
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E v o L 1 8 N o 7 A U G U S T 2 0 1 1

I N S I D E : T I L I N G p E R L I N N o I S E : A N E w T E c H N I q U E

http://www.techexcel.com

GAME DEVELOPER | XXXXX XXXX 1

CONTENTS.0811
VOLUME 18 NUMBER 07

WWW.GDMAG.COM 1

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5

A U G U S T 2 0 1 1 A U G U S T 2 0 1 1 A U G U S T 2 0 1 1 A U G U S T 2 0 1 1 I N S I D E : 1 0 T H A N N U A L S A L A R Y S U R V E Y

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5
CONTENTS.0811
VOLUME 18 NUMBER 07

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5

A U G U S T 2 0 1 1 A U G U S T 2 0 1 1
CONTENTS.0811CONTENTS.0811
VOLUME 18 NUMBER 07
CONTENTS.0811CONTENTS.0811CONTENTS.0811

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5
CONTENTS.0811

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 5

P O S T M O R T E M S

12 TOTAL WAR: SHOGUN 2
TOTAL WAR: SHOGUN 2 is the latest in a long line of TOTAL WAR games,
and this time the game focused in, rather than expanding the
universe outward. This turned out to be the critical tipping point
toward success for the team, as the studio struggled with multiple
projects and an increasingly branched codebase. By James Russell

20 TERMINATOR SALVATION—THE ARCADE GAME
Making arcade games is a lost art to much of the game industry, but
Play Mechanix and Raw Thrills have been keeping the fires burning
for many years now. This postmortem shows what it takes to make a
modern arcade game, from software to cabinet. By Scott Matott

F E AT U R E S

7 RANDOM STRUCTURE
Perlin oise has become a staple of many randomized or procedural
actions in games. But what if you wanted this randomization to tile,
for seamless world creation, or art purposes? Joshua Tippets has a
heretofore unseen solution. By Joshua Tippetts

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]
Most Likely To Achieve

 4 HEADS UP DISPLAY [N E W S]
Arcade! returns to France, and arcade game
development tips.

27 GDC ONLINE PREVIEW By Frank Cifaldi [P R E V I E W]
 Top session picks

30 TOOL BOX By Bijan Forutanpour [R E V I E W]
Donya Labs' Simplygon

34 THE INNER PRODUCT By Paul Laska [P R O G R A M M I N G]
Ready, Set, Allocate!

 42 DESIGN OF THE TIMES By Jaime Griesemer [D E S I G N]
Undermining Achievements

 44 PIXEL PUSHER By Steve Theodore [A R T]
 All In the Family

47 AURAL FIXATION By Jesse Harlin [S O U N D]
Crowd Control

49 THE BUSINESS By Christian Nutt [B U S I N E S S]
An interview with Square Enix's Mike Fischer

50 GDC NEWS By Staff [N E W S]
GDC Online's Narrative Summit, and GDC Vault numbers

51 GOOD JOB! By Brandon Sheffield [C A R E E R]
Ken Finlayson Q&A, who went where, and new studios

53 EDUCATED PLAY By Tom Curtis [E D U C A T I O N]
Enjmin's PAPERPLANE

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]
The Best Video Game Studio In the World

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEVELOPER | AUGUST 20112

MOST LIKELY TO ACHIEVE
A DISCUSSION OF WHEN AND WHY ACHIEVEMENTS MATTER

LIKE MANY OTHERS, I SCOFFED AT
the idea of achievements when they
were introduced to the mainstream
through Xbox Live. Now, there are
times where I actually miss them
in games where they’re absent.
This is especially true of games that
are good, but need that extra push
to be great. And more than that, if
I’m going to try to suffer through
something I actively dislike, such
as DUKE NUKEM FOREVER, I at least
want my friends to be able to know
about it.

This is a strange new
relationship to have with electronic
media. In the olden days, you’d
have to send your high score in
to a magazine via a screenshot
in order to get any recognition for
doing something spectacular in a
game. Now, with achievements and
leaderboards, anyone can know that
you got the “Seriously 2.0” award in
GEARS OF WAR 2 (for killing 100,000
enemies). For many people this kind
of reward is quite compelling, and
just increasing the number of points
they have in their gamerscore can be
enough motivation to play a game.

But in my opinion, achievements
just for the sake of achievements are
not worthwhile. I like to see numbers
go up as much as anyone—but I
want to feel that I’ve earned them.
Receiving 200 points at chapter
endings doesn’t feel like something
I’ve really achieved. If I’m playing
the game through, passing a
chapter point is inevitable, if the
game is fun. So how interesting is
that, really? The more interesting
achievements are those that
encourage alternate paths or play
styles, or reward exploration. But
you have to do it right.

Recently I was playing DUNGEON
SIEGE 3, a passable dungeon
crawler with a middling story that
I continued through because it got
the loot mechanic right. Many of the
achievements, rather than being
secret, were visible to the player
if they cared to look. This is fine,
and in my case it compelled me
to try to fulfill the requirements.

But you have to be careful with
even these, especially in how you
describe them. For example, in one
DUNGEON SIEGE 3 boss encounter you
get an achievement for “defeating
50 automatons” before taking
the boss down. I counted some
120 automatons defeated before I
finished off the boss, just to be sure.
But I received no achievement. The
game was not supplying me with the
correct information or feedback, and
I felt like I was getting cheated out
of something. After jumping through
the flaming hoops, I did not get the
treat at the end of the performance.
On the other hand, getting new
rare loot was compelling enough
on its own, and I didn’t feel like I
needed an achievement at all here.
Getting a lightning-infused Spear of
Magnificence was its own reward.

Then there are games like
DRAGON AGE. In this massive
RPG, achievements encourage
exploration of alternate narrative
paths, leading players to more
content that they otherwise might
not see. They are actually partially
responsible for improving (or
extending) the player’s experience.
This also serves the developers’ best
interests, because it means less of
their hard work will go unnoticed.

Now that we’re all so used
to these sorts of systems, what
happens when we aren’t provided
with them? No Nintendo console
has ever had a proper achievement
system built in, and at times,
I actually miss them. In GHOST
TRICK, for example, you’re moving
linearly through an adventure, and
achievements would necessarily
be of the “progress” type, so
achievements are unnecessary.
But in MONSTER TALE, which is a
smart beat-em-up combined with a
monster raising sim, I’ve felt their
absence. I can consistently get
over 30 hit combos, for instance,
which is somewhat difficult. It feels
like I should be rewarded for that, or
compelled to push myself further.
Likewise, there are rare forms of
monster you can raise, which I also

felt warranted an extra award. In
the case of the combos, I simply
wanted to show off. In the case of
the monster raising, the new forms
weren’t sufficiently amazing on
their own, and I felt I needed an
extra reward. It seems that while
achievements can't save a bad
game, they can give a bit of a boost
to game that's 80 percent of the
way there.

If achievements are indeed
extrinsic rewards, not an intrinsic
part of the fun, this leads me down
another path. Sony is starting to
charge for its online experience
in used games, giving download
codes for newly-purchased titles,
to discourage used game sales.
EA gives bonus content to those
who purchase games new. What if
platform holders universally decided
that only purchasers of new games
would have their gamerscores
displayed, through a code entry, or
some other such method? Would
people still feel that achievements
were extrinsic rewards? Would used
game buyers feel cheated? This will
likely never come to pass, but it’s
certainly food for thought.

As Nintendo prepares to
release Wii U, the company is also
reconsidering its online strategy.
One wonders whether Wii U will
continue to buck the achievement
trend. Nintendo already lets you see
the how often and how long you've
played games on the 3DS and
Wii, but doesn't let you share that
information. Will Nintendo be the
lone hold-out in the race to gamify
the world? It seems an inevitable
issue to address. Nintendo has the
opportunity to provide, rather than
arbitrary achievements, actual
data about the games you've been
playing. This could be an even more
meaningful achievement system
of sorts, and one which wouldn't
require developer implementation.
When achievements move into
hard data, I think the game will be
changed for the better.

—Brandon Sheffield
twitter: @necrosofty

United Business Media
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jade Kraus l jkraus@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
DESIGNER
Jessica Chan
CONTRIBUTING WRITERS

Tom Curtis
Jesse Harlin
Paul Laska
Bijan Forutanpour
Jaime Griesemer
Steve Theodore
Christian Nutt
Frank Cifaldi
Matthew Wasteland
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Independent
Mike Acton Insomniac

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBM.COM

http://twofour54.com

HEADS-UP DISPLAY

gAmE DEvELoPEr | AUgUSt 20114

“It felt like it was meant
to be played this way,
on a scale of 1:1,” says
Rosette. “Not only was
the image wide, it also felt
open—there was organic
and architectural feedback
from the image being
projected and reflected
into a physical space; it
didn’t feel restricted by a
monitor.”

Little did Rosette
know that this one gaming
session would be a seed
that would blossom into
Arcade!—a full-scale
touring exhibition,
launching in one of
Paris’ most cutting-edge
theatres six years later.

After taking on the role
of artistic advisor at the
Théâtre de l’Agora—an

institution known for
pushing boundaries
in theatre, dance, and
music—Rosette began
his push for a theatre
program to allow people to
experience video games
the way he was able to
back in 2004. Although
now, it wasn’t just about
playing the game on a big
screen with loud music.
After years of research
into how people played
games, he wanted to
look at game playing as a
performance.

“Performing video
games can mainly be
understood in two ways:
as a sport performance,
or as a performing art
proposal,” says Rosette.
“While the activity itself
may be the same, the

intention is not. As a sport
performance, it is about
showing skill and mastery
of the game. As an art
performance, it is more
about interpreting the
game piece through an act
of performance.”

“It can be considered
a bit like playing a musical
score (the game) with
the dedicated musical
instrument (the game
device). And then comes
the choreographic part:
the way the player ‘plays’
(in the choreographic or
dramatic sense) creates
a dynamic shape that has
its own narrative (even
if abstract) drive, and
aesthetic value.”

Rosette experimented
with a number of games
but eventually settled on

AudioSurf, SpAce GirAffe,
rez, Geometry WArS
retro evolved 2, oSmoS,
and Super lASer rAcer,
because he felt these
games were best suited as
performance pieces that
were easy to understand
and spectacular to watch.
His team found that while
most players slouched
and were sedentary
when they played these
games in a regular
gaming environment, in
the Arcade! setting they
became more aware of
their bodies and played
differently.

“Nowadays people are
playing at home, laying
on a sofa and grasping
their game pad, or sitting
at their desk with mouse
and keyboard ... All these
gaming experiences
involve the body, but in
such a mundane way that
people don't even notice
they are bodily engaged in
the game,” says Rosette.

“Having them standing
in front of a huge controller
displaying a wide angle
image is forcing them
to be more conscious
of their body. This also
allows them a freedom
of movement, and as the
games have an important
musical part, they can also
start moving in rhythm ...
it’s like dancing.”

The reception
to Arcade! has been
overwhelmingly positive,
with theatre goers who
would normally have little
engagement with video
games being given a
chance to consider games
as dynamic experiences.

Arcade! will be
returning to France in
November 2012 at the
StereoLux in Nantes, before
commencing a European
tour in fall of 2012.

—Tracey Lien

a mixture of video games and performance art
\\\ Seven years ago Nicolas Rosette’s housemate brought home a projector to screen films on
their lounge room wall. Not wanting to limit the use of the new household gadget, Rosette plugged
a console into the projector, turned up the sound to match the size of his wall, and fired up rez.
Standing in the middle of the room (his controller cable was too short for him to be seated) as the
music pumped and his character floated from side to side, he felt like he was playing a game that he
had played so many times before for the first time in his life.

www.gdmag.com 5

\\\ Designing and
developing high
end video games is
a challenging and
competitive endeavor.
Developing coin-
operated arcade
games brings its
own unique set of
challenges on top
of that. Here are a
few key concepts
an arcade game
developer must keep
in mind.

Insert CoIns to Play
\\\ When player picks up
a new console game, he
makes one decision to
purchase it, then plays it
as much as he likes. With
arcade games, the player
must choose to pay each
time he plays. The average
arcade session typically
lasts 2–3 minutes, so
the challenge to the
arcade game developer
is to create a gameplay
dynamic that is so fun,
and so compelling, that
players will play again and
again. This also means
that the experience has
to be divided into smaller
chunks of play. This might
mean a single race in a
driving game, or a five-site
hunting trek. In the case
of an action gun game like
TerminaTor SalvaTion, (see
Pg. 20) your game lasts as
long as your health bar.

Get to the Good
Part
\\\ If a player ever grows
bored with your game,
she’ll move on to the
next one. You have to
constantly confront the

player with a stream
of new and exciting
challenges, because if the
first two minutes don't
deliver, she probably
won't stick around to see
the next two minutes.
Every moment must be
engaging. You can’t make
the player hunt around
to find the key to unlock
the treasure, or present a
puzzle that requires trial
and error to solve.

one sIze FIts all
\\\ When a player starts
an arcade game, they
may be playing for the
very first time, or may be
a seasoned veteran at
your game. This means
you need to find a way
to challenge the experts

without sacrificing
accessibility to the
beginner. In a console
game, you can put very
difficult or challenging
gameplay 20 or 30 hours
into the game, separating
the expert play from the
beginning play. But in
an arcade game even
the beginning must be
layered so that there are
challenges for the expert,
and accessibility for the
beginner at the same
time. The presentation
of the challenge must
be obvious for the first
time player, but not
monotonous for the
expert player. This is
an extremely difficult
equilibrium which often
involves tweaking and

balancing the gameplay
again and again. Your
core gameplay dynamic
must be easy to learn, yet
difficult to master.

the Whole PaCkaGe
\\\ In addition to designing
and developing a game
that appeals to all levels
of players, an arcade
game team needs to
design, procure, and often
build the hardware as
well. A good game will go
completely unnoticed in
a bland or boring game
cabinet. An eye-catching
cabinet will get players
to walk up and try the
game—then it’s up to the
game to deliver the goods.
The careful planning of
the game cabinet, the
computer, all the electronic
wiring and interfaces
inside, and any peripherals
such as a plastic gun or
steering wheel are critical
to a game’s success. No
matter how fun the game
may be, if the gun doesn’t
work, no one can play it.
Electronic or mechanical
features such as aiming
the plastic gun at the
screen, or adding a clip-
style reload to the gun
can greatly enhance the
gameplay experience,
but each new technology
needs to be designed, built
(usually from scratch),
often redesigned, and
heavily tested in order
to assure a reliable
experience for the player.

Players Vote
WIth Quarters
\\\ While we wish we
could create games just

for the fun of it, there is
a business side (or dark
side) as well. Sometimes
the arcade game is
owned and operated by
the pizza joint or movie
theater that houses
the game, but more
typically, the game is
owned by a company that
places games in various
locations and works out
an arrangement with the
location to split the money
taken in. This means
that even if your game is
the coolest, if it doesn’t
earn enough quarters, it
will be replaced by that
game that tries to pick
up stuffed animals with
a flimsy claw. The hope
is that great games will
deliver great earnings.
That way everybody wins.

So how can you tune
your game to maximize
earnings? Dropping in
a quarter-eating super
boss may seem helpful,
but is more likely to
result in players feeling
helpless or cheated by
the game. It might help in
the short run, but won't
result in lasting earnings
month after month. A
better approach is to try
to find a dynamic where
the player feels he “just
missed” the goal, that
magic balance where he
got 29 out of 30 targets
and barely missed
the last one. You want
him to feel challenged,
not frustrated. If he's
challenged, but seeing his
skill progress, he'll come
back again and again.

—Mark Macy

the good old days
remembering the still-existing challenges of arcade games
Along with our terMinAtor SAlvAtion poStMorteM, GAmE DEvEloPEr preSentS thiS diScuSSion of whAt MAkeS developMent of A Modern ArcAde gAMe different froM A
Modern conSole or pc gAMe. plAy MechAnix MAnAger of gAMe SoftwAre developMent MArk MAcy ShAreS hiS thoughtS.

http://www.gdmag.com

The best ideas evolve.
Great ideas don’t just happen.
They evolve. Your own development
teams think and work fast.

Don’t miss a breakthrough.
Version everything with Perforce.

Software and fi rmware. Digital assets
and games. Websites and documents.
More than 5,000 organizations and
350,000 users trust Perforce SCM
to version work enterprise-wide.

Try it now. Download the free 2-user,
non-expiring Perforce Server from
perforce.com

Or request an evaluation license
for any number of users.

versioned with Perforce

Guild Wars 2 art above ©2011 ArenaNet, Inc. All rights reserved.
Guild Wars 2 is a registered trademark of NCsoft Corporation.

Perforce Game Developer page ad.indd 1 06/07/2011 19:13

http://perforce.com

www.gdmag.com 7

j o s h u a t i p p e t t s

Procedural generation of assets, including textures and geometry,
has become an integral part of many modern game development processes.
Implementing procedural methods as part of the pipeline can free up artistic
manpower for the creation of all the other rich details that are required to give
the game world life. There has been a lot of research into various methods of
procedural generation, and since its invention by Ken Perlin, Perlin noise has
become an irreplaceable staple of the field. Coming in a number of variants and
flavors, Perlin noise is commonly combined using various fractal methods to
create continuously varying noise patterns suitable for use in generating random
yet meaningful textures, pieces of heightmap geometry, maps to model the
distribution of vegetation, precipitation, and other systems. It can even be used
to add levels of jitter or variation to physically modeled systems (see Creator of
Worlds, April 2011). In short, Perlin noise is found almost everywhere these days.

This article is not intended to be an in-depth explanation of Perlin noise; that
topic has been covered exhaustively in other places. Implementations of both
classic and improved Perlin noise have been written in countless languages,
and have even been implemented as part of procedural texture shaders on
GPUs. Instead, this article will talk about a topic that hasn't received quite as
much coverage: making Perlin noise (and other arbitrary noise functions) tile
seamlessly. Seamless noise is useful, for example, in creating landscape textures
intended to be tiled across a terrain. The borders of the textures must align so that
no visible seams or edges appear, and thus the functions that model the texture
must themselves be made to tile. Tiling can, of course, be performed by an artist
using post-process methods to edit the seams out once the texture has been
modeled. But much work can be saved if the seamless tiling is included as part of
the procedural process.

The key to performing seamlessly tiled mapping of a noise function is to
minimize distortion, discontinuities, blurring, and muddling of the final image. A
number of methods are available to tile a function, but most involve some sort of
blending or filtering to perform the seamless mapping, which may result in visual
artifacts in the final output. >>>

http://www.gdmag.com

game developer | august 2011 8

I’ll discuss two commonly used techniques
that utilize blending of different layers. The first
involves offsetting a layer of the texture and
blending it with another layer using a mask. The
second entails blending four regions of the noise
function together using a weighted blend. I’ll
also touch on a final technique which involves a
procedure for producing the seamless mapping
as a product of a domain transformation applied
to a higher-dimensionality variant of the noise
function, in order to avoid the artifacts produced
by blending.

Offset and Blend

¶ This method of seamless mapping
requires the creation of two separate layers
of noise from the function, and offsetting one
of the layers by half the image dimensions in
each direction, wrapping the image around
so that the seams appear inside the image
while the edges of the images tile perfectly.
Then a blend operation is performed, which in
effect snips out regions of the non-wrapped
image and overlays them onto the wrapped
image in such a manner that the interior
seams are hidden.

Mask creation is performed so that the
artifacts caused by superimposing the regions
onto the wrapped image are minimized,
otherwise inappropriate visual defects may
occur. For certain functions, this method works
well. The mask may be created sharp-edged,

soft-edged, regular, or irregular as needed.
However, many other functions do not work well
with this method, because the blending that is
performed to hide the edges can cause artifacts
to crop up that can disrupt the shape and flow
of the texture or create obvious patterns that
stand out.

This method tends to work best when
performed manually, as a post-process pass
performed by an artist, with an eye toward
explicitly blending and modifying regions
in order to enhance the final result from an
artistic standpoint. Figure 1 demonstrates
this technique. In Figure 1A, you see a texture
mapped from a function and offset by half.
Figure 1B shows another texture mapped from
the same function, not offset. In 1C there’s a
sample mask that can be used for blending,
which takes into account where the edges are
in the offset texture. And finally, 1D shows the
final texture after blending. Greater care taken
in mask creation can serve to eliminate many
of the artifacts you see in 1D, primarily around
the apexes of the mask. Unfortunately, this
method requires additional development time
for the creation of an appropriate mask texture
or function.

Weighted Regional Blend

¶ Another commonly used algorithm for
computing tiling 2D noise samples four different
locations within a region of the function, spaced
according to the dimensions of the output
texture, then uses weighting or interpolation
to blend between these values to obtain the
final output value. To visualize this in operation,
imagine a 2x2 block of regions sitting within the
domain of the function to be mapped, as in the
left side of Figure 2.

Figure 2: A texture created by
blending four points sampled from
a region twice the size of the final

texture. The blue dots correspond to
the blue dot in the final output.

 Figure 1: A texture created by blending an offset texture with a non-offset texture using a mask.

Each region is the same size as the final
output image. A point is sampled within each
region: all points correspond relative to one
another, and a final mapping is performed by
interpolating or blending these values. The
interpolating factors are calculated based on the
location of the given point relative to the region's
boundaries such that, when the location being
sampled is nearer the left edge of the image,
the point samples from the right-hand regions
gain greater weight; however as the sampling
draws near the right edge, the point samples
from the left-hand regions gain greater weight.
Correspondingly, when a point is near the top
edge, it gains greater contribution from the
bottom point samples, and as it nears the

bottom edge it gains greater contributions from
the top point samples. When the final blends are
performed, the final output will seamlessly tile
due to the way the interpolation is performed.
The most common algorithm used to perform
this blend is shown in Listing 1.

You can see the result of using this method to
tile a noise function that has very high contrast
on the right side of Figure 2. The blue dots all
correspond to the same location in the output
image. As you can see, the method results in a
large amount of averaging of the texture, when
compared to the non-seamless version, due
to the blending of four samples. This averaging
does not occur in an even manner across the
texture; samples toward the center of the image

are the most averaged, while samples toward the
edges, and especially the corners, are the least
averaged. This may have serious side effects,
especially for textures that will be tiled many
times over, resulting in highly visible repeating
patterns. The alteration to the fundamental
characteristics of the function is another highly
undesirable side effect of this method, and it may
render it unsuitable for many applications.

Multi-dimensional Function
Mapping

¶ The final technique is an algorithm that
maps a N*2-dimensional noise function to a
N-dimensional buffer in such a manner that
the seamless tiling effect occurs as a result of
a mathematical domain transformation, rather
than a blend of samples. The easiest way to
understand this is to start with the idea of using
a two-dimensional noise function to obtain a
looping one-dimensional buffer of noise. We
could use any of the blending methods above,
altered for one-dimensional functions, in order
to blend multiple samples and create the tiling
noise. Or we could imagine starting with a
two-dimensional function and tracing a circle
through it at some location, as seen in Figure 3.

We start at Point A and evaluate points
spaced evenly around the circumference, one
point per location in the one-dimensional buffer.
By the time we near the end of the buffer, we
are drawing near to Point A once more. Thus,
the final buffer will tile seamlessly with itself,
without any blending or interpolation being
performed. We can use the parametric form of
a circle with unit radius in order to perform the
domain transformation as below.

x=cos(t)
y=sin(t)

Here, t is in the range of [0,2*pi). We can
calculate t as a function of the length of the
buffer, by dividing the current coordinate by the
total buffer length to get a value in the range
[0,1), then multiplying by 2*pi. The result gives
us the following function:

-- f: Noise function (2-dimensional)
-- x: Coordinate
-- w: Length of array
function noiseTile1DCircular(f, x, w)
 local t=x/w*2*pi
 local nx=cos(t)
 local ny=sin(t)
 return f:get(nx,ny)
end

To extend the idea to two-dimensional noise for
textures, we need to extend the circle-tracing

l i s t i n g 1

-- f: Noise function (2-dimensional)
-- x,y: Coordinate
-- w,h: Dimensions of output image/texture
function noiseTileBlend(f, x, y, w, h)
 return (f:get(x+w,y+h)*(w-x)*(h-y) +
 f:get(x,y+h)*(x)*(h-y) +
 f:get(x,y)*x*y +
 f:get(x+w,y)*(w-x)*y)/(w*h)
end

-- Function to map a noise function to a buffer
-- f: Noise function (2-dimensional)
-- buf: 2D array data type
function mapFunctionSeamless(f, buf)
 local mw,mh=buf:getWidth(), buf:getHeight()
 local x,y
 for x=0,mw-1,1 do
 for y=0,mh-1,1 do
 buf:set(x,y,noiseTileBlend(f,x,y,mw,mh))
 end
 end
end

l i s t i n g 2

-- f: Noise function (4-dimensional)
-- x,y: Coordinate
-- w,h: Array dimensions

function noiseTileCircular(f,x,y,w,h)
 -- Calculate parameters of the circles
 local s=x/w*pi*2
 local t=y/h*pi*2

 -- Calculate point on circle on X/Y plane corresponding
 to s, the distance along the image X axis
 local nx=cos(s)
 local ny=sin(s)

 -- Calculate point on circle on Z/W plane corresponding
 to t, the distance along the image Y axis
 local nz=cos(t)
 local nw=sin(t)

 return f:get(nx,ny,nz,nw)
end

www.gdmag.com 9

http://www.gdmag.com

game developer | august 2011 10

metaphor so that each axis of the image has
its own conceptual circle in the input function.
For each axis of dimensionality in the output
image, we need two axes in the input function,
forming a plane upon which we trace a circle to
correspond to the image axis. In order to obtain
a two-dimensional seamless output, then, we
need a four-dimensional input function. We
assign the X/Y plane in the input function to the
circle traced for the X axis in the output image,
and the Z/W plane in the input function to the Y
axis in the output image, computing circles along
these planes and calling the 4D function with the
calculated coordinates to obtain the final output.
The code to perform this circular mapping for a
2-dimensional image is seen in Listing 2.

Figure 4 shows the outcome of applying the
technique to our high-contrast noise function.
As you can see, the final result is seamless,
yet includes none of the mixing or blurring of
the interior regions that the previous blending
algorithms produce. While some distortion of the
function is introduced as a result of the circular

mappings, this distortion is applied evenly across
the whole texture and does not result in the
occurrence of visual artifacts in the final result,
nor does it have a severe impact upon the overall
character of the function. The advantage of this
method is that it can be applied to functions of
arbitrary complexity, as long as that function can
be constructed in the proper dimensionality.

The technique can be extended to creating
sequences of looping noise textures, each
frame of which will tile with themselves, by
adding two more dimensions to the input
function while tracing another circle upon
the plane they form to correspond to the Z
axis of the output sequence. This is useful for
the creation of seamless textures that must
animate in a looping sequence over time.

Of course, this technique comes with the
computational overhead of implementing
higher-dimensional functions to support it. Still,
given that the blending algorithms require the
corresponding function to be called two or four
times per sample, this additional computational

cost is mitigated somewhat by requiring only one
call to the function. Going beyond three looping
dimensions in a real-time application using classic
Perlin noise, with the attendant exponential
increase in complexity of the Perlin function,
may not be efficient. And even three-dimensional
seamlessness, requiring six-dimensional noise,
may be unsuitable for real-time applications if the
underlying functions are not heavily optimized.
There are papers which detail the production
of noise functions of extended dimensionality;
Perlin's simplex noise variant may be especially
suited for higher orders, given the decreased
computational complexity of simplex noise versus
Perlin's classic gradient noise.

As production pipelines grow ever more
complex, procedural generation of assets
becomes an increasingly valuable instrument
for creating detailed textures and models with
a significant savings in time spent. Seamless
noise is useful in a wide variety of applications
in the field. Given a comprehensive set of
noise functions, these methods for generating
seamless noise may prove to be powerful tools
in your toolbox for creating quality seamless
textures and other procedural data.

joshua tippetts has been an indie game developer for

almost 15 years. He currently lives in the mountains of

northern Wyoming. You can email him at vertexnormal@

linuxmail.org

Figure 3: seamless one-dimensional buffer (bottom) generated by tracing a circle clockwise
starting at point a through a two-dimensional noise function.

Figure 4: seamless mapping of a high-contrast noise
function using domain transformation of a four-

dimensional noise function.

r e s o u r c e s
A Perlin noise math FAQ
http://webstaff.itn.liu.se/~stegu/TNM022-
2005/perlinnoiselinks/perlin-noise-math-
faq.html#loop

Perlin's simplex noise desmystified
http://webstaff.itn.liu.se/~stegu/
simplexnoise/simplexnoise.pdf

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html#loop
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html#loop
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html#loop
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
mailto:vertexnormal@linuxmail.org
mailto:vertexnormal@linuxmail.org

http://dev.paxsite.com

game developer | august 201112

j
a

m
e

s

r
u

s
s

e
l

l

www.gdmag.com 13

The ToTal War series began with the release of Shogun: ToTal War back in 2000,
spawning a run of PC strategy games that have visited the medieval world, ancient Rome,
and more recently, the colonial era and beyond. Along the way, the team has grown from
a small unit of 20–30 into a set of teams totalling almost 90 developers. This has partly
been a reflection of modern AAA development requirements, and partly born from a desire
to reliably release more ToTal War content in a tighter timeframe, and it has presented
many challenges. The team grew faster than we were able to develop a company culture,
and a set of processes had to be devised in order to manage such a large group efficiently
across such complex projects.

These problems were most acute during the development of EmpirE: ToTal War.
Following its completion, we put a new team structure in place, and added processes to
smooth production with a much larger team. That the studio was able to develop a full-
scale ToTal War game on time in little more than a year whilst maintaining quality in an
ever-more discerning review environment (at the time of writing, Shogun 2’s metacritic
score stands at 90 percent) is testament to the success of the team’s transformation. But
the new approach has not come without its pitfalls. >>>

http://www.gdmag.com

W h a t W e n t r i g h t

1 Doing mor e w it h le s s
/// In many respects, EmpirE: ToTal War
represented the series reaching its geographical
apex. We included most of the world, since we
were portraying the 18th century expansion of
European powers across the oceans, from the
Americas to India and beyond. We also put the
player immediately in charge of major nations
and extended empires. It’s 1700, here’s the
British Empire, now “Go!” While we did try to ease
the player into the game, its size and scale could
definitely intimidate newcomers. The scope of
the game world and feature set also stretched
the team’s ability to polish and tighten the game.

For Shogun 2, we resolved to change all that,
and the setting of feudal Japan was a perfect
choice for pushing the design goals we wanted
to achieve: to do more with less —something we
called the Zen of ToTal War. What exactly did this
mean to us, practically?

The contained setting (Japan, rather than
most of the world) meant we could devote

ourselves to a single iconic period by delving
much deeper in our portrayal of one unique
culture, rather than spreading our efforts more
shallowly across many different cultures.

We infused Japanese art and audio styles
right across the game, from the UI icons, loading
screens, game event pictures and movies,
writing style, and the look of the campaign
game map itself, down to the parchment style of
areas shrouded by the fog of war. This hopefully
meant a much greater sense of immersion for
the player, and much higher production values,
without the work required to portray many
different cultures.

From a gameplay perspective, we used
fewer, better-integrated features, with a focus on
delivering greater gameplay depth than we did
in previous ToTal War titles. This meant better
counterpoint and meaningful trade-offs in the
content itself. There are far fewer unit types
in Shogun 2 than there were in EmpirE, but the
differences and relationships between them
are much clearer. The player can also customise

their units to a greater degree and create
different combinations of specialities.

The historical situation was also a huge help
in that the playable clans started the game in a
simple, immediately understandable situation:
they had control of just one region. This allowed
players to come to grips with their starting assets
and shape their own destiny. It made the game feel
much less intimidating and much more accessible.
Similarly, we could revert to a fog-of-war shroud
where the player had to explore outward. The
rest of the game world was hidden, unlike the
18th-century setting of EmpirE, where the location
of European capitals could not be hidden at the
start, and players could see the entire scope of the
setting in all its intimidating glory.

This over-arching “Zen” design goal was right
for the setting of feudal Japan, and in the end, it
really helped to ease the development effort as
well as make the game better as a result. We will
need to make sure these lessons are learned, even
if the geographic scope of future projects extends
outward again.

game developer | august 2011 14

www.gdmag.com 15

2 Building e m p ow e r e d t e a ms
a rou n d ga m e a r e a s
/// We used to be a single team. Sure, people had
their own areas of focus and their specializations,
but there was no formal structure. This was fine
for a small team, but during Empire, the team
size ballooned, and it was clear by the end of
the project that it had become necessary to
divide the team into feature-focused sub-units.
During the development of NapoleoN: ToTal War
(between empire and ShoguN 2), we executed
this transition and refined it. We now have three
core gameplay teams focused on specific game
areas: campaign, battle (dealing with both land
and naval), and multiplayer. Each of these has
a design lead, a programming lead, and an art
lead. Assisting these game area teams are a
number of support teams, each with their own
leads: UI, graphics, tools, text, and audio.

While they still reported to overall leads,
each team had a great deal of genuine autonomy
and control over the day-to-day details of how

they operated and the decisions they made.
Tighter teams focusing on specific feature areas
have definitely helped improve the quality of the
game across the board, driven by the greater
sense of ownership, as well as by structurally
locking people to feature sets. Management
bandwidth had become a real problem for us, the
games and the projects were becoming too big
to centrally control, and design leadership was a
particular bottleneck.

One added bonus has been the fact that
there are many more (area) lead roles to go
around. As a result, there is a greater feeling
of potential career advancement, compared
to a flat, monolithic structure where people
feel there is nothing tangible to measure their
development against, and where promotion
opportunities are not so apparent.

Delegation of responsibility and splitting up
the teams like this might sound obvious, but it
felt like a big and risky step for us at the time.
In hindsight, we should have done it sooner, and
going back would be unthinkable.

3 gu ng - ho c h a nge s v e r s us
ris k- av e r s e cons e r vatis m
/// With the iterative nature of game
development, there is always a balance between
a willingness to make changes, even late in the
project, and an often sensible desire to avoid
making late changes which could introduce
bugs and unknown balance issues. Making great
games that push boundaries always requires
change, and the later in the development cycle,
the stronger the basis is for making a change,
because it’s decided on the back of a more
complete version. On the other hand, a big
game is a very fragile beast that can be upset
in unpredictable ways by the slightest tweak. In
many ways, making changes (and sometimes
even fixing bugs) very close to release is folly for
a multi-million-pound project. This is a dilemma
game developers face every day.

We believe that we got the balance about
right with ShoguN 2. We are perhaps a bit more
gung-ho about making late changes than many

http://www.gdmag.com

development teams, and we certainly frustrate our programmers as a
result! We have a design-led culture, and are always striving to push the
game forward to be the best it can be. If we’re not all constantly terrified,
then we’re not trying hard enough! But it’s an eternal balancing act, and to
walk the tightrope requires systematic questioning: Does the change solve
a specific gameplay problem, or is it just an improvement? Is the solution
obviously better across many circumstances, or an arguable opinion?
Have ripple effects into other gameplay areas been identified and thought
through? Does it require additional changes (UI, AI, text, tutorial advice, and
so on)? How risky is the change, how much new code is involved, and how
deeply integrated is that code with other areas?

Of course, not all the side effects can be predicted; there are unknown
unknowns as well as known unknowns! But on the whole, constantly asking
these kinds of questions as we made late changes allowed us to balance
benefits versus risks fairly successfully.

4 T h e ble s sings of a m aT u r e e ngin e
/// The saying “If it ain’t broke, don’t fix it” applies to design as much as to
code. A successful game represents years of daily problems encountered
and solved by smart people. We underestimated this when we re-wrote
the entire codebase for EmpirE: ToTal War, and this meant it took years to
reinvent the wheel, even if the wheel was considerably shinier than before.
Only then could we get on to making the new game.

With Shogun 2, we were going to enhance the core engine as required to
support what the new game was going to be. This meant all the effort could
go into making a better game instead of redesigning core systems which
weren’t broken in the first place.

Working on a brand-new (and therefore immature) engine was a key
part of what made EmpirE such a challenging project. Working with a much
more mature framework and developing the components in a more modular,
contained manner was without doubt a major factor in making Shogun 2 a
relatively smooth development experience.

5 . a i : a T ru e de sign- pro gr a m ming coll a bor aTion
/// The fans have consistently been calling for stronger AI, and we were
determined to deliver it. Writing AI for a campaign and battlefield for a game
as complex and intricate as ToTal War is an immense challenge. Here,
the nature of Shogun 2 helped. On the battlefield, management of melee
combat presents fewer degrees of freedom versus the predominantly
ranged combat of EmpirE, where spatial factors dominate, and more
complex and open-ended attack-arrangements are possible. In addition,
the maturity of the game engine meant the game systems and rules that
the AI had to successfully navigate were not quite the fast-moving target
they had been.

But perhaps the most essential factor was the much greater design
focus on collaborating to improve the AI. Concerted day-to-day design
attention was devoted to AI performance in battles (especially sieges) and
on the campaign map. Designers were able to pore over detailed logs of AI
actions and experiment with many campaign-AI parameters. This required
great care as the AI’s mind is constantly at war with itself, balancing
competing desires that fight for priority. Changing a bias here or there
could improve behavior in one situation, but could prove disastrous in other
unpredicted contexts. This necessitated dedicated and careful collaboration
between AI design and AI programming, as the power given to designers
meant the power to mess things up very easily if they didn’t understand
exactly how each parameter worked.

We were very pleased with the results. The game changed: before, it was
a struggle to create a challenge, and then suddenly the AI began running
amok, even on easier difficulty levels. Complaints across the team used to be
about the AI doing silly things and the game being too easy on hard difficulty
settings. Then the complaints changed: people felt the AI didn’t give them a
chance, was constantly kicking their asses, and was far too difficult for new
players. The balancing task was completely reversed, and we had to hold the AI
back and cheat in favor of the player.

While the AI is not perfect, and there is plenty more to do, it is much,
much better than it has been in the past—a testament to very successful,
close, collaborative work between designers and coders.

game developer | august 201116

W h a t W e n t W r o n g

Doubling the team and halving the time does not
equal the same output! We knew this, but we
went ahead with it anyway, and gave ourselves
a number of headaches in the process.

1 MiniM a l pr e- proDuction
/// One of the great things about creating a tools
team was that we actually had a group of people
who could make and maintain tools to enable
our content creators to work their magic. During
EmpirE’s development, tools were maintained by
devs who also had to worry about specific game
features at the same time. This meant that we really
didn’t start with the toolset we felt we needed.

The problem for Shogun 2 was that with
such a tight schedule (a triple-A game in about
a year), the tools had to be developed while
production was in full swing. This was a recipe
for some real difficulties, and early on, the tools
group had the thankless task of dealing with
portions of the team rendered unproductive by
unstable tools.

Despite sometimes feeling like we were
fighting tools as they were developed, and
messing around with the pipeline while trying
to make content, things were going much more
smoothly by the end of the project, and in the
end, we made major progress developing tools to
set us up for an easier time in the future.

2 l at e De sign
/// A big game project is an all-consuming
endeavor for the team, and this does not
diminish as release approaches. Quite the
contrary. This makes it a real challenge to peel
even senior design attention away from one
project that’s about to release and onto another
that should have started some time ago! We have
always found this very hard, and the transition
from napolEon to Shogun 2 was no exception.

A significant portion of the team (artists
especially) were finished with napolEon many
months before release, and they needed to start
work on Shogun 2. The problem was there was
very little thorough design. It was frustrating
and risky for the artists to work with limited
guidance, but we had little appetite for taking
design attention away from making napolEon
the best it could be during such a critical phase
in its development.

This definitely caused some disagreements
within the team. Some did valiantly try to start
thinking about Shogun 2 up front, but there
wasn’t the capacity to get into detail. The intention
was to ensure that any finished artists at least
had valid work to do, so a limited design effort
fleshed things out at a high level so that work
could proceed and no one was blocked. It was
an admirable plan, but without a more detailed
design, some cul-de-sacs were inevitably entered,
and there were quite a few things that had to be
retrofitted. Not an ideal outcome.

Partly, this was the result of such a time-
constrained dev cycle, but we do need to get
better at planning. The transition from napolEon to
Shogun 2 was probably one of our smoothest, but

as teams and costs grow, and time constraints
get more severe, we will have to up our game.
The delegated team structure does help this, and
hopefully we can learn from our mistakes.

3 ge t no obs pl ay ing e a r ly !
/// Playtesting can present a challenge in very
tight development cycles. Either it’s too early
and the game is not in a fit state for useful player
feedback, or if the game is ready, it can be too
late to do very much about issues that are raised
by playtesting. We are generally very ambitious
with what we try to do with each project, and new
features and content come together as a playable
whole frighteningly close to release. Getting the
game into a state when it is truly playable as
early as possible is vital, but this was a huge
challenge in such a short project, and getting a
true “vertical slice” of a grand-strategy game isn’t
really feasible until much of the game is actually
finished; it’s not like a level-based game.

When it was in a decent, playable state, the
whole team could finally play the whole game
as opposed to everyone just focusing on their
own piece of it. Suddenly, a deluge of revelations
appeared that might be familiar to any designer
who has ever watched new, naïve users get
their hands on initial code. The feedback from
team outsiders was absolutely invaluable in
making improvements. The problem was that
this happened so late. Coordinating development
better is vital so that each feature becomes
visible and playable without delay.

4 br a nc h e s , br a nc h e s
e v e ry W h e r e
/// Two games became three, which became four!
In the beginning, there were battles: a super-
realistic RTS game with thousands of soldiers
fighting it out on screen at once. The turn-based
strategy campaign was initially a wrapper to
generate varied battles and give them context.
That was the original Shogun in 2000. Over time,
the campaign game has evolved into a full-
fledged strategy game that is, in itself, a rival to
series like Civilization. total War’s unique formula
involved two full games. When development
began on EmpirE in 2006, we knew that, since it
was set during the great age of fighting sail, it was
the perfect project to introduce full-scale naval
battles: three games in one. Not to be outdone, in
Shogun 2, we added game number four into the
total War formula: an online career campaign in
its own persistent environment to give context to
players’ progress in multiplayer battles. We didn’t
quite intend it that way, but revolutionizing the
multiplayer experience ended up diverging into its
own unique game world.

This meant more code branches (yay!).
Shogun 2 was the first title where we branched
the game code in earnest, and we really went to
town. We had a main branch and branches for
campaign dev, multiplayer, UI, battle dev, audio,
and tools. We branched for E3, for alpha, for beta,
for the demo, for release, and for patch one. Of
course, branching was essential, and meant that
development could proceed at pace inside sub-

teams’ branches without the risk of breaking the
build for everyone, and always having a stable
main branch to test was invaluable.

But perhaps we took things too far, with too
many branches. Integration was a constant
headache, especially where the database was
not itself branched, meaning game data had to
work in all branches at the same time. Fixes took
a long time to propagate to all branches. We could
have coordinated things and communicated
better for sure, and we can only hope that as we
rationalize the number of branches and get more
used to working with them, we can work smarter
and avoid some of the pitfalls and collisions that
got in the way during Shogun 2’s development.

5 coM M u ni c ation a n D c h a nge
con t rol
/// The feature focus that we gained when
splitting people into multiple sub-teams did
not come without cost, and the biggest danger
was entrenching the separation between
game areas, so that while each area might
be improved, the game as a whole could drift
into a disconnected patchwork. We strove to
ensure consistency and coherency across the
entire game, and while communication within
the small, focused sub-teams was fantastic,
communication between teams on a larger scale
was not always as good as it should have been.

Problems were perhaps most obvious
later in the project, when tweaks and changes
were being made at a furious pace to improve
and balance the game. Our origins were as a
much smaller team, where word of mouth was
sufficient to communicate information about
changes. We need to be nimble and able to make
quick changes without the protracted delays that
are possible with bureaucratic with cumbersome
processes, but in a large team, change-control
and diffusion of information needed to be much
better handled. What might seem the simplest
feature tweaks can have tentacles across
many areas and teams: UI, display, audio, text,
VO, advice and tutorials, and more. We need to
manage changes with an improved and more
formal awareness of dependencies.

t h e f i v e r i n g s

/// The challenge for the future is to keep
the series fresh and new—to allow constant
innovation. We are determined not to let the
increased team size diminish creativity, and we
always look to push the boundaries on every
product without fail.

As the team grows, we inevitably need
processes to keep things organized. We are
determined to maintain our creative, craft-driven
culture while getting better at organizing the
talent's focus. We need to get the best of both
worlds if we are to continue to make fantastic
games as each title and the team that makes it
grow ever larger.

james russell is the lead designer for the ToTal War

series of games.

www.gdmag.com 17

http://www.gdmag.com

Pre-Instrumented Middleware Makes

Performance Analysis Easier

DO YOU WANT

DEEPER INSIGHT

INTO YOUR GAME’S

PERFORMANCE?

Intel® Graphics Performance Analyzers:

 Get the latest version of

www.intel.com/software/gpa

INTEL-SPONSORED SUPPLEMENT

Why are game developers industry-wide

adopting Intel® Graphics Performance

Analyzers (Intel® GPA) into their

development pipeline? Primarily because

Intel has collaborated with the middleware community

to offer pre-instrumented code that works with

Intel® GPA. When you are using one of the products

from participating game middleware companies,

you automatically see performance metrics and can

rapidly identify bottlenecks and task-level effi ciency

characteristics across various game sub-systems.

Intel is proud to collaborate with these

middleware companies to ease developer

adoption costs, and continues to work

with new companies every day to further

broaden the pre-instrumented middleware

portfolio.

Learn more about Intel® GPA by visiting

www.intel.com/software/gpa.

Whether you use middleware from

SpeedTree, Havok, Geomerics, Allegorithmic,

Autodesk Scaleform, Confetti, Umbra, or

even an engine like Unity, you can see

into all of these game subsystems, which

previously would have required hands-on,

custom instrumentation work. In addition,

you can experiment with changes to

optimize your game code, and see results

in real time.

http://www.intel.com/software/gpa
http://www.intel.com/software/gpa

INTEL-SPONSORED SUPPLEMENT

“Using Substance smart textures has

tremendous benefi t for real-time

texture map generation, but one

always has to look toward optimizing

performance. The integration work

we did with the Intel GPA tool and the

Substance run-time is certainly going to

aid game developers when they do their

performance tuning. Now with holistic,

integrated performance, data developers

can confi dently deliver fast, beautifully

textured content generated at runtime.”

“The visualization provided by Intel’s

GPA allows us to clearly understand

the temporal relation of tasks. This

can be really powerful when seeking

performance optimizations. The

dependencies and utilization patterns

of Enlighten tasks are clear, as are

their interactions with other tasks

such as rendering or game logic.”

“To earn our customers’ trust we’ve

always had to focus on performance.

The integration of our run-time

component with the Intel GPA tool

provides critical performance data

right out of the box. Seeing not only

the performance characteristics of

SpeedTree, but how it interacts with

other middleware packages, is just a

fantastic step forward.”

“Now with Umbra 3 being instrumented

for Intel’s GPA, when developers profi le

their culling code, they will see, in detail,

the various culling tasks that the Umbra

runtime is responsible for. Furthermore,

this integration enables developers to

visualize the clear fl ow of these culling

tasks, whether they come from multiple

cameras, AI or other entities.”

“The fi rst time we used the GPA

Platform Analyzer, we saw that our

AMP instrumentation was lacking in

some code parts and was giving too

much information in others. The ability

to visualize the events within each

game frame is surprisingly effective

in pointing you in the right

code-optimizing direction.”

“GPA is outstanding as a profi ler, showing

the data the way you would expect it.

We use it for pretty much all the GPU

optimizations we work on, on every

piece of hardware we target.”

Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of third-party vendors and their devices. All products, dates, and

plans are based on current expectations and subject to change without notice. Intel, the Intel logo, Intel Atom, Intel Core, the Intel Sponsors of Tomorrow. logo, Pentium, VTune, and Xeon

are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation. All rights reserved.

WOLFGANG ENGEL
FOUNDER

SÈBASTIEN DEGUY
CEO

CHRIS DORAN
COO

CHRIS KING
CEO, IDV INC.

TEPPO SOININEN
COO

ALEXIS MANTZARIS
PRINCIPAL ENGINEER

version of Intel® Graphics Performance Analyzers:

 Get the latest
www.intel.com/software/gpa

“Intel GPA is the best GPU performance

tool on PC.”
ARAS PRANCKEVIČIUS

LEAD GRAPHICS PROGRAMMER

http://www.intel.com/software/gpa

game developer | august 201120

Licensed properties don’t come much stronger than Terminator.

Generations of teenagers and adults have grown up watching the

Terminator films, reading Terminator comic books, and playing Terminator

video games. The language and images of the film series don’t just

resonate with audiences worldwide, they’re part of our cultural lexicon.

Phrases like “I’ll be back” are referenced and used in everyday

conversations. For the team at Play Mechanix and our partners at Raw

Thrills, the connection to the Terminator license is doubly strong. Play

Mechanix was founded by George Petro, lead programmer and designer

on Midway’s “TerminaTor 2: JudgemenT day,” an arcade classic from 1991

which more than a few of us harbor fond memories of pumping quarters

into as kids. Living up to this legacy was both an inspiration and a challenge

for our team when making TerminaTor SalvaTion — The arcade game.

Making a game worthy of the Terminator name was a daunting task, one

which we met head on, pushing ourselves on all fronts to make the most

kick ass action gun game we possibly could. We’re not just proud of the final

result, but we’re also proud of how we got there: by setting ambitious goals

for ourselves and accepting nothing less than surpassing them.

W h a t W e n t r i g h t

1 S w e e t – Lo ok ing C a bin e t.

/// In addition to all the famous and talented humans that have been associated with

the Terminator license over the years, the Terminator robot itself has become an iconic

figure, instantly recognizable to audiences the world over. From the moment the license

was secured, we knew the best way to evoke that icon and draw people to our game

was to put a life-sized bust of the Terminator endoskeleton right on top of the cabinet.

Even if there was no game to play and the rest of the cabinet was made of unpainted

plywood, we knew people would stop and investigate when they saw a giant Terminator

head staring out at them.

To create such a head, we turned to a material we’d had plenty of experience with

over the years: vacuum formed plastic. Vacuum formed plastics are created by using

vacuum suction to pull a flat sheet of plastic onto a hot aluminum mold. This stretches

and forms the plastic into the shape of the mold. It’s a terrific way to add custom shapes

and contours to an arcade cabinet.

Still, we had never attempted anything as complex as the Terminator bust before. In

some ways, the high-profile status of the Terminator head made things harder, because

people know what a Terminator robot looks like, and if our bust didn’t hit the mark, they’d

notice right away. We found that getting the general shape of the Terminator right came

pretty quickly, but the hard part proved to be getting the printed graphics to distort

correctly onto the stretched plastic. Since the graphics are printed onto the flat plastic

sheet before it is vacuum formed, they distort as the plastic stretches to fit the mold. The

s c o t t m a t o t t

WWW.GDMAG.COM 21

http://WWW.GDMAG.COM

GAME DEVELOPER | AUGUST 201122

printed graphics have to be distorted beforehand—stretched
in some places and shrunk in others—in order to compensate
for this. Computer modeling software can aid in this process,
but we found that it was no substitute for trial and error with
human eyes. In one early trial, our mean looking Terminator
robot came out looking more like Bugs Bunny. It was pretty
humorous, but definitely not what we were going for!

Of course, we didn’t stop with just putting a Terminator
head on the top of the cabinet. We gave the rest of the
vacuum formed plastics on the cabinet a slick black finish.
We added clear etched plastic with red edge lighting around
each gun holster. We tilted the gun holsters up and out to
better show off the guns themselves. We covered the rest
of the cabinet in artwork from the film. We even went so
far as the make the red LED eyes on the Terminator bust
blink in unison with the thumping of the theme music that
plays during the game’s attract mode. All this was done to
make sure the Terminator theme really carried throughout
the entire cabinet. The end result speaks for itself, as the
cabinet is an absolute head turner that instantly connects
players to the license.

This unification was made more challenging by the fact
that there wasn't just one design to consider. In fact, we
actually developed three different flavors of the TERMINATOR

cabinet: a 42" Deluxe cabinet, a 32" Mounted Gun cabinet,
and a projector-based 100" Super Deluxe cabinet. The 42”
model was our main platform from the start, the 32” version
came about after release to accommodate smaller spaces,
and the Super Deluxe cabinet was made for locations with a
lot of space that really wanted to show off the title. Of course,
each cabinet design presented its own set of engineering
challenges. The projector for the Super Deluxe cabinet, for
example, had to be carefully tuned and tested to make
sure it could survive being on for days at a time. Ultimately
though, having all three of these designs available was a real
boon to the project, as it allowed us to offer a version of the
game to suit any buyer.

2 T H E WAY OF T H E GU N.
/// One of the great things about making arcade games is
that you get to make use of custom hardware to create a
truly unique experience for the player. With TERMINATOR, we
really wanted to take advantage of this by creating a new
gun controller that would make the player feel like a regular
badass just by holding it. To accomplish this, we modeled
our gun controller after the real M4 assault rifle featured
prominently in the film, and we gave it a sliding reload
switch underneath the magazine clip. The player reloads by
slapping this switch, making something like the motion of
actually inserting a new magazine clip into a real rifle.

Believe it or not, this simple, intuitive motion was one
of our greatest points of concern when designing the gun.
Nearly all prior action gun games used some quirky reloading
scheme, such as shooting off-screen or stepping on a pedal.
For TERMINATOR we were adamant that we didn’t want to go
down this route; we wanted a reload mechanic that added
to the player’s immersion, taking the player further into the
experience rather than distracting them from it. We wanted
a mechanic that would make the player feel more like they
were firing the real deal rather than just reminding them that
they were playing a video game. We knew that putting the
reload switch under the magazine clip was the best way to
achieve this, but we worried that players, trained as they

were by the reloading schemes of the past, wouldn’t get it.
If there’s one thing you don’t want to do in an arcade game,
it’s ask players to unlearn something they’ve spent years
learning to do. To avoid this we compromised; the game
accepts both the reload switch and shooting off-screen to
reload. This way, players trained to shoot off-screen can
continue to play that way if they wish, while everyone else
can enjoy smacking the magazine clip to reload.

Another fun touch we added to the gun was a strong
solenoid knocker which fires in sync with the game to
give it a somewhat realistic kick when it’s fired. Tuning the
strength of this knocker was definitely a challenge. In an
early revision, the knocker was tuned very high, giving the
gun a satisfying, powerful firing kick. Unfortunately, it also
gave the player a serious shoulder ache after a few minutes
of play! With some fiddling, we got the knocker tuned to
a mix of being strong enough to feel powerful, but weak
enough to feel comfortable.

Of course, a cool design wasn’t our only consideration
when making the gun mold. Early in the design process, we
polled game owners and operators about their experience
with competitors' gun games. Their universal response: gun
simulators are cool, but they break too frequently and cost too
much to repair. Hence we set a development goal to make the
construction of the gun as reliable as possible. To accomplish
this we partnered with Suzo Happ, the main parts supplier to
the arcade industry, which was able to implement the best
practices based on experience manufacturing hundreds
of thousands of guns over the past 25 years. Suzo Happ
life tested the gun for an estimated 1,000,000 operations,
which simulated approximately five years of continuous
usage, to look for stress or failure points in the gun shell or
the mechanical parts. We also did a fair bit of our own testing,
including a four-foot “drop test” onto hard concrete. Thanks to
all this testing, we were able to produce a gun that worked well
not just for the player but for the owner of the cabinet as well.

3 TOU GH DECISION.
/// The licensing deal for TERMINATOR SALVATION was finalized
in April of 2008, with the movie to be released in May 2009.
Allowing for manufacturing time, this gave us roughly nine
months to produce the completed title. This was not a
generous amount of time. But if we took any longer, we’d
miss out on the opportunity to synchronize with the multi-
million-dollar marketing campaign for the movie, and risk
arriving in arcades after consumers had forgotten all about
John Connor and his epic struggle against the Terminator
robots. So we drafted a schedule for making the game in
nine months and got to work.

Six months later, we had the core of a game ready. Basic
character models and environments were completed, and a
first pass of game dispatch had been roughed in. The trouble
was, no one was particularly happy with anything. The
gameplay was, to put it kindly, monotonous. The art assets
were serviceable but lacked pop and polish. Additionally,
by that point it was more than clear that there was no way
our custom gun and cabinet designs would be ready for
manufacture by the movie’s launch. Still, with three months
to go, we could have cranked out the rest of the environments
and dispatch, settled for an off-the-shelf gun and a bare
bones cabinet, and we’d be done. We would have had a
game—maybe not the greatest game, but something—and
it would have been ready in time for the movie’s May 21st

DEVELOPER Play Mechanix
MANUFACTURER Raw Thrills

DISTRIBUTOR Betson Enterprise
NUMBER OF DEVELOPERS 40

LENGTH OF DEVELOPMENT 22 months
RELEASE DATE February 25, 2010

BUDGET $4 million
LINES OF CODE 591,797

SOFTWARE
Microsoft Visual Studio

GNU gcc, gdb, gperf
valgrind

PhysX
Maya

SolidWorks
Crazy Bump

Mudbox
Adobe Photoshop

Adobe After Effects
GIMP

Mantis Bug Tracker
Subversion

WinMerge
SQLyog

PLATFORM Arcade
T600S TERMINATED 999,999+

WWW.GDMAG.COM 23

premiere. Beyond the licensing advantages, there
was an additional consideration driving us toward
completing the project as originally scheduled: both
the programming and art teams had been staffed
up to take on the larger-than-expected workload of
producing a modern “next-gen” title. The result was
that the project was already over budget, and even
if it arrived on schedule, it was set to be the most
expensive game Play Mechanix had ever produced.
Couple that with the global economic downturn
that started in 2008, and there was considerable
financial pressure to complete the project as quickly
as possible.

Still, for the team at Play Mechanix, the decision
was an easy one. The goal of meeting the movie’s
release was abandoned, and the entire schedule was
extended by six months. The rationale was simple:
without a great game, having a great license and great
marketing wouldn’t mean anything. We also knew
from years of industry experience that, although
the pain of missing the movie’s release and cost of
another six months development could be overcome,
the stink of releasing a turd would linger forever.

In the end, the decision proved more than
justified. This was true even though the game ended
up taking a full 22 months to complete and cost
over $4 million to develop, more than double what
we’d originally planned to spend. The extra time
was used to redefine and re-tune our gameplay. We
quickened the pace, upped the cinematic elements,
and added more variety to the enemy types and
dispatch scenarios. We also took time to overhaul
the game’s visuals, bringing everything—lighting,
character models, environments, particles, and so
forth—up to a higher standard. Finally, the extra
time allowed the new gun and cabinet designs to
be completed.

If we hadn’t taken the extra time to get it right,
we’d have been releasing a mediocre title in a weak
economic climate. Instead we were able to release a
title so strong that it re-ignited the market for arcade
action gun games. It also opened up overseas sales
opportunities for us in markets like Japan, China, and
Russia that we hadn’t even thought possible before.

4 GUI S C RIP TING TO OL .
/// Going into the project we knew we’d need a new
scripting tool. All of our existing tools had been
created ad-hoc in spare programmer cycles, and were
either too narrowly focused or too onerous to use
(or both) to be useful for TERMINATOR. We considered
using a high-level scripting language such as LUA
or Python, but we didn’t want to limit the scripting
process to only programmers. Instead, we wanted
a tool that would set the bar for creating dispatch as
low as possible, so that anyone at the company could
contribute to the creative process, even those with
little or no programming background.

To that end, we developed an in-house system
which combines a basic scripting language and a
simple trigger-and-event system with a GUI front
end. The scripting language is easily extensible,
but deliberately somewhat simplistic. Typical

commands include things like "Travel along this path,"
"Begin attack cycle," and "Wait for trigger." Only simple
flow control (branching and looping) is implemented,
and no generic variable interface is provided. The goal
is for the game objects' logic and AI to be written in
C/C++, while the scripting language provides the
gameplay and dispatch patterns for those objects to
execute. Again, the motivation for this was to keep
the dispatch instruction set as simple as possible so
that even someone with no programming background
could use it. Keeping with this thought, the trigger-
and-event system is similarly basic, providing little
more than a method for scripts to set and respond
to named global triggers. For example, the script
controlling one T800 actor might wait for the “T800_1_
Attack” trigger to begin attacking the player and then
signal another T800 to begin attacking by setting the
“T800_2_Attack” trigger when it’s done. Finally, the GUI
front end provides a point-and-click way to author
scripts and assign them to game objects. The GUI
runs in-engine, which allows scripts and scenes to be
quickly tested and iterated upon.

Ultimately, this combination proved very potent.
The dispatch team quickly learned to combine the
scripting language's simplistic commands and
triggers to produce much more complex results.
Moreover, by keeping the scripting tool simple and
easy to use we opened up the design process,
allowing anyone at the company to contribute
dispatch ideas and scenarios. The net result was the
dynamic, layered scenes and varied dispatch that
give TERMINATOR its cinematic and visceral punch.

5 T U NING T H E “ R E D BU LLE T.”
/// One of the toughest parts of arcade game design
is that you have an excruciatingly short time in
which to hook a player. Buyer’s remorse might keep
a player spelunking away at a $60 home title for
hours to get to the good stuff, but a player who has
only invested $1 into an arcade title demands some
serious immediate gratification before they’ll put in

another. At Play Mechanix, our rule of thumb is that
you have about 10 to 20 seconds to grab a player’s
attention and start showing them a good time. After
that, the eyes start to glaze over and the player is
lost to you. They might play their dollar out, but
they’ll never put another coin in again.

This is a challenge we ran smack into when
developing the gameplay for TERMINATOR. From the
outset, we knew we wanted the game to follow in
the grand “red bullet” tradition of arcade action gun
games past, such as TIME CRISIS and ACTION HERO.
In this style of game, the screen is full of bad guys
to shoot, but only the specially highlighted enemy
shoots the magic red bullet which actually hurts the
player. Everyone else fires white bullets, which shoot
harmlessly past the player. Core gameplay consists
of picking the highlighted enemy out of the crowd and
shooting him before he can fire his red bullet.

On top of this, we had the idea that the
Terminator robot in the game should feel like the
same unstoppable killing machine people are
familiar with from the movie franchise. Instead of

scoring one-hit kills, we figured the player could
have fun slowly shooting the Terminator apart bit
by bit, first shooting off an arm, then a leg, then
maybe a section of his chest, and so on.

We put both of these ideas together and
envisioned a game where a handful of Terminators
on-screen took turns firing red bullets at the player
who slowly chiseled them down to bits. The core skill
of the game would be in chasing the highlight from
Terminator to Terminator, aborting the red bullets.
We quickly learned that this vision would need some
serious tweaking to pass the ten-second test.

First, it became evident pretty quickly that an
indestructible robot made for an insufferable bore
when it came to gameplay. Playtesters did enjoy
damaging the Terminators using the destructible
character model system we’d built, but even though
they reported having a good time, we could see
them tune out as they stared at one scene for

http://WWW.GDMAG.COM

GAME DEVELOPER | AUGUST 2011 24

20–30, seconds pummeling away at the same robots.
To amend this, we reduced the number of hit points
for the Terminator robots to something that, while still
making them as strong as befits the license, was far
down from our original vision. We also sprinkled more
gun power-ups and grenades throughout the game to
help the players clear out the Terminators faster.

Second, while our original vision for the game’s
red bullet gameplay did turn out to be fun to play,
it had two critical failings. Even though it is a long-
standing convention of the genre, we found that the
red bullet idea took too long for players to grasp.
Players would be hit four, five, even as much as ten
times before they’d catch on to what was going on
with the highlights and the red bullets. This was
exacerbated by the fact that in our original scheme
every time a Terminator would fire a red bullet, the
highlight would move to a different Terminator. This
made it very hard for players to get the connection
between the highlight and the red bullet. Secondly,
the system asked the players to do something they
intuitively didn’t want to do, which was shift targets
from one Terminator to another before they were
done killing the first one. Because the Terminator
was supposed to take a ton of hits to kill, the idea
was for the moving red bullet highlight to alleviate
the tedium of pummeling on one enemy for so long,
but in the end, it just fought with the player’s better
pummeling instincts.

Once players understood what was going on,
they could enjoy the anticipation of the red bullet
bouncing around and the skill of knowing when to
shift fire from one Terminator to another, but for
most players this understanding simply came too
late. By the time they’d figured out what to do, they’d
have already spent their first critical 10 seconds
getting pasted and not understanding why. It was
a recipe for people to walk away. We altered our red
bullet scheme several times to combat this, finally
settling on a setup where for most enemy types,
once an enemy was highlighted, it would continue
firing red bullets until it was killed. We also sped up
the red bullet enemy’s rate of fire (turning down, of
course, the damage done by each bullet). The result
of this was to make it painfully obvious to the player
which enemy they needed to shoot. The skill test of
chasing the red bullet was lost, reduced to merely
identifying the highlighted enemy, but players could
quickly comprehend what they were supposed to
do, and thus start having a good time before their 10
seconds were up.

As it turns out, both of these deviations from
our original vision were for the better. Reducing
the Terminator’s hit points not only sped up the
gameplay but also allowed the level designers
to pack more of them into each scene, giving the
game an epic sense of scale that players really
enjoyed. Simplifying our red bullet scheme actually
allowed the level designers to be more controlled in
their use of the red bullet, assigning it to specific
enemies at specific times for maximum effect.
This led to scenarios that were more deliberate
and cinematic, attributes that grabbed the players’

attention more quickly and fully than our original
mechanic ever could have.

In the end, our experience tuning TERMINATOR’s
gameplay to meet the ten-second rule is a classic
case of working within a constraint that at first
seems onerous but ultimately drives you towards
a better game.

W H A T W E N T W R O N G

1 R E A LIT Y BIT E S .
/// Anyone who’s ever been through it knows that the
development cycle of a game can often feel like you're
living Murphy’s Law day in and day out. Everything
that can go wrong is going wrong, all of the time.
Arcade games, being a physical, real-world product,
bring an extra dimension to this experience. During
development, it’s nearly impossible to have all the
pieces of the puzzle (software, electronics, cabinet)
in exactly the right state at all times. More often than
not, you have to make do with prototype hardware or
beta software until the very end of the project. Then
after release, there’s always some bizarre real-world
circumstance that comes up that you couldn’t have
foreseen. TERMINATOR certainly had its share of issues.

A great example of working with incomplete
hardware came with the gun molds. The iterative
nature of the design process coupled with long
turnaround times to build test models meant that
the rest of the game was ready for field testing well
before final gun molds were available. For our first
round of field testing, which consisted of just a single
cabinet at one location, we ended up sending the
game out with two of our four prototype gun models.
Not only were we entrusting the public with half the
world’s stock of our new gun model, the prototype
models were made with a fragile clear plastic which
had to be painted over with automotive paint in order
to match the rest of the cabinet. The paint had a
harmless but distinct odor that refused to dissipate,
even after we held up testing for several days while
waiting for it to clear up.

Later when we moved onto wider field testing,
we needed more guns, but the final molds were still
months away. Needing a quick solution, we opted
to have castings made from one of our prototypes.

From these, we were able to make around 30 working
guns for our extended field testing and for showing
the game to operators at the various industry trade
shows. Unfortunately, the screw fittings from this
rough casting were not correct, meaning the test
guns had a bad habit of splitting apart after a few
days of use. Not having any better options, we ended
up using zip ties to hold the split guns together.
In summary, during the entire time we were field
testing our game, gathering critical earnings data,
and showing it to operators to create pre-sales buzz,
we were using guns that either stunk like fresh auto
paint or were held together by zip ties. Fortunately
for us, players and operators were both able to look
past these “features” and the game earned and sold
well anyway.

One of the odder problems turned up only after
the game started appearing in some of Japan's
busiest arcades. The gun in TERMINATOR uses a
camera and light array setup similar to, though
much more sophisticated (and expensive!), than
the one in the Wii Remote. An IR light array sits inside
the cabinet marquee and a camera mounted in the
gun interprets where the player is aiming based
on which lights it can see and where. As it turned
out, in some of these densely packed Japanese
arcades, the cabinet lights on the games opposite
the TERMINATOR games would literally flash so brightly
and so frequently that their reflections coming back
off the glass of the TERMINATOR monitor would confuse
the gun camera into thinking they were part of the
light array. This would cause shots to go wild as the
gun code tried to account for all these extra lights! It
took some pretty serious retooling of our gun’s light
recognition algorithms to get them to deal with these
phantom lights.

In our experience, these types of problems
are ultimately par for the course when developing
arcade games, but they’re still never anything you’d
describe as going right.

2 C R E AT E F IR S T, LO C A LIZ E L AT E R.
/// Given how much work needed to be done and
how far we were pushing ourselves in every other
direction, it might seem understandable that we
readily fell into the mindset of “get the game done
first, and worry about translating it later,” but this
approach came back to haunt us at the end of the
project. Based on our market research and previous
experience, we didn’t expect to sell too many
games outside of the U.S. (and other countries
where an English game with a localized manual is
sufficient). Anything beyond that would come only
after the game had proven itself in the U.S., and then
again only after lengthy contract negotiations and
so on, giving us plenty of time to go back and kludge
in some kind of multilingual support.

Fortunately for the company, but unfortunately
for the programming staff, things didn’t work out
that way. Distributors in Japan were so impressed
with early builds of the game that they signed on
to receive the second batch of games leaving the
factory floor. This gave us about a month after the

D E D I C A T I O N

Play Mechanix lead
animator, Ryoichi
(Roy) Yanase, passed
away on February 3,
2011, at the age of
39. Game players all
around the world have
been entertained by
Roy's unique talent

and style while playing such games as BIG
BUCK HUNTER PRO, BIG BUCK SAFARI, JOHNNY
NERO ACTION HERO, ALIENS EXTERMINATION,
and TERMINATOR SALVATION. Roy’s life was
cut short much too early, and he will be
missed by all those that knew him and
those that were exposed to his art.

WWW.GDMAG.COM 25

game’s initial release to have it fully translated into Japanese. This shouldn’t
have been too huge a task, except that our engine had no concept at all of
“translation.” All on-screen text was either created via ASCII strings embedded
in the codebase or buried in the texture maps for various in-game plaques. So
we were caught with just a month to design a localization system, implement
it, and convert all the in-game text to using it. Ultimately, we got the job done
and with some time to spare, but not without some serious He-Manning on the
part of two of our programmers, and we definitely learned our lesson about
assuming that localization can wait for another day. The flat truth is that, in
today’s global marketplace, there really isn’t a place for treating localization as
an afterthought; going forward, we’ve committed ourselves to developing and
using a robust localization system on all of our projects.

3 F ROM E NGIN E 1. 5 TO 2 . 0 .
/// Since the original schedule was so tight, we had planned to make TERMINATOR

using a minimally upgraded version of the engine that powered our popular
hunting game BIG BUCK HUNTER PRO. While that engine was older and featured
only OpenGL fixed-pipeline functionality support, everyone on the team was very
comfortable using it, and we somewhat naively thought we could get by with just a
few quick, surgical changes, such as adding limited shader support and tweaking
the animation system slightly. Over time, it became evident that much more
extensive engine work would be required to meet the visual and gameplay goals
of the project. One by one, pieces of the engine were re-written or replaced, some
systems more than once. The engine’s render loop, for example, was re-written
not once but twice, first to add support for multi-pass rendering and again later to
better optimize object culling and sorting in order to meet our performance targets.

The end result was that we spent a lot more time retooling the engine than
we would have if we had planned to do a major rewrite from the start. We were
still dealing with a lot of the quirks and limitations of the BBH engine right
through the end of the project.

4 U N DE R E S TIM ATING A S S E T C R E ATION TIM E.
/// Again, driven by our initial nine-month schedule, we started the project with
the idea of utilizing new visual tech sparingly, adding dynamic lighting and
normal maps to the main character models but sticking to baked-in lighting
for environments and secondary characters. The hope was to add some sizzle
to the game’s look, while at the same time, minimizing development time by
sticking mainly to tech we were already familiar with.

It quickly became obvious that this wouldn’t be enough to give the game the
visual impact it needed. A dynamically lit, normal-mapped Terminator simply
looked out of place in a vert-lit world. We realized that we’d need to dynamically
light and normal map almost everything, and on top of that we’d want bloom,
glow, and a host of other post effects in order to help connect and composite
everything on the screen into one unified image.

Of course, as great as all this new tech was, it’d be a serious understatement
to say that our initial schedule was unprepared for the tenfold increase in asset
complexity and creation time required. Aside from the sheer volume of work,
the task of maintaining asset continuity proved to be a much larger challenge
than we’d initially expected. Simply matching in general style and look was no
longer sufficient, as each new layer of tech added a new aspect that the art
assets had to match.

Normal and specular map resolutions had to be balanced across the entire
scene, so that objects with sharp lighting details didn’t appear directly adjacent
to objects with softer features. Specular maps, especially those for character
models which appear in many different scenes, had to be tuned to match relative
intensities across all objects and to look correct in a wide variety of lighting
conditions. All of these were new dimensions for us to work in, and they required
much tighter coordination between all members of the art team than our previous
titles had. In the end, and thanks largely to our decision to extend the project
by six months, the look of the game surpassed even our own internal goals and
expectations; however, we learned a hard lesson about what it takes to produce
a modern-looking title, and why our original production schedules were way off
target. A silver lining to all this was that the experience really helped grow and

forge our art department into a stronger team, and taught them a whole new set of
skills that they’ve been able to apply to even greater effect on subsequent projects.

5 R E LE A S E M A NI A .
/// Whoever said “when it rains it pours” must have been around the Play
Mechanix and Raw Thrills studios during the release window for TERMINATOR. When
we put TERMINATOR out, we also had three other new titles preparing for release,
plus a slew of updates ready to roll out for our existing BIG BUCK HUNTER PRO ONLINE

and BIG BUCK SAFARI ONLINE products. Adding to this math was the fact that, from a
production and testing standpoint, we treat each different cabinet as a separate
release, so TERMINATOR represented three different releases on its own. Similarly,
each title is tested and released as a separate build for each language and region
it’s sold in. Overall, we’ve found this level of thoroughness is the only way to ferret
out cabinet or locale-specific issues and make sure they don’t make it into the
final game. Still, it’s an approach that certainly makes for a busy QA department.
Moreover, the fun doesn’t stop with just the first release of a title.

We are always listening to customer feedback about our games, and we
try to respond to it as quickly as possible. This means adding new features
and bug fixes, sometimes weeks, sometimes years after a game’s launch. A
good example of this is the optional aiming reticule and tracer bullet effects in
TERMINATOR, both of which were added within a few weeks of our first release
based on feedback from distributors in Japan. In all, TERMINATOR saw nine such
releases in the first five months after initial release. Managing so many releases
across so many different titles in such a short span of time was a Herculean
task of the first order for both our software and QA departments. Somehow we
survived the storm, but not without learning a few lessons and making some
changes along the way.

First, we established clearer, more formal lines of communication between
QA and software development, so that everyone is always on the same page
about what titles are being released and when. Secondly, we’ve shifted to a
more advanced revision control system in order to better track and manage
software changes on new projects. One thing we were not willing to commit to
was scheduling fewer releases. Despite the difficulty that managing so many
releases presents, we feel strongly that having multiple titles in simultaneous
development, testing them rigorously, and being quick to respond to customer
feedback are all critical to our continued success.

S A L V A T I O N

/// Making TERMINATOR SALVATION - THE ARCADE GAME was an amazing experience
for the whole team. While there was plenty of hard work to go around, getting
the chance to add our own small piece to the Terminator legacy was a real treat.
Moreover, pushing ourselves to create a game worthy of that legacy has only
left us more excited about the possibilities for our future projects.

SCOTT MATOTT is a game developer at Play Mechanix. Email him at smatott@playmechanix.

com. Contributions to this article were also made by Mark Ritchie, Nick Mangiaracina, Mark

Macy, Kevin Uskali, Matt Davis, and Bob Yoest.

http://WWW.GDMAG.COM
mailto:smatott@playmechanix.com
mailto:smatott@playmechanix.com

http://tgs.cesa.or.jp/english

www.gdmag.com 27

The Game Developers Conference Online may be a smaller event
than GDC proper, but it is by no means "GDC Jr." This annual spin-off
conference is focused much more on online games, be they casual,
MMOs, virtual worlds, or games on social networks.

The event, which is held in "weird" Austin, attracts more than 3,000
attendees to its over 120 sessions, with tracks catered to professionals
specializing in business and marketing, game design, customer
experience, production, and programming.

Among the many panels scheduled, this year's show will see former
World of Warcraft designer Tom Caldwell discussing the causes of
poor game design, CCP's Valerie Massey sharing how she prepares
for and deals with audience crises, Zynga's Rober Zubek giving an
engineering postmortem on the immensely popular cityVille, and
PopCap's Giordano Bruno Contestabile helping to make the difficult iOS
vs. Android decision just a little bit easier.

And no, this isn't a "social only" club, either. Other speakers this year
include folks from Eidos Montreal (deus ex: Human reVolution), BioWare
Austin (tHe old republic), Volition (saints roW), and more.

Due to demand, this year's show adds a new Customer Experience
Track, which finally provides a dedicated series of panels for what is
quickly becoming one of the most important sectors of the online games
business. Topics will include building and managing online communities,
policing user-generated content, anti-fraud tactics, and more.

As always, the show will host dedicated summits in addition to
the main conference. The Game Narrative Summit will focus on best
practices for interactive storytelling, the Virtual Items Summit will
explore design and monetization techniques for virtual goods, and the
Smartphone & Tablet Games Summit will discuss the future of gaming
on both established and emerging portable platforms.

To prepare you for the show, which takes place October 10–13,
we've highlighted a handful of staff picks from the sessions that have
been announced so far. As always, head over to GDCOnline.com for the
most up-to-date information on what's happening at the show.

Building the Story-driven Experience
of Deus ex: Human Revolution

Mary De Marle eiDos Montreal

 Like the legendary original game in the series, deus ex: Human
reVolution manages to tell a pointed, compelling story while

giving its players the creative freedom to shape their own destinies. In
this hour-long lecture at the Game Narrative Summit, lead writer and
narrative designer Mary De Marle will share her team’s approach to
story-based game development, revealing how they managed to keep a
tight grasp on the game’s various branching paths.

Designers are Human Too—
Causes of Poor Design Decisions

toM CaDwell riot GaMes

 The road to bad games is paved in good intentions. In this design
lecture, former World of Warcraft designer Tom Cadwell (now

at Riot Games) will explore the single most common flaw amongst
game designers: natural human tendencies. Cadwell will share some of
the methods he’s developed for identifying bad decisions before they
become costly, and how to combat what he calls “these all-too-common
forces of evil.”

DEFCON: A Basic Guide to Crisis
Management

Valerie Massey CCP GaMes

 It’s hard to imagine a better test case for online community crises
than eVe online. The game is designed at its core to be about as

open to freedom and emergent gameplay as is feasible for a major MMO,
and as a result players are gambling with their real-world dollars. CCP’s
PR and community director Val Massey will share her experiences, and
offer tips and tools to stay calm and get things back to normal when
inevitable community crises happen.

Engineering Cityville
robert Zubek ZynGa

 In this talk aimed at social game programmers, Zynga’s principal
software engineer Dr. Robert Zubek will discuss the server-side

engineering techniques that allowed his team to rapidly iterate and
grow cityVille into the most popular game on Facebook. The talk will
also cater to those who have little experience in the social space, and
will expose some of the challenges that await the green Facebook game
programmer.

How Metrics Are Ruining Your Game;
Common Pitfalls and Uncommon Solutions

ian wanG ZynGa

 Despite the title of this talk, Zynga product manager Ian Wang
admits that good metrics can complement the game design

GDC ONliNE
 f r a n k C i f a l D i

it's an interestinG tiMe for ConneCteD GaMes. TiTlES RANGiNG FROM CiTY OF HEROES TO TEAM FORTRESS 2 ARE SUDDENlY
EMBRACiNG THE FREE-TO-PlAY MODEl, "TRADiTiONAl" PUBliSHERS likE CAPCOM ARE FORECASTiNG DRAMATiC wORlDwiDE
GROwTH FOR ONliNE GAMES BY 2015 OR SO, AND wE'vE COME TO FiND OUT THAT ZYNGA iS APPARENTlY wORTH ONE BilliON DOllARS.
EvEN iF YOU'RE NOT CURRENTlY EMBRACiNG CONNECTED GAMES, THERE'S OBviOUSlY A lOT TO lEARN FROM THOSE wHO ARE.

the Game Developers Choice
online awards at GDC online.

http://GDCOnline.com
http://www.gdmag.com

GAME DEVELOPER | AUGUST 201128

process. The problem comes when a designer looks at metrics as
scripture, rather than a tool. This talk will give a practical view of how
metrics should be used, and how to avoid having your creative design
process hindered by cold, hard, unforgiving data.

Live Game Disasters: How to Prepare for
the Worst Before It Happens

CRYSTIN COX NEXON AMERICA

As anyone who has worked on an online game knows, actually
launching your game is the beginning—not the end—of your

troubles. MAPLESTORY producer Crystin Cox promises to give several real
world examples of the horrors that occur after the servers are set live,
including hackers, forum trolls, gold farmers, and network outages. The
goal of the talk is to help producers overcome little disasters so that
their teams can focus on the next update, instead of putting out fires.

Rapid MMO Content Iteration and Validation
with Spatial Analysis in STAR WARS: THE OLD
REPUBLIC

GEORG ZOELLER BIOWARE AUSTIN

In the late stages of MMO development, there is perhaps nothing
more important than the ability to rapidly iterate on content. In

this design lecture, BioWare Austin’s Georg Zoeller shows how his studio
uses spatial analysis to track player behavior on the ground level,
showing off the studio’s homegrown HoloProjector visualization toolkit
and giving tips on how to begin applying spatial analysis to your game,
even if you don’t have a HoloProjector to call your own.

SETTLERS ONLINE: Moving a Traditional
European Boxed Game to a Worldwide Free
to Play MMO Experience

BENEDIKT GRINDEL AND CHRISTOPHER SCHMITZ UBISOFT BLUE BY TE

All eyes will be on Blue Byte, after SETTLERS ONLINE lead designer
Teut Weidemann’s controversial talk at GDC Europe last year

asserted that microtransaction-based games should “exploit human
weakness” in order to be profitable. At GDC Online, the game’s head of
production and head of live operations will give a mini-postmortem of
the game’s development, with a particular focus on how to best bring a
successful franchise to the free-to-play world.

Successful Publishing on Smartphone
Platforms: iOS vs. Android

GIORDANO BRUNO CONTESTABILE POPCAP GAMES

You’ve got a great idea for a smartphone game, but what platform
do you put it on? iOS? Android? Both? PopCap’s head of mobile

strategy Giordano Bruno Contestabile hopes to help you answer that
question by sharing how these decisions are made at his company,
with a particular emphasis on managing games as a service and
leveraging in-app purchases.

The Future Is Now—Emergent Narrative
Without Ridiculous Tech

MATTHEW WEISE SINGAPORE-MIT GAMBIT GAME LAB

According to MIT GAMBIT Game Lab researcher Matthew Weise,
replayable emergent narrative is often looked at as a tech

problem, rather than a design problem, which he doesn’t think is right.
Weise will outline a method for tackling this issue with creative design,
showing off the research he’s done and the prototypes developed at
MIT as part of an ongoing research project into experimental narrative
design methods.

Threat Modeling for Game Developers
STEPHEN BEEMAN GIZMOCRACY

“Threat Modeling” is likely not a term you’ve heard a lot about
before, but with all the recent security hacking woes, it’s one

you’re likely to be hearing more and more of. Threat modeling is a
process for identifying and preventing security risks that may threaten
the personal information of your players, and as Beeman hopes to
show, the same processes that are used on major operating systems
can still apply to 99-cent smartphone games.

The Year in Social Games 2010–2011
STEVE MERETZK Y AND DAVE ROHRL PLAYDOM

Self-described “grizzly” social game veterans Steve Meretzky
and Dave Rohrl of Playdom will present what is sure to be an

entertaining annual review of the industry’s ups and downs. Topics from
the always-entertaining duo will include the latest trends, the most
interesting games, and notable new viral and monetization techniques.
The aim of the talk will be to separate social gaming myths from the
truth because, as they explain it, “a lot of the conventional wisdom
about the sector is actually wrong.”

EVERQUEST II Extended: Streaming a Non-
Streaming Game

JOSHUA KRIEGSHAUSER SONY ONLINE ENTERTAINMENT

Sony Online’s technical director Joshua Kriegshauser will reflect
back on the Herculean task of switching EVERQUEST II from a

client-side install requiring several Gigabytes of hard drive space to a
streaming system. Kriegshauser says that attendees will “learn the
intricacies, initial assumptions and lessons learned of taking a live
system from file-based storage to real-time asynchronous streaming of
assets from the Internet.”

Sins of the Past
STEVE JAROS VOLITION

As Woody Allen once said, "If you're not failing every now and
again, it's a sign you're not doing anything very innovative." In

what he hopes will be a roundtable confessional, Volition senior writer
and designer Steve Jaros will swap war stories with attendees about
failures stemming from “bad planning, over eagerness, or sometimes
just a straight up lousy idea that sounded good at the time.” As he
explains it, these conversations often happen in after-hours parties, but
not everyone gets invited to those.

WWW.GDMAG.COM 29

From Subscription to Hybrid—Introducing
Virtual Item Sales into EVE ONLINE

BEN COCKERILL CCP GAMES

When EVE ONLINE introduced “vanity” virtual goods earlier this
year, it caused outrage amongst the game’s most dedicated

players that was only resolved after a committee of players went to
Iceland for face-to-face talks with CCP. In this talk at the Virtual Items
Summit, CCP’s Cockerill will discuss shifting the game’s business model
from subscription-only to a subscription and virtual item hybrid after
eight successful years, and will be catered to those looking into moving
into virtual goods for their games.

Fundamental Multiplayer RPG Math
SARA JENSEN SCHUBERT KINGSISLE ENTERTAINMENT

KingsIsle’s Sara Jensen Schubert will bring her RPG system
expertise from SHADOWBANE and DC UNIVERSE ONLINE to help

attendees implement RPG-style character stats into their games.
Special emphasis will be placed on creating an initial, flexible framework
for basic RPG systems, and will focus on data-driven spreadsheets that
allow easy visualization and iteration of data. Topics will include NPC
attributes, items, cash economies, and experience curves.

Get Over Yourself: Making Someone's
Else's Game

LARALYN MCWILLIAMS LOOT DROP

Even the best designers know that the audience comes first, and
sometimes that means making a game that isn’t necessarily your

cup of tea. McWilliams will call upon her experiences designing FULL

SPECTRUM WARRIOR and the MMO FREE REALMS to help you learn about
your players and view the world (and by extension, your game) from
their eyes. “By shifting the focus from the developer to the player, and
from the specific game to the art of entertaining with interactive media,
designers can find inspiration and joy in their craft,” says McWilliams.

MARVEL SUPER HERO SQUAD ONLINE
Postmortem—An MMO For the Whole
Family in Under Two Years

JAY MINN AND JASON ROBAR THE AMAZING SOCIET Y

Creative director Jay Minn and studio manager Jason Robar say
they’ve learned a lot from their experiences developing MARVEL

SUPER HERO SQUAD ONLINE. How to work with a major licensee, how to
use Unity as a client engine, how to “capture the fun” in two weeks
of prototyping, and how to create an MMO for people of all ages are
just some of the topics these two promise to discuss during their
postmortem of the game, which they say will be “highly interactive, full
of humor, war stories, and audience participation.”

Emerging Trends In Games-as-a-Service
ATUL BAGGA THINKEQUIT Y

Trusted research analyst Atul Bagga will discuss emerging trends
across the entire gaming industry, including social, mobile,

online, and consoles, with a particular emphasis on the maturing
games-as-service markets in Japan and social-mobile games in China.
The intended takeaway here is to get a head start on international
trends that most analysts feel will be replicated in Western markets
sooner than others might be anticipating.

ACADEMY OF
INTERACTIVE ENTERTAINMENT

www.theaie.us

http://www.theaie.us
http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | augusT 201130

R e v i e w b y b i j a n f o R u t a n p o u R

D o n ya L a b s

Simplygon

WHaT's In THE boX
» The Simplygon package consists
of a standalone application, which
can natively load .OBJ, .FBX, and
Collada files, and there are also
Maya and Max plug-ins. Most
importantly, there’s a C++ SDK
which accesses all Simplygon
functionality, allowing tighter
integration into production pipelines.

One of the great strengths
of Simplygon is its ease of use.
Files can be loaded directly into
Simplygon, or indirectly through
Maya or Max. Let's look at the

Maya workflow. First, the model is
loaded into Maya, and the desired
geometry nodes are selected. Next,
the MEL command “Simplygon” is
run. This invokes the Simplygon
application, and the model is
automatically transferred over to
Simplygon. The next step involves
some decision making, such as
quality settings, and the number
of LODs needed. During my tests,
I never changed the settings from
"Normal" quality, and frankly, the
results were great out of the box.
One decision that has to be made

is how much to reduce the base
mesh for each LOD. Simplygon
does have a standard option for
choosing the desired number of
triangles, which is done by setting
a percentage (e.g., LOD #1 should
have 50 percent fewer triangles
than the base, LOD #2 should have
25 percent, and so on). However, it’s
easier and more intuitive to think of
it as the number of pixels you think
a particular LOD should occupy on
the screen. Thinking of it this way
lets the computer decide how many
triangles are necessary.

MEsH LoDs vs ProXy LoDs
» In traditional LOD systems, focus
is placed on reducing the triangle
count in a mesh, which Simplygon
calls Mesh LODs. The textures,
shaders, and materials remain the
same, and are shared between all
LODs. If the triangle count is reduced
significantly, fewer and fewer
triangles are submitted in a rendering
batch. This means the cost of
rendering the triangles becomes less
significant than the overhead cost
of the render state changes. So the
problem becomes twofold. Not only
is the amount of geometry rendered
reduced, but the number of render
state changes is reduced as well.

To address this problem,
Simplygon can generate a Proxy LOD,
which is a new mesh with a new set
of textures that are visually almost
identical to the original. It’s not a
simple copy, but rather the result of
an extensive process of analyzing
the model, sampling it, filling holes,
removing interior parts, merging
triangle geometry, and re-meshing
to generate a new mesh with
massive geometry reduction. You
could think of it an intelligent shrink-
wrap of the original.

The next automated step in the
process involves the creation of Proxy
Textures. Simplygon automatically
does an unwrap of the UVs, then
re-packs them to create the smallest
texture map possible while also
getting as close as it can to the
original mesh. It’s important to note
that the new UVs generated will not
have the same layout as the original
UVs. They’re packed for optimal space
saving and display. After the new UVs
have been generated, the textures
are baked into a single texture sheet,
including color, normal, occlusion,
and specular.

One interesting feature of Proxy
LODs is that they are not limited to
single objects. A group of hundreds

THE HuMan braIn WEIgHs abouT 3 PounDs, conTaIns abouT 100 bILLIon nEurons, anD
generates almost 25 watts of power. Although that is enough to light a light bulb, it seems like a
shame to spend an ounce of energy creating Level Of Detail (LOD) models by hand in a game
production pipeline. Artists bring creativity, imagination, and vision to a team. It is a waste of
valuable resources to use any part of their time and talent performing mundane tasks that can be
done automatically using intelligent software. The good news is that there are always people looking
to improve the machinery of game development. Simplygon from Donya Labs claims to do just that,
and today we will investigate whether Simplygon can actually lighten the load artists have to bear.

Simplygon is a tool that takes a textured polygonal model and generates new lower resolution
models that can be used as LOD models in-game. The model may be a skinned and animating
character model, or an environment object. Simplygon uses proprietary algorithms to intelligently
decimate the model and produce high quality results.

simplygon LoD generation

Job Name: Synapse Prepare Job
Job Number:
Proof Due: Thu, Jul 4, 2002
Final Due: Thu, Aug 29, 2002
Company: CMP Media LLC
Contact: Brandon Sheffield
Address: Game Developer
City: San Francisco
State: CA
Zip:
Country:
Office Phone: 415-947-6138
Email: bsheffield@cmp.com
Notes: Please call if you have questions about this job
�

Synapse PrepareCMP Media:Fry_4C_loresQuarkXPressª Settings: Incl_NoOv_Mrks_Comp 3
User may modify QuarkXPressª settings prior to sending
InDesignª Print Style: CMP.prst
Distiller Job Options: Creo PDF Pages.joboptions
PitStop Profile: UBM_4C_Quad_lores.ppp
PitStop Actions:
 MediaBox--bleed.eal
 Remove OPI
 remap_colour
User can add info annotations into resulting PDF
Distiller annotations will be added into resulting PDF
Job Info annotations will be added into resulting PDF
Directive annotations will be added into resulting PDF
�

www.gdmag.com 31

of objects that happen to be near to
or intersecting with each other, such
as buildings in a cityscape, can be
replaced by a single proxy mesh.

HEAVY LIFTING
» I decided to do a stress test
to find the limits of Simplygon's
processing power. I found a few
models created in ZBrush, which
is known for its ability to create
heavy models. The largest model
I had at hand was a human figure
consisting of 50 geometry mesh
nodes totaling 850,000 triangles. I
tasked Simplygon with generating
three LODs by completely re-meshing
them, creating Proxy LODs. It
managed this in less than five
minutes on a dual core 2.4 GHz CPU.
This success brings to mind all the
other uses for Simplygon, such as 3D
scanning data cleanup, or optimizing
scene generation for rendering data
in the VFX industry. Last but not
least, there’s the ability to transfer art
assets from a digital film production
facility to a game development
company for use in-game.

UNIQUE FEATURES
» One unique feature of Simplygon
(aside from Proxy LODs) is the
ability to handle animation and
skinned models. The skinning
information is taken into account,
and the polygon reduction ensures
that the joints in LOD models can
still animate correctly without
artifacts. This is obviously an
extremely important feature when it
comes to 3D game characters.

Another clever feature is the
3D viewer. There is a vertical "split
screen" mode, which allows the
quality of the polygon reduction to
be more easily seen. This is done by
splitting the 3D view window into two
halves: the left side of the screen
shows the left half of the base model
at full resolution, and the right side
shows the right half of the model,
drastically reduced in polygon count.
In wireframe mode, the results are
very interesting, as the quality of the
silhouette is easy to judge. The results
are uncanny, and the silhouette is
preserved extremely well.

With the 3D viewer, you can also
switch between LODs as the camera is
dollied in and out relative to the object.
The switch between LODs is extremely

subtle, if at all noticeable.

WHY SIMPLYGON ?
» One natural question that comes
to mind is, why not use the polygon
decimation tools inside a robust 3D
package such as Maya? I decided to
compare, thinking that at least for
static objects Maya would perform
the task easily. If successful,
Simplygon's solution would be much
less compelling.

I began with a model of a great
white shark created by Rhythm
& Hues Studios, purchased from
TurboSquid.com. Using Maya 2012
x64 Hotfix2, I loaded the model,
combined the meshes, and ran Mesh-
>Reduce at 50 percent reduction. I
got an error message, "Error: Cannot
reduce polygonal object with non-
manifold geometry. Cleanup the
object using Mesh->Cleanup before
reducing." Disappointed but still
hopeful, I ran the cleanup tool, set it
to remove non-manifold geometry,
and clicked OK. Maya immediately
crashed, and brought up the "Send
error report to Autodesk." No thanks.

What may have caused the non-
manifold geometry was that I had
combined all the model pieces into
a single mesh. I then ran the Mesh-
>Reduce menu again without the
combine step, and was able to get a
result. However, the result was very
faceted, which led me to believe the
normals had not been processed in
an intelligent way. I then ran Average
Normals to smooth things out, but
the result wasn't nearly as good
as what Simplygon had produced.
Details in sharper, finer areas had
been lost, and the silhouette quality
was not as good.

It also became clear that, while
Maya simply runs a 50 percent
reduction on each individual piece,
Simplygon takes a more intelligent
global approach. Varying polygon
model nodes that make up the whole
are decimated by varying factors,
leaving a larger poly count to more
"important" pieces. Presumably,
those decisions are based on the
scale of the polygon mesh node.

QUIRKS ANd GOTCHAS
» While Simplygon's great strength
and secret sauce is its ability to
easily generate high-quality LOD
models, as with any software

package, there are some minor
issues where some polish is still
needed. However, looking at current
and past release notes, it’s clear
that Simplygon has an aggressive
development schedule, with each
version introducing significant
new features and fixes. The current
issues I encountered, as of version
3.5, are very minor.

In 64-bit versions of Maya (2011,
2012), loading the Simplygon plug-in
takes a full 30–36 seconds. This
delay is presumably due to a license
check being done in the background.
The delay is significant enough to
where I would be wary of turning on
Auto-Load, thereby increasing Maya
startup times. This delay does not
occur in 32-bit versions of Maya.

As mentioned earlier, when
invoking Simplygon from within
Maya using the "Simplygon" MEL
command, the Simplygon standalone
GUI application is launched with the
models loaded. However, there is
one crucial necessary step, which
is that the models to be transferred
must be selected first. On more than
a few occasions, I forgot to do so, and
Simplygon showed a list of nodes,
mirroring the Outliner in Maya, but
no geometry was present in the 3D
viewer. Perhaps a feature should be
added such that if no models are

selected, then ALL the models are
transferred over by default.

During the time Simplygon
is running, Maya is completely
blocked. The Maya application does
not refresh, and moving windows
in front of it leaves a trace of
repeating window frames. One may
misinterpret this as a crash, but in
reality Maya is simply waiting for
the "Return To Maya" button to be
pressed inside Simplygon. When
that happens, everything returns to
working order.

PRICE
» The cost of Simplygon depends on
several factors, such as the type of
game, or whether a studio license is
required. Prices are available upon
request from Donya Labs. While the
figure you receive may be the price
of a small sports car, it is important
to do the math first. The cost savings
is enormous, should your game need
LODs. A medium sized MMO can
easily contain 7,000 models, and a
large MMO can contain up to 25,000 if
not more. If you estimate that it would
take an artist four hours on average
to generate several LODs per model,
a small game will require 28,000
hours, or 14 man-years. A large MMO
would take 100,000 hours, or 50
man-years. In this sense, Simplygon
can pay for itself over time.

SIMPLY FASTER
» Simplygon attacks the difficult
problem of LOD generation
masterfully, and joins the ranks
of smart tools that can have a
huge impact on time savings in
game development. Automatic
LOD generation may very well be
as significant in time savings as
technologies such as motion capture,
automatic lipsync, automatic
animation rigging, and physics
engines, to name a few. More
importantly, it frees up artists' brains
to work on what really matters—and
then grab a few beers and kill a few
brain cells afterward!

bIjAN FORUTANPOUR is a senior graphics

programmer at Sony Online Entertainment

in San Diego and has 18 years' experience

in the visual effects and games industries..

He is also the author of Enzo 3D paint for

Photoshop (www.enzo3d.com). Email him

at bforutanpour@gdmag.com

PRICE

› Available upon request

SYSTEM REQUIREMENTS

› Pentium 4
› 2 GB memory
› Windows XP
› Graphics card supporting OpenGL
› 10 GB free hard disk space

PROS

1 Produces great models
2 Reduces render batch counts
3 Takes character model skinning

information into account

CONS

1 Maya waits until Simplygon is
finished processing

2 64-bit Maya plugin has a loading
delay

3 Pricing may be out of range for
smaller studios

dONYA LAbS
Simplygon

Ostervagen 38, SE16955
Solna Stockholm, SWEDEN
http://www.simplygon.com

Job Name: Synapse Prepare Job
Job Number:
Proof Due: Thu, Jul 4, 2002
Final Due: Thu, Aug 29, 2002
Company: CMP Media LLC
Contact: Brandon Sheffield
Address: Game Developer
City: San Francisco
State: CA
Zip:
Country:
Office Phone: 415-947-6138
Email: bsheffield@cmp.com
Notes: Please call if you have questions about this job
�

Synapse PrepareCMP Media:Fry_4C_loresQuarkXPressª Settings: Incl_NoOv_Mrks_Comp 3
User may modify QuarkXPressª settings prior to sending
InDesignª Print Style: CMP.prst
Distiller Job Options: Creo PDF Pages.joboptions
PitStop Profile: UBM_4C_Quad_lores.ppp
PitStop Actions:
 MediaBox--bleed.eal
 Remove OPI
 remap_colour
User can add info annotations into resulting PDF
Distiller annotations will be added into resulting PDF
Job Info annotations will be added into resulting PDF
Directive annotations will be added into resulting PDF
�

http://TurboSquid.com
http://www.enzo3d.com
mailto:bforutanpour@gdmag.com
http://www.gdmag.com
http://www.simplygon.com

TOOLBOX

game deveLOper | augusT 201132

Valve's Source SDK
Goes Free
Half-life and Portal creator
Valve will release a software
development kit for its proprietary
Source Engine and modding tools
free of charge. Normally, the
Source SDK is only available to
those who purchase a game built
on the Source Engine. But now
that team fortress 2 has gone
free-to-play, the SDK has too.

In addition to offering users
free development tools, the release
also gives users access to a variety
of free mods. Currently, the freely-
available SDK appears to be more
of a side effect than a planned
initiative, as only certain mods work
with the SDK provided, but Valve
plans a more formal roll-out soon.

 –frank cifaldi

Sony Reveals PSP
Engine for Remaster
Series
The engine behind Sony's upcoming
PSP Remaster series, which is set to
offer enhanced versions of past PSP
games for the PlayStation 3, has
been detailed in full.

The PSP Engine, as revealed
at the Game Tools & Middleware
Forum 2011 event in Tokyo,
and as reported by Andriasang,
is the base engine for the
upcoming series, and will act as
a connection between the PS3 OS
and selected PSP games.

Sony's Kentaro Suzuki
explained that the new engine

allows original PSP titles to access
to high resolution rendering, as
well as 3D stereoscopic output.

The engine also enables the
use of PS3 wireless controllers
with the remastered games,
while supporting an ad-hoc mode
through the appropriate application
on the PS3.

A memory expansion feature
handles the high resolution
textures, allowing original PSP
assets to be swapped out for the
enhanced visuals. Common save
data between old PSP titles and
the new remastered versions also
comes as part of the new engine.

The new series is being
launched in Japan, with
Capcom's monster Hunter
Portable 3rd Hd Ver. hitting the
store first. Further expansion into

the U.S. and European territories
is planned.

–mike rose

GameSalad Adds
HTML5 Publishing to
Game Creation Tool
GameSalad has announced that
users of its drag-and-drop game
creation engine can now publish
titles that work with the HTML5
standard, and embed them for play
on any compatible web browser.

With most major web browsers
now supporting HTML5's options
for heavily interactive web apps,
the company says the option gives
a game a much bigger potential

audience than plugins like Flash or
Unity, and the company is helping
promote many of those games
through the GameSalad Arcade
section of its web site.

While HTML5 web apps are
playable natively on many mobile
browsers, GameSalad Chief
Product Officer Michael Agustin told
Game Developer he doesn't see the
option primarily as a way to do an
end-run around the certification
requirements and fees associated
with mobile app stores.

"The App Store and the
Android Marketplace still serve
as the primary discovery model
on mobile devices, where native
apps often can provide a better
overall experience," Agustin said.
"That said, HTML5 has less friction
because the content is delivered as
you browse the Web, and there is
no download or content to install."

GameSalad doesn't currently
offer any built-in monetization
options for HTML5 developers, but
Agustin said he sees the web games
as "the best way for players to learn
about and experience mobile games
before downloading them."

–kyle orland

Adobe Flash Builder
Update Adds iOS,
BlackBerry Tablet
Support
Following up on its recently-
debuted support for Android,
Adobe has updated its Flash
Builder development suite to
support iOS and BlackBerry
PlayBook devices, allowing
developers to make cross-
platform apps with one codebase.

The Adobe Flash Builder MXML
editor (formerly known as Adobe
Flex Builder) allows creators to
build cross-platform applications
for mobile, web, and desktop
applications using ActionScript
and Adobe's own Flex framework.

"Developers can quickly build
and distribute apps through the
Android Market, BlackBerry App
World, and Apple App Store using
one tool chain, programming

language and code base—a first
for developers!" Adobe's Puneet
Goel wrote on Adobe's Flash blog.

While this doesn't bring iOS
devices any closer to supporting
Flash-based applications (Apple
CEO Steve Jobs blames "technology
issues"), it could ease development
for those wishing to create cross-
platform applications or port any
existing Flash content to iOS.

–frank cifaldi

Microsoft Releases
Non-commercial Kinect
SDK for PC
Microsoft has officially released
a non-commercial beta version
of a long-promised PC software
development kit for its Kinect
depth-sensing camera, for use in
C++, C# and Visual Basic projects.

The SDK, which is available for
download now, provides academics
and hobbyists access to raw sensor
streams from Kinect's RGB and
depth-sensing cameras, as well as
its directional microphones.

The software will also
provide automatic skeleton
tracking for up to two people
and audio processing features
such as echo cancellation and
source recognition. It comes
packaged with over 100 pages
of documentation and a number
of demos.

Hackers have been using
homebrew Kinect drivers since
just after the hardware's launch
to develop everything from art
projects to autonomous robotic
helicopter guidance systems.
Hardware maker PrimeSense
released a set of open PC drivers
for the hardware last December.

During E3, Microsoft released
Kinect Fun Labs, an Xbox Live
download providing a trio of tech
demos that show off the Kinect's
capabilities.

A commercial release for the
PC SDK is planned for release "at
a later date." Microsoft has also
promised eventual XNA support for
the Kinect.

–kyle orland

p r o d u c t n e w s

Team ForTress 2.

SUMMITS
MONDAY—TUESDAY

 Game Narrative

 GDC Virtual Items

 Smartphone & Tablet Games

PLUS
WEDNESDAY

 Game Career Seminar

 Game Writing Tutorial

MAIN CONFERENCE
SESSIONS
TUESDAY—THURSDAY

 Business & Marketing

 Customer Experience

 Design

 Production

 Programming

 Monetization (sponsored)

EXPO FLOOR
TUESDAY—WEDNESDAY

» Leading online game publishers
» Cloud-based gaming services
» Payment solution companies
» Development tool vendors
» Networking, playable games

and more!

2ND ANNUAL CHOICE
ONLINE AWARDS
WEDNESDAY

» Best Online Game Design
» Best Social Network Game
» Best New Online Game
» Online Game Legend

and more!

Join us at GDC Online, October 10–13, for four days of world-class content across 120+ sessions,
covering a wide-ranging scope of online and connected game development topics taught by leading
industry experts.

Game Developers Conference Online® 2011 (GDC Online) is the community meeting point
and principle learning platform for game professionals in the online and connected games space,
including cloud gaming, MMOs, virtual worlds, casual and social networking games.

Game Developers Conference Online® 2011
October 10–13, 2011 | Austin Convention Center | Austin, Texas
Visit www.gdconline.com for more information.

REGISTER BEFORE SEPTEMBER 1STAND SAVE UP TO40%!

For the latest news, contests and promotions visit us on: and .

GDCO11_NewAd_vf.indd 1 7/6/11 12:31 PM

http://www.gdconline.com

THE INNER PRODUCT // PaUl laska

Dynamic memory allocation with a memory heap system

Ready, Set, allocate!

ilomilo, a puzzle game from
Southend Interactive, was
made using openGl eS2.0.

gamE DEvElOPER | aUgUsT 2011 34

tRackInG
» In my code I use an array of tracking units—each element is an
unsigned 32-bit integer with each bit representing a page of tracked
memory. the size of the array is determined by the amount of memory to
be tracked, and the page size.

First we need to choose the amount of memory to track. The current
console systems range up to 512MB of memory, but most of my work has
been done on the PSP, which only has 32MB, so that's the size I chose to
test with, even though the PSP only really allows use of about 20MB after
the OS and volatile memory.

32 * 1024 * 1024 = 33554432 Bytes

Second, we must choose the page size for each allocation of memory
to track. This will be the minimum allocation size, so we need to strike a
balance that doesn’t require too many small allocations for large files,
which would make tracking a heavy burden. We also don’t want to waste
too much space for a reasonable number of small allocations. In my code,
the page size should also be made a power of two, for speed considerations
to be explained later. I’ve chosen 4096 Bytes.

Since each page is represented by a bit in a tracking unit:

number of pages per tracking unit =
4 Bytes per tracking unit * 8 bits (or pages) per Byte
(32 pages per tracking unit)

number of pages required to track the total memory =
33554432 Bytes / 4096 Bytes per page
(8192 pages)

number of tracking units =
8192 pages / 32 pages per tracking unit
(256 tracking units)

So at a cost of 256 tracking units, at 4 Bytes each, it will take 1KB to track
32MB with a 4KB page size. Using a similar setup for 512MB would require
16KB to track, and for 2GB would require 65KB to track. Pretty sweet eh?

I should mention a few typedefs I use:

u8 - unsigned char
u16 - unsigned short
u32 - unsigned integer
l64 - long long

To aid in tracking, a few constants are set up as below:

// Utility macro
#define _MB(size) size * 1024 * 1024
#define TRACKING_UNIT u32
const TRACKING_UNIT kMemTrackingUnitAllPagesInUse = 0xFFFFFFFF;
const u32 kMemInUse = 0x01;
const u32 kMemNumPagesPerUnit =
 (sizeof(TRACKING_UNIT) * 8 /* Bits per byte */);
const u32 kMemPageSize = 4096;
const u32 kMemTotalTracked = _MB(32);
const u32 kMemNumPages = kMemTotalTracked / kMemPageSize +
 ((kMemTotalTracked % kMemPageSize)? 1 : 0);

const u32 kMemNumTrackingUnits = kMemNumPages / kMemNumPagesPerUnit +
 ((kMemNumPages % kMemNumPagesPerUnit)? 1 : 0);

And finally the tracking array and memory to be tracked are allocated:

TRACKING_UNIT aMemPageTrackingBits[kMemNumTrackingUnits];
const void* kpMemory = malloc(kMemTotalTracked);

Malloc and Free methods will maintain and use the tracking array.

Malloc
» First, here comes the huge non-secret secret. aligned memory is
easier to allocate than un-aligned memory, because the addresses work
nicely within this system. Since it can be assumed that all allocations
will be made along the alignment boundary, there is no requirement
to divide and track sub-alignment size blocks, which saves time in
operations and space in tracking. the downside is the allocations
potentially waste space and fragment memory. With some careful

allocatInG dynaMIc MeMoRy can be a MajoR SloWdoWn in any game, but a memory heap system that replaces
the built-in allocation system can help to overcome slowdown situations. A technique I’ve used to good effect is to
allocate as much memory as possible into one heap, and then rewrite Malloc and Free to use that heap. This requires
tracking and a bit of memory, but the speed increase has proven well worth the effort.

Presented here are some of the basics to a method I’ve used, as well as some metrics to show the speed increase.
All my tests are run on an old desktop running Windows XP Pro Service Pack 3, with a Pentium 4 3.0GHz 32-bit
processor, 800MHz FSB, with 512MB of RAM.

The first thing to do is set up the tracking. Following the tracking will be a breakdown of Malloc, and then Free.
Afterward we’ll discuss a simple high-resolution performance timer, test, and metrics.

www.gdmag.com 35

planning and usage of design patterns such as the Object Pool, the
wasted space and fragmentation can be minimized.

One of the dirty little secrets about the tracking system is that it only
tracks whether a page of memory is in use, which doesn’t inform the Free
method about how much memory was previously allocated when Malloc
was called. So all Malloc calls should mark the memory being returned with
some sort of header to denote how much memory was allocated, so the
corresponding Free call will have the information it needs to release the
memory and update the tracking information. In my code I use a simple
header that tracks the size and the alignment.

typedef struct _TAllocationHeader
{
 size_t uSize;
 u32 uAlignment;
} TALLOCATION_HEADER;

Now, technically, a size_t, or 32-bit unsigned integer for the uSize member
is overkill for a 32MB memory heap. 2^25 would suffice, but trying to go
smaller isn’t possible with the current data types; the next data type down,
a u16, only goes to 65,535. The 32-bit unsigned integer can denote up to a
4GB allocation, which hopefully should be more than will be needed in one
allocation. If not, adjust accordingly for your needs.

The 32-bit unsigned integer for the Alignment is also overkill, but
instead of trying to conserve space using an 8-bit unsigned char, the u32

is chosen because it keeps the address at the end of the header aligned
within the 32-bit system. Keep in mind when modifying the allocation
header’s size that it should be a multiple of the alignment size. This means
that memory addresses returned will be useable with operations that
require memory alignment (such as those used in SIMD).

The Malloc function signature looks like this:

void* my_malloc(size_t uSize, u32 uAlignment)

uSize is the amount of memory in bytes being requested, and uAlignment
is the size in bytes to use for calculating address boundaries. Calls to
malloc can be redirected to use my_malloc by providing and using a define
that can be swapped between Malloc or my_malloc and inserts whichever is
chosen during the pre-processor phase of compilation.

#define MYMALLOC(uSize) my_malloc(uSize, 4)

There are several things Malloc needs to do, so let’s go through them one
by one. The first four steps are mostly housekeeping, so I’ve kept the
explanations mostly to just a description of what is done in code.

1 // Add padding to compensate for alignment of the allocation.
If the allocation request doesn’t match the alignment requirement, it’s
simple enough to fix. The additional space is calculated by taking the
modulus of the size by the alignment, subtracting the remainder from the
alignment, and adding the result back into the size.

uSize += (((uSize % uAlignment) > 0) ?
uAlignment - (uSize % uAlignment) : 0;

2 // Align the header so the beginning address of the memory will
be aligned.
As an optimization, this step can be skipped if you know that your
allocation header will always take enough memory to leave the next
available byte on an alignment boundary. However, if someone calls my_
malloc with an alignment size greater than the size of the allocation header,
the result will be an unaligned address boundary. The size in bytes to pad
the allocation header is obtained using a similar method to what was used
to pad the allocation itself. The final size of the allocation header is also
saved so it can be used to calculate the return address.

u32 uAllocHdrPadSize = ((sizeof(TALLOC_HDR) % uAlignment) > 0) ?
uAlignment - sizeof(TALLOC_HDR) % uAlignment : 0;
u32 uAllocHdrSize = sizeof(TALLOC_HDR) + uAllocHdrPadSize;

3 // Add the size of the header to the allocation.
Nothing big here, just keeping track of how much memory will be required.

uSize += uAllocationHeaderSize;

Figure 1: Big Endian bit field.

l i s t i n g 1

 TRACKING_UNIT uNumRemPagesNeeded =

 ((uNumPagesReq >= (kMemNumPagesPerUnit - uPreOffset)) ?

 (uNumPagesReq - (kMemNumPagesPerUnit - uPreOffset)) : 0);

 if(uNumRemPagesNeeded == 0)

 {

 aMemPageTrackingBits[uBegTrackUnit] |= uPreBitMask;

 u32 uAddress = ((uBegTrackUnit * kMemNumPagesPerUnit) +

 uPreOffset) * kMemPageSize;

 memset((void*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress), 0, uAllocHdrPadSize);

 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrPadSize))->uSize = uSize;

 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrPadSize))->uAlignment = uAlignment;

 return (void*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrSize);

 }

 u32 uNxtTrackUnitToChk = (uBegTrackUnit + 1) %

 kMemNumTrackingUnits;

 if(uNxtTrackUnitToChk < uBegTrackUnit)

 {

 return NULL;

 }

http://www.gdmag.com

4 // Check the request to make sure it will fit in the memory being
tracked.
The number of pages being requested is calculated and saved. First, the
number of whole pages is obtained by dividing the allocation size by the
size of a page of memory. Then any remaining memory that is required will
fit into one page, so one page will be added if the allocation size modulus by
the size of a page of memory is anything other than zero.

const u32 uNumPagesReq = uSize / kMemPageSize +
((uSize % kMemPageSize) ? 1 : 0);

Next the number of tracking units requested is calculated and saved in a
similar fashion. The number of whole tracking units is the number of pages
requested divided by the number of pages per tracking unit. Then any
remaining pages will fit into one tracking unit, so one tracking unit will be
added if the number of pages requested modulus by the number of pages
per tracking unit is anything other than zero.

const u32 uNumTrackUnitsReq = uNumPagesReq / kMemNumPagesPerUnit +
((uNumPagesReq % kMemNumPagesPerUnit) ? 1 : 0);

Lastly, the number of tracking units requested is compared to the total
number of tracking units. If there are more tracking units being requested
than the total number, the allocation failure is reported by returning NULL.

if(uNumTrackingUnitsReq > kMemNumTrackingUnits)
{
 return NULL;
}

5 // Find enough contiguous pages of memory to satisfy the allocation.
The search for pages is broken up into three stages; starting point, whole
tracking units, and remaining pages. The starting point looks for a tracking
unit that either resolves the entire request or has pages available at the
end, and is contiguous to the next tracking unit. The whole tracking units
consist of 32 pages, at 4KB each, and by searching for available whole
tracking units, the search is sped up by not having to do an individual
search for each page internally. The remaining pages stage aims to fulfill
the remainder of the request by checking the tracking unit that is contiguous
to either the tracking unit used for the starting point, or the last whole
tracking unit, depending on which was last used.

With the given machine architecture (Little Endian), I still think
of the units of the tracking array like they are Big Endian. When the end of the
tracking unit is referred to, this refers to the least significant bit. The beginning
or start of the tracking unit is the most significant bit (see Figure 1).

The array of tracking units will position the end of each preceding tracking
unit next to the start of the subsequent tracking unit as seen in Figure 2.

The search begins at the first tracking unit, and continues iterating over
the array of tracking units until they have been exhausted.

u32 uBeginningTrackingUnit = 0;
while(uBeginningTrackingUnit < kMemNumTrackingUnits)
{

5a // Find a starting point of available pages within a tracking unit.
Four potential situations exist within the first tracking unit.

1. All the pages have been used.
2. Not enough free pages exist internal to the tracking unit to

fulfill the request.
3. All the pages needed to fulfill the request are contained

within the starting tracking unit.
4. Available pages exist starting at some point within the

tracking unit, extending to the end, and may be used in
conjunction with the next tracking unit to fulfill the request
if enough available contiguous pages exist.

The first two situations are not useful for fulfilling the request, so the
last two are what we should test for. If there are enough pages contained
within a tracking unit to fulfill the request, they can be located by building
a bitmask that represents enough pages, then using that bitmask to find
a match with the available pages. The number of pages not needed in a
tracking unit is calculated by subtracting the number of pages needed from
the number of pages per tracking unit. The bitmask is then created by bit
shifting the “all pages in use” constant toward the end of the tracking unit
by the number of pages not needed; this leaves the number of pages that
are needed as the bitmask.

u32 uPreOffset = 0;
 TRACKING_UNIT uPreBitMask = 0;
if(uNumPagesReq < kMemNumPagesPerUnit)
{
 uPreBitMask = kMemTrackingUnitAllPagesInUse <<
 (kMemNumPagesPerUnit - uNumPagesReq);
 }

If there are not enough available pages contained within a tracking unit
to fulfill the request, then either the entire tracking unit (if all pages are
available) or whatever available pages are at the end of the tracking unit
can be used in conjunction with the available pages contained in the start,
or the entirety of the subsequent tracking unit. The bitmask that represents
all pages available is built from this.

else
{
 uPreBitMask = kMemTrackingUnitAllPagesInUse;
}

Once the bitmask is created it is repeatedly checked and shifted toward
the end of the tracking unit until a match to the bitmask is found, or all

THE INNER PRODUCT // PaUl laska

gamE DEvElOPER | aUgUsT 2011 36

Figure 2: Preceding/Subsequent tracking units.

Job Name: Synapse Prepare Job
Job Number:
Proof Due: Thu, Jul 4, 2002
Final Due: Thu, Aug 29, 2002
Company: CMP Media LLC
Contact: Brandon Sheffield
Address: Game Developer
City: San Francisco
State: CA
Zip:
Country:
Office Phone: 415-947-6138
Email: bsheffield@cmp.com
Notes: Please call if you have questions about this job
�

Synapse PrepareCMP Media:Fry_4C_loresQuarkXPressª Settings: Incl_NoOv_Mrks_Comp 3
User may modify QuarkXPressª settings prior to sending
InDesignª Print Style: CMP.prst
Distiller Job Options: Creo PDF Pages.joboptions
PitStop Profile: UBM_4C_Quad_lores.ppp
PitStop Actions:
 MediaBox--bleed.eal
 Remove OPI
 remap_colour
User can add info annotations into resulting PDF
Distiller annotations will be added into resulting PDF
Job Info annotations will be added into resulting PDF
Directive annotations will be added into resulting PDF
�

www.gdmag.com 37

bits in the bitmask are exhausted. If a match isn’t found prior to shifting
the bitmask, then the bits that are shifted off the end of the tracking unit,
representing needed pages, will need to be found in the next tracking unit,
and this is kept in the uPreOffset counter used in a for loop.

 for(; uPreOffset < kMemNumPagesPerUnit; ++uPreOffset)
 {
 if((~(aMemPageTrackingBits[uBegTrackUnit]) &
uPreBitMask) == uPreBitMask)
 {
 break;
 }
 uPreBitMask = uPreBitMask >> 1;
 }

Next, a check is done to make sure the bitmask wasn’t completely
exhausted, and if it was, to move to the next tracking unit and start over.

 if(uPreOffset == kMemNumPagesPerUnit)
 {
 uBegTrackUnit++;
 while(aMemPageTrackingBits[uBegTrackUnit] ==
 kMemTrackingUnitAllPagesInUse)
 {
 uBegTrackUnit++;
 }
 continue;
 }

If the bitmask wasn’t completely exhausted, then the number of remaining
pages needed is calculated and checked. If more pages are needed then
a check is performed to ensure more tracking units are available. When
no more tracking units are available, but more pages are needed, a null
is returned. In the case that enough pages have been found to fulfill the
request, the pages to be assigned are marked as in use, the beginning
memory address is calculated, the memory used to pad the allocation
header, if any, is cleared, the allocation header is written, and the memory
address immediately following the allocation header is returned. By placing
the allocation header immediately prior to the memory address returned,
the size and alignment information can be easily retrieved during a free
method call—or anywhere it needs to be viewed, such as in a debugger—
simply by moving the memory address pointer backward. See Listing 1.

5b // Find whole tracking units where all pages are available and
required in fulfilling the request.
Since the tracking units are 32-bit unsigned integers, any tracking units
where all pages in the tracking unit are available will have a value of
zero. The number of contiguous whole tracking units to find is calculated,
and then the tracking units subsequent to the starting tracking unit are
evaluated. If a partially or fully-used tracking unit is encountered before all
the required whole tracking units are found, then the tracking unit to start
searching from is moved up to the current tracking unit, and the search
for whole tracking units is terminated. If a tracking unit is completely
available, it is counted and evaluation continues until failure, or all required
contiguous whole tracking units are found and confirmed, as below.

 u32 uNumContgTrackUnitsAvail = 0;
 u32 uNumContgTrackUnitsToFind =
 uNumRemPagesNeeded / kMemNumPagesPerUnit;
 for(u32 i = uNxtTrackUnitToChk;
 i < kMemNumTrackingUnits &&

 uNumContgTrackUnitsAvail < uNumContgTrackUnitsToFind; ++i)
 {
 if(aMemPageTrackingBits[i] == 0)
 {
 uNumContgTrackUnitsAvail++;
 }
 else
 {
 uNumContgTrackUnitsAvail = 0;
 uBegTrackUnit = i;
 break;
 }
 }

Once the search has terminated or completed, the number of available
whole tracking units found is compared to the number of contiguous whole
tracking units required, to make sure the search wasn’t terminated early.
If the search was terminated early, then the search for the requested
memory must begin again at the beginning.

 if(uNumContgTrackUnitsAvail != uNumContgTrackUnitsToFind)
 {
 continue;
 }

l i s t i n g 2

 if((~(aMemPageTrackingBits[uNxtTrackUnitToChk]) &

 uPostBitMask)

 == uPostBitMask)

 {

 aMemPageTrackingBits[uBegTrackUnit] |= uPreBitMask;

 for(u32 i = (uBegTrackUnit + 1); i < uNxtTrackUnitToChk

 ; ++i)

 {

 aMemPageTrackingBits[i] |=

 kMemTrackingUnitAllPagesInUse;

 }

 aMemPageTrackingBits[uNxtTrackUnitToChk] |= uPostBitMask;

 u32 uAddress = ((uBegTrackUnit * kMemNumPagesPerUnit) +

 uPreOffset) * kMemPageSize;

 memset((void*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress), 0, uAllocHdrPadSize);

 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrPadSize))->uSize = uSize;

 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrPadSize))->uAlignment = uAlignment;

 return (void*)((u32)(const_cast< void* >(kpMemory)) +

 uAddress + uAllocHdrSize);

 }

 uBegTrackUnit = uNxtTrackUnitToChk;

}

http://www.gdmag.com

The number of pages needed is recalculated, subtracting out the pages
contained in the whole tracking units that were just located.

 uNumRemPagesNeeded = uNumRemPagesNeeded -
 (uNumContgTrackUnitsAvail * kMemNumPagesPerUnit);

A check is then performed to determine whether all the pages needed have
been found. If they have, then the same steps are taken as described at
the end of the search for the starting point—except when the pages are
marked as used, the whole tracking units used to satisfy the request are
marked as well. If more pages are required then the algorithm continues.

if(uNumRemPagesNeeded == 0)
{
 aMemPageTrackingBits[uBegTrackUnit] |= uPreBitMask;
 for(u32 i = uNxtTrackUnitToChk;
i < (uNxtTrackUnitToChk + uNumContgTrackUnitsAvail); ++i)

 {
 aMemPageTrackingBits[i] |= kMemTrackingUnitAllPagesInUse;
 }

 u32 uAddress = ((uBegTrackUnit * kMemNumPagesPerUnit) +
uPreOffset) * kMemPageSize;

 memset((void*)((u32)(const_cast< void* >(kpMemory)) +
uAddress), 0, uAllocHdrPadSize);

 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +
uAddress + uAllocHdrPadSize))->uSize = uSize;
 ((TALLOC_HDR*)((u32)(const_cast< void* >(kpMemory)) +
uAddress + uAllocHdrPadSize))->uAlignment = uAlignment;

 return (void*)((u32)(const_cast< void* >(kpMemory)) +
uAddress + uAllocHdrSize);
 }

5c // Find the remaining pages needed to fulfill the request.
Before checking for the last tracking unit to fulfill the request, a check is
performed to make sure the index for the next tracking unit to check is
not past the end of the array of tracking units. If the next tracking unit to
check would be past the end of the array, then not enough contiguous
memory exists, and null is returned. When the index for the next tracking
unit to check is valid, then a bitmask is created for the remaining pages
needed; the bits for this are shifted to begin at the start of the tracking unit,
because the pages must be contiguous with the previously located pages.

 uNxtTrackUnitToChk = (uNxtTrackUnitToChk + uNumContgTrackUnitsAvail)
 % kMemNumTrackingUnits;
 if(uNxtTrackUnitToChk <= uBegTrackUnit)
 {
 return NULL;
 }

 TRACKING_UNIT uPostBitMask = kMemTrackingUnitAllPagesInUse <<
 (kMemNumPagesPerUnit - uNumRemPagesNeeded);

One last check is performed to determine whether enough contiguous
pages have been located to fulfill the request. The new bitmask is
compared to the next tracking unit to check. If a match is found, then the
same steps are taken as described at the end of the search for the starting
point, except when the pages are marked as used the whole tracking units

used to satisfy the request and the pages required in the next tracking
unit to check are marked as well. If a match is not found, then the tracking
unit from which the check will start is moved to the tracking unit that was
evaluated for the end in this iteration, because it may be the start of the
tracking units that will fulfill the request in the next iteration of the search
over the tracking unit array. See Listing 2

If all the tracking units have been exhausted without locating enough
pages to fulfill the request, then null is returned.

 return NULL;

And that’s my_malloc.

In the bigger picture, there are issues that still need to be considered and
dealt with, such as fragmentation or frequent small requests. Issues such
as those can be handled through other schemes, like memory heaps, or
hashes containing lists of available memory with frequently used sizes and
object factories that would be implemented on top of Malloc. The reason
these other schemes are not handled in Malloc itself is because in my
implementation I chose not to incur the costs associated with them trying
to allocate larger blocks of memory. In other words, only incur the execution
costs when necessary.

Free
» To release memory back to the allocation system, we’ll take three
steps. First, retrieve the allocation header. Then determine the pages
used to track the memory. Finally, release the pages back into the
memory heap.

The Free function signature looks like this:

void my_free (void* pMem)

pMem is the memory to be released back to the allocation system.

Similarly to how Malloc was redirected, calls to Free can be redirected to
use my_free by providing and using a define that can be swapped between
Free or my_free and inserts whichever is chosen during the pre-processor
phase of compilation.

#define MYFREE(pMem) my_malloc(pMem)

1 // retrieve the allocation header.
Recall that the allocation header was placed just prior to the address returned
from Malloc. So to retrieve the allocation size and alignment information,
the address pointed to by pMem is decremented by the size of an allocation
header; this makes the address point to the beginning of the allocation
header, so after a quick cast the allocation header members can be retrieved.

u32 uSize = ((TALLOC_HDR*)((u32)(pMem) -
 sizeof(TALLOC_HDR)))->uSize;
u32 uAlignment = ((TALLOC_HDR*)((u32)(pMem) -
 sizeof(TALLOC_HDR)))->uAlignment;

The amount of padding used before the header is determined to keep the
memory aligned, and is used to move the pMem pointer back, so that when
the memory is released, all the memory added for the allocation header is
released as well.

THE INNER PRODUCT // PaUl laska

gamE DEvElOPER | aUgUsT 2011 38

www.gdmag.com 39

u32 uAllocHdrPadSize = ((sizeof(TALLOC_HDR) % uAlignment) > 0) ?
 uAlignment - sizeof(TALLOC_HDR) % uAlignment : 0;
u32 uAllocHdrSize = sizeof(TALLOC_HDR) + uAllocHdrPadSize;
pMem = (void*)((u32)(pMem) - uAllocHdrSize);

2 // Determine the Pages used to Track the Memory.
The first thing to do here is to figure out the “address,” or offset from the
beginning of the memory being tracked. Then the tracking unit where the
allocation was started, as well as the offset for the beginning bit/page within
the first tracking unit can be determined using the address.

u32 uAddress = (u32)(pMem) - (u32)(const_cast<void*>(kpMemory));
u32 uBegTrackUnit = uAddress / kMemPageSize / kMemNumPagesPerUnit;
u32 uPreOffset = uAddress / kMemPageSize % kMemNumPagesPerUnit;

The size information obtained from the allocation header allows the number
of pages used to track the allocation to also be calculated.

u32 uNumPagesUsed = uSize / kMemPageSize +
 ((uSize % kMemPageSize)? 1 : 0);

3 // Release the pages back into the memory heap.
Clearing pages for each tracking unit follows the same basic pattern, a
bitmask of the pages used is built, then bitwise inverted and logically AND-
ed to the tracking unit, with results stored back into the same tracking unit.

If the entire allocation is contained within one tracking unit, then it is
cleared and the function returns.

if(uNumPagesUsed < (kMemNumPagesPerUnit - uPreOffset))
{
 aMemPageTrackingBits[uBegTrackUnit] &=
 ~((kMemTrackingUnitAllPagesInUse <<
 (kMemNumPagesPerUnit - uNumPagesUsed)) >> uPreOffset);
 return;
}

Otherwise, the free operation is broken down into three parts (see Listing 3):

1. Free the partially-used tracking unit for the beginning of the
allocation.

2. Free any whole tracking units used for the allocation.
3. Free a partially-used tracking unit, if used, for the end of the

allocation.

And that’s it, the Free method is done.

A SiMPle HigH-ReSoluTion PeRfoRMAnce
TiMeR foR TeSTing
» All testing was done using a simple high-resolution performance
timer which uses Microsoft’s QueryPerformancecounter and
QueryPerformancefrequency methods located in WinnT.h.
QueryPerformancecounter returns the current value of a computer’s
high-resolution performance counter. The frequency of a computer’s
high-resolution performance counter varies from machine to machine,
but will not change while a machine is running, so it must be obtained
using QueryPerformancefrequency. Dividing the difference of two
values returned from QueryPerformancecounter by the frequency
returned from QueryPerformancefrequency gives the elapsed time, and
is accurate to one microsecond.

The timer needs three counters (start, paused, and total paused) and five
methods (Initialization, Start, Pause, Resume and GetTime). Initialization
zeros out the counters, and also determines the frequency. Start and
Pause store the value returned from QueryPerformanceCounter to their
respective counters. If the pause counter value is greater than zero,
Resume subtracts the pause counter from the current value returned
from QueryPerformanceCounter, adds the result to the total pause
counter, and zeros out the pause counter—otherwise Resume calls Start.
GetTime returns the amount of time elapsed by subtracting the start
counter from the current value returned from QueryPerformanceCounter,
then subtracting the total paused counter, dividing the result by the
frequency. Many examples exist on the web, so I’ve forgone the code
implementation here. Please be aware that with multi-processor
systems the thread affinity should be specified for the timer using
SetThreadAffinityMask

TeSTS AnD MeTRicS
» i’ve used three tests to show some of the differences between the
heap system created with my_malloc, my_free, and the tracking array
and their standard counterparts. The first test examines how long it
takes to do a set number of allocations with a given size. The second
test looks at how long it takes to exhaust 32MB of memory with 4KB
allocations a set number of times. The third test investigates how long it
takes to allocate a set number of times in a worst-case scenario.

1 // How long does it take to allocate X times at size Y?
Multiple sizes, from one byte to 32MB were tested to see how long it took to
allocate each one, 1, 10, 100, 1,000, and 10,000 times. When the test was
run using the heap system here, allocation times ranged from less than a
millisecond (for one byte being allocated one time), to 27.3 milliseconds
(for 32MB being allocated 10,000 times). However, when the test is run
using the standard memory allocator, allocation times range from less
than a millisecond (for one byte being allocated one time), to 9 minutes
17 seconds 442.7 milliseconds (for 32 MB being allocated 10,000 times).
Now that’s a pretty sensational performance improvement, but something
a bit more realistic in real world use might be 64KB allocated 1,000 times,
and with that the improvement still shows through with 0.7 milliseconds
and 66.3 milliseconds respectively.

Allocating a bunch of objects of the same size can add up in time
spent allocating, and if lots of them are done at the same time, it can
be a performance issue. The problem becomes more prevalent with
larger allocations when the system has to search for larger blocks of
contiguous memory.

Windows XP cannot be limited to allocating the requested memory from
a specific range of addresses, short of implementing a memory allocation
system, which lends itself to increased allocation times while searching for
available memory with the standard allocation system, and that is partly
what is being demonstrated here.

2 // How long does it take to allocate all the memory X times at 4KB
per allocation?
Memory was allocated 4KB at a time until the memory was exhausted,
in order to test how long it took when the steps were repeated 1, 10,
100, 1,000, and 10,000 times. Only the smallest size possible from
the system is tested, since larger allocations decrease the amount of
allocations and time.

Exhausting 32 MB of memory at 4KB per allocation with the heap
system here ranges in time from 10.1 milliseconds to do it one time, to 1

http://www.gdmag.com

minute 39 seconds 995 milliseconds to do it 10,000 times. When using
the standard memory allocation system, the times range from 101.5
milliseconds to exhaust 32MB of memory one time, to 15 minutes 52
seconds 593.3 milliseconds, to do it 10,000 times. Even more interesting
is the increase in performance of the Free method. To free the same
memory that was allocated, the heap system here ranges from 6.1
milliseconds to 1 minute 1 second 891.4 milliseconds, while the standard
memory allocation system clocks in a range from 613.6 milliseconds to
1 hour 43 minutes 35 seconds 161.5 milliseconds. At first I didn’t believe
it took more than an hour and a half to free the memory, so I re-ran the
test and came up with a similar time (1:41:58.453.5). While the idea of
exhausting the memory 10,000 times in a row may not be a real-world
problem, it still highlights the time gains that can be made over many
allocations and de-allocations with a specialized system.

Allocating all the memory at 4KB per allocation demonstrates some
good and bad allocation conditions, though not the absolute worst. When
no memory is previously allocated, available memory is discovered quickly,
and because each subsequent allocation is contiguous, whole blocks
eventually end up getting examined with a single check, reducing the time
to discover available memory. Performing lots of small allocations means
that more searches are performed than if larger allocations were made,
because larger allocations would exhaust the memory quicker, and more
searches adds up to more time spent searching for available memory.

Allocating all the memory in Windows XP isn’t the same as allocating
all the memory in the system described herein, since Windows XP doesn’t
guarantee one contiguous chunk of memory for all the allocations, and
Windows XP will also begin page-swapping once the physical memory has
been exhausted. However, the time it takes Windows XP to allocate 32MB
worth of memory at 4KB per allocation versus the time it takes the system
described herein to do the same can still be compared for time to allocate a
similar amount of memory.

3 // How long does it take to allocate 8KB of memory X times in the
worst-case?
The worst-case scenario set up the memory to be entirely allocated in 4KB
blocks, then went back through and freed up every other block. At the end
of the memory the pre-test conditions ensured an 8KB block was available.
An 8KB request was then made to the system and timed to determine how
long it takes to find the available memory when the test was repeated 1, 10,
1,000, and 10,000 times.

The worst-case test gives a sense of the time an allocation can take
with this heap system at its worst, and shows how important it is to
avoid fragmentation of the memory. Times to perform the test range from
390.5 milliseconds to complete 1 time, to 1 hour 5 minutes 12 seconds
634.8 milliseconds, to complete 10,000 times. In the real world one
hopes to never get into a fragmentation predicament like the one set up
here, and careful planning of heaps is usually done to help avert this kind
of situation.

Since there is no way to limit where Windows XP will allocate memory,
and because Windows XP will start page swapping to the hard drive when
it runs out of physical memory, this last test isn’t something that can be
fairly compared, so it has been skipped for the standard memory allocator.

Heaps of Help
» While this heap system has its advantages, it can be improved upon
in a number of ways. Three ideas spring to mind. The heap system could
be made thread-safe. small allocations, less than the block size, need
to be handled at the sub-block level to avoid wasting space. one way
that could be done is to allocate a heap containing a set number of
blocks (e.g. 128 blocks (512KB)), then any time a small request comes
in, it can be redirected to that heap. This method will require some
overhead to track the sub-block allocations. Third, this heap system
could be improved for debugging by incorporating tracking information to
determine where an allocation was made.

I hope you find creating your own memory allocator as helpful as I do. Now
go forth and Allocate!

Thanks go to Mike Acton at Insomniac Games for starting
AltDevBlogADay.org and nudging me to start writing professionally, and
to Lee Marshall from Google, formerly of Locomotive Games when I met
him, for leading me back to memory management concepts and pointing
me toward Doug Lea’s work. Also a special thanks to Simon Lundmark of
Pixeldiet Entertainment for digging in and providing corrections for a couple
flaws in my initial work.

paul lasKa is a game programmer that has worked on franchises such as
Transformers, Wall-E, and Spider-man at Savage Entertainment and Treyarch,
and is currently working on his own project. He is an active member in the game
development AltDevBlogADay community and consults for game development
companies. Paul can be found online at Twitter @paul_laska and LinkedIn www.
linkedin.com/in/paullaska.

THE INNER PRODUCT // PaUl laska

gamE DEvElOPER | aUgUsT 2011 40

l i s T i n g 3

aMemPageTrackingBits[uBegTrackUnit] &=

 ~(kMemTrackingUnitAllPagesInUse >> uPreOffset);

uNumPagesUsed -= (kMemNumPagesPerUnit - uPreOffset);

u32 uNextUnitToClear = (uBegTrackUnit + 1);

for(; uNextUnitToClear <=

 (uBegTrackUnit + (uNumPagesUsed / kMemNumPagesPerUnit));

 ++uNextUnitToClear)

{

 aMemPageTrackingBits[uNextUnitToClear] &=

 ~kMemTrackingUnitAllPagesInUse;

}

uNumPagesUsed -= ((uNextUnitToClear - (uBegTrackUnit + 1)) *

 kMemNumPagesPerUnit);

if(uNumPagesUsed == 0 || (uNextUnitToClear >=

kMemNumTrackingUnits))

{

 // If this assertion fails, then the tracking information

 // is messed up, because it was believed that pages were

 // still in use that must exist past the array of

 // tracking bits.

 assert(uNumPagesUsed == 0);

 return;

}

aMemPageTrackingBits[uNextUnitToClear] &=

 ~(kMemTrackingUnitAllPagesInUse <<

 (kMemNumPagesPerUnit - uNumPagesUsed));

http://AltDevBlogADay.org
http://www.linkedin.com/in/paullaska
http://www.linkedin.com/in/paullaska

THE 2ND ANNUAL
The Game Developers Choice Online Awards is the premier
award ceremony for peer-recognition in the connected
games industry. Taking place annually during GDC Online,
the Choice Online Awards recognize and celebrate the
creativity, ingenuity and innovation of the finest online
developers and games created in the last year.

AWARDS ARE PRESENTED IN THE FOLLOWING CATEGORIES:

2011 AWARD CATEGORIES
• Audience Award
• Best Audio for an Online Game
• Best Community Relations
• Best Live Game
• Best New Online Game
• Best Online Game Design
• Best Online Visual Arts

• Best Online Technology
• Best Social Network Game
• Online Innovation Award

SPECIAL AWARDS CATEGORIES
• Online Game Legend
• Hall of Fame

PRODUCED AND HOSTED BYPRESENTED BY

Award finalists will be announced in August.

Stay updated at www.gdconlineawards.com

GDCO11_GDCOA_GDMag_vf.indd 1 7/8/11 1:18 PM

http://www.gdconlineawards.com

game developer | august 201142

Undermining
Achievements
The real reason gamers love Them–and developers fear Them

design of the times // jaime griesemer

Why are you reading this? Hoping for a tip or two you can apply to your game? Trying to better understand your customers? Looking for
proof that “cheevos” are destroying video games? Just needed some reading material while you wait for an appointment? What are you
hoping to get out of it? More importantly, how would your motivations change if I paid you to keep reading? I’m not going to ... does that
make you more or less likely to continue to the next paragraph?

Likely enough, apparently, because here you are. When Microsoft first introduced Achievements with the launch of the Xbox 360, they were
met with a combination of confusion and derision. Who cares? They’re meaningless, right? Now achievements of some sort are on almost every
platform: PlayStation Network, Steam, World of Warcraft, and even your phone. They are an inescapable aspect of modern gaming. Clearly they
mean something to someone, but can we harness their power, or are they destined to turn on their creators, reducing every game designer to a
digital drug dealer and every game to a Skinner Box?

BehAviorAl BAcklAsh
» First, let me lay out the “nightmare scenario”
for how platform achievements might undermine
the entire industry, based on a series of classic
psychology experiments performed by Dr. Edward
Deci as far back as 1969 (see Chris Hecker and
Edward Deci in References). Deci maintains that
humans are motivated to engage in an activity
because it fulfills an unmet desire, usually
for autonomy, competence, or relationships.
Unfortunately, these implicit motivations can
be replaced by more explicit rewards, ultimately
demotivating the activity they intended to promote.

In Deci’s experiments, two groups of
participants are given an intrinsically rewarding
task. The activity doesn’t matter—it could be
solving puzzles, drawing pictures, reading books,
or even playing games—as long as it can be
enjoyed for its own sake. Usually it fulfills the
need to demonstrate competence, to test one’s
abilities and effectiveness. Unsurprisingly, most
people appreciate the opportunity to show off in
front of an audience of scientific observers.

On the second day, one of the groups was
given a contingent reward for their task—a couple
dollars, coupons for free pizza, whatever was
lying around the lab—which acted as a secondary
motivation for them, but not for the unpaid group.
At this point, the paid group's desire to look smart
and competent was replaced for the paid group
by a more tangible need for financial gain, or
pepperoni pizza, or a surplus lab coat.

On the final day, neither group was paid to
solve puzzles. The participants that had never
been paid usually worked just as hard as the
previous days, seeking to show their competence
as before. But the group that had been paid felt
like the task is less rewarding—in fact, it was less

rewarding—and this demotivating loss caused
some of them to abandon the task. The loss of
the contingent reward was more acute than their
memory of their original intrinsic enjoyment.

The lesson to game developers seems clear. If
a player is engaged in an intrinsically rewarding
task, like playing a game, and we replace that
intrinsic fun with mountains of points and piles of
trophies, then they will react the same way as the
test subjects: they’ll abandon video games!

extrinsic exAminAtion
» Part of the difficulty of interpreting the results
of these experiments lies in understanding the
difference between intrinsic and extrinsic, especially
since intrinsic has positive connotations and we
are inherently suspicious of extrinsic influence.

First of all, extrinsic does not mean “external
to the player.” All rewards come from outside
ourselves. If we already possess them, then they
cannot, by definition, be desired. Extrinsic doesn’t
mean “explicitly promised,” either. Telling someone
that they will enjoy an activity doesn’t reduce their
enjoyment, and neither does noticing it afterward.

Extrinsic doesn’t mean “materially beneficial
or useful.” Every need is directed toward
accomplishing some goal, and every reward
furthers some end, or we wouldn’t value it.
Extrinsic certainly does not mean “bribery” or
“added with an immoral ulterior motive.” In fact, the
reasons for the offering of a reward are irrelevant
to our appreciation of it. Fun has no providence.

An extrinsic reward is simply one that is
“separable” or “not part of the essential nature” of
the activity being rewarded. Since making money is
a separable component of solving a puzzle, it can be
removed, and suddenly puzzle-solving fails to meet
the money-making need. At some point, parents will

stop buying their children pizza for reading books,
because eating pizza is not part of the essential
nature of reading. This lack of reliability of the
secondary, contingent reward is the true source
of the demotivating effect. If the test subjects
were tasked with baking a delicious pizza, and then
allowed to eat the results of their handiwork, then
there would be no problem, because eating a pizza is
part of the essential nature of baking a pizza.

Every single Xbox 360 game is required to
have Achievements. Every PS3 game is required
to include Trophies. They are inseparable from
the activity of playing games on those consoles.
Platform achievements are no longer an extrinsic
reward with the corresponding risk of removal:
they are part of the essential nature of gaming
on non-Nintendo consoles. (And increasingly
a part of PC and mobile gaming as well.) They
aren’t going anywhere, which means the game
industry, as a whole, is not at risk of suffering
the catastrophic demotivating effects described
in the psychological research. If a player’s needs
are met by demonstrating competence, games
will continue to be appealing. Even if her needs are
met by collecting and investing in Achievement
Points, games will still continue to be appealing,
as we have an unlimited amount to distribute.

Well ... actually, the fact that platform holders
have an infinite number of achievements to
dispense, is the real nightmare scenario for game
developers, because we don’t own them!

Acknowledging Achievements
» Achievements satisfy a very important human
need to demonstrate competence; to do well
according to a standard of excellence (see
Andrew Elliot in References). Achievements
provide an objective measure—however flawed

www.gdmag.com 43

and arbitrary—of our ability to successfully play
games. Even more than that, we seek social
approval, and an “official” recognition of our
accomplishments. This validates us and allows
us to believe that we are making a worthwhile
contribution to our community. Achievements
may not have material value, but they are not
meaningless. Denigrating them as “e-peen”
swaggering mischaracterizes the near-universal
aspirations they fulfill.

Achievements are particularly well designed
as reinforcing rewards because we can anticipate
them. Even before a game is on the shelves, its
list of achievements is available on the internet,
and a player can expect that if they meet the
requirements, the achievement will be unlocked
and the points awarded. There is no random
chance, no potential for missing out. That is why
there is a trend to award all the achievements
over the course of a campaign, where every
player can get them, instead of in multiplayer
or for defeating exceptional challenges. A single
game cannot provide that level of dependability.

The way achievements are allocated
allows players to be efficient with their time by
selectively choosing which to attempt, especially
in a new game when the easy ones are available.
The more time spent with a game, the harder the
remaining challenges become. At some point it
is going to be more efficient to quit the current
game and buy another one, if achievements
are the primary goal. Even a game that is worth
playing to completion must eventually run out
of its allotted total and stop meeting the needs
served by achievements. Maximum efficiency
drives players to purchase as many new games
as they can afford.

Achievements are also essential to their
platform, and are even required for certification.
They have become such a fundamental aspect of
games that even the most momentous event or
amazing accomplishment seems less important
without a corresponding achievement. Rewards
that are inextricably linked to playing on a
platform are more motivating than those only
found in a specific game.

Finally, achievements are platform exclusive;
they cannot (at present) be found anywhere
else or liquidated and taken to another service.
They are unlimited—new points can be added
at no cost to the platform holder—but they
maintain their value because there is an
unbreakable ratio of achievements per game.
This exclusivity ties the fulfillment of the player’s
needs to a specific source, increasing its power
to drive behavior. And that source is the platform,
not the game’s developer.

In so many ways, achievements are the
ultimate reward for investment—and that is the
problem. The reason so many developers are
uncomfortable with achievements is because they
know that nothing confined to a single game can

compete with a permanent, global, well-publicized
achievement system. The need for validation
has replaced whatever aspirations their game
was meeting, and now it has been reduced to a
vehicle for achievement hunting. Their game and
the rewards it offers have become the extrinsic,
separable part. Achievements are not a threat
to games as a whole, but they are certainly a
challenge to the lasting appeal of any one game.

Developer Decisions
» So now we are faced with an opportunity and
a risk. How can we take advantage of the built-in
appeal that achievements offer without reinforcing
the same draw that entices players to move on?
One answer is to exploit achievements by offering
them for as little effort as possible. A cynical path,
to be sure, but leaning hard on achievements can
give any game —even a bad one—some value
to its players. How many games have sold more
copies than they deserved because reviews cited
“easy achievements?"

Assuming your game aspires to be more than
a trophy dispenser, the most common choice is
to embrace achievements and try to use them to
encourage players to fully enjoy the experience,
as outlined below.

* Scale achievements to match the
content. The player shouldn’t run out of
achievements before they have seen all
the game has to offer.

* Pace achievements regularly and
provide clear requirements. Arrange the
rollout of achievements so the player
gets a steady stream of rewards that are
straightforward to earn. Awarding them
too slowly may encourage a player to
seek easier points in another game.

* Don’t put achievements behind skill or
investment barriers. Every player should
be able to collect all the rewards, simply
for playing normally.

* Reward dabbling in different gameplay
modes. Use easy rewards to draw
players toward content they might
otherwise skip. But don’t expect them to
invest significant effort to learn entirely
new gameplay modes.

* Focus on meeting the players need to
demonstrate competence. This is the need
that achievements fulfill, so you must align
with them. If your game doesn’t feature
obvious challenges, then players will find
the achievements unintuitive.

Approached in this way, achievements can bring
players in and drive them through your content,
but they will inevitably be swept on by that same
powerful tide. The final, most ambitious option
is to recapture your players by offering them
something better:

* Meet needs other than competence or
validation. You can’t go toe to toe with
achievements—they own competence
and validation—so pick a different
path. Focus on offering the player more
autonomy or recognizing their creativity.

* Develop a community for your game.
Achievements are powerful because
they are publicized, but they are shown
to a largely impersonal audience. The
connections between members of a
tightly knit community provide a more
significant and personal validation.

* Don’t add achievements to your existing
rewards. Remember, achievements
replace more subtle rewards when they
happen simultaneously, so if your game
is good at rewarding something, don’t
stomp on it. For example, if your reward
for completing a mission is a great
story moment, don’t pop up an unlock
notification during the cutscene!

* Add your rewards to existing
achievements. Try to steal the thunder
from existing achievements by linking
them to one of your rewards, like
unlocking new weaponry or receiving a
mountain of in-game currency.

* Reward experimental or skillful play.
Since your goal is to invest players
in your game, scatter achievements
at irregular intervals and behind
difficult challenges. You will lose some
players, but those that remain will be
more excited that they overcame your
challenge than for the achievements that
originally motivated them.

As you can see, these techniques for replacing
achievements are not compatible with those for
embracing them, but the result of successfully
superseding platform achievements will be a
loyal and evangelical community.

Jaime Griesemer was a game designer on Bungie’s

original Halo trilogy and is now working at Sucker Punch

Productions. Read more at thetipofthesphere.com or follow

him on Twitter @tipofthesphere.

r e f e r e n c e s
Hecker, chris Achievements Considered
Harmful? Game Developer Conference.
San Francisco, CA. March 2010.

Deci, edward. Flaste, richard. Why We
Do What We Do: Understanding Self-
Motivation. Penguin, 1996.

elliot, andrew. Dweck, carol. Handbook
of Competence and Motivation. The
Guildford Press, 2005.

http://thetipofthesphere.com
http://www.gdmag.com

pixel pusher // steve theodore

game developer | august 201144

All in the FAmily
"Game artist" doesn't mean what it used to

iF you missed this yeAr's GdC, you Also missed A reAlly interestinG
moment in the ongoing evolution of the game business. The game design
track always features a "Rant Session"—a chance for developers to blow off
some steam and take public stands on controversial topics. This year's rant
was titled "No Freakin’ Respect! Social Game Developers Rant Back." (See
References.) It was theoretically about design, but really it became a forum
for social game developers to push back against dismissive or derisive
attitudes from AAA developers. The mere existence of such a forum points
out some intriguing changes in today's game business.

Social games, even though they are only a few years old, are expected
to bring in around $2 billion next year in the US. That might seem small
compared to the $18 billion or so from more familiar console and PC
titles, but social and casual games are booming, while AAA development

is treading water. The social game market expanded by a whopping 66
percent last year, while the traditional market shrank by nearly a third.
Social and casual gaming has a lot of momentum right now, while the core
games market is in a holding pattern.

The contrast is pretty obvious to investors, who are firehosing money
into social game development. Disney bought Playdom for more than half a
billion dollars, and if the company hits performance targets, the total payout
could be about as big as EA's purchase of BioWare/Pandemic a few years
ago. But that's small change: Farmville creator Zynga is now reportedly
worth more than Electronic Arts. And as this article was going to press, EA
just bought PopCap for $750 million.

This all makes for some pretty heady times. But even us poor working
stiffs who aren't waiting for our new Lamborghinis are going to be affected

by this sudden and massive change in the structure of the game business.
It's hard to know exactly what the future will look like; after all, the MMO
boom proved conclusively that big investments don't always translate into
big successes. Even so, it's hard to imagine that the game industry of three
or four years from now will be quite the same clubby, AAA-centric world
we've known for so long. For artists, in particular, the rise of Casual, Social,
and Mobile (CSM) gaming will upend a lot of things we thought we knew
about our professional identities.

diFFerent strokes
» CSM game studios don't match the standard game studio template
most of us know. The teams tend to be much smaller and more fluid.
Development cycles are measured in months rather than years, and

budgets usually hit six digits, rather than eight.
The skillsets for CSM artists tend to be different as
well. High-poly modeling, 3D character animation,
and shader work is rare, while graphic art stylings
and traditional animation are in high demand.

Perhaps more importantly from the artist’s
perspective, CSM studios are driven by gameplay
rather than content. A lot of big studios like to
talk about how “gameplay is king,” but in CSM
studios the line between game design and art is
often very fluid. With lower burn rates and looser
tech requirements, many CSM studios expect
their artists to actively shape their gameplay. As
Popcap's John Vechey said in an interview with the
London Telegraph:

“An artist on a PopCap title is never just an
artist, or a programmer just a programmer, all are
required to contribute to and have a vision for the
game and what makes it fun.”

That's not something a lot of traditional game
companies can say anymore. It sounds a lot more
like what our parents and friends think we do than
the actual reality of toiling way in the midst of a
$30 million project. It seems pretty attractive to
the poor drone toiling away on a long Excel sheet
of breakable crates. It’s also the reason why a lot

of veteran game artists are willing to walk away from the prestige of big-
budget, as-seen-on-TV AAA games to work on CSM titles: It's a lot like the
way games used to be before the age of next-gen bloat.

squAre PeGs
» There's another obvious difference between CSM games and the core
business: demographics. If you're a GDC veteran, the change is pretty
apparent just walking the hallways. Game studios have traditionally
looked a lot like their “core gamer” audiences: young, white, and male. The
audiences for CSM games are a lot more diverse, and so are the artists.

Some of this just reflects the gradual mainstreaming of gamer culture;
now that pretty much everyone under the age of 30 has some experience
with games, it's not surprising that you see more kinds of faces around

Po
pc

ap
's

 P
eg

gl
e.

www.gdmag.com 45

the office. The diversity of subjects and styles in casual and social games
also attracts new artists who don't care about traditional games' focus on
science fiction, fantasy, and the military. Plus, the CSM gaming world is
a lot more geographically diverse than the core business. Take a look at
GameDevMap.com, and you'll notice CSM studios in all sorts of places that
are far from the centers of AAA power in California, Washington, and Texas.
This, too, helps attract a wide range of artists with different tastes, styles,
and outlooks.

All of this means that the stereotypes that go with the phrase “game
artist” are changing rapidly. You're going to meet a lot of folks at your local
IGDA chapter who won't chuckle at your Leeroy Jenkins T-shirt, or admire
the fact that you do, in fact, haz Recon. You might get a blank stare if you
tell them that all their base are belong to you. Our little club has gotten a lot
bigger all of a sudden.

In most ways, this new diversity will be good for us; it'll help us break
out of the stylistic rut we've been in since the era of near-photorealism
that dawned with the current console generation. It doesn't hurt that
small teams and short dev cycles let CSM games take a lot more risks
than big, ponderous AAA projects; once somebody's scored a hit with a
game like Limbo, it's a lot easier to pitch a similarly risky-style project
to your publisher. A wider set of perspectives can help us shake off
some of our clichés, and it might also help us avoid some cross-cultural
embarrassments like Resident eviL 5's white-heroes-shooting-black-
zombies controversy.

There will, of course, be grumbling too. A lot of developers love the old
school frat-house atmosphere and won't be happy to give it up. With a
broader range of folks in the break room, you will have to be a little more
corporate about your behavior. The language and swagger learned while
deathmatching against the over-caffeinated and under-adjusted can land
you in serious trouble with HR.

Even without the Employee Handbook issues, the gradual broadening
of the game business brings with it a culture clash that will be hard to
ignore. It’s easy to snicker about the industry's genre obsessions, but
for many working artists, those giant stomping mechs, badass spec-ops
warriors, and buxom elf-maidens are really the reason they got into games.
Those folks cannot be bribed to work on the next iteration of oh my doLLz,
not for all the credits on Facebook. As with any big, complex cultural shift,
there's no one single story about how these changes will play out. Like the
rest of the world, we'll muddle along in our new, more diverse reality. Some
of us will find it less cozy than what we've known, and others will come out
of hiding and cry "I'll never have to make another goddamn suit of power
armor again! Hallelujah!"

The Office
» One thing is for sure, though: the ongoing re-definition of the term “game
artist” will have serious impacts on your career.

For example, if you're a student, you're probably studying high-poly
modeling and character design skills. These make great portfolio pieces
when you're trying to land a spot on the next installment of GeaRs, but
they may not be as much help if all the actual jobs are for 2D Flash games.
You need to think carefully whether you want to fight hard for one of those
increasingly scarce AAA jobs or go where all the hot money is heading.
Your chances of retiring early on your bonus as modeler #37 on a team of
400 making World of Call of Grand Theft Auto are pretty slim. Perhaps you
want to swing for the fences with a scrappy little web game startup? If so,
you'd better add some Flash, graphic design, and 2D animation to your
repertoire. Naturally, the choice will depend on your taste, your talents,
and your ambitions; however, there is an important new variable you need
to consider, which is what, exactly, you mean when you say "I want to
work in games."

If, on the other hand, you're a veteran with some hard-won skills and a
few titles under your belt, you may worry that all this action is passing you

by. The skills you've worked so hard to acquire may seem undervalued in
the casual space. Veterans already know the danger of being professionally
stereotyped: once you've shipped a couple of racing games, it's hard
to change course and decide to make KinectimaLs. Add in really radical
differences of platform and technology—if you wanted to jump from GRan
tuRismo to, say, caLL of biebeR—and you'll have to work pretty hard to prove
the relevance of your skills and experience.

fuTurama
» Over time, though, the boundary between AAA and CSM games will
become more porous. While most of today's CSM games look pretty low
tech to a jaded AAA developer, that will change as the space matures and
gets more competitive. It's inevitable that some titles will try to stand
out from their crowded fields with graphics, which means that a lot of
casual developers will need to tap the skills of artists from the core games
business. You can already see this process at work in mobile games, where
the last six months have seen some really incredible graphics in games like
ReaL RacinG and infinity bLade.

Web and social media games haven't gone for lavish production values
to the same degree, but that has a lot to do with the bandwidth limitations
of browser-based gaming. Cloud gaming companies like Gaikai think
they can break the bandwidth barrier by streaming games directly from
their own servers, allowing even your parents' creaky old PC to play high-
powered modern games inside a browser. If this works as promised, the
graphics arms race will hit the casual-social space with a vengeance. That's
good news for AAA artists who could use some cheering up after several
years of doom and gloom in big-name development.

Even if the graphics armageddon doesn't hit tomorrow, AAA artists
have a lot more to offer than just their skills with high-poly models
or fancy shaders. Big projects have huge asset bases and complex
toolchains. Keeping these beasts fed is a difficult job for the tech artists
who build the tools and the leads who keep herding things along. As the
new frontiers of gaming become big businesses, they're going to need
hardcore production experience to make sure they don't repeat some of
the mistakes that the core business has gradually learned to avoid. A lot
of agile little studios would benefit from the wisdom of vets who know
how important unsexy things like asset tracking, source control, and
debugging skills are.

Predicting the future is really hard. If this column had been written in
2006, it might easily have gone out on a limb to predict that by 2011 we'd
all be laboring on 2,000-person MMO teams or that all of our jobs would
have already been shipped to China. Reality is a lot messier, but it's also
always changing around us, and we have to keep our eyes open to deal
with it. There’s one thing we can predict with certainty: it's going to be
hard to get by on just attitude. Maybe you did models for a caLL of duty
episode, or maybe you animated some awesome melee moves for Nathan
Drake. Great! But when interviewing for a job with some group of twenty-
somethings whose point-and-click Flash game has 35 million users, you'd
better show—as the phrase goes—some freaking respect.

STeve TheOdOre has been pushing pixels for more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress, counTer-sTrike, and halo 3. He's been a modeler,

animator, and technical artist, as well as a frequent speaker at industry conferences. He’s

currently the technical art director at Seattle's Undead Labs.

r e f e r e n c e s

No Freakin’ Respect! Social Game
Developers Rant Back at GDC Vault

http://gdcvault.com/play/1014539/No-Freaking-
Respect-Social-Game

http://GameDevMap.com
http://www.gdmag.com
http://gdcvault.com/play/1014539/No-Freaking-Respect-Social-Game
http://gdcvault.com/play/1014539/No-Freaking-Respect-Social-Game

www........gggggggggggggggggggggggggggggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaaaaaaaaaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssssssssssssssssssuuuttrrrrrrrrrrrrrrrrrrrrrrraaa.............................ccooooooooooooooooooooooooooooooooommm

the art and business of making games

http://www.gamasutra.com

jesse harlin // aural fixation

www.gdmag.com 47

crowd control
The advenT of crowdsourcing in game audio creaTion

Buzzwords aBound in the technology
sector, and from cloud computing to transmedia
convergence, the concepts behind these
buzzwords are at the forefront of the ever-
evolving game industry. New styles of project
management and experimental team building
are being driven by a range of desires to lower
development costs, maximize brand loyalty and
exposure, and spread out development into a
compartmentalized global workforce capable of a
24-hour work day.

Over the last five years, massive outsourcing
companies have developed in foreign countries
that are frequently working with game
companies, particularly in the disciplines of
art and animation. Aside from cheap Eastern
European orchestras, audio never became a
discipline that saw much of a shift to low-cost
outsourcing in developing nations. European,
Japanese, and North American contractors
remain the vast majority of content creators
handling the audio needs for the industry.

Recently though, outsourcing has begun to
flirt with a new scattershot approach known as
crowdsourcing, and its influence is already being
felt in professional audio circles.

Facin’ the crowd
» Crowdsourcing is the process of presenting a
large group of external users with a defined task
or set of tasks. Those users then work toward
the defined goal either collaboratively or as a
large pool of individuals from which the originator
of the task can select the input they’d like to
use. Examples of crowdsourced work include
everything from Wikipedia articles to the t-shirts
of Threadless.com to logo design competitions
for companies like Pepsi, Twitter, and Chiquita—
yes, the banana people.

While an ever-growing list of industries toy
with their first forays into the crowded space
of crowdsourcing, its use in the video game
industry isn’t anything new. One of its most
common uses in the game industry has been
around for over a decade. In public betas, a group
of unpaid and unaffiliated users are invited in to
play the game, stress-test its servers, and offer
feedback or report bugs.

Crowdsourced work can be tackled across
the globe without the need for dedicated
management, and with little impact on dedicated
company resources. Of course, crowdsourcing

requires a crowd, and if a company can’t attract
people willing to give their time or energy,
the work goes unfinished. Two of the defining
qualities of crowd creation—the content creation
form of crowdsourcing—can further detract from
the overall experience.

For one thing, those looking to have work
crowdsourced should note that the quality of
the work can vary greatly, since there are no
restrictions on involvement, so you will get
work from professionals and amateurs alike.
The second point is that for those looking to do
crowdsourced work, pay is not guaranteed. Many
crowdsourced projects are effectively done as
either volunteer work or simply for the opportunity
of increased exposure. Submitting work to crowd
creation projects does not mean that the work
will be selected, and depending on the number of
submissions, it may not even be reviewed.

attracting a crowd
» Audio has been slow to develop as a
crowdsourced discipline, perhaps due to the high
bar of entry related to the gear, software, and
training inherent to the field. Two companies are
aiming to change that.

AudioDraft is a new company out of
Finland that aims to establish itself as a hub
of crowdsourced music and sound design
specifically targeting game and video production

companies. Through AudioDraft.com, those
looking for game audio content establish what is
referred to as a “contest.” The contest outlines
the brief describing the desired work, a timeline
the work must be completed within, the amount
of compensation, and a description of the kind of
license the winner of the contest will be entering
into with the contest holder. Once an entry has
been submitted for a contest, individual entries
can be listened to and voted on with a Facebook-
esque “Like” button, though the winner of a
contest is selected solely by the contest holder.

Minimum Noise is a Danish company founded
in 2008 that aims to take crowdsourcing to the
realm of music licensing. Much like AudioDraft,
the company’s web site is set up for people or
companies to create “projects.” Projects are
then opened for submissions, and winning
submissions are selected by project owners.
While less focused on games than AudioDraft,
Minimum Noise has had an increased number of
independent game developers posting projects
over the last year. However, there are currently
no projects available, with the most recent project
having finished within the last two months.

Both sites are similar in their approach,
design, and goals, and make it very easy for
those looking to crowdsource audio to find
a ready and willing crowd. The nature of the
sites also makes it easy for those with little or
no previous game experience to connect with
developers and begin building a credit list.
Unlike other crowdsourced ventures, both sites
are structured around the notion of paying for
winning submissions. Unfortunately for content
creators, pay is significantly lower than standard
accepted industry norms. Creators can expect
anything from $1,000 for a 30-second jingle,
to game engine company Unity Technologies
offering $25 iTunes gift cards in return for two
minutes’ worth of orchestral game underscore.

Crowdsourcing relies on making work
available to the masses, and the masses being
attracted to the available work. Whether this will
ultimately mark an archetypal shift in the audio
production and networking pipeline is still to be
seen, but the crowds are gathering.

jesse harlin has been composing music for games since

1999. He is currently the staff composer for LucasArts. You

can email him at jharlin@gdmag.com.

illustration By kelsey kraus

http://Threadless.com
http://AudioDraft.com
mailto:jharlin@gdmag.com
http://www.gdmag.com

Supported by

Join us at the Game Developers Conference EuropeTM 2011, August 15-17, for three
days of over 100 sessions, as we cover a comprehensive selection of European game
development topics taught by leading domestic and international industry experts.

* Discount code is good for All Access, Main Conference, or Summits & Tutorials passes only. Discounts cannot be combined with other discount codes or group passes/discounts.
Restrictions apply and discounts are subject to review. Discount code must be used by the end of online registration, on August 9, 2011 at 21:59 UTC.

Game Developers Conference EuropeTM

August 15 – 17, 2011 | Congress-Centrum Ost Koelnmesse | Cologne, Germany
Visit www.GDCEurope.com for more information.

AUGUST 9

REGISTRATION

REGISTER NOW!

ONLINE

ENDS

SUMMITS
MONDAY—WEDNESDAY

 Independent Games

 Smartphone & Tablet Games

 Social Games

 Community Management

MAIN CONFERENCE SESSIONS
WEDNESDAY—FRIDAY

 Business & Marketing

 Game Design

 Production

 Programming

 Visual Arts

EXPO FLOOR
MONDAY—TUESDAY

Explore the latest in game
innovations and talk with
industry experts.

GDC EUROPE VIP LOUNGE
MONDAY—WEDNESDAY

Broaden your networks and
connect with fellow game
developers and professionals
from the European games
industry.

http://www.GDCEurope.com

HEADS-UP DISPLAY

www.gDmAg.com 49

In July 2010, MIke FIscher
was named the new
president and CEO of Square
Enix in the U.S., overseeing
the business of localizing
content from the Japanese
offices and managing newly
acquired Eidos properties
like Tomb RaideR and HiTman.
In addition, the company is
looking to expand further
into partnered publishing,
as it is doing with Wakfu, a
French-developed MMO that
already has an established
fanbase in Europe. Square
Enix will be publishing the
game in North America,
while developer Ankama
Studio will retain the rights
for the rest of the world.

Game Developer
discusses Square Enix’s
changing business,
alongside Fischer’s thoughts
on the future, as framed
by the North American
publishing of Wakfu.

Christian Nutt: It's been
almost a year now; what
would you say you have
learned during your time
as Square Enix’s North
American president?

Mike Fischer: I think the
one thing I’ve learned is
that there is no such thing
as a stable period in our
industry. Our industry has
been going through a period
of transition for the entire
20 years I’ve been in it, so
the first thing that I learned
is that that’s never going
to change. I think that it’s
really not about getting
your business to a point
where everything’s fine;
it’s about creating a culture
where you’re constantly
driving the change and
staying at the front of what
the trends are.

CN: Can you give me some
examples of things you see
the company doing now
that speak to that?
MF: I think you’ve seen
announcements already
about our continued focus
on a more net-based
business, and I am in a very
unique position in my role
here as the head of the U.S.
organization because I have
the great [content] coming
out of the studios in Tokyo,
but I also now, after the

Eidos acquisition, have this
lineup of Western games.
That leaves me and my
organization free to really
pursue a lot of the more
leading-edge opportunities
in online and social games,
and I’m obviously looking
at not-massive games
on an final fanTasy XiV
or ffXi scale but, you
know, smaller, more agile
opportunities. One of those
is Wakfu [from Ankama
Studio in France].

One nice thing about
[Wakfu] is that it takes
some of the strengths we
have in terms of knowledge
of our audience and the RPG
world, but it’s also helping
us leverage it into a whole
new place and partner that
is very well entrenched
there already. So that’s
the type of one-plus-one-
equals-three synergy
that I’m looking for in the
projects that we either pick
up or we drive.

CN: Is that free-to-play
game or is it a subscription
game?
MF: It’s kind of a hybrid free-

to-play [game]. So, there’s
a subscription component
to it but there’s also a free-
to-play, microtransaction
component of it as well.

CN: Are microtransactions
something that interests
you particularly from a
Square Enix perspective?
MF: It does, but I don’t
believe that there’s going to
be any one single dominant
model in the years ahead.
I think if there’s one
thing that I see now, it’s a
diversification, and we’re
a big enough company so
that we couldn’t put all of
our bets all on one business
model if we wanted to
anyway. And for us, it’s
not about picking winners
in the different platforms;
it’s about having great IP
and fitting that to the best
platform for it. We want all
of the platforms to succeed.

It’s funny, I remember
people saying, “I’m not sure
if the industry can support
three consoles.” It’s always
been two consoles, two
consoles, two consoles,
I’m not sure if we can
support three, and now I
hear people worried that
we might not have three
big console platforms at
one point. So it’s kind of
funny, you know, when it
looks like the number of
platforms are going [to]
grow, people are going to
worry. If there’s speculation
the number of consoles
might shrink, you’ve got
everybody worried. The fact
of the matter is it’s not the
number of platforms that’s
important; it’s the health
of those platforms and the
growth of the market. I don’t
see what’s happening in
the browser-based, free-

to-play, or social market
cannibalizing the overall
industry sales, what I see is
[it] adding to it.

CN: Yeah, absolutely. I
mean, you’ve now got
a situation where we
have three consoles,
two or three handhelds,
smartphones, Facebook,
web downloadable,
browser-based, there’s a
tremendous variety.
MF: I think that to some
degree there’s a fallacy
that some people are
applying to the future of
our industry based on what
happened say, for example,
to music. I’m not an expert
on the music business,
but there’s a perception
that the shift toward digital
music downloads has
hurt the overall growth of
the recording industry,
and let’s just say for the
sake of argument it has. I
don’t think that applies to
games, because the switch
to digital downloads for
music didn’t bring any more
people into the “listening to
music” market. Everybody
was listening to music—
everyone is still listening to
music—but in the case of
games, what this transition
is bringing is a whole new
audience and more ways to
play. So in the past, if you
had to sit down in front of
your TV, now you can do
it in front of your TV, your
computer, your iPad in bed,
your smartphone while
you’re outdoors, or your
work PC while you’re in the
office and your boss isn’t
looking. So, I think the same
trends that have threatened
the other media are actually
strengthening us.

turn a square
an interview with square enix's mike fischer

Wakfu

cHrIStIAn nUtt // tHE BUSInESS

http://www.gDmAg.com

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

GAME DEVELOPER | AUGUST 201150

GDC Vault Reveals Most-Watched GDC
2011 Talks As Views Top 250,000
\\\ As views of GDC Vault's
video, audio, and slides from
GDC 2011 top 250,000, the
site has detailed the most-
viewed sessions from the
March show, spanning a
postmortem of DOOM through
HALO: REACH and beyond.

The specially constructed
web site archives multimedia
from the numerous lectures,
panels, and keynotes at the
multiple Game Developers
Conference shows yearly,
and a number of each show's
most popular talks are now
available for free.

The sessions available on
the GDC Vault spanning the
last 15+ years have attracted
155,000 unique viewers in
the last year, and the content
from Game Developers
Conference 2011 alone has
attracted more than 262,000
views since mid-March.

GDC 2011's Classic Game
Postmortem series has proven
the most popular by far, with
video of these seminal talks
making up six of the show's
top 10 most-viewed sessions.

These lectures featured
various industry legends
reflecting on their most
seminal classics, including
John Romero and Tom Hall
on DOOM, Eric Chahi on
OUT OF THIS WORLD/ANOTHER
WORLD, Ron Gilbert on MANIAC
MANSION, and more.

Other popular talks
included "I Shot You First:
Networking the Gameplay
of HALO: REACH," featuring
Bungie's David Aldridge on
the studio's approach to
online infrastructure, and
"Life and Death and Middle
Pair: Go, Poker and the
Sublime," a talk featuring
Area/Code's Frank Lantz on
some of the oldest and most
influential games in history.

The following are the top
10 most-viewed GDC 2011

video sessions on the GDC
Vault, including current view
counts:

Top 10 Most-Viewed
Sessions From GDC
2011

1. "Classic Game
Postmortem - DOOM,"
John Romero & Tom Hall
27,970 views

2. "Classic Game
Postmortem - OUT OF THIS
WORLD/ANOTHER WORLD,"
Eric Chahi
19,960 views

3. "Classic Game
Postmortem - MANIAC
MANSION," Ron Gilbert
14,420 views

4. "Classic Game
Postmortem - PITFALL!,"
David Crane
10,530 views

5. "Classic Game
Postmortem - PRINCE OF
PERSIA," Jordan Mechner
8,601 views

6. "I Shot You First:
Networking the
Gameplay of HALO:
REACH," David Aldridge
8,390 views

7. "1-Hour Video Game
MBA," Charlie Cleveland
6,656 views

8. "Life and Death and
Middle Pair: Go, Poker
and the Sublime," Frank
Lantz
6,020 views

9. "Classic Game
Postmortem -
BEJEWELED," Jason
Kapalka
5,940 views

10. "Automated Level
of Detail Generation for
HALO: REACH," Xi Wang
5,560 views

Several talks from Game
Developers Conference 2010
have also seen similarly
impressive audiences
on the GDC Vault. Brenda
Brathwaite's "Train (or How
I Dumped Electricity and
Learned to Love Design)" and
Zynga's "Engineering Scalable
Social Games," for instance,
have both surpassed 20,000
views each.

Some of the most popular
titles from GDC Online 2010
include Professor Richard
Bartle's "MUD: Messrs Bartle
and Trubshaw's Astonishing
Contrivance" and Brian
Reynolds' "Bears and
Snakes! The Wild Frontier of
Social Game Design," both
of which have topped 5,000
views apiece.

Besides the multitude
of free videos and slides,
full GDC Vault access is
available to GDC 2011
All-Access Pass holders,
speakers, and All-Access
Pass buyers to other GDC
events for the rest of 2011.

Individual Vault
subscriptions not tied to
All-Access passes are now
available for a limited time via
a Beta invite process—those
interested in signing up to
be invited in on a first come,
first served basis should sign
up on the GDC Vault web site
(www.gdcvault.com).

In addition, game-related
schools and development
studios who sign up for GDC
Vault Studio Subscriptions can
receive access for their entire
office or company. More
information on this option
is available via viewing an
online demonstration on the
official GDC Vault web site.

GDC ONLINE 2011 DEBUTS
FIRST SESSIONS FOR GAME
NARRATIVE SUMMIT
\\\ GDC Online has revealed the initial lineup
for the show's Game Narrative Summit, which
features speakers from Eidos on DEUS EX: HUMAN
REVOLUTION's branching narrative, Microsoft on
creating transmedia giants, and MIT on crafting
education-based ARGs, among others.

Now in its sixth year, the Game Narrative
Summit—formerly the Game Writers Conference
—once again returns to GDC Online to showcase
leading speakers on the many facets of interactive
storytelling, with sessions ranging from
roundtable discussions to postmortems and more.

The initial sessions and lectures featured
in the two-day Game Narrative Summit include
highlights such as independent producer
and writer Aaron Linde offering examples of
successful transmedia properties in "The
New World: Case Studies in Transmedia
Narrative Design." Linde, former GEARS OF WAR
community manager at Microsoft, will look at
projects surrounding titles such as PORTAL 2
and HALO: REACH to "explore the potential of
engaging players across multiple channels of
communication, and why we, as storytellers,
must embrace transmedia as an essential
component of narrative development."

Scot Osterweil and Caitlin Feeley —who
work at MIT and the MIT Education Arcade,
respectively—will explain how ARGs can be used
to create an exciting learning environment for
students. The talk, "Capturing Children's Attention
and Imagination with Investigative Play," will
outline the ARG Vanished, which was designed to
help middle school students learn about science
while they solve a large-scale mystery. Geoffrey
Long, producer of narrative design at Microsoft,
will note what it takes to build an IP into a
powerhouse franchise in "From Story to Universe:
10 Best Practices for Transmedia Franchise
Design." Long will look at franchises outside of
games, including Lost, Buffy the Vampire Slayer,
and Star Wars, to explain why these IPs became
some of the most popular in the world, and how
game developers can build their IP to do the same.

Augmenting the Narrative Game Summit, GDC
Online will also feature a one-day Game Writing
Tutorial for beginning writers following the two-
day Summit, as well as Summits on Smartphone
& Tablet Games and Virtual Items.

For more information on GDC Online as the
event takes shape, please visit the official GDC
Online web site (www.gdconline.com), or subscribe
to updates from the new GDC Online-specific news
page via Twitter (@GDC_Official, @GDC_Online),
Facebook, or RSS. GDC Online is owned and operated
by UBM TechWeb, as is this magazine.

http://WWW.GDCONF.COM
http://www.gdconline.com
http://www.gdcvault.com

Good JoBHired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

www.GdmaG.com 51

No Sleep 'Til Burbank
Ken Finlayson joins insomniac games in la
Ken Finlayson came from the world of film visual effects because he wanted to
work on characters, a chance that movies weren't affording him. After several
years at BioWare, he's made the jump to Insomniac's Burbank studio, to become
lead character artist for the company that (at least in theory) never sleeps.

whowentwhere
David Maisel, formerly chairman at film
company Marvel Studios, has joined Angry
Birds developer Rovio as a special advisor,
where he will help the studio shape the
future of its popular franchise.

Following the closure of Homefront
developer Kaos Studios in June, studio
creative director David Votypka has
found a new home at Ubisoft's Red Storm
Entertainment.

Yasumi Matsuno, creator of high-profile
RPGs such as tActics ogre, VAgrAnt story,
and finAl fAntAsy Xii, has been hired by
Professor lAyton developer Level-5.

Former Playdom executive producer Ethan
Fassett has been named the new senior
vice president of product at mobile gaming
toolmaker OpenFeint.

new studios
Six core team members of Seattle, WA-based
fAt Princess creator Titan Studios have
formed a new company, Carbon Games,
following Titan's closure earlier this year.

Two former Ubisoft staffers who have
worked on franchises including Tom
Clancy's endWAr and sPlinter cell douBle
Agent have formed a new French mobile dev
studio, The Game Bakers.

Staff members from test driVe unlimited
developer Eden Games have formed Blossom
Minds, a new French independent studio that
aims to release its first game in 2012.

Sulka Haro, the lead designer on popular
virtual world Habbo Hotel, has left developer
Sulake to co-found the new startup studio
Makielab, which aims to combine 3D
printing with web and mobile gaming.

Unity Technologies, has opened a new
office in Stockholm, Sweden led by Erik
Hemming and Erland Korner, both of
whom previously worked at DICE on the
BAttlefield franchise.

gloBAl WArfAre and Kingdoms of cAmelot
developer Kabam has opened a new
European office, which will focus on
localization and customer support for its
international market.

Brandon Sheffield: Why the
move to Insomniac from
BioWare?
Ken Finlayson: There were
several motivations for the
move. I had been at BioWare
a little over five years and
needed some new challenges.
I had worked on all of the
major BioWare IPs (in some
cases several times) as well
as on an IP that never saw the
light of day. Art styles were
very established, especially
on games going into their
third installment. The character
art team was an extremely
talented and experienced
team that didn't require a lot of
guidance or instruction. If I was
going to continue to grow as
an artist and grow as a leader,
I was going to have to leave
those calm and familiar waters
and find new challenges. I
found those challenges at
Insomniac. They had a younger
character art team that was
being rebuilt and hired into. I
could help steer it. It was also
an extremely interesting time
to come here. [There are] new
firsts for the studio to tackle
like going multi-platform and
a major update that's in the
works for our proprietary
toolset that also needed input.
There is a lot going on, and it is
pretty hard to be bored.

 BS: In 2005 you left the film
industry to work on games.
How did you find the switch?
KF: Going to EA Sports and
into the games industry was
the result of a few things. I
had always wanted to make
believable creatures and
monsters. In the early 2000s,
only a handful of VFX shops
in the world were doing that
type of work at a high level.

The VFX shop that I was at
was small. I mostly worked
on visual effects and lighting.
Any character-based work
that came in the door was
immediately pounced on by
the senior artists so there was
very little opportunity for me
to create characters in film.

In the game industry,
dozens of CG humans or
creatures are made per game
versus maybe one organic
CG asset per film. 2005 was
also the eve of "next-gen." EA
was working on launch titles
for the Xbox 360, and by the
time I got there, EA Canada
had brought in many very
experienced, top film industry
people to explore what the
new hardware was capable
of. So in spite of moving to the
game industry, the target of
photo-realism was still the
same as it was in film. It was
an exciting time to be there.
I always joked that coming
to EAC was like a vacation
because I was no longer
working on weekends or
holidays, and the sun was still
up when I went home at night.

Tools-wise, I was still using
Maya and Photoshop at EA,
but I had given up compositing
software like Shake and
tracking software like Boujou.
EA had hired me because I was
very proficient with ZBrush.
Back then that was hard to
find. I was one of two people
doing Zbrush work at the whole
studio, and because of that I
had a unique job. Now, even
the most junior character artist
today is expected to know
3D sculpting software inside
and out.

BS: What, in your mind,
are the most important

tenets of a believable game
character? How do you sell
it to the player?
KF: Knowing the character's
personality early on is
important. A believable
character is the result of
everyone on the development
team knowing who that
character is and acting in
unison to deliver a consistent
message. The caveat is that
the character needs to deviate
at times from predictable
behavior to keep players
on their toes, and so the
character doesn't feel one
dimensional. It's a paradigm
shift to not treat the character
as just another mesh, but as a
personality that is the result of
many pieces.

You need someone
who knows and owns the
character, and makes sure
that a consistent message
is being delivered from
everyone. How the character
looks (art), how the character
talks and sounds (audio),
how the character moves
(animation), and what the
character does (story)
all support or hurt the
character's believability.
 Imperfections are very
important. Someone with
a robotic personality that
responds to all situations
the same way is boring and
totally unbelievable and will
get no emotional investment
from players. Imperfection in
the design like asymmetry
in the face and wear in
clothing—even imperfections
in the motion like a limp, or
a lisp all add greatly to the
level of believability. People
are far from perfect, so our
characters should follow suit.

mailto:editors@gdmag.com
http://www.GdmaG.com

http://www.neversoft.com/site/hiring.html

S T U D E N T g a m E P R O F I L E S

EducatEd Play!

www.gdmag.com 53

Tom Curtis: How did you all come
together to work on this project?
PaPerPlane was our second year
student project in our master’s
degree program. For these projects,
you have to submit a pitch to the
school’s board, and they select
some of them. Then, you have to
build a team around your project.
There were three of us behind
this pitch, and quickly we found
six other teammates. We had six
months to develop a prototype
and we had to deliver three

presentations during this time, with
the final one being in front of a jury
for the end of the project.

TC: How did you all decide upon
the premise for the PaPerPlane?
The proposed pitch was not quite
like the final prototype. At first, it
was more based on the concept
of Rube Goldberg machines, and
you would use the paper airplane
as a means of chaining actions
together. We got a little lost with
this concept during the first month
or two of development, and after
a few meetings with some of our
teachers, we were able to find a
different direction that suited all
of us. The idea of using childhood
memories came at around that
moment, and it was from there
that everything fell into place.

TC: The game heavily emphasizes
life in the rural countryside. Did
any of you grow up in such an
environment?
Most of us did, or at least had
parents or grandparents who grew
up in the countryside, and we all
have different memories of this
type of environment. When you’re a
child, it’s such a rich and enjoyable
setting. To get a good feeling of the
countryside we did some "project
hikes" with the whole team. We
went around the city we lived in:

Angoulême, France, which is where
our school is. That was really fun
to do and it created a bond among
the team. Also, mountain bike
rides and books by French author
Jean Giono were major inspirations
during development.

We didn’t want to show a
kitsch, adult-idealized vision of
the rural countryside. It’s not all
flowers and cows there; we also
feature things like a highway and
a tractor, because these sorts of
things can still seem incredibly
fun in a child’s eyes.

TC: What sort of inspiration
did you draw from your own
childhoods?
The central tree house is really a
thing we all had in common—it also
speaks to every child. Everyone had

one that was more or less like the
one in the game. It's a wonderful
feeling to be on top of everything,
to be higher than your parents, to
have a private space where they
can’t go. Also, it’s really hard to find
people who never made a paper
airplane; every one of us did it at
some point either as a child, as a
parent, or as a grandparent.

TC: What were your influences
when developing the game's
visual style? The game's
intro sequence in particular
seems to draw some cues from
impressionist paintings.
We opted for a visual style close
to hand drawing. Nevertheless, it’s
pretty hard to obtain a convincing
NPR render, especially with Unity,
so we decided to work with low-
poly models and flat textures, soft
light, colored shadows, and pastel
tones. The intro scene is a pre-
rendered sequence, so we tried to
obtain a painted visual style with a
little program wrote by one of our
graphic designers.

TC: What were some of the major
challenges you all faced during
development?
At first, we wanted to integrate
an "origami editor" into the game,
which would allow the player to
fold their own paper airplane and
even other shapes like boats or
cranes. That was a major feature
in the original pitch, but we had to
drop it because of the technical
and usability challenges involved.
It was a hard decision to make, but
it was for the greater good —you
need to keep it simple to be able to
focus on the little things.

Another stressful challenge
was when we had to do an art
change about a month before the
final presentation of the project.
We lost our direction along the

course of development and
were harshly reminded during a
presentation that our game looked
too realistic, and it didn't quite feel
right. That was enough for us to
review all of the textures we had
done so far and do them again—
we did not regret it.

TC: What was it like working with
Unity as your game engine?
Unity is great for students; you
have all you need right away. You
don’t have to waste time developing
your own engine. Of course, the
engine is quite generic, so you
can make pretty much any type
of game you want. Unfortunately,
that’s also its worst drawback,
meaning you have everything to
make a game but not everything
is as advanced as you would like.
For example, the sound engine is
good but you can’t have interactive
music easily. However, some
missing features can be developed
with the help of plug-ins.

The fact that JavaScript is
implemented is also of great
help for the designers, and
when it comes to balancing and
playtesting. Using that, a non-
coding team member can easily
tweak some game variable without
bothering a programmer.

TC: Now that PaPerPlane has
been featured in the IGF Student
Showcase, what are your plans
moving forward? Do any of you
have plans for future projects?
The IGF draws a lot of attention,
and it’s really a great way to get
contacts. We have been contacted
by several people with different
opportunities relating to this
project, and we are excited about
all of them so far. We all would like
to work some more on the game,
but once you finish school, it’s hard
to find time for side projects.

PaperPlane
IGF FInalIst PaPerPlane aIms to caPture the sPIrIt oF chIldhood Innocence, allowInG Players to GlIde throuGh the countrysIde and uncover what It
has to oFFer. as the Game ProGresses, the InItIally barren landscaPe becomes PoPulated wIth swInG sets, Farmlands, and more, dePendInG on where
Players GuIde theIr small PaPer aIrPlane. here, the team From French Game school enJmIn dIscusses the InsPIratIon and work that went Into creatInG
thIs atmosPherIc tItle.

h t t p : / / p a p e r p l a n e - g a m e . c o m

http://paperplane-game.com
http://www.gdmag.com

©
 2

01
1

Fu
ll

Sa
il,

 L
LC

Game Art
Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

fullsail.edu
Winter Park, FL

Campus Degrees
Master’s

Bachelor’s

Associate’s

Online Degrees
Master’s

Bachelor’s

V
FS stu

d
e
n
t w

o
rk b

y A
ld

o
 M

artin
e
z C

alzad
illa

Join VFS at
SIGGRAPH 2011!

Drop by, say hi, and
learn more about our
acclaimed programs.

AUGUST 9-11
BOOTH #739

Find out more.
vfs.com/enemies

Game Design at VFS lets you
make more enemies, better levels,
and tighter industry connections.

In one intense year, you design and develop
great games, present them to industry pros,
and do it all in Vancouver, Canada, a world
hub of game development.

The LA Times named VFS a top school
most favored by game industry recruiters.

>>
GE

T
ED

UC
AT

ED

54 A U G U S T 2 0 1 1 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE_GD 306 MKT.V5 7/5/11 3:39 PM Page 54

http://fullsail.edu
http://vfs.com/enemies

Academy of

Interactive Entertainment 29

Epic Games C3

Full Sail Real World54

Intel Corporation 18–19

Neversoft Entertainment52

Penny Arcade Expo 11

Perforce Software 6

Rad Game Tools C4

Tokyo Game Show 26

TwoFour54 3

Vancouver Film School 54

COMPANY NAME PAGE COMPANY NAME PAGE
ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415) 947-
6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057,
Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S.
bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing
offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call
toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274,
Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to
indicate gd Game Developer on any correspondence. All content, copyright gd Game Developer magazine/United Business Media LLC, unless otherwise indicated. Don’t steal
any of it.

Techexcel Inc C2

>> GET EDUCATED

55W W W . G D M A G . C O M

GDP GE RHP TEMPLATE_GD 306 MKT.V5 7/12/11 2:07 PM Page 55

http://WWW.GDMAG.COM
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | AuguST 2011 56

You have arrived.
That’s right. You have arrived at
your new job at The Best Video
Game Studio in the World. All your
hopes and dreams and ambitions
in life have led up to this moment.
Now you are here, and it is time to
start the real work, the reason you
came into existence: the work you
will do for us.

As you might imagine, we do
things a little differently here. This
isn’t what you’re used to at those
other, terrible, awful video game
development studios under whose
jack-boot regimes you have labored
in the past. Our studio is nothing
like those clueless suit-infested
businesses that populate the lower
depths. Up here, our studio is a
sanctuary, an oasis for nursing
talent—Valhalla, really, though that
might sound a little arrogant.

Here, we have no schedules.
No producers, no managers, no
stockholders. Actually, we do have
those, but they will be far away.
Very, very far. You will never know
they exist. We will keep you in a
bubble. A happy, comfy bubble of
pure ideas: design as you always
wanted to do it, as you always
wished for. The irritating constraints
that always dogged you in the

past—milestones, technical ability,
other people—have been removed
entirely.

Impossible, you say? But it
is true, fantastically true! Don’t
strain yourself too much thinking
about it. Instead, look around you
and drink in the care with which
we have constructed the most
perfect, nurturing cradle ever
devised for game developers, one
designed from the ground up to
coax, gently, those droplets of pure
unadulterated genius from the
intricate folds of your brain.

See how our expansive office’s
multiple cantilevered travertine
balconies allow raw creativity to
hover, unfettered, through the air.
Each employee gets his or her own
temperature-controlled levitating
work surface. We have our own
specially made dev kits (at great
expense) that emit no distracting
noise or skin-drying heat. These
three straws next to your desk
here allow you enjoy sips of fair
trade artisanal coffee, single malt
Scotch, or puréed cuts of premium
Wagyu beef at any time you desire.
Hot face towels are distributed
seven times a day to all employees.
These mouse pads are fashioned
of gold leaf and Ultrasuede and are
emblazoned with your monogram
(small) and our logo (large). That

knob is pure tungsten.
Next, let me introduce you to
your personal manservant. We
all get one here, of course. Your
manservant will take care of all
your needs for you, so that you—
thank goodness! are freed up to
concentrate on your singular art.
For example, if you need to make
a change to the codebase, simply
describe the change you want to
your manservant, and he will make
the changes and commit them into
the repository for you. If the change
turns out to be bad, you can tell
everyone it wasn’t your idea and
then fire the manservant. Don’t
worry about it! That’s what they’re
there for—we can always get more.

Directing the work of the help
in a sustained manner is liable
to quickly exhaust the delicate
instrumentation of your finely
honed mind, we realize. To that end,
we have a range of rejuvenating
activities available to you right here
on the premises. To your left there
are the tennis courts, recently
resurfaced with an abalone shell
mother of pearl finish. Our assistant
to the associate art director doesn’t
like the iridescence, though, so
it may be removed tomorrow. To
your right you’ll find the five-story
climbing wall located inside what
we call the Grand Rationalization

Hall. The facility comes with its own
personal trainers at your disposal—
many of them are former game
designers themselves! And nothing
is more soothing on knotted
shoulders than our Olympic-size
hot tub, straight ahead. Its healing
waters are imbued with hand-milled
Himalayan sea salt and homemade
egg noodles.

Now, you would be forgiven
for thinking, “Wait a second–
have I died and gone to game
development heaven?” But no, you
are very much alive. Don’t act so
surprised. You’ve known all these
years that you were the Best Game
Developer in the World, haven’t
you? So it was only a matter of time
that you would find your way to
us, The Best Video Game Studio in
the World. Yes, it was preordained,
written in texts so hallow their gilt
pages sing with an angel’s voice
as they are turned. But enough of
that for now. We’ll save the religious
part of the new employee process
for later.

If you were the cynical sort—
and I would not blame you for being
one, after having survived the bleak
reaches of game development out
there in the big, scary world—you
might ask, “What’s the catch?”
And I would be obliged to answer
you truthfully: there is no catch.
I repeat firmly: there is no catch.
None. We expect you only to be
yourself, where “yourself” is that
apotheosis of brilliance that you
always knew you were. And we
know that, once you have applied
that mind, that beautiful mind, to
the vague problem statements that
may happen to float your way, you
will come away content, knowing
that your work is never really done.
Think not of ship dates, think not
of technology or resources. Just
reconfigure symbols in different
pleasing ways—until we tell you to
stop, that is.

By the way. Anything you
can’t do with the world’s greatest
studio at your full disposal is your
own freaking fault. We hope you
understand that.

matthew wasteland writes about games

and game development at his blog, Magical

Wasteland (www.magicalwasteland.com).

Email him at mwasteland@gdmag.com.

the Best Video
Game Studio in
the World
Welcome, neW employee.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com

ADVERTISEMENT

Every month, Epic Games releases a new update to
the free Unreal Development Kit (UDK) downloaded
by more than 800,000 developers around the world.
With the same triple-A toolset as the award-winning
Unreal Engine 3, UDK is popular among profession-
als, � edgling developers, and educators alike for its
industry-leading capabilities and � exibility.

And while every month brings about new improve-
ments, the June 2011 release is particularly exciting
for UDK users. The release introduces a series of
robust updates as well as new technology integra-
tion that provides access to Simplygon.

The � rst major
update is the
brand new foli-
age system (the
result of which is
pictured above
this article). The
foliage editor
is amazing in
that it allows
level designers
to ‘paint’ foliage
within their
levels as easily as drawing a brush over a canvas.
Foliage instance types can now specify a landscape
layer for weighting, and foliage painting can be used
for altitude-based painting, as well. The new foliage
painting tool, which is focused on speed and quality,
enables developers to quickly paint foliage and deco-
rations such as grass, small rocks and bushes onto
Landscape, static meshes or BSP. UDK is all about
e� ciently building games at triple-A quality.

Now, with our new foliage editor, designers can get

the end result they need without investing a huge
amount of time placing each individual object.

Other improvements in the June release echo this
sentiment. With the new Unreal Kismet debugger
designers can visualize the � ow of their Kismet
sequences while their game is running. Designers
can also step through their sequences one frame at
a time and set breakpoints. These features can help
identify exactly what parts of a sequence are cur-
rently executing in the game and for what reasons.

The addition of fully customizable map templates
(see image below), for example, lets designers im-
mediately con� gure lighting for day, night, dawn, or
sunset by dragging the appropriate thumbnail from
the Unreal Content Browser into a level to populate
settings and achieve the desired lighting e� ect. This

gives developers a wide
range of possibilities for
more complicated lighting
projects and saves a great
deal of time.

There’s now a single editor
and game content tree for
both PC games and mobile
games. This allows devel-
opers to share gameplay
logic and assets between
PC and mobile more easily.
We’re making it much easier

to build cross-platform games, while still allowing
developers to accurately preview graphics and
gameplay with a single button click.

Furthermore, Donya Labs is now a member of the
Integrated Partners Program. Donya Labs’ Simplygon
is used to automatically generate game-ready Level
of Detail models (LODs) for a speci� c pixel resolution.

Simplygon, which is known to save developers
hundreds to thousands of hours of manual art
adjustment, provides high-quality mesh reduction
without having to leave the Unreal Editor. Developers
can quickly simplify meshes, generate LODs, and im-
mediately see the results in their maps. Simplygon
is especially useful for converting high-end PC assets
for deployment on mobile devices, which is a boon
to Unreal Engine 3’s cross-platform strengths.

Canadian-born Mark
Rein is vice president and
co-founder of Epic Games
based in Cary, NC. Epic’s
Unreal Engine 3 has won
Game Developer magazine’s
Best Engine Front Line Award
� ve times along with entry
into the Hall of Fame. UE3

has won three consecutive Develop Industry Excellence
Awards.

Epic is the creator of the mega-hit “Unreal” series of
games and the blockbuster “Gears of War” franchise.
Follow @MarkRein on Twitter.

UPCOMING EPIC ATTENDED EVENTS

Please email: mark.rein@epicgames.com for appointments.

GDC Europe
Cologne, Germany
August 15-17, 2011

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, the Circle U logo, Unreal, Unreal Engine, UE3, Unreal Kismet and Unreal Matinee are trademarks or
registered trademarks of Epic Game Games, Inc. in the United States and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

W W W . U N R E A L . C O M

gamescom
Cologne, Germany
August 17-21, 2011

GDC Online
Austin, TX
October 10-13, 2011

Montreal Int’l Game
Summit
Montreal, Quebec
November 1-2, 2011

NEW FEATURES,
ROBUST UPDATES TO
UDK MAKE WAVES

http://WWW.UNREAL.COM
mailto:mark.rein@epicgames.com

http://www.radgametools.com

	Contents
	POSTMORTEMS
	TOTAL WAR: SHOGUN 2
	TERMINATOR SALVATION - THE ARCADE GAME

	FEATURES
	RANDOM STRUCTURE

	DEPARTMENTS
	EDITORIAL - Game Plan
	NEWS - Heads Up Display
	PREVIEW - GDC Online Preview
	REVIEW - Tool Box
	PROGRAMMING - The Inner Product
	DESIGN - Design of the Times
	ART - Pixel Pusher
	SOUND - Aural Fixation
	BUSINESS - The Business
	NEWS - GDC News
	CAREER - Good Job!
	EDUCATION - Educated Play
	HUMOR - Arrested Development

