trying to create products for. But we don’t

know anything about them. All we know is they’re not buying the

games that we’re making now — the kinds of games that we like.

There’s a certain number of kids, mostly boys, who hang around

the game store and buy a $40 game every few weeks. They’re our

traditional market. But there is a staggeringly huge number of peo-

ple, mostly adults, and many of them women, who would like to

take a few minutes between tasks at work or chores at home to

play a light, fun, simple game that costs them a few cents, tops.

Who’s selling to them? Not most of us, that’s for sure.

When I mention this notion to developers, especially young ones,

I usually get a disgusted look and a flat dismissal: “I won’t work on

any game that I wouldn’t want to play.” The more thoughtful some-

times add, “I’m afraid I wouldn’t do a very good job if I weren’t

passionate about the game.” I sympathize with that notion — I, too,

was one of those people who felt passionate about making games

within five minutes of playing one for the first time — but ultimate-

ly it’s short-sighted. It might be good art, but it’s bad business. It still

leaves you making games for game developers, and that’s an over-

crowded field. Passion’s difficult to maintain when the game you

spent 18 months building lasts three weeks on the store shelves.

Consider BARBIE FASHION DESIGNER. BARBIE FASHION DESIGNER

was not constructed by ten-year-old girls. No offense to ten-year-old

girls, but very few of them have the wherewithal to produce com-

mercially viable entertainment software. BARBIE FASHION DESIGNER

was developed by adults who were fairly unlikely to play with it

much themselves. But in spite of that, they did an excellent job and

they made a ton of money for themselves and their company. Not

knowing the developers personally, I can only assume that they re-

lied not on passion for playing the game itself, but on a different

quality called professionalism, the desire to do a job well for its own

sake. And it paid off in spades.

The way to overcome Myth #1 is to do something I have seldom

seen done in the game industry: decide who your audience is up-

front. Don’t assume that you’re selling to the same jaded old crowd

and that you know exactly what they want. Instead, define your

audience, then admit your ignorance about them. Go find some of

them and actually ask what games they’d like to play, and where

and how they want to play them. Who knows, you could discover a

huge market that has been ignored for the last thirty years. Jackpot!

Myth #2: Realism Is Always a Primary
Design Goal

W hat is a primary design goal? Here’s how to find out. Make

a list of everything you want to achieve with your game.

These goals can be creative, technical, financial, anything. If you

want your game to change the way the player thinks or feels, they

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r36

G A M E D E S I G N

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r38

could be intellectual, emotional, or

spiritual. They even could be po-

litical or social, if you want your

game to change the world.

Now sort your list from the

most important goals to the least.

Then start from the top, run

down the list, and ask yourself of

each goal, “If we don’t achieve this, will we con-

sider the game to be a failure?” At some point, you’ll stop saying

“yes.” Your attitude will change from “this goal is essential,” to

“this would be nice but isn’t critical.” At that point, draw a line

across the list.

All the goals above the line you just drew are your primary de-

sign goals. They’re the things you absolutely must achieve. The

goals below the line are secondary, things you’d like to include

but you don’t feel you have to, and certainly not if doing so in-

terferes with anything higher on the list. Secondary goals can be

sacrificed for the sake of primary goals.

If you read enough game hype — advertising, box copy, press

releases — you could quickly form the impression that realism is

one of the most important features of any game. Publishers’ mar-

keting and PR departments are constantly harping on the subject,

and if you pay attention to such things you might start to believe

it yourself. Don’t. It’s Myth #2.

Realism can and should be a primary design goal in certain gen-

res where it matters. High-end flight and racing simulators demand

realism. Few other games need it, and there are some genres in

which concentrating on it is actively detrimental. Many games are

set in an artificial, symbolic world, and they should be. Monopoly

has very little to do with the realities of buying real estate, and if

you were to include those details (taxes, insurance, inspections, ter-

mites . . .) they would harm the game.

The primary source of this myth is pretty obvious: it’s our own

history. The audio, video, and processing capabilities of our ma-

chines have been continuously improving ever since the first com-

puter game was written, and as a result, games are more realistic

now than they ever have been in the past. More importantly, at

every point in our history, the games have been more realistic than

they ever were before. We’re at the top of a steadily rising curve,

and we always have been.

Of course these improvements look good, they sound good, and

they serve to demonstrate technical competence and advancement.

But they will occur automatically if your development team is ta-

king advantage of the target hardware. Remember: primary design

goals are those for which you are prepared to sacrifice something

else, if necessary. If realism is a primary design goal, what are you

willing to sacrifice for it?

Sometimes the answer is playability. Spectrum Holobyte’s F-16

FALCON is an extremely realistic flight simulator, and when you

play it in that mode, you find out why very few people are good

enough to be fighter pilots. It’s damned hard to play. Realism is F-

16 FALCON’s claim to fame, its raison d’être, so it’s appropriate for

realism to be a primary design goal, even at the expense of playa-

bility. But it’s not appropriate for most other kinds of games.

Industry veterans probably don’t need to be told this. The people

who need to hear it are newcomers

joining the industry from elsewhere, either

young people fresh out of college, or people

coming in from other industries. Those

people are in fact the secondary source of this

myth: their college professors taught them that accurate

modeling was important in software engineering, and if

they came from a job in another industry, it probably was. The guy

who was brought in to head up EA’s 3DO development team was a

Ph.D. physicist, and he insisted that JOHN MADDEN FOOTBALL for

the 3DO must have “realistic” physics. Unfortunately, until we

changed his mind, this made the game unplayable. Because the ath-

letes in a sports game are being guided by a simplistic game con-

troller, you have to adjust the physics to compensate, but he didn’t

understand this. I was the designer of MADDEN at the time, and I

taught the programmers a mantra to chant when they got in fights

with their boss: “It doesn’t have to be ‘right,’ it has to look good

and play well.” Eventually we won him over.

There’s a legend from the early days at Atari that was told to

me by someone who was there at the time. The arcade classic

BATTLEZONE had come out, and the U.S. Army sent some people

around to find out how Atari was making tank simulators for a

few thousand dollars when they were paying millions for theirs.

There was a meeting with a lot of brass hats on one side of the ta-

ble, and a lot of long-haired, T-shirted, dope-smoking program-

mers on the other. The Army wanted to know how they achieved

precision on such low-end gear. The programmers shrugged. “We

don’t,” they said. The officers persisted. “So if an enemy shot

should really miss your tank, but the computations are off and it

hits it anyway . . . ” “The player loses his quarter,” the program-

mers said. “Big deal. He’s not going to know, is he?” The Army

decided to keep its own simulators.

Like most legends, the exact details may not be right but it’s the

message that matters, and it nicely illustrates my point about Myth

#2. For the Army, realism was a primary design goal — a matter

of life and death, in fact — and they sacrificed a lot of money to

achieve it. For Atari, fun and manufacturing costs defined the pri-

mary goals, with realism a distant second. But BATTLEZONE was a

great game for all that. This is an entertainment industry. Don’t

get needlessly bogged down with realism.

Myth #3: You Can Build a Hit by
Imitating Another Hit

T his myth tends to be believed more by business people than by

designers. Designers usually want to innovate, not imitate. Still,

if you look at the store shelves, there’s a heck of a lot of imitation

going on. It happens because a publisher’s marketing and sales peo-

ple notice that some competitor has had a hit, and they persuade the

management that if the developers will just produce something like

it, they can have a hit too. They’re victims of Myth #3: the belief

that you can build a hit by imitating another hit.

I’m sure we’ve all seen this myth at work. Someone will pro-

duce a brilliant new game, it’ll be a massive hit at Christmas, and

by the next E3 there’ll be four or five schlocky knockoffs in the

pipeline made by other people. They never look as good, because

G A M E D E S I G N

w w w . g d m a g . c o m 39

chances are they’re being rushed

to market to catch the coattails of

the original, and they never sell as well,

because the “wow” factor is already gone.

Why do they bother? Well, you can make a

little money that way if you’ve got no pride

and no creativity of your own. But in my

experience the companies that do this are also-rans,

second-rate outfits that will never really shine. For one thing, if

the management has foisted it on the developers against their will,

they are wasting their own talents. They have got their people

building cheap knockoffs when they could be working on some-

thing innovative and new. No developer with any imagination is

going to put up with that for long. They’ll leave, and then the

company has to find someone to replace them who doesn’t mind

working on cheap knockoffs. It’s not a formula for building and

maintaining an excellent staff.

Oddly enough, this can even happen within a single company.

It occurs when the marketing department insists on creating a

sequel to a game for which no sequel was intended. Sometimes a

game is a hit because the development team has burned them-

selves out, put everything they had into that one game. If you

then demand that they make another just like the first, you’re

bound to get an inferior product — they don’t have anything left

to give. With the current emphasis on franchises, we’re usually

better at product planning than that. But it still happens, especial-

ly with games that were unexpectedly successful.

I don’t mean to suggest that you shouldn’t study other people’s

games. I’m a firm believer in the value of studying other people’s

games; heck, I’m a firm believer in the value of studying every-

thing. It’s all grist for the creative mill. But there’s a significant

difference between keeping an eye on the competition and ripping

them off. The latter is seldom successful. Our objective should be

to surpass the competition, to create “wow” moments of our

own, rather than hoping for a free ride on the back of someone

else’s imagination.

Myth #4: A Great Idea Will Make You
a Fortune

S everal times a year, I get letters from people who have great

game ideas, but no clue how to make them a reality. They’d

like me to teach them all about game development and marketing,

but they’re usually very cagey about what their idea is — they’re

afraid I might steal it and make a lot of money that’s rightfully

theirs. Alas, they’ve been seduced by Myth #4: the notion that a

great idea will make them a fortune. It’s a classic among fledgling

game designers, so this section is for them.

Part of the reason people believe Myth #4 has to do with the

way we’re taught about the history of innovation. We’re told neat

little sound-bite chunks of history that don’t include the whole

story, things like “James Watt invented the steam engine.” This

gives the impression that in a world of horse-drawn coaches,

James Watt saw the lid of his teakettle jiggling and suddenly the

railroad was born. But James Watt was part of a much larger

process, and what he really invented was a technical improvement

to existing, stationary steam engines.

He didn’t invent the railroad, either. It

was a man named George Stephenson who con-

structed the first steam locomotive — drawing on

the work that Watt had already done, of course.

It’s not that a great idea won’t ever make some-

one a fortune. Sometimes one does, and a lot of

people point to TETRIS as the perfect example. The

problem is that truly great ideas on the order of TETRIS are

extremely rare. For every TETRIS there are tens of thousands of

seemingly great ideas that go nowhere. A winning lottery ticket

will make you a fortune, too, but if you’re serious about making

money, lottery tickets are not the way to do it.

Another game that people point to as an example of a great

idea that made a fortune is DOOM. Everyone remembers that

DOOM was like nothing ever seen before, and it enabled John

Carmack and John Romero to buy Ferraris. But DOOM wasn’t

actually a great idea from out of the blue; in fact, it’s an excellent

example of how fortunes are really made in the game industry.

The central idea of DOOM — running around and shooting

things in the first person — was not new. There was a multiplayer

game called MAZEWARS on the Xerox Alto word processor as far

back as 1983, and there are probably earlier examples. The central

display method in DOOM, a technique called raycasting, was not

G A M E D E S I G N

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r40

new either. The reason DOOM did so well

was not because it was great new idea,

but because it was a brilliant execu-

tion of a variety of existing ideas.

Raycasting may not have been

new, but DOOM did it better than

anyone else. The game was so simple,

so fast and clean, that it still has its

devotees today. I’ve seen it ported to all kinds of strange devices,

even the LCD display of a digital camera.

That’s the thing to know about fortunes in the game industry.

There’s nothing wrong with great ideas, but it’s a mistake to think

that they routinely lead to fortunes. What reliably makes money

is not brilliant ideas, but quality workmanship: top-notch, first-

rate, class-A execution. And the only way to obtain that is by the

sweat of your brow.

Your chances of selling a great idea to a publisher just in idea

form are rapidly vanishing. Once upon a time publishers might

have bought ideas, but they don’t anymore — and in any case,

publishing companies are full of people who all have their own

great ideas. Unless yours is of winning-lottery-ticket caliber, no-

body’s going to pay you for it. What publishers want is not

ideas, but people who can create products, especially with the

kind of quality that I was talking about.

But suppose you’re still convinced that yours is a lottery-jack-

pot idea. How do you protect it? Here’s a one-paragraph primer

on intellectual property for wannabes. In America there are three

ways to legally protect your work: copyright, trademark, and

patent. A copyright protects a document of some kind, either

text, a photograph, a sound recording, or some other expressive

material. It doesn’t protect the ideas in the document, only the

document itself. You can’t copyright an idea. A trademark is a

name, slogan, or logo that you use to represent your company or

its products. Trademarking something prevents other people in

the same line of business from using it as well. You can’t trade-

mark an idea, though; again, it has to be something concrete.

Finally, a patent is a means of protecting a new method for doing

something. No one else must ever have done it before, and it

actually has to be a method, not something abstract like a story

or a character. You can patent an idea, but it has to be an idea

about doing something, not just an image or a concept.

So if you have a game idea like “Robot Camels from Neptune

Invade the Justice Department,” you can’t copyright, trademark,

or patent it. You can draw a robot camel and copyright your

drawing, and you can name the camels “Dromedroids” and

trademark the name, but other than that you can’t prevent other

people from having and developing the same idea. Anybody else

can make a game on the same subject. If you come up with some

method of playing your game that has never been seen in any

other game ever invented, you might be able to patent the

method, but you still can’t patent the robot camels. Besides,

obtaining a patent is an expensive and time-consuming process.

The burden of proof is on you to show that your method is so

different from anything that anyone else is doing that you

deserve exclusive rights to the idea. With game mechanics, that’s

going to be a tough sell.

The one other option is to treat the idea

as a trade secret — that is, not to tell any-

body about it, and if you do tell some-

one about it, to ask them to sign

what’s called a nondisclosure agree-

ment, or NDA, first. An NDA is usu-

ally a simple, one-page contract in which

somebody promises not to reveal your secret to

anyone else, in exchange for getting a chance to look at it.

Normally, no money changes hands. This is what I use when

people want to consult me but don’t want to tell me about their

idea. I sign a nondisclosure agreement promising not to reveal

their secret or use it for myself. However, getting signed NDAs

doesn’t take you any farther down the road to that hypothetical

pot of gold, either.

All this may make it sound as if I think there’s no point in

innovation, and that we might as well go on making the same

kinds of games because great ideas are worthless. Nothing could

be farther from the truth. Great ideas are wonderful, but you

need a realistic understanding of their value. No single idea is

likely to be worth a fortune, so rather than clinging to it as if it

were a diamond, we should continually generate new ones: learn,

think, dream, create.

A couple of weeks ago I had the opportunity to visit a compa-

ny called Hidden Dinosaur in Sweden. Its founder, Michael

Stenmark, showed me his sketch book of ideas for the project

they’re working on. To say that I was amazed would be an

understatement — overwhelmed is more like it. He had page

after page of places, people, creatures, objects, stuff I had never

seen the likes of. There wasn’t an elf, samurai, or space marine

in sight. Everything was fascinating and new, and every day he

goes out and draws more things. He often travels for inspiration,

and he never stops. He doesn’t assume one idea is enough. They

pour from his pen like a rainbow Niagara. He’s got the right

attitude about ideas: more is better.

If you’ve got a great idea, use it to practice your skills. Learn

how to develop it. If you want to be a programmer, learn to pro-

gram it; if you want to be an artist, learn to draw it; if you want

to be a writer, write about it — and you can copyright all the

material you create, so at least your labor is protected. You

won’t make a fortune, but if you work on it, your passion for it

will show. Then you can bring it out at job interviews to de-

monstrate your talent. Don’t worry about keeping it secret. In

fact, do the exact opposite: talk about it, to anyone who will lis-

ten. If it’s really that good, they’ll be impressed with your imagi-

nation and more inclined to hire you.

In Conclusion

A s I said, these four myths aren’t lethal mutations. Believing

them isn’t necessarily going to destroy your career or your

company. But like flaws in the genetic code, they accomplish

nothing, they do more harm than good, and it’s undesirable to

pass them on to the next generation. By identifying and correct-

ing them, perhaps we can effect a few repairs on our rapidly

growing industry. q

G A M E D E S I G N

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r42

he decision to create a game based in the Heavy Metal universe

started back in the hot Texas summer of 1997. Ritual Entertainment

was in full-blown production of SIN when our concept artist’s agent,

Russell Binder, called up one day. Russell mentioned that his client, Kevin

Eastman, was looking to make a videogame based on a new animated

movie called Heavy Metal: F.A.K.K. 2. Kevin told us that the name of the

movie was based on the name of the lead character in the movie and that character was

being based on the image of his wife, Julie Strain. The name of the movie was later

changed to Heavy Metal 2000, but we decided to keep the F.A.K.K. 2 name, due to the

fact that we already had two magazine covers and previews, and we didn’t want to cre-

ate product confusion.

Ritual jumped at the chance to create a game based in the Heavy Metal universe.

Everyone at Ritual was familiar with the original Heavy Metal movie released in 1981,

and a lot of us grew up reading the Heavy Metal illustrated magazine. A few business

meetings later with Kevin and Russell brought the deal to a close.

Ritual then hired a new development team consisting of two programmers and two

level designers. This small team worked on preproduction of F.A.K.K. 2 during produc-

tion of SIN in 1997 and on into the beginning of 1998.

Circumstances arose that caused the two programmers to leave Ritual, and the level

designers were assigned to the SIN team. This caused F.A.K.K. 2 production to slow

down during SIN’s final crunch, from March to October 1998. After SIN shipped, part of

the team worked on SINCTF (a free multiplayer add-on to SIN) while the rest of the

team moved over to work on F.A.K.K. 2. When SINCTF was released to the Internet, the

F.A.K.K. 2 team was fully realized. We started off with five programmers, five artists,

five level designers, one support person, one sound engineer, and one project manager.

However, when we finished the game the core team consisted of three programmers,

three artists, three level designers, one sound engineer, and one support person. Art

director Robert Atkins was the only team member that survived from the beginning of

preproduction to the very end of the project when F.A.K.K. 2 went gold on July 31,

2000.

In the midst of this turnover, many of the original design team left, and many ele-

ments of the original design laid out in preproduction had to be rewritten. F.A.K.K. 2

production began in earnest in early March 1999 with the new design.

Ritual Entertainment’s
HEAVY METAL: F.A.K.K. 2

P O S T M O R T E M s c o t t a l d e n

S C O T T A L D E N | Scott is currently working as a programmer on DUKE NUKEM FOREVER at 3D Realms. He was one of the senior program-
mers on F.A.K.K. 2 and SIN for Ritual Entertainment. Scott started his career in the gaming industry at 3Dfx Interactive, where he provided
support for the Voodoo 1 graphics card. He can be contacted at scotta@3drealms.com.

PUBLISHER: Gathering of Developers

PROJECT LENGTH: 18 months

NUMBER OF FULL-TIME DEVELOPERS: 11-18

NUMBER OF CONTRACTORS: 1

BUDGET: Approx. $2 million

RELEASE DATE: July 31, 2000

PLATFORMS: Windows 95/98/NT

DEVELOPMENT HARDWARE USED: 450MHz

Pentium IIs with 256MB RAM, TNT2

Ultras, and 13GB hard drives.

DEVELOPMENT SOFTWARE USED: Visual C++

6.0, Photoshop 5.0, 3D Studio Max 3.1,

Deep Paint 3D

NOTABLE TECHNOLOGIES: QUAKE 3 engine from

id Software, RAD Game Tools’ Miles

Sound System, InstallShield 6.2,

DemoShield 6.51, Robocopy 1.96 (from the

Windows NT Resource Kit)

PROJECT SIZE: 364,825 lines of code;

11,519 files

THIS PAGE. Julie’s nemesis,
Lord Tyler, on a good day.

What Went Right

1.Team familiarity with the
engine. We originally intend-

ed to use Ritual’s UberEngine for

F.A.K.K. 2, but it lacked some neces-

sary components to complete the

entire game. The UberEngine was

basically all the components we

designed and added to the QUAKE 2

engine for the development of SIN,

plus a new renderer and

networking layer. There

was still a lot of work

to be done on the

UberEngine,

though, and we

chose to license a third-

party engine for the proj-

ect. The team was very famil-

iar with the QUAKE 2 engine

(thanks to SIN), and it was pret-

ty high on our list of choices.

The other engines we considered

were Lithtech and UNREAL. We came to

the conclusion that we would have to do a

lot of work to any engine (besides QUAKE)

in order to do some of the things that we

had designed in the preproduction of

F.A.K.K. 2.

Luckily, an early version of the

QUAKE 3 engine became avail-

able at the last moment before

we had to make a final deci-

sion. We ultimately ended up with a limited

QUAKE 3 license where we got a snapshot

of the code in February 1999. QUAKE 3

had not been released yet, but it was in a

workable state when we first got the code.

This was the best decision we made during

the entire project.

Ritual Entertainment is extremely fa-

miliar with the QUAKE family of engines,

having started out with the QUAKE 1 engine

on the QUAKE MISSION PACK #1: SCOURGE

OF ARMAGON. Next, SIN was initially devel-

oped under a modified QUAKE 1 engine and

was converted over to QUAKE 2 late in the

project. The team was very relieved that we

wouldn’t have to add the extra learning

time that it would take for us to become

familiar with Lithtech or UNREAL. The level

designers would not have to learn a new

editor, and since they were already familiar

with the capabilities of the QUAKE engine,

they could build prototype levels very

quickly at the beginning of the project.

From the programmers’ standpoint, it let

us leverage all of the code that we wrote

during our development of SIN. We were

able to drop in the SIN game code and get a

working version of the game very quickly,

including our scripting language.

We received the QUAKE 3 code in late

February 1999 and had a very impressive

technology demo ready for E3 in early

May. Since we had five programmers at

the beginning of the project, in the early

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

P O S T M O R T E M

RIGHT. Q3Radiant level
design tool showing the

Shield Generator puzzle.
BELOW. Concept sketch of

Lord Tyler (final boss).

44

w w w . g d m a g . c o m 45

months of the project we were able to drop

tons of new features into the engine and

show them off at E3.

2.In-game tools and engine modi-
fications. The modifications that

we made to the QUAKE 3 engine helped us

put on the finishing touches and ultimately

garnered F.A.K.K. 2 such praises as “The

Most Beautiful Game Ever.” After hearing

some of those comments, all the extra work

required really was worth it. Almost all of

the tools that we created on top of the

QUAKE 3 engine allowed the level designers

and artists to create content with a text file.

When a system was designed, we always

took into account how the team was going

to use it. We used text files and simple

English commands to allow the designer or

artist to make game changes without having

to recompile anything.

Another element that we added to the

tool system was the ability to edit things in

the game engine itself. This saved a lot of

time for the artists and level designers.

They got to see their changes immediately

on the screen instead of having to exit out

of the game and restart every time they

changed something.

Skeletal animation system and LOD. One of

the first modifications to the engine was the

addition of a skeletal animation and level-

of-detail (LOD) system. This allowed us to

put in a ton of animations for the game’s

main character, Julie. We could also throw a

lot of in-game models and monsters on the

screen thanks to the LOD system. Our lead

animator, Darrin Hart, hand-animated

11,000 frames of animation, of which

about 6,500 frames were actually used in

the game. This would not have

been possible with a vertex-

based animation system.

Morpheus scripting lan-
guage. One of the best

systems we came up with

during the development of

SIN was the scripting

system. We gave it

the internal nick-

name Morpheus,

partly in tribute to

The Matrix, and

partly due to the fact

that you could do just about any-

thing you wanted to with it.

The scripting system is described

in more detail in the Postmortem of

SIN I wrote (March 1999), but in a

nutshell the scripting language

gives the level designer complete

control over any object or entity in

the game. The functionality it pro-

vides ranges from the simple linear

movement of objects around the level

to the complex scripted sequences that

exist throughout F.A.K.K. 2. We

extended

the function-

ality from SIN’s

500 or so commands

to about 700 in

F.A.K.K. 2. This

added complexity

put a more rigor-

ous demand on

the level designer,

as they really had to put

on a programmer’s cap in

order to use the scripting

language in F.A.K.K. 2.

TIKI animation system. The

DEF animation system from SIN

was ported over in the early

LEFT. In-game model of Julie wear-
ing her flightsuit.

BELOW LEFT. In-game screenshot of
the Ghost particle system menu.
BELOW RIGHT. 3D Studio Max showing
Julie in the battlesuit with various
armor attachments.

stages of F.A.K.K. 2 development and renamed TIKI. Its main func-

tion was to allow the text file definition of models in the game. It

also allows events to be synched with the animation on a per-frame

basis. It was largely used for synching sounds and effects with the

character animation.

Ghost particle system. The Ghost particle system was written

completely from scratch and incorporated into the Morpheus

scripting language and the TIKI animation system. Ghost allows

artists and level designers to create user-defined particle systems

and integrate them into the game via the animation system. As is

the case with almost every Ritual-created engine modification,

this is accomplished with a simple text file. There are about 50

commands used to modify the parameters of a particle system,

and the systems can be combined together to create some com-

plex-looking effects. For example, the firing of the Uzi in the

game is a combination of five particle systems: smoke, shells,

muzzle flash, tracer, and impact debris.

Cinematic camera system. F.A.K.K. 2 is a very cinematic-inten-

sive game. The story demanded some very complex scenes to ad-

vance the story, and we wanted to show as much detail as possi-

ble in these cinematic elements. We started with the spline-based

camera system in SIN and ported it over to F.A.K.K. 2. We also

added the ability to edit the camera paths in the game, actor

tracking, and field-of-view control. This gave the cinematic de-

signer complete control over the scene and allowed him to pre-

view his changes immediately.

Sound system (Zound). Another in-game system is the Zound edi-

tor. This system let our sound engineer place sound and music trig-

gers in the game without having to recompile the entire level. This

allowed him to place music cues and music mood triggers around

the level to create tension or humor when needed.

3. Third-party license and creative control. Kevin

Eastman is the owner of the Heavy Metal magazine and

co-creator of the Teenage Mutant Ninja Turtles. Together with

Simon Bisley, they were the creative force behind the Heavy Metal
2000 movie. When we discussed the possibilities of the game, we

came up with idea of the game being a sequel to the movie instead

of doing the standard movie-to-game conversion. He was thrilled to

hear this, and fully supported our decision to make the game a

sequel to the movie.

Very early in the production we received a crate full of Heavy
Metal magazines — every single issue. We spent days poring over

the issues to see what kinds of styles Heavy Metal is known for,

and to get inspiration for designing the characters.

Kevin also gave us complete control over the story and provid-

ed us with some inspirational concept sketches, which influenced

the design of the game. Working with Kevin has been a blast and

he’s supported us completely with our decisions on what to put in

the game. For instance, when we decided to resurrect Lord Tyler

from the movie, Kevin wholeheartedly agreed.

4. Focus on single-player. Early in the development of

F.A.K.K. 2, we decided to focus solely on the single-play-

er aspect of the game. This was a very tough decision for the

team, as just about everyone at Ritual loves to play multiplayer

games, and QUAKE 3 deathmatch is a frequent pastime around

the office.

Since the team was small, we decided to focus on the single-

player aspects of the game instead of trying to do multiplayer,

which usually has an impact on what can be accomplished in the

single-player version. We came up with a very tight game design

and avoided repetitive gameplay. Almost every level in the game

presents the player with new monsters and weapons.

46 d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

P O S T M O R T E M

TOP. In a scene from Heavy Metal 2000 Julie convinces Germaine St.
Germaine to help her out.
BOTTOM. The Ghost particle system in action.

w w w . g d m a g . c o m 47

All of the levels were sketched on paper before the level design-

ers started working. They used these 2D maps to get a feel for

how the level was going to be laid out and where all the action

and encounters were going to take place. Another part of pre-

production that helped out was the detailed description of the

game’s characters and monsters. The character sheets gave the

artists the knowledge of how the creature was going to function

in the game, which helped them create the necessary animations.

5. Strong focus on graphics. Right from the beginning of

the project, we decided to focus strongly on graphics. We

wanted the visual experience in the game to be something unpar-

alleled in the game industry. Since the game is in third-person

perspective, the main character had to look great — if you spent

the entire game looking at this character, it should be really nice

to look at. We combined elements from the original Heavy Metal
movie, the comics, and the new movie to create Julie. We went

through three revisions of her character before finally settling on

what you see in the game.

When we designed the world, we wanted it to be an interactive

version of the Heavy Metal universe. We decided to use a rich co-

lor set with lots of red and yellows in the town, and we used vi-

brant greens and blues for some of the outdoor areas. We wanted

to get away from the dingy, dark look that so many other shoot-

ers in the genre have. We put the QUAKE 3 shader system to great

use and were very liberal in our use of weapon effects and cine-

matics. For our efforts, critics have proclaimed F.A.K.K. 2 to be

one of the best-looking games of 2000.

What Went Wrong

1.No project management. During the development of

F.A.K.K. 2, we had a project manager at the beginning of

the project and a different project manager near the end. There

were 12 months of development time in between, during which

we had little to no management on the project. There were mem-

bers of the team that took on this role, but only in a limited

capacity, as they had tons of other work to do as well.

Not having a single person manage tasks, and letting just about

every feature request get added to the list, was a major reason

why we

had to go

into crunch

mode in order

to finish everything

by our July dead-

line. This resulted in

a crunch mode that lasted

nearly five months, and

one month of “super

crunch,” consisting of

seven-day weeks and 12- to 16-

hour days. I don’t mind crunch

mode every now and then, but for

an extended period of time it really

wears you out. The team morale

during this crunch was very low.

We worked on never-ending task

lists for months and months. Just

when you thought you were close to

being done with what you were assign-

ed, another 30 tasks would appear on

the list after a team meeting where we

would flesh out the incomplete areas of

the design. Having a good project man-

ager allows you to have a majority of

the design details fleshed out from the

beginning, schedule the correct amount

ABOVE. An excerpt from the
F.A.K.K. 2 comic by Joel

Thompson that appeared in
Heavy Metal magazine.

RIGHT. Concept sketch of the
Soul Harvester (mini-boss).

of time for tasks, and have

the appropriate number of

people on the team to finish a

game. This seems to be a

major problem in the gaming

industry, as nearly everyone I

talk to has just about the same story

about project management and

death-march crunch modes.

2.High team turnover rate on
a small team. At the begin-

ning of this article, I mentioned that the

team started off with 18 members, and

we finished the game with 11. Of those

11 people, only one person was on the

original F.A.K.K. 2 team from the be-

ginning. It was a weird project, be-

cause most of the team didn’t have a

handle on the

design of the game.

The key designers

of gameplay had

moved on, and

weren’t available to

talk about the ideas

that they had

come up

with. We

ended up

scrapping a

lot of the original

design document and

starting over. This set

us back pretty far in

the gameplay area.

Another area that suf-

fered was models and

animations. We lost sev-

eral artists who worked

on different animation

packages, and when they

left we had to redo the

models they were

responsible for.

The gaming industry is a turbulent one;

people join and leave companies on a reg-

ular basis, and it definitely has an impact

no matter what anyone says. Unless a

person didn’t contribute anything to the

game, losing personnel greatly impacts

finishing a game on time. F.A.K.K. 2 had

a very small team that had to work extra

hard to make up for the lost employees

that weren’t replaced. In the end though,

we were very satisfied with the game’s

quality in spite of having lost so many

people during the course of development.

3.No multiplayer; a short game
for hardcore players. As I said,

F.A.K.K. 2 was designed as a single-play-

er game from the start. We were going to

try to put multiplayer into the final re-

lease if we had the time, but our July

deadline came so quickly that we just

didn’t have the time to finish it. We also

designed a very tight game that can be

finished by hardcore game players in less

than ten hours.

This was our biggest complaint from

reviewers and players alike. I do agree

that the game is on the short side, but we

didn’t want to put in dozens of levels that

repeated the same gameplay over and

over, as so many other games do. Even

though I am defending our decision in

this article, I do acknowledge it as one of

the problems that we had with the de-

sign. A short game with no multiplayer

has a very limited lifetime in the gaming

industry. (Note: As of the writing of this

article, a multiplayer patch is in the

works that will provide arena-style bat-

tles in various F.A.K.K. 2 settings).

4.No demo before release. Our

July deadline was fast approach-

ing, and we had yet to release a playable

demo to the Internet. This hurt us in two

ways. First, we weren’t able to build up

any pre-game buzz by having a killer

demo for our game, and when the game

was released people seemed surprised to

hear about it. Second, a lot of people will

not buy a game unless they play a demo

beforehand to see if they like it.

Fortunately, we were able to get a demo

out the door within two weeks of our re-

lease, but the jury is still out on whether or

not this is a good or bad thing.

48 d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r

P O S T M O R T E M

ABOVE. In-game
screenshot of Julie’s
house.
LEFT. In-game
screenshot of Julie
battling the Happy
Mask Hourde
creatures.
BELOW. In-game mo-
del of Gith Recruiter.

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r50

P O S T M O R T E M

5.Complex systems. I mentioned this problem in the SIN

Postmortem back in March 1999, and it looks like it hit

us again. It’s not surprising, since we used many of the same sys-

tems that we had in SIN, and we even extended them. Game de-

sign on the PC is becoming more and more complex as time

goes on. Level designers aren’t just creating levels anymore.

They have to design puzzles, scripted events, cinematics, and on

and on. In F.A.K.K. 2 this is all done through the scripting lan-

guage, so each level designer had to be something of a program-

mer as well. On the artists’ side, they also got a taste of pro-

gramming. The effects system is driven entirely by text files, and

the artists needed to learn the system’s intricacies in order to get

the effects they wanted.

This complexity added more to the development time than we

had anticipated. Even though everyone on the team was really fa-

miliar with the engine, getting used to the new tools and modifica-

tions took a lot of extra work. The scripts for F.A.K.K. 2 total near-

ly 10,000 lines. I’m not really sure if this problem is ever going to

change in the industry. As people demand ever more immersive

game environments, the complexity goes up in order to

attain these goals.

In the End

E ven though F.A.K.K. 2 had its share of de-

velopment problems, we are very proud

of what we accomplished with the

game. While the design of the

game was not always as well de-

fined as some of the team mem-

bers would have liked, we still

were able to create an incredibly

fun third-person action game in just

under 18 months. We feel that

F.A.K.K. 2 is our best game to

date, and our future games will

only benefit from the experiences

we had during its development. q

ABOVE. Julie solving the puzzle of the Tiki Heads in the Swamp.
BELOW. In-game model of the wise old Gruff.

“May you live in

interesting

times” is a state-

ment often attrib-

uted to an ancient

Chinese curse, and is a pretty accurate

description of the Mac game market

today. While there is ample opportunity for

explosive growth on the Mac, there are also

a few potential potholes for game develop-

ers traveling down the Bondi-blue road.

From a technical standpoint, the

Macintosh platform is probably in the

best shape it has ever been. A decent

OpenGL implementation, a growing

selection of 3D accelerators (ATI,

3dfx, and potentially Nvidia), and

some major game engines

already ported (particularly

UNREAL TOURNAMENT and

QUAKE 3) form a strong foun-

dation for bringing top games to

the Mac. The availability of cross-

platform game engines is the single

most important technology for Mac game

developers. Developing a Mac version of an

UNREAL- or QUAKE 3–based game is consid-

erably simpler that porting or co-developing

a game with a proprietary engine.

But in the middle of this rosy technical

picture comes one of those “interesting”

wrinkles: Mac OS X. Apple’s big push to

build a truly modern OS presents game de-

velopers with some difficult choices. While

the technical advantages of OS X are nu-

merous (preemptive threads, protected

memory, tighter OpenGL integration, bet-

ter virtual memory, and so on), it also pres-

ents a completely different code path for

game developers compared to OS 8/9. And

for the majority of developers who won’t

be able to ship OS X–only games for quite

a while, waiting for the consumer market

to transition from OS 8/9 to X might be

painful. Supporting two distinctly different

Mac

operating

systems will

require some hard

work and lots of testing. After the transi-

tion, when developers can target OS X

exclusively, the Mac should be a technology

platform on par with the best.

The other half of the Mac gaming equa-

tion is the state of the gaming market. For

the past two years, Apple has aggressively

(and successfully) jumped back into the

consumer market with the iMac. However,

the market for Mac games has not grown at

the same rate as the rest of the consumer

Mac market. Ordinarily this would be a

problem publishers would love to have: a

huge untapped group of potential game

players just waiting for someone to sell

them

something.

But selling to

iMac players has proven

more difficult than expected.

The Mac game market is a unique

niche. Mac owners seem to be a bit older

than their Windows counterparts, and

somewhat more selective when buying

games. Because many iMac owners are

first-time computer buyers, they may be

less experienced about finding and pur-

chasing new games. Games featuring a

broad appeal and a low price may have

more potential to sell to these novice

gamers. And while it has been somewhat

difficult to sell relatively hardcore games

to iMac users in the recent past, there is a

good potential for an increase in iMac

players moving up to mid-range and high-

d e c e m b e r 2 0 0 0 | g a m e d e v e l o p e r56

S O A P B O X m a r k a d a m s

Mac Games:
Interesting Times

continued on page 55

Illustration by Peter Ferguson

w w w . g d m a g . c o m 55

S O A P B O X

end titles. In fact, in the last few months,

sales figures for the Mac versions of THE

SIMS, DIABLO II, and DEUS EX point to a

potential breakthrough into this untapped

user base.

If this trend continues, Mac gaming can

become a profitable area of growth for the

game industry. However, the uniqueness of

this market will still require specialized

knowledge of distribution and marketing

to promote good sales. Retail distribution

on the Mac has been focused on only a

few channels in the recent past (Comp-

USA, for instance), so it has been impor-

tant to take advantage of alternative chan-

nels such as web sales and catalogs. This,

in turn, makes it important to market cre-

atively to Mac users and educate them on

their most convenient points of purchase.

Apple has been making strides in increas-

ing the Mac’s presence in traditional game

retailers, like Electronics Boutique and

Babbages, but the alternate means of dis-

tribution still remain important.

The final interesting twist impacting the

Mac game market is not unique to the

Mac. Just as Windows game developers

are unsure of the potential effect of next-

generation consoles like Playstation 2 and

Xbox on their market, Mac game develop-

ers are similarly concerned. If, as predicted

by some, consoles capture a significant

percentage of the PC game market, the

Mac will also be impacted.

Cross-platform development will be-

come very important if the game industry

becomes more fragmented due to the next-

generation consoles. If market shares di-

minish for individual platforms, producing

games for multiple platforms will be a vi-

tal way to maintain total revenue for a

given title. Just as in the early 1980s when

the market was split between many com-

peting platforms (Apple II, IBM PC, Com-

modore 64, Atari), game developers pro-

ducing original content may have to re-

lease on as many operating systems as

possible to recoup their investment.

The Mac game market continues to

have tremendous potential, and a few dif-

ficult hurdles ahead. No matter what the

future brings, though, it will definitely be

“interesting times.” q

continued from page 56

Mark Adams | Mark is the president of Westlake Interactive, and has been writing Mac
games for 15 years. Mark can be reached at madams@westlakeinteractive.com.

	01dec
	04gameplan
	06saysyou
	08frontlin
	10indwatch
	13patterns
	15prodrev
	19graphic
	22artview
	26f-adzima
	34f-adams
	42postmort
	56soapbox

	return:

