
F E A T U R E : 2 0 0 9 G A M E M I D D L E W A R E S H O W D O W N

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

DAMAGE ARBITRATION
the quick and the dead

CINEMATIC CAMERAS
and the art of manipulation

VOL16NO7AUGUST2009

0908gd_cover_vIjf.indd 1 7/20/09 4:23:47 PM

http://www.eyetronics.com

GAME DEVELOPER | XXXXX XXXX 1
COVER SOURCE ART: THE CONDUIT ART TEAM

CONTENTS.0809
VOLUME 16 NUMBER 7

P O S T M O R T E M

30 HIGH VOLTAGE'S THE CONDUIT
THE CONDUIT represents High Voltage's first major foray into the world of
original IP, after years of making licensed product. The lack of an external
license to guide their choices and a publisher to keep them on track
proved difficult—this postmortem provides good information for any
company looking to make that leap. By Josh Olson and Eric Nofsinger

F E AT U R E S

7 MIDDLEWARE SHOWDOWN
More and more companies are using middleware to alleviate the pain
of rising development costs. But there's not a whole lot of information
out there. Our survey shows what developers want from middleware,
and which packages are most popular in each field. By Mark DeLoura

18 BANG! ARE YOU DEAD?
Determining damage in online player-versus-player games requires
an arbiter, not only to make sure that hits are correctly scored, but
also to circumvent cheaters. Sony's Ronald Roy shares some tips.
By Ronald Roy

23 THE FEARFUL EYE: CINEMATIC CAMERAS
Most games don't really aim for cinematic excellence, preferring
instead to show as much of the game as possible. But it's possible
to do both as this article proves through a careful dissection of the
design considerations involved. By Chris Pruett

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

First-Person

 4 HEADS UP DISPLAY [N E W S]

The best game mods of 2009, Amiga Forever updates,
 the 2010 IGF submission timeline, and more.

 36 TOOL BOX By Andrew Jones, Tom Carroll [R E V I E W]

Corel Painter 11, Art DVD reviews

 41 THE INNER PRODUCT By Noel Llopis [P R O G R A M M I N G]

Procedural Content Creation

 45 PIXEL PUSHER By Steve Theodore [A R T]

Check Out That Asset!

 49 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

Turn-Based Vs. Real Time

 51 AURAL FIXATION By Jesse Harlin [S O U N D]

Retro Fitting In

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Staying Sane

WWW.GDMAG.COM 1

0908gd_toc_vIjf.indd 1 7/21/09 11:05:10 AM

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

HEADLINE

Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
SENIOR CONTRIBUTING EDITOR
Jill Duffy l jduffy@gdmag.com
CONTRIBUTING EDITORS
Jesse Harlin l jharlin@gdmag.com
Steve Theodore l stheodore@gdmag.com
Noel Llopis l nllopis@gdmag.com
Soren Johnson l sjohnson@gdmag.com
Damion Schubert l dschubert@gdmag.com
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, EDUCATION
AND RECRUITMENT

Gina Gross e: ggross@think-services.com
t: 415.947.6241
COORDINATOR, EDUCATION AND RECRUITMENT
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Robert Steigleider e: rsteigleider@ubm-us.com

REPRINTS

WRIGHT'S REPRINTS
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

THINK SERVICES

CEO THINK SERVICES Philip Chapnick
GROUP DIRECTOR Kathy Schoback
CREATIVE DIRECTOR Cliff Scorso

AUDIENCE DEVELOPMENT

GROUP DIRECTOR Kathy Henry
e: khenry@techinsights.com
DIRECTOR Kristi Cunningham
e: kcunningham@techinsights.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

MARKETING

SERVICES MARKETING COORDINATOR Laura Robison
e: lrobison@think-services.com

UBM TECHNOLOGY MANAGEMENT

CHIEF EXECUTIVE OFFICER David Levin
CHIEF OPERATING OFFICER Scott Mozarsky
CHIEF FINANCIAL OFFICER David Wein
CHIEF INFORMATION OFFICER Kevin Prinz
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, STRATEGIC DEV. AND BUSINESS ADMIN. Pat Nohilly
SENIOR VP, MANUFACTURING Marie Myers

W W W . C M P G A M E . C O M

FIRST-PERSON

TALKING WITH OUR PREVIOUS ART DIRECTOR
recently, I recalled something I’d forgotten: First-
person games can be quite intimidating. We tend to
accept it as a de facto viewpoint for several popular
genres today, and it also saves developers from
having to develop a camera system independent of
the player’s control. But it is rather daunting, and has
a high learning curve for those who haven’t already
experienced many first-person games.

The art director in question is a more casual
player, and to her, first-person games seem
disorienting and conceptually difficult. Talking about
this reminded me of my first FPS experience, in
WOLFENSTEIN 3D for the Atari Jaguar. This was my first
interaction (in perhaps '97 or '98) with a “real” FPS. I
tried playing the game for about an hour, and came
away dizzy and unable to read, because my eyes
were jumping around on the page.

This experience had me pretty convinced that
first-person games weren’t for me, all the way until
HALO 2 hit consoles and someone convinced me to give
it another shot. Perhaps that’s not a good thing for an
editor of Game Developer to admit, but it’s true. I have
since learned the power of the fir st-person viewpoint,
in terms of what you can show on screen, and the
interactions that become possible. But I spoke with a
few of my fellow editors, and several had recollections
of difficulty penetrating that first-person wall.

The reason is likely that we are used to seeing
games and movies play out before us in a third-person
view. Having an avatar gives us a strong frame of
reference, and allows us to better navigate the world. If
I see a little running guy, and I try to make him jump, I
can gauge that distance. If I have to jump in first-person
mode, where are my feet? Are they below the camera
directly? How far can I jump, when everything feels
like it’s based on my perspective? If I look up a bit, the
platform in front of me looks different than it did before.

A 14-year-old boy will take the time to figure this
out, and will wind up having an excellent experience.
An older or more casual user will likely be much more
daunted, and less inclined to even pick up such a title.

THE IMMERSION QUESTION
» Are first-person games inherently more
immersive? A lot of developers seem to think so,
but let’s take a second look. Consider the last time
you felt like you actually were the character in a
game you played. I’d be willing to guess that most
people will say “never.” We don’t generally take on
the role of the character we’re playing, except as
children in imaginary play. What we do is identify
with the character—and how can you identify with
a character you can’t see? A character that usually
doesn’t even talk, or have any opinions about the

horrible things going on around him? This goes back
to the “silent hero” dilemma that has existed ever
since role-playing made its way into the electronic
world, notoriously perpetuated by the Japanese
console RPG.

Almost all first-person games have this sort of
silent character—one whose only interaction with
others is usually taking orders until they turn their
backs, and then just shooting and collecting things.
That doesn’t seem inherently immersive to me. It
can be, but it isn’t necessarily, as is often assumed.
Western RPGs like FALLOUT 3 (or earlier games like
ULTIMA IV) do a somewhat better job by at least allowing
the player to make some dialog choices, but still, the
character isn’t you.

What makes a game immersive or otherwise is not
the viewpoint, of course; it’s the situations, external
characters, and tasks that get you involved. One of the
characters I’ve identified most with is the boy from
ICO, and he doesn’t even speak a real language. The
oppressive environments and his seeming innocence
simply made him a sympathetic character. It’s difficult
to empathize or identify with a camera or floating gun. I
can empathize with De Niro’s character in Once Upon a
Time in America, even though I don’t agree with what he
does, simply because his world is so well-realized, and I
can see how he reacts to events. In first-person games,
there is no reaction on the part of the character, and it
becomes difficult to feel anything about him or her.

First-person games are incredibly important to
the industry, and have moved many genres forward
in significant ways. The viewpoint is doubtlessly here
to stay, and I want to emphasize that I am actually a
fan of the concept. But I do think it’s worth taking a
step back. I feel that as an industry we’ve come to our
own conclusion that first-person games are inherently
intuitive and more immersive, simply by virtue of
their camera position, and in spite of the problems
they bring up. I would submit that just because we’ve
gotten used to this style of game doesn’t mean
everyone has. It’s important to realize that making a
first-person game almost necessarily means making
a game for the dedicated gamer.

BREAK DOWN THE WALL
» Innovations on the interface side could help
lower the casual block, perhaps through the Wii,
Project Natal, or the PS3’s new motion controller (THE
CONDUIT does some work in this direction—see the
postmortem on page 30). Regardless, it will take a lot
of work and concerted effort to penetrate the casual
audience with a first-person camera. The question is
whether we even need to, when there are so many
camera systems that games have yet to fully explore.

—Brandon Sheffield

GAME DEVELOPER | AUGUST 2009 2

IS IT REALLY MORE IMMERSIVE?

0908gd_gameplan_vIjf.indd 2 7/20/09 4:24:28 PM

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:jduffy@gdmag.com
mailto:jharlin@gdmag.com
mailto:stheodore@gdmag.com
mailto:nllopis@gdmag.com
mailto:sjohnson@gdmag.com
mailto:dschubert@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:rsteigleider@ubm-us.com
mailto:rpratt@wrightsreprints.com
mailto:khenry@techinsights.com
mailto:kcunningham@techinsights.com
mailto:lrobison@think-services.com
http://WWW.CMPGAME.COM

We are tired of stupid zombies populating games.
Help us and give ’em brain. Sign up NOW for FREE
and download the NEW xaitment BrainPack SDKs

Set up and control complex game logic in a few steps. Generate your perfect
navigation mesh with a single click. Create realistic behavior in no time.

Join the xaitment community now and turn your idea into a stunning prototype without
paying any license cost. By signing up for free, you’ll receive our complete modular AI Engine
plus our world-class support. Experience the future of next gen game technology and work
with the smartest AI technology available.

Contact xaitment today for more information about the BrainPack Program under
brainpack@xaitment.com or visit our website www.xaitment.com

090414_8x10.75_developmag_3.indd 1 15.04.2009 0:55:18 Uhr

mailto:brainpack@xaitment.com
http://www.xaitment.com

HEADS-UP DISPLAY

GAME DEVELOPER | AUGUST 2009 4

NAVIGATING THROUGH THE DEPTHS OF MODDB’S MOD LISTINGS CAN BRING UP A MIXED BAG AT THE BEST OF TIMES. WE’VE SIFTED
THROUGH THE ARCHIVES FOR YOU, AND FEEL THAT THESE MODS REPRESENT SOME OF THE BEST OFFERINGS RELEASED OR UP-
DATED IN 2009. —Ryan Anderson, ModDB

MOD SCENE 2009

THIRD AGE – TOTAL WAR

MEDIEVAL II: TOTAL WAR KINGDOMS
EXPANSION
www.twcenter.net/forums/
forumdisplay.php?f=654

THIRD AGE is a fan-made imagining of the
Lord of the Rings universe. A complete and
detailed campaign map of Middle Earth,
along with 12 factions straight from the
lore allow you to create large-scale battles
of epic proportions. The mod features a
plethora of other custom content, from
new voice work to cinematic cut-scenes
that round out the entire experience.

EUROPE IN RUINS: REINFORCEMENTS

COMPANY OF HEROES/COMPANY OF
HEROES: OPPOSING FRONTS
www.europeinruins.com

EUROPE IN RUINS transforms COH into a
persistent environment in which you
command your own battalion. Experience
points carry over from previous battles,
allowing you to unlock new abilities and
increase your options on the battlefield.
Custom maps and units tailored to
EIR’s unique style of play make this a
deeper strategic experience than the
original game.

THE BALL

UNREAL TOURNAMENT 3
http://theball.toltecstudios.com

THE BALL has you exploring ancient Aztec-
style ruins and fighting the animated
remains of its former inhabitants with
nothing more than a large, magical orb. The
game’s puzzles are nicely varied, and play
on the connection between you and the ball;
it’s not until you wander into trouble without
it that you realize how much of a friend it
really is.

THE HAUNTED

UNREAL TOURNAMENT 3
www.moddb.com/mods/the-haunted

Zombies and demons will probably never
go out of style, and THE HAUNTED offers a
nice take on the subject in terms of both
aesthetic and pacing. The quick arcade action
rewards your kills with weapon upgrades
and teammate revival checkpoints keep
you from camping in any one place too long.
Gorgeous to look at, fun to play, and free (for
UT3 users)—what more could you ask for?

RADIATOR

HALF-LIFE 2
www.radiator.debacle.us

RADIATOR is a series of shor t-form,
experimental single player experiences.
The first two episodes play on themes
of love, astronomy, memory repression,
and gay marriage. The mechanics in each
of these episodes are quite limited, but
the emotional impact justifies this artsy
mod’s placement on our list.

NEOTOKYO°

HALF-LIFE 2
www.neotokyohq.com

At first glance, NEOTOKYO° seems to be
another COUNTER-STRIKE clone. Spend some
time with it and you’ll find there are several
nuances that set it apart from the pack. The
combination of vision modes and therm-
optic camouflage offers unique checks and
balances, while the “Capture the Ghost” game
mode encourages tight team coordination.
Impressive visuals assembled by a team of
industry pros speak for themselves.

FALL FROM HEAVEN II

CIVILIZATION IV: BEYOND THE SWORD
www.civfanatics.com/ffh

FALL FROM HEAVEN plunges you into a world of
dark fantasy built on the mechanics behind
CIVILIZATION IV. It adds an incredible amount
of content; choose from two dozen different
factions—each with their own heroes, magic,
religions and technology. There’s even a card-
based diplomatic mini-game! FALL impressed
Soren Johnson (CIV IV Designer) enough
to write up an interview with the creators
(www.designer-notes.com/?p=120).

THE NAMELESS MOD

DEUS EX
http://thenamelessmod.com

A colossal undertaking several years in the
making, NAMELESS drops you into Forum City
as an avatar named Trestkon. The environment
itself is a “physical embodiment of Internet
forums and bulletin boards,” but is filled with
just as much conspiracy and intrigue as the
world of JC Denton. A branching, responsive
storyline with high quality voiceovers and
high definition graphics upgrades make this
mod a must-play.

PROJECT REALITY

BATTLEFIELD 2
www.realitymod.com

PROJECT REALITY is a mod that turns
BATTLEFIELD 2 into a perfect blend of arcade
and simulation elements. Strategic planning
and team coordination are required, but
the action focuses around specific capture
zones. Utilizing a force of combined arms,
whether it’s infantry, armor, or air support, is
the key to winning. The best part: you don’t
have to spend half the match traveling to
where the action is.

AGE OF CHIVALRY

HALF-LIFE 2
www.age-of-chivalry.com

Parry, stab, and slash your way to victory
in this medieval, class-based Source mod.
Not many mods pull off melee combat,
but AGE OF CHIVALRY provides a satisfying
(and very gory) representation. Extensive
Steamworks support makes this the
first mod to offer detailed stats and
achievements.

= SINGLE PLAYER = MULTIPLAYER

0908gd_hud_vIbs.indd 4 7/20/09 4:19:39 PM

http://www.age-of-chivalry.com
http://theball.toltecstudios.com
http://www.moddb.com/mods/the-haunted
http://www.radiator.debacle.us
http://thenamelessmod.com
http://www.neotokyohq.com
http://www.twcenter.net/forums/forumdisplay.php?f=654
http://www.twcenter.net/forums/forumdisplay.php?f=654
http://www.realitymod.com
http://www.civfanatics.com/ffh
http://www.designer-notes.com/?p=120
http://www.europeinruins.com

WWW.GDMAG.COM 5

THE PENNY ARCADE EXPO IS FRIEND TO ALL MANNER OF INTERACTIVE
creative endeavor, and to that end, the organizers have chosen the PAX 10,
ten indie games that will be featured during the popular expo. The list was
culled from over 150 entries, and is displayed below.

CARNEYVALE: SHOWTIME by the Singapore-MIT GAMBIT Games Lab (Xbox 360)
CLOSURE by Tyler Glaiel and Jon Schubbe (PC)
FIELDRUNNERS by Subatomic Studios (iPhone)
LIIGHT by Studio Walljump (Wii)
MACHINARIUM by Amanita Design (PC)
OSMOS by Hemisphere Games (PC)
PUZZLE BLOOM by Team Shotgun (PC)
TAG: THE POWER OF PAINT by Tag Team (PC)
TRINO by Trinoteam (Xbox 360)
WHAT IS BOTHERING CARL? by Story Fort (PC)

PAX 2009 takes place in Seattle from September 4–6.
—Staff

AMIGA FOREVER, A ROBUST
emulator of Amiga software and
its operating system, has just
released a new version for 2009.
(www.amigaforever.com) Cloanto,
an Amiga developer since 1986,
has updated the package with
Windows 7 support, smaller file
sizes for games (using the RP2
format), new system ROMs, and
an enhanced focus on usability, a
traditional complaint from users
of the software.

Amiga Forever runs almost
all versions of Amiga software,
and most importantly, games.
The Plus Edition even supports
the Amiga CD32, the ill-fated
CD-based home console. There
are three available packages:
Value, which comes with the
most common OS and 50 games
and demoscene productions
(respectively); Plus, which adds
all ROM and workbench versions,
100+ games and demos, and a

historical gallery; and Premium,
which adds two DVDs comprising
20 gigs of games, history,
videos, and errata.

Some companies such as
Factor 5 have made some of their
Amiga titles available for free on
their own web site (www.factor5.
de/downloads.shtml), and other
titles are legally downloadable
through a variety of sites such as
Amiga Future and Amigaland.

Efforts to preserve classic
game culture like this are to
be commended, though some
might argue it should be a free
service (those who feel that way
might try the UAE emulator: www.
amigaemulator.org). While the
old ways of computing may be
dead and gone, their legacies
resound throughout the game
and software industries, and are
certainly worth revisiting.

—Brandon Sheffield

AMIGA FOREVER

SIGGRAPH 2009
· Ernest N. Morial

Convention Center
· New Orleans
· August 3–7
· Price: $45–1,175
www.siggraph.org/
s2009

GDC EUROPE
· Cologne Congress

Center East

· Cologne, Germany
· August 17–19
· Price: 180–795

Euros
www.gdceurope.
com

DiGRA
· Brunel University
· West London
· September 1–4
· Price: £196–£372

http://digra2009.
newport.ac.uk

PENNY ARCADE
EXPO
· Washington State

Convention Center
· Seattle
· September 4–6
· Price: $30–$55
www.pennyarcade
expo.com

ORGANIZERS OF THE INDEPENDENT GAMES FESTIVAL (OWNED
by Think Services, which also publishes Game Developer)
have announced that the 2010 edition of the venerable
festival and awards show honoring the best in indie games, is
open for submissions.

Finalists will be playable on the GDC 2010 show floor, and
winners will compete for almost $50,000 in prizes. The IGF is
an excellent place not only to get noticed, but also a place to
launch a legitimate career as an independent developer. Below
is the timeline of dates for the competition.

November 1st, 2009 – Submission Deadline, Main Competition
November 15th, 2009 – Submission Deadline, Student Competition
January 4th, 2010 – Finalists Announced, Main Competition
January 11th, 2010 – Finalists Announced, Student Competition
March 9th–10th, 2010 – Indie Games Summit at GDC
March 11–13th, 2010 – IGF Pavilion at GDC
March 11th, 2010 – IGF Awards Ceremony (Winners Announced)

—Staff

2010 INDEPENDENT
GAMES FESTIVAL OPEN
FOR SUBMISSIONS

PAX 10 ANNOUNCED

CALENDAR

0908gd_hud_vIbs.indd 5 7/20/09 4:19:45 PM

http://www.siggraph.org/s2009
http://www.gdceurope.com
http://digra2009.newport.ac.uk
http://www.pennyarcadeexpo.com
http://www.pennyarcadeexpo.com
http://WWW.GDMAG.COM
http://www.siggraph.org/s2009
http://www.gdceurope.com
http://digra2009.newport.ac.uk
http://www.amigaforever.com
http://www.amigaemulator.org
http://www.amigaemulator.org
http://www.factor5.de/downloads.shtml
http://www.factor5.de/downloads.shtml

C

M

Y

CM

MY

CY

CMY

K

GameDevKnightAd0709_HR.pdf 7/6/09 10:18:43 AM

http://www.image-metrics.com

WWW.GDMAG.COM 7

M A R K D E L O U R A

THE CHOICE OF WHETHER TO USE LICENSED MIDDLEWARE LIBRARIES HAS TRADITIONALLY BEEN
a controversial one. We engineers are a proud lot, and there is a long tradition of “do it yourself”
that goes back to the days of single designer/engineers cranking out Atari 2600 games. Game
engines have become quite massive as platform capabilities have increased, but many of us still
want to be able to write all the engine code, and feel it is a badge of honor to do so. Why rely on
someone else?

These days, however, there are many useful libraries available—both free and licensed—and
using them in your game can be a smart decision that frees you up to concentrate on building
features that make your game unique. Instead of spending a bunch of time writing a cross-platform
audio engine and tools, perhaps you can just license one. Why rewrite the inverse kinematics code
again if you can go out and buy a version that works reasonably well for your style of game? Of
course, there are financial considerations, and the available libraries may not do quite what you had
envisioned. But with so many options available, the wise team leader will do a thorough middleware

what middleware packages studios use and why
exploration before making too many decisions about the
game’s tech.

It can be tough to narrow down the choices. Which
libraries have proven the most useful? Which middleware
companies are the best to work with? And how can you
quickly evaluate a handful of libraries to find the one that
is best for your game? Unfortunately the answers to
many of these questions are typically only found late at
night over drinks with a friend. As one developer told us,
“It’s harder than it should be to find other developers to
talk to who are using the tech.”

A few months ago we put together a survey on game
engines and the results were quite useful. Many smart

0908gd_middleware_vIbs.indd 7 7/20/09 4:25:14 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | AUGUST 2009 8

people were willing to share information and anecdotes about their experiences, knowing that
the data would be anonymized, consolidated, and shared for the betterment of all. Here, we’ve
done the same for middleware libraries.

D E M O G R A P H I C S
» As with the game engine survey, the responders to our middleware survey skewed toward
the “core” game market. Over 100 senior developers from a variety of development houses
responded to the survey, and most were working on PC, PlayStation 3, or Xbox 360 titles.
Likewise, most considered their games to be more hardcore, but there was a heavy amount of
casual games as well, with some crossover per developer. (See Figures 1 and 2.)

C H O O S I N G M I D D L E W A R E
» What drives a developer to choose middleware over writing internal software? A majority
of the developers indicated saving time was the strongest motivation. The pressure to create
a title of high production quality was indicated as the second strongest influence—as one
responder noted, although high-fidelity titles can frequently be created more quickly by using
middleware, for unique features of the game. “... [that] require doing something that off-the-
shelf middleware isn’t really tuned for, we may do something in-house.” Fortunately, as that
same person noted, the ability to innovate within the constraints of middleware continues to
grow each year. (See Figure 3.)

The decision to use middleware is largely made by the technologists on a project—89% of
responders called out engineers as the key influencers. Producers and other business managers
also have an influence, but at a much lower level. (See Figure 4.)

It's long been appreciated that using game engines and middleware libraries can get the
team up and running more quickly on the target platform during the development process,
allowing artists and designers to mock up the game much earlier. Commenters noted, "While
middleware is not perfect, it allows us to concentrate on the areas that really make our game
different, rather than implementing basics. But programmers tend to not like [middleware]
because it makes their lives more difficult (and the naïve ones think they can do it better)."

The most straightforward way to evaluate potential libraries is to have an engineer sit
down with each one and work with it, integrate it, and experiment with it—and indeed this is
called out as the most common solution. (See Figure 5.) But of course it is also extremely
slow and costly. “That costs a LOT of money, but it is better than learning too late that it’s the
wrong solution,” said one commenter. Another common technique for vetting the usefulness
of a middleware library is to talk with other people who have used it. This is sometimes
easier said than done, since there are usually a lot of NDAs in the way. But icons on boxes,

Figure 1 platform
WHICH PLATFORMS ARE YOUR CURRENT PROJECT(S) FOR?

PC 68.6%

PLAYSTATION 3 61.9%

XBOX 360 61.0%

NINTENDO WII 32.4%

MOBILE 21.0%

XBOX LIVE ARCADE 20.0%

PLAYSTATION NETWORK 18.1%

SONY PSP 18.1%

MAC 14.3%

WIIWARE 11.4%

NINTENDO DS/DSI 10.5%

Figure 2 classifications
HOW WOULD YOU CLASSIFY YOUR CURRENT GAME?

CORE 63.5%

CASUAL 44.2%

SOCIAL 20.2%

MMO 13.5%

MOBILE 21.0%

Figure 3 influences
HOW MUCH DO THE FOLLOWING FORCES INFLUENCE YOU
TO USE MIDDLEWARE (OUT OF 5.00)?

TIMELINE PRESSURES 3.87

FEATURE-SET OR PRODUCTION
QUALITY PRESSURES 3.70

COST PRESSURES 3.37

ABILITY TO SHARE TECHNOLOGY
AND STAFF ACROSS PROJECTS 3.27

DIFFICULTY OF FINDING STAFF
WITH APPROPRIATE EXPERTISE 3.10

ABILITY TO PURCHASE
CUTTING-EDGE TECHNOLOGY 3.09

Figure 4 roles
WHO MAKES THE DECISION WHETHER TO USE MIDDLEWARE
OR NOT AT YOUR COMPANY?

TECHNOLOGISTS 89.0%

BUSINESS MANAGEMENT 36.3%

PRODUCERS 31.9%

ARTISTS 24.2%

DESIGNERS 13.2%

PUBLISHER 13.2%

HELLGATE: LONDON made use
of middleware from Havok.

0908gd_middleware_vIbs.indd 8 7/20/09 4:25:27 PM

Xsens Technologies B.V. / +31 (0)88 97367 00 / info@xsens.com / www.xsens.com

Freedom of movement

Xsens MVN (formerly known as Moven)

inertial motion capture
•	 Flexibility
•	 Quick turn around times
•	 Unlimited capture volume
•	 Real-time, On-set previsualization
•	 No occlusion
•	 Saves up to 80% post-processing time
•	 Clean and smooth data

Meet Xsens at:

Booth 2819

Join the MoveMent!
Film: Industrial Light and Magic, Sony Pictures Imageworks, The Third Floor, Double Negative,

Filmayer Producciones Audiovisuales...
Games: Electronic Arts, THQ, Sony Computer Entertainment, 2K, Insomniac, Gearbox Software,

Big Huge Games, Xaviant, Rocketbox Studios, Bigpoint...
television: Animated Storyboards, Pipedreams 3D, Simaestudio...

mailto:info@xsens.com
http://www.xsens.com

comments on web sites, and conversations over drinks certainly help. And what’s a better
recommendation than seeing a particular piece of middleware used in a game similar to your
own? “We look at how long it has been in the marketplace and if AAA titles not developed by
the middleware company have been (released),” said a respondent.

There are a lot of elements to consider when choosing middleware—the price, the features,
and the support infrastructure are all important. (See Figure 6.) Many of those surveyed
responded the criteria vary significantly based on the kind of middleware they’re looking for.
Perhaps for a piece of AI middleware the demands are different than for audio middleware,
since the audio system is less tightly integrated into the game engine. Several also responded
directly that trust in the middleware company and the level of support resources are incredibly
important, since developers will be working with the firm closely. We’ll discuss support in
more depth later, but the issue of being able to trust the company you’re working with came
up repeatedly. Many mentioned having been bitten by middleware companies going out of
business, or being purchased. Having a plan in place in case of such occurrences is vital.

P U R C H A S I N G
» Middleware companies have a variety of different licensing plans, and we were curious what
developers thought was most convenient. (See Figure 7.) As it turns out, the common per-project
and per-platform licensing models are the most popular. What is surprising is the incredible dislike
of the per-user licensing model—this hasn’t been used by many middleware companies, but is
common elsewhere in the industry, and one developer noted, “... per-user licenses don’t make sense
because you purchase as few as possible and it hampers development productivity.” Good point!

Another common question is whether studios might be interested in paying a smaller up-
front cost for middleware by allowing some royalties on the back-end after a title has shipped.
(See Figure 8.) This is a more typical proposition with game engines, but a few middleware
library companies have floated the idea as a possibility as well. Overwhelmingly, our survey
responders said “no.” A few noted that for small developers, being able to gain access to
middleware without a huge up-front cost would be beneficial, however “...it is difficult for us
to convince the publisher to pay back-end royalties for middleware.” Several commented “As
a developer, we rarely see back-end royalties (ourselves).” And one responder noted that
with most middleware companies, “everything is negotiable,” so there may be other options
available for cash-strapped young studios.

With regard to purchasing middleware, our final query was, "What other services might a
middleware company be able to provide?" Would developers be interested in paying a little extra
to get a custom build with some special features? (See Figure 9.) Reaction was largely negative,
although it varied depending on the extent of changes and the cost. “Simple changes we
make; hard changes you make,” seemed to be the overwhelming reaction. But many also said
something along the lines of, “I’d like to answer ‘both’ here—sometimes we do it ourselves, but
some modifications would benefit the larger user base so could be rolled back in...” and another
reply asked, “Is it fair for them to charge us for the modifications, and then turn around and
include that change into their middleware and sell it as a new feature to other developers?”

P O P U L A R L I B R A R I E S
» So which middleware libraries should be on your short list? The survey asked developers to
share with us which middleware they are using in their current projects, as well as which they
have used or evaluated in the past and, frankly, which they had never heard of. The leaders in
each middleware category were very clear from the replies we received. (Libraries not being
used by any of the survey respondents were not included in these charts—see Figure 10, pg 12.)

Physics. Nearly 2/3 of the responders to our survey are using physics middleware. Among all
the responses, Nvidia PhysX and Havok Physics are the most popular. Open source physics
library Bullet has proven quite popular as well, though not quite as strong as the licensed
physics middleware.
Networking. Networking used to be a very popular category of middleware library, but with
some platform providers integrating a level of network services into their SDKs, this category
has shifted significantly in recent years. About one quarter of our responders are using
networking middleware in their current titles. Interestingly, 6.2% claim to be using Demonware,
though Demonware is no longer licensable, as it has been purchased by Activision. It should also
be noted that much of the Wii’s networking capability is provided by GameSpy, so the percentage
using GameSpy is technically somewhat higher.

GAME DEVELOPER | AUGUST 2009 10

Figure 5 evaluate
HOW DO YOU TYPICALLY EVALUATE MIDDLEWARE LIBRARIES?

TECHNICAL PERSON WORKS WITH IT 4.47

TALK TO OTHER PEOPLE WHO HAVE USED IT 3.68

READ THROUGH THE DOCUMENTATION 3.63

EXAMINE OTHER GAMES THAT HAVE USED IT 3.57

TALK TO MIDDLEWARE SALES
AND SUPPORT STAFF 3.08

Figure 6 choosing
WHEN CHOOSING MIDDLEWARE, HOW IMPORTANT ARE THESE
(OUT OF 5.00)?

PLATFORM AVAILABILITY 4.66

PERFORMANCE (SPEED) 4.33

FEATURE SET 4.19

SOURCE CODE ACCESS 4.10
KNOWN TO EASILY INTEGRATE WITH TECH I’M USING 4.05
PRICE 3.93
SUPPORT RESOURCES 3.90

Figure 7 licensing
WHAT IS YOUR PREFERRED METHOD FOR PURCHASING
MIDDLEWARE (OUT OF 5.00)?

PER-PROJECT LICENSE FEE 3.76

PER-PLATFORM LICENSE FEE 3.11

ANNUAL SITE LICENSE FEE 2.61

PER-USER LICENSE FEE 1.74

Figure 8 royalties
WOULD YOU PAY BACK-END ROYALTIES TO REDUCE FRONT-
END COSTS FOR MIDDLEWARE?

NO, FLAT-RATE ONLY: 86.0%

YES, BACK-END ROYALTIES: 14.0%

Figure 9 pay for mods
WOULD YOU BE WILLING TO PAY FOR AUGMENTATION/
MODIFICATION OF AN EXISTING LIBRARY?

DO IT OURSELVES 72.4%

PAY FOR MODIFICATIONS 27.6%

0908gd_middleware_vIbs.indd 10 7/20/09 4:26:20 PM

WWW.GDMAG.COM 11

Audio. Over 90% of our developers are using some kind of run-time audio
middleware in their games; this certainly makes audio the most popular
category for middleware assistance. FMOD is the most used audio
middleware, with the open-source Ogg Vorbis codec also coming in quite high.
Video. In the video middleware category RAD Game Tools’ Bink dominates,
and over half of survey responders say that they use some sort of video
middleware. 44.3% of those surveyed are using Bink. CRI Movie is used by
6.2% of the surveyed developers, and open source format Ogg Theora was
mentioned as another format option by a few responders—although no one
claimed to be using it in a shipping title.
Artificial Intelligence. Using middleware for AI is still a fairly controversial
choice, but one that is slowly gaining traction, especially for fundamental
AI techniques which can then be built upon for game-specific uniqueness.
There are a lot of AI middleware libraries available now, but the leader by far
is Autodesk’s Kynapse. With 14.3% of our developers using Kynapse, it is the
strongest middleware in this field by a substantial margin.
Animation. Nearly 2/3 of our responders claim to be using some kind of
animation middleware, and there is certainly no shortage of software
available here.
Rendering. There are fewer libraries available that assist with rendering
tasks. These don’t seem to be used as frequently as other categories of
middleware, but SpeedTree has been available for quite some time and is
most dominant at 15.3%.
User Interface. There is not much of a battle for user interface middleware
at the moment; although there is a small handful of libraries available, all
of the developers surveyed who use user interface middleware are using
Scaleform GFx (35.4%).
Other. There are other middleware libraries available which do not fit well
into the above categories—script languages and compression libraries, for
example. The open-source compression library Zlib is a very popular choice,

and scripting languages Lua and Python are also seeing heavy use in titles
under development.

We also asked what other technologies developers wish were available
as middleware solutions. There were many ideas shared by the survey
responders, but the most popular were streaming systems and state
machine libraries. Cross-platform profiling kits, live-link capabilities, and
text-to-speech/speech-to-text systems were also popular suggestions.

S U P P O R T
» Using someone else’s library, even if you have source code, can be really
painful without documentation describing how it works and a solid support
team standing behind it. Yes, you can read through every line of code, and
you just may do that before your game ships, but support and docs give you
a jumpstart and are especially helpful if you need to make modifications.
They can make the biggest difference in whether a particular library is worth
the price. So how strong do developers find current support for middleware
libraries in general? (See Figure 11.) The answer is resoundingly mediocre
(2.88/5.00). This number on its own is not terribly useful, so let’s dive into
this topic a bit deeper.

The two most common expectations in terms of support are developer
forums and unlimited phone and email support. Some noted that developer
forums are not the end all and be all (“Thank you for buying this car from
me. Now go and consult with other car owners when your car breaks,” one
respondent analogized.) Forums can also create problems due to their
openness: “We don’t want to share secrets with other developers,” said one
of those we surveyed. Private, threaded conversation systems between the
game team and the support team represent one useful alternative for delicate
issues. It was noted by some responders that “unlimited” when it comes to
phone/email support is only expected to be “within reason,” but there was
mixed reception to the idea of paying for enhanced support (3.06/5.00).

SpeedTree helped THE ELDER SCROLLS IV: OBLIVION
achieve its detailed natural environments.

CONTINUED ON PAGE 12

0908gd_middleware_vIbs.indd 11 7/20/09 4:26:32 PM

http://WWW.GDMAG.COM

One service provided by a few middleware vendors
is on-site help integrating their solution with the team's
game engine. But when developers were asked whether
they liked the idea of having someone else integrate
a library into their game engine, the answer was an
overwhelming no—88.9% would rather do it themselves.
(See Figure 12.) As one commenter noted, “[A] library
you haven’t written [being] integrated into your code
by someone else sounds like a bad recipe for shipping.”
However, others noted that having support staff come
on-site to help them integrate by pairing up with
engineers or just being around to answer questions can
be very useful. “That keeps them from hitting stonewalls
or missing big opportunities because they don’t yet
understand how the middleware is intended to work,”
said one respondent.

We were very curious what developers think about
groups of middleware libraries that are pre-integrated,
or game engines that come with middleware bundled.
Our game engine survey results seemed to imply that
this would be a popular option. However, the response
was actually mixed (2.99/5.00) and fairly flat across the
range from “not interested” to “definitely interested.” (See
Figure 13.) Several responders noted that the quality of
the individual packages in a bundle can vary, creating
challenges; another person noted that he’d been pushing
the idea of a bundle himself with some of the major
middleware vendors. But the holy grail was explained
by one developer: “I’m more interested in having clean
standard interfaces so that you can plug and play with
any other middleware component in the market.”

When it comes to acquiring the source code to
middleware libraries, there are a lot of differing opinions.
Programmers usually want it, but many middleware
companies are reluctant to share all their algorithms.
How do our surveyed developers feel?

Overwhelmingly, the survey responders want
source code. (See Figure 14.) A plurality said that they
expect it as part of their base license, while others
are willing to pay a little extra to get it, but a grand
majority wanted source code in some fashion. There
were a lot of comments about this, most along these
lines: “The primary reason is for debugging purposes
and as a hedge against lackluster documentation or
support.” It was also noted by the responders that the
need for source code varies depending on the type of
middleware. For component systems such as video
playback, a binary-only version can be fine. But, “above
a certain complexity, lack of source is usually a deal-
breaker.” One developer noted, “Not having the source
code for [xxx] is currently biting us in the ass, so I’m
biased today.”

With such a strong desire for source code, how do
these same developers feel about using open source
libraries? Most of them are very interested, but “due
to licensing issues, we can only use them in our tools
(i.e. things that don’t ship with the game).” At many
companies, using open source libraries in the game can
cause legal turmoil. With so many varieties of open source
licenses, it can be quite confusing, and many responders

GAME DEVELOPER | AUGUST 200912

Figure 10 popular libraries
PHYSICS

NVIDIA PHYSX 26.8%

HAVOK PHYSICS 22.7%

BULLET 10.3%

OPEN DYNAMICS ENGINE (ODE) 4.1%

NETWORKING

GAMESPY TECHNOLOGY 7.2%

QUAZAL (ANY PRODUCT) 7.2%

DEMONWARE 6.2%

RAKNET 4.1%

AUDIO

FIRELIGHT FMOD 29.2%

OGG VORBIS 21.9%

AUDIOKINETIC WWISE 16.7%

OPENAL 15.6%

RAD GAME TOOLS MILES SOUND SYSTEM 7.3%

FONIX VOICEIN 3.1%

CRI AUDIO 2.1%

ARTIFICIAL INTELLIGENCE

AUTODESK KYNAPSE 14.3%

BABELFLUX NAVPOWER 3.1%

PATHENGINE 2%

AILIVE LIVEMOVE 1%

HAVOK AI 1%

PRESAGIS AI.IMPLANT 1%

9 popular libraries
VIDEO

RAD GAME TOOLS BINK 44.3%

CRI MOVIE 6.2%

ANIMATION

OC3 FACEFX 14.4%

HAVOK ANIMATION 9.3%

NATURAL MOTION MORPHEME 8.2%

ANNOSOFT LIPSYNC 8.2%

RAD GAME TOOLS GRANNY 3D 6.2%

HAVOK BEHAVIOR 4.1%

AUTODESK HUMANIK 2.1%

EMOTION FX 1%

RENDERING

SPEEDTREE 15.3%

ILLUMINATE LABS BEAST 10.2%

UMBRA 4.1%

FORK PARTICLE 2%

ALLEGORITHMIC PROFX / SUBSTANCE AIR 1%

USER INTERFACE

SCALEFORM GFX 35.4%

OTHER

ZLIB 42.7%

LUA 36.5%

PYTHON 29.2%

BOOST 13.5%

SDL 3.1%

NavPower provided TOMB RAIDER: UNDERWORLD with AI pathfinding.

CONTINUED FROM PAGE 11

0908gd_middleware_vIbs.indd 12 7/20/09 4:26:41 PM

http://www.cryengine3.com

GAME DEVELOPER | AUGUST 200914

M A R K D E L O U R A is a video game technology consultant residing in San Francisco, California. He has held

leadership roles at Sony, Nintendo, and Ubisoft, and was at one time editor-in-chief of Game Developer magazine.

Email him at mdeloura@gdmag.com.

called out software that is under the GPL as an absolute no-no. (See Figure 15.) Fortunately there
are still numerous “truly free” open source middleware libraries out there. But knowing which is
which (and educating one’s legal department) can be painful. Further, choosing and using one
properly can be challenging as well; as one developer noted, they are “seldom shippable quality.”

The last question we had about support was regarding frequency of library updates.
(See Figure 16.) What is ideal: quarterly updates? Weekly? Live access to the source code
control system? The ideal scenario definitely varies based on circumstance, but there was an
overwhelming preference toward simply receiving major updates. “We usually buy middleware
for the features it already has,” one developer noted. Developers commented on the incredible
pain of updating: “Anything more frequent than monthly is a waste—I can’t spare the bandwidth
to integrate a new version that frequently.” However, when middleware is being ported over to
a new platform, or new features are in development and may be buggy, more frequent updates
may be necessary, despite how painful it can be to integrate them. Over a third of responders
expressed a desire for live access to the library source code, regardless of how frequently
formal updates are released.

P O P U L A R C H O I C E S
» Through the comments and stories shared via the survey, we’ve learned a lot about
companies that are easy to work with, and provide software that is designed well and easy
to integrate. The company that was called out most frequently by developers for good quality
software was RAD Game Tools, in particular the video software Bink. It is “well priced,” and
“works well,” and RAD offers “great support.” Havok too was frequently mentioned as “a pleasure
to work with,” and there were repeated compliments for the company’s support and docs, with
one developer calling Havok “the gold standard in support.” Audiokinetic’s Wwise was also
consistently called out as being “wonderful, awesome.”

There were a lot of horror stories about middleware use, reinforcing how important it is to test
both the software and the support infrastructure before licensing middleware. The most common
complaints centered around new platform launches, new library launches, middleware companies
going out of business or being purchased, slow technical support, or unstable and buggy code
bases. Several very popular pieces of middleware were called out repeatedly in the survey as
having buggy code bases and horrible support, and yet people are still using their libraries due to
the price. The rule of the day is definitely “try before you buy” (and get the source code).

The developers who selflessly responded to our survey pointed out that middleware
companies “try to position themselves as a magic bullet for all your problems.” But that in
general, middleware “gets us 80% of the way there.” It may not solve all your problems, but it’s
another great arrow in your quiver. The keys are to evaluate the available options intelligently,
choose what you license wisely, and to work closely with your vendor to integrate it as
painlessly as possible. If you do that, you’ll be way ahead of the game!

Figure 11 support
WHAT SUPPORT DO YOU EXPECT AS PART OF YOUR LICENSE?

DEVELOPER FORUMS 90.8%

UNLIMITED PHONE/EMAIL SUPPORT 75.9%

OCCASIONAL ON-SITE CHECK-UP VISITS 31.0%

FIXED AMOUNT OF PHONE/EMAIL SUPPORT 20.7%

SUPPORT STAFF SENT TO HELP INTEGRATE 19.5%

Figure 12 integration
WHEN INTEGRATING MIDDLEWARE INTO YOUR GAME ENGINE,
WOULD YOU RATHER:

DO YOUR OWN INTEGRATION 88.9%

HAVE THE MIDDLEWARE COMPANY
DO INTEGRATION 11.1%

Figure 13 bundles
HOW INTERESTED WOULD YOU BE IN MIDDLEWARE
BUNDLES, WHERE YOU CAN PURCHASE SETS OF LIBRARIES
PRE-INTEGRATED, OR INTEGRATED WITH A GAME ENGINE?

1–LEAST INTERESTED 20.0%

2 18.9%

3 22.2%

4 20.0%

5–MOST INTERESTED 18.9%

Figure 14 source
HOW DO YOU FEEL ABOUT SOURCE CODE FOR
MIDDLEWARE, IN GENERAL?

I MUST GET SOURCE CODE AS
PART OF THE BASE LICENSE 52.9%

I AM WILLING TO PAY EXTRA FOR SOURCE CODE
ACCESS FOR SOME LIBRARIES 35.6%

I AM HAPPY TO USE BINARY-ONLY LIBRARIES 11.5%

Figure 15 open source
OPEN SOURCE LIBRARIES: DO YOU USE THEM?

YES, AS MUCH AS POSSIBLE 14.3%

YES, WITH CAUTION 56.0%

WOULD LIKE TO, BUT AM CONCERNED ABOUT LICENSES 27.5%

NO, NOT INTERESTED 2.2%

Figure 16 frequency
HOW OFTEN DO YOU WANT LIBRARY UPDATES?

OCCASIONAL (QUARTERLY) MAJOR-RELEASE UPDATES 76.5%

ACCESS TO THE LIVE CODE BASE
SO YOU CAN UPDATE AT WILL 38.8%

FREQUENT (WEEKLY) MINOR-RELEASE UPDATES 7.1%

Scaleform GFx was used
in the creation of MASS

EFFECT's user interface.

0908gd_middleware_vIbs.indd 14 7/20/09 4:27:08 PM

mailto:mdeloura@gdmag.com

http://tgs.cesa.or.jp/english/

Autodesk Games Insight
The latest scoop from Autodesk Media & Entertainment

Hello and welcome to Autodesk Games
Insight, our monthly column on Autodesk
in the games industry. In this issue, I’d like
to introduce the new Autodesk Games
group and highlight our middleware
solutions Autodesk® Kynapse® and
Autodesk® HumanIK® middleware.

Autodesk Games – Focused on games
Autodesk helps serve the needs of
customers worldwide and recently
realigned the company with dedicated
teams for each industry. With this, the
new Autodesk Games group was born.
Autodesk Games is a team focused
entirely on serving the needs of the
games industry through cutting edge
middleware technology and powerful
game art tools.

Developers trust Autodesk for its 3D
packages: Autodesk® Maya®, Autodesk®
3ds Max® and Autodesk® Softimage®
software. We expanded on our games
offering with middleware, bringing
reliable technology to programming
teams. Autodesk® Kynapse®, a leading
artificial intelligence middleware solution,
became part of the Autodesk family with
the acquisition of Kynogon. This past
GDC, we also released a new version
of Autodesk® HumanIK®, a middleware
solution for creating more believable run-
time character animation.

Character-Centric Middleware
Game teams are pushing the boundaries
of putting compelling characters in open
worlds to tell stories and create new
experiences. This presents numerous

problems. Art production requirements
such as modeling, sculpting, texturing,
shading and animation have increased
but this is only one part of the problem.
Game teams need run-time technology
that is able to bring characters to life in
the game through realistic animation
performances and decision making
capabilities. Autodesk wants to bridge the
gap between art and science, and make it
much easier for people to create amazing,
interactive character performances
without technology getting in the way.
Our vision is for a unified workflow where
your art tools work harmoniously with
run-time technology, so that getting to
the game is not only quick and painless,
but a creatively rewarding process.

Kynapse – Put the brain in your game
Autodesk® Kynapse® is an artificial
intelligence (AI) middleware solution
used in over 80 high-end gaming
titles. Kynapse handles dynamic 3D
pathfinding, 3D spatial awareness and
team coordination. What differentiates
Kynapse from other AI middleware is
that it helps give characters a highly
cognitive understanding of surrounding
environments and the ability to interact
with it in a dynamic way. Its tool chain is
also unique in that it is highly automated
and flexible for iterative changes, which
means that production teams can work
more efficiently.

HumanIK – Realistic character
animation performances
While Kynapse helps give in-game
characters artificial intelligence,

Autodesk® HumanIK® helps characters
move in a realistic way and interact with
the environment. Realistic animation
performances that would have been
extremely difficult through traditional
keyframe animation, baking and blending
techniques are now easier to achieve with
HumanIK. With its procedural motion
adaptation technology, characters adapt
their motion at run-time responding
to the user or the environment. Not
only does HumanIK enhance your
team’s animation in real-time, it also
helps solve the problem of animation
data complexity. Production teams
can focus on key performances with
HumanIK working procedurally at
run-time, reducing the number of
animations necessary for believable
results. Animators can now focus on their
characters rather than mundane technical
work, building compelling stories for the
game.

Conclusion
We are excited about the new Autodesk
Games group, supporting developers with
3D software and robust middleware that
you can trust. If you have any questions
or would like to arrange for an evaluation
of our middleware technology, we’d love
to hear from you. Please contact us at
middleware@autodesk.com or visit
www.autodesk.com/games.

Marc Stevens
Vice-President
Autodesk Games,
Media & Entertainment
marc.stevens@autodesk.com

Advertisement

Autodesk, HumanIK, and Kynapse are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA
and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to
alter product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear
in this document. © 2009 Autodesk, Inc. All rights reserved.

“Our vision is for a unified
workflow where your art
tools work harmoniously with
run-time technology, so that
getting to the game is not
only quick and painless, but a
creatively rewarding process.”

— Marc Stevens
 Vice-President, Autodesk Games
 Media & Entertainment

Image: Autodesk® Kynapse® helps give characters a highly cognitive understanding of surrounding environments.

mailto:middleware@autodesk.com
http://www.autodesk.com/games
mailto:marc.stevens@autodesk.com

Get More Change Management
with Seapine Integrated SCCM
TestTrack Pro + Surround SCM = infi nite SCCM possibilities. Seapine’s integrated software change and
confi guration management (SCCM) tools do much more than competing tools, and at a much lower price
point. Start with TestTrack Pro for change management and add Surround SCM for confi guration management—
two award-winning tools that together give you the best integrated SCCM solution on the market.

 • Link issues, change requests, and other work items with source code changes.

 • Manage simple or complex change processes with fl exible branching and labeling.

 • Coordinate distributed development with RSS feeds, email conversation tracking, caching proxy
 servers, change notifi cations, 3-way diff/merge, and other collaboration features.

 • Enforce and automate processes with incredibly fl exible work item and fi le-level workfl ows.

Built on industry-standard RDBMSs, Seapine’s SCCM tools are more scalable, give you more workfl ow options,
and provide more security and traceability than competing solutions.

Get more, do more with Seapine tools. Visit www.seapine.com/gamescm.

www.seapine.com/gamescm
Satisfy your quality obsession.[[

© 2009 Seapine Software, Inc. All rights reserved.

Te
st

Tr
ac

k®
 P

ro

Te
st

Tr
ac

k®
 T

CM

Te
st

Tr
ac

k®
 S

tu
di

o
Su

rr
ou

nd
 S

CM
®

Se
ap

in
e

CM
®

Q
A

W
iz

ar
d®

 P
ro

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

Q
A

W
iz

ar
d

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

St
ud

io

Su
rr

ou
nd

 S
CM

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
TC

M

Te
st

Tr
ac

k
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

http://www.seapine.com/gamescm
http://www.seapine.com/gamescm

ON A SATURDAY AFTERNOON IN THE PARK, TWO BOYS ARE PLAYING COPS
and robbers, chasing each other and shooting their toy guns. One boy aims
his gun at the other boy, pulls the trigger and yells, “BANG! You’re dead!” The
other boy continues running and shooting his gun, and yells back, “No, you
missed me!”

It’s the age-old dilemma in shooting games; how do you determine if
someone is actually hit? While apparent in a physical game with toy guns,
it becomes more difficult in the online world of multiplayer games. In the
physical game of cops and robbers, fair play is based on the core mechanics
of the game and the arbiter – friendship. An arbiter is a person or entity
appointed, or chosen, by parties to referee or judge a dispute between them
where the parties may disagree on the correct outcome.

In the online world of gaming, the arbiter is a computer, console, or system
in the network that can change depending on the game action. This arbiter
must determine the resolution through the process of Damage Arbitration.

Damage arbitration decides which player is awarded the score of an
attack, along with the actual calculation or point for the attack. The game
design dictates the complexity of the arbitration system required; however,
multiple factors are considered in the arbiter choice: player perception,
arbitration functions, calculation rule sets, and the management of cheaters.

This article discusses the key elements of the damage arbitration
process in online games to help you determine the arbitration system best
suited for your product.

P L A Y E R P E R C E P T I O N
» A fundamental part of online games is the management of player
perception. Player perception is game-specific, since every game has a
different set of visuals and game mechanics. These define how the player
interacts with the game world. Each player is separated by the network, and
has a different visual representation of the game world.

Methods such as dead reckoning help predict where players are in
the game and compensate for network latency on an object. Objects with
motion, such as vehicles, are indicated by location and some motion data,
such as velocity and instrumentation data. Motion data is used to estimate
the current location of the vehicle in the game, and the instrumentation data
determines how the player is controlling or maneuvering the vehicle, for
example, doing barrel rolls or drifting. These components combine to create
the impression of consistency within gameplay.

GAME DEVELOPER | AUGUST 2009 18

R O N A L D R O Y

Maintaining the illusion of an identical game world amongst players
helps to sustain a sense of fair play. An arbiter is necessary to include the
player’s interactions into the illusion of fair play. Players want to know they
are receiving points for any damage they incur or instant kills they cause on
a target.

A R B I T E R C H O I C E
» The choice of an arbiter is based on the game design, the network
topology used for the game, and the method for managing cheaters. There
are four main archetypes when choosing an arbiter: the attacker, the target,
the server, and a pre-determined player.

A T T A C K E R
» This archetype provides the best illusion of success to the attacker
without the effects of latency. The target immediately receives the damage
request upon the attack, and the player assumes credit for the kill. Multiple
attackers shooting at the same target may create difficulties in determining
who gets credit for any potential kills.

Figure 1 displays an example of this configuration. A1 and A2 are
the attackers and T0 is the target. Both A1 and A2 damage the target T0,
and assume the kill. Each attacker sends a kill message to T0 with the
expectation of receiving credit for the kill.

A risk of using this approach is that one client system is determining the
outcome of the damage. A trusted client system, one in which a user cannot
install their own custom software, must be used with this configuration
to prevent cheating. Once the installation of custom software becomes a
possibility, the likelihood of cheaters appearing in the game increases.

T A R G E T
» This archetype provides the best sense of fair play to the role of target
by using the target’s perception to determine how to score an attack. A
central handler provides score arbitration for all damage requests for the
same target. Each target must determine its own damage or the amount of
damage to award. Calculations compensate for inconsistencies between
the data provided by the attacker and the perception of the target, such as
who attacked first.

Figure 2 displays the configuration of the target as the arbiter. A1 and
A2 are the attackers, and T0 is the target. Both A1 and A2 send a damage

0908gd_damage_vIbs.indd 18 7/20/09 4:23:00 PM

request. The request from A1 is received first and kills the target. As the arbiter, T0 records the
damage, determines the kill, and scores A1 accordingly. When A2 sends its request, T0 responds
with a failure response since the target is already killed.

The target serves as a good choice for most games. Both the attacker and the target are
involved and handshaking is used to detect cheating. However, a cheater could modify his game
client to reject all damage requests as the arbiter, and create an unfair advantage. Player-kick or
player-ban systems can help mitigate cheaters.

S E R V E R
» Using the server as the arbiter is well-suited for games with a centralized server performing
physics calculations and game logic. Servers offer time-stamped positional data, which can be
used to rewind the state of the game to accurately score players for their kills.

This configuration is complex and targets may experience latency, but it provides the best
defense against cheaters. Generally, cheaters do not have access to the server, which prevents
them from manipulating the game.

Figure 3 illustrates the server as the arbiter. A1 and A2 are the attackers, and T0 is the target. A1
sends a damage request, which is received first. The server processes the request to determine the
kill and sends a kill message to T0. A1 is awarded the point. When the damage request from A2 is
received, the server already knows T0 is killed, and sends a failure response back to A2.

P R E - D E T E R M I N E D P L A Y E R
» The use of a single, pre-determined player as the arbiter is best described as a hybrid
configuration between using the target and the server. This configuration provides a
tradeoff between cheater mitigation and latency under most network topologies; however,
inconsistencies in data associated with the server may occur.

Games using a player system as the host, which also designates the damage arbiter as the host,
benefit from this selection. Players have more control over their gaming experience and can either
ignore the designated host, or select a different host if they suspect the host is cheating. Player-kick
or player-ban systems can provide enough cheater management to maintain a sense of fair play.

C A L C U L A T I O N S
» The selected arbiter uses a rule set that includes a variety of calculations defined by the game
mechanics to calculate the amount of damage. The rules used determine whether the request
from the attack is correct, assigns damage, informs the other attackers, and then scores the
attack. The choice of arbiter does not affect the calculation process, but it may affect how the
results are perceived.

In calculating the amount of damage, the arbiter performs a line-of-sight analysis between
the attacker and the target to determine the accuracy of the attack. Game mechanics, such

WWW.GDMAG.COM 19

FIGURE 1 Attacker as Arbiter. Both attackers (A1 and A2)
send a kill message to the target (T0); each expecting
credit for the kill.

FIGURE 2 Target as Arbiter. Both attackers (A1 and A2)
send a damage request to the target (T0). As the arbiter, T0
records the damage, determines the kill, and credits A1 as the
first to hit the target. T0 sends a failure response to A2.

FIGURE 3 Server as Arbiter. Both attackers (A1 and A2)
send a damage request, with A1’s request received first. The
server processes the request to determine the kill of the
target (T0) and sends a success response to A1. Knowing T0
was killed, the server sends a failure response to A2.

0908gd_damage_vIbs.indd 19 7/20/09 4:23:06 PM

http://WWW.GDMAG.COM

as whether a player can shoot through walls in a single-player mode, are
considered to ensure both the attacker and the target perceive the result
as fair.

Hit location of a target may also have an impact on the amount of
damage awarded, generally to the advantage of the arbiter. The amount
of damage to award becomes difficult if the attacker perceived the attack
as a headshot, but the arbiter calculated it as a miss. The arbiter can
use the difference between the attacker's perceived target hit location
and the actual hit location. The arbiter may compromise and reduce the
amount awarded based on how far off the attacker’s request was from
the hit calculations.

Figure 4 displays the perceived hit location of both the attacker and the
arbiter. The attacker displays the perception of a scored headshot; the arbiter
displays the perception of a missed hit. The arbiter can score the shot as a
kill, or compromise the amount of the shot as doing significant damage, but
not as an instant kill.

Choosing the server as the arbiter enables the use of additional
resources to store historical time-stamped data for calculating the results.
The arbiter can perform a rollback on the game environment to the time of
the attack and complete the calculations using the snapshot of the past. This
provides the best results of perceived fairness.

A N T I - C H E A T
» The goal of a cheater is to disrupt fair play, and impose his or her own
sense of play. Cheaters find holes in the geometry of the game and ways to
bend the physics. They use devices to manipulate network traffic, and even
change the game code. Depending on the arbiter, cheaters can compromise
the arbiter system and find ways around the detection methods.

Multiplayer online games must have a strategy with which to manage
cheaters. A check of the link state of the network device before sending
damage arbitration requests serves as a simple method.

Sending messages at regular intervals is a more complex method, but
an effective one. The messages are considered heartbeat messages. When
the arbiter receives a damage request, it checks the rhythm of the attacker’s
heartbeat by calculating the running standard deviation of the time between
received heartbeats. The rhythm is abnormal if the newest time between
heartbeats varies by more than two standard deviations. If the rhythm is
abnormal, the arbiter can reject the request or reduce the amount to award.
Latencies of the Internet may interfere with the rhythm of the heartbeat,
creating false abnormalities, but validation of the data can assist. A time stamp
on the damage request allows the arbiter to adjust the damage accordingly.

GAME DEVELOPER | AUGUST 2009 20

E X A M P L E
» In a hypothetical online game, the player’s weapon is a water pistol
containing a specific color of water. The game designers have determined the
attacker will perform the initial hit calculation, and the target will perform the
damage calculation. The game defines six hit sections: two arms, two legs, a
chest, and a head. Damage is defined by the size of the area of wetness on a
particular section of clothing, with headshots causing temporary blindness
in varying degrees.

When a player fires the water pistol, his or her console uses standard
collision detection algorithms to determine if the stream of water projected
as a ray from the water pistol connects with the target player’s character
model. If the attacking player’s console determines a hit, the game sends
a damage arbitration request to the target. The request contains the
perceived hit location as defined by the collision detection, the originator
of the attack, and potentially other game-specific data, in this case the
color of the water.

The target player’s console then acts as the damage arbiter. It uses the
information stored in the request to duplicate the original collision detection.
It is unlikely for the two consoles to calculate the same hit locations; it is
expected that the two results will differ at least fractionally. If the arbiter
agrees on the same hit section, then the damage can be determined as
normal. In the case of misses, the damage arbitration should contain
calculations for the distance of the attacker’s ray to the target model. If the
target disagrees greatly, then the design of this game dictates that the
hit only results in a few drops of water
appearing on the section hit.

To further this example, assume the
attacker’s console calculates the hit in
the upper arm and the target calculates
the hit in the upper back, as shown in
Figure 5. The damage arbiter, the target
player’s console, decides the target was
hit in the shoulder. It also decides this
was a direct hit and creates a sizeable
wet area.

In another example, assume the
attacker calculates the hit in the lower
leg, and the target’s console calculates
the attack as a miss. The damage
arbiter, the target player’s console,
decides this means the target was only
splashed in the lower leg. The hit only
scores a few drops on the lower leg.

S O L U T I O N
» The overall goal is to have the
highest number of players perceive
a game as fair. Different arbiters can
be used to complete every step of
the damage arbitration processes; however, it is important to mix arbiters
cautiously. Improperly managing player perception can lead to both sides
feeling as if they have been cheated. Using a mixed configuration of the
attacker for hit arbitration and the target for damage and death arbitration
provides the quickest perception of events while managing the difference in
perception for most situations.

The author wishes to thank Rhonda Salvestrini for editing help.

R O N A L D R O Y is a staff game integration engineer at Sony Computer Entertainment

America. Email him at rroy@gdmag.com.

FIGURE 4 Damage Calculations. The perceived hit location of the attacker and the
arbiter can be different. The attacker displays the perception of a scored headshot
while the arbiter displays the perception of a missed hit. The arbiter can score the
shot as a kill, or reduce the estimated damage instead of scoring a kill.

FIGURE 5 When the attacker
calculates a hit on the upper arm
and the target calculates a hit
in the upper back, the damage
arbiter decides that the hit landed
on the shoulder.

0908gd_damage_vIbs.indd 20 7/20/09 4:23:14 PM

mailto:rroy@gdmag.com

excellent editing capabilities, which are mission critical
for game engines today.

Magnacarta 2 for Xbox 360

Thanks to a talented development team and publisher,
and to the technology within UE3, Kanesaka hopes
that Magnacarta 2 shows critics that RPGs are, in fact,
evolving. He said the team’s goal is to create a new
standard in excellence and presentation that sets the
bar for what is considered a great RPG game.

“I think it is mandatory to use a middleware engine
which minimizes the risks of developing next-gen
console games, so I assume more developers in Japan
will use the Unreal Engine,” said Kanesaka.

Japanese studios that have shipped Unreal-powered
titles include Feelplus, which licensed UE3 for its
collaboration on Lost Odyssey for Xbox 360 with Mis-
twalker. Square Enix also licensed UE3 to develop The
Last Remnant for Xbox 360, PlayStation 3 and PC.

Last fall, Grasshopper Manufacture licensed UE3 for
its new multiplatform action horror game directed by
innovative game designer Suda51 and produced by
legendary Resident Evil creator Shinji Mikami.

Thanks to Namco Bandai for speaking with freelance
reporter John Gaudiosi for this story, which will be posted
in full at www.unrealtechnology.com.

SOFTMAX AND NAMCO BANDAI BUILD FANTASY
RPG MAGNACARTA 2 WITH UNREAL ENGINE 3

Korean developer Softmax first gained experience using
the Unreal Engine to develop its 2005 PlayStation 2 and
PSP role-playing game, Magnacarta: Tears of Blood,
which was powered by Unreal Engine 2.

This time around, a team of 40 at Softmax partnered
with Namco Bandai to create Magnacarta 2 for Xbox
360 using the latest Unreal Engine 3 technology.

“There were some big improvements added to Unreal
Engine 3 regarding toolsets and rendering abilities,” said
Yoshihisa Kanesaka, producer, Magnacarta 2.

 “We frequently consulted the Unreal Developer
Network during the early stages of the development
process. Using the UDN archive search is very useful in
getting immediate answers on everything imaginable.”

On top of the processing power that Microsoft’s Xbox
360 brought to the table, Kanesaka believes his team
benefited from two key aspects of Unreal Engine 3.

“The Unreal Editor, which has been vastly improved
from Unreal Engine 2, has always been a long-time
merit of the software,” said Kanesaka.

“The other advantage would be the engine’s versatility.
It would have been possible to develop an engine on
our own if we wanted to, or to use a different middle-
ware engine. But Unreal Engine 3 contains everything
we needed to develop the game, and we thought it
was useful since there is no risk in adding any other
middleware to it.”

From a gameplay perspective, Softmax was able to use
UE3 to create a powerful loading system that allowed
for the creation of huge environments. In addition,
Kanesaka said they were able to create a new battle
system that is both seamless and occurs in real-time.

All of the game’s elaborate cut scenes were developed
using Unreal Engine 3, which Kanesaka said saved
Namco Bandai time and money.

“We also developed this system that blows away
enemies with physical attacks using PhysX,” added
Kanesaka.

“Big RPG titles developed by Japanese publishers use
fancy effects. That’s the style that is currently popular,
and we can easily develop these effects with Unreal
Engine 3 by using its particle and material editors.”

Kanesaka believes Unreal Engine 3 can bring great RPG
stories like Magnacarta 2 to life. He said one of the best
features of UE3 from a development standpoint is its

Canadian-born Mark Rein is
vice president and co-founder
of Epic Games based in Cary,
North Carolina.

Epic’s Unreal Engine 3 won
Game Developer magazine’s
Best Engine Front Line Award
for three consecutive years,
and it is also the current Hall of
Fame inductee.

Epic’s internally developed
titles include the 2006
Game of the Year “Gears of
War” for Xbox 360 and PC;
“Unreal Tournament 3” for
PC, PlayStation 3 and Xbox
360; and “Gears of War 2” for
Xbox 360.

Upcoming Epic
Attended Events:

SIGGRAPH
New Orleans, LA
August 4-6, 2009

GDC Europe
Cologne, Germany
August 17-19, 2009

Please email:
mrein@epicgames.com
for appointments.

For UE3 licensing inquiries email:
licensing@epicgames.com

For Epic job information visit:
www.epicgames.com/epic_jobs.html

W W W . E P I C G A M E S . C O M

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Engine, Unreal Technology, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered trademarks of Epic Games, Inc. in the United States of

America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

mailto:mrein@epicgames.com
http://www.unrealtechnology.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM

C H R I S P R U E T T

WWW.GDMAG.COM 23

MARION IS TAKING A SHOWER. CUT. WE SEE THE SHOWER
head with water pouring out. Cut. Marion runs her hands
through her hair. Cut. On the other side of the shower
curtain we see a figure enter the room. Marion does not
notice as the figure approaches. Cut. The silhouette rips
the shower curtain back and raises a knife. Cut. Marion
turns around. Cut. Marion sees the figure and screams.
Cut. We see a close-up of her screaming mouth. Cut. The
figure raises the blade. Cut. Marion is stabbed. Cut. The
knife rises again. Cut. It cuts through the stream of water
toward Marion’s body. Cut. She is still screaming. Cut.

70 shots in the span of 45 seconds comprise one of the
most famous and frightening scenes in the history of cinema.
The shower scene from Psycho was filmed in seven days in
December of 1959, but the impression it made on the film
industry is evident even today. The film relies heavily on
innovative cinematography because there was not much
else for the director to work with; Psycho was shot on a shoe-
string budget and was designed not to rely on gore, special
effects, or even color film. Yet to this day it is considered one
of Hitchcock’s best, and one of the best films of all time.

Psycho and films like it have helped make
cinematography a respected art form, and yet the art has
not been widely adopted by video games. Though many
modern games use some sort of a virtual camera, most
game cameras are designed to be utilitarian: they must

show the player where he is going without getting snagged
on collision surfaces, flying through walls, or revealing the
boundaries of the game world. Games, especially third-
person real-time 3D games, have it a lot rougher than film;
while a director can spend days composing the perfect
shot for any particular scene, a game camera must select
an appropriate shot based on a dynamically changing game
environment sixty times per second. Camera systems are
notoriously difficult to program; it is no wonder that most
games settle for a camera that is simply capable of looking
in the right direction consistently. On top of that, the
mapping between the player’s controller and the direction
that his avatar moves is often dependent on the angle
of the camera, and so the difficulty in creating a camera
system that produces both usable and artistic shots is
compounded. Perhaps this is why the game industry does
not yet have an equivalent to Psycho.

Despite these challenges, many games have sought
to employ some degree of cinematography. A common
(and effective) technique is to simply contort the
design of a level so that a simple follow camera will end
up placed somewhere interesting as the player moves
forward (EA’s DEAD SPACE does this very well, as do many
first-person shooters). But there are also titles that
have gone all out in their attempt to leverage key film
techniques. Games like RESIDENT EVIL, SILENT HILL, and

design considerations for a cinematic camera

0908gd_cameras_vIbs.indd 23 7/20/09 4:20:35 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | AUGUST 2009 24

GOD OF WAR eschew many standard game mechanics in order to enable
non-standard camera systems. The result has dramatic control and
gameplay implications, but it also lends these games a certain power that
other titles struggle to match. In this article I will discuss the history of
these camera systems and how they affect the way that these games are
played, especially as seen in horror games, arguably the game genre with
the most effective cinematography.

M A K I N G A C I N E M A T I C G A M E
» I know what you are thinking. “Let’s make this game totally cinematic”
sounds like something a clueless producer might say (it’s almost as bad as
“totally epic”). But let us say that you really do want to make a cinematic
game—you want to make a game that can use shot composition and
camera movement to affect how the player feels.
There are plenty of ways to go about this, of course,
but for the purposes of this article I am going to
concentrate on camera systems, specifically those for
third-person games.

Before you make the decision to go with an
experience that is “totally cinematic,” you should
be aware of some of the trade-offs that a cinematic
camera may require. Most 3D third-person games rely
on what I will call a procedural camera, a camera that
is programmed to dynamically move and respond to the state of the world.
The classic third-person follow cam is a good example; this type of camera
system is usually built upon heuristics that allow it to choose a worthwhile
vantage point given arbitrary world geometry. Since FADE TO BLACK, TOMB
RAIDER, and SUPER MARIO 64, the procedural camera has been the norm for
the vast majority of 3D third-person games.

Procedural cameras are not perfect, however. In addition to being prone
to calculation errors, they generally cannot cut and are difficult to control
for dramatic effect. Developers often treat third-person follow cameras as
an extension of their character’s eyes; though the camera has been pulled
back away from the avatar, it is really a first-person viewpoint. Perhaps this
is why we usually show our characters’ heads moving when the player pans
the camera around.

On the other end of the spectrum is what I will call the hand-crafted
camera. These are cameras that are placed by an artist or designer by hand
rather than produced as the result of procedural heuristics. They may be
fixed in place, tethered to splines, or allowed to move only in certain axes.
Typically several different camera angles will be set up to cover a particular
region in the world, with collision volumes placed in the space to trigger
cuts from shot to shot. Games like RESIDENT EVIL and SILENT HILL have helped
define this sort of camera, but they are now used by a variety of titles. In
terms of cinematic effect, the hand-crafted camera is extremely powerful;
it allows an artist to play the role of the cinematographer and populate the
game with carefully designed shots. Even more importantly, these types
of cameras can typically cut from one angle to the next, which enables
meaningful sequencing of shots. The introduction of the Licker in RESIDENT

EVIL 2 (see sidebar, pg 28) is a good example of a well-designed hand-
crafted camera sequence. By film standards it is a very basic foreshadowing
sequence, but it is the kind of visual storytelling that is extremely difficult to
produce with a procedural camera.

Though hand-crafted cameras can offer an advanced degree of control
over the way a game is presented, they are also a whole lot of work. Not only
does each shot need to be set up by hand, but collision volumes to control
transitions from shot to shot are also necessary, and this task can be
harder than it sounds. Perhaps as important are the gameplay and control
restrictions that these types of camera systems often imply. I will return to
that point in a minute.

Are hand-crafted cameras worth the effort? Of course, the answer to
that question will differ with each title, but it should be clear that they are a

Camera systems are notoriously difficult to
program; it is no wonder that most games

settle for a camera that is simply capable of
looking in the right direction consistently.

0908gd_cameras_vIbs.indd 24 7/20/09 4:20:42 PM

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

The Perforce Plug-in for Graphical Tools, P4GT, makes version control

painless by seamlessly integrating Perforce with leading graphical tools.

Drop-down menus allow access to Perforce from within 3ds Max, Maya,

Softimage XSI, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and

manage both source code and digital assets. Enhanced collaboration

during the design process helps teams to work together in real time to

release small patches or create whole new worlds.

P4GT is just one of the many productivity tools that comes with the

Perforce SCM System.

Introducing P4GT,
a productivity feature of Perforce SCM.

P4GT

Perforce Fast Software Configuration Management

All trademarks and registered trademarks are property of their respective owners. Adobe screen shot reprinted with permission from Adobe Systems Incorporated.

Perforce_SpaceS_GameDev_HI

http://www.perforce.com

straightforward way to apply cinematographic techniques to games. Indeed,
many games that are made into films are those that use hand-crafted cameras;
RESIDENT EVIL, SILENT HILL, ALONE IN THE DARK, and the upcoming CLOCK TOWER film
are all based on hand-crafted camera games. Perhaps this is because when
filmmakers look at these games they are able to easily imagine shooting the
same shots with live actors on real film (and indeed, the SILENT HILL film does
match a number of shots and angles to the game in significant early scenes).

C A M E R A T Y P E S
» A game engine has a lot of potential camera behaviors at its disposal once
it has committed to using a hand-crafted camera system. Giving a designer or
artist free reign over a camera system that he or she can absolutely control
opens the doors to all kinds of interesting and original scenes. Still, there is
a small set of common camera behaviors that make up the majority of hand-
crafted camera games. I will touch on a few of them here.

The “fixed camera” is exactly what it sounds like: a camera that is locked
in place and cannot move. RESIDENT EVIL uses these types of cameras by
necessity, as its level art is entirely pre-rendered. A variation is the “panning
camera,” which remains affixed to a single spot but may rotate to track the
player’s movement. Another common type is the “trucking camera,” which
moves to follow the player but is restricted to a 2D plane. This sort of shot
is often used to produce a wide, side-scrolling perspective. The first scene
in SILENT HILL 2 uses an interesting trucking camera where the X axis of

movement is tied to the player’s X position but the Y axis of movement is tied
to the player’s Z position, causing the camera to sink toward the ground as the
player approaches it. Finally, many hand-crafted camera games use a “spline
camera” to control the motion of the camera through the scene with a spline.
A further refinement is to use a second spline that defines the camera’s focal
point so that the player does not always have to be in the center of the frame.

C O N T R O L Q U A G M I R E
» The huge advantage to hand-crafted cameras, at least from the
cinematographer’s point of view, is that they can cut from one interesting shot
to the next. Instead of being locked behind the player’s avatar, a hand-crafted
camera system can select any angle with each shot, even one looking straight
at the avatar’s front. However, from a game play and control perspective, this
feature is also problematic. Most 3D third-person console games define “up”
on the control stick as “forward” in the game world, which is a direction that
is relative to the camera’s current angle. To put it another way, the mapping
between the 2D analog stick and the 3D environment is usually performed by
transforming the 2D input to match the view matrix so that the vector along
which the camera is looking is also the direction about which control will be
relative. So “ forward” in most games depends on where the camera is looking

at any given time. Because procedural cameras are almost constantly on the
move, the direction that the player moves when he presses “up” on the stick
is also constantly changing. This method of control makes sense to players,
probably because third-person follow cameras are so often just first-person
cameras that have been pulled back.

But when the shot can cut without warning, as it does in most hand-
crafted camera games, the traditional 2D-to-3D player control mapping
suddenly ceases to work. If the player is running forward and the camera
cuts to a shot that is perpendicular to the previous shot, the new definition of
“forward” will suddenly change and the player’s avatar will turn 90 degrees
even as the stick itself remains pushed up. If control is to be camera relative,
then the camera cannot go changing its angle dramatically at unpredictable
times. But unpredictable changes in camera angle are exactly what we need
to produce interesting camera sequences like the one from RESIDENT EVIL 2,
so the most logical conclusion is that the player’s controls can no longer be
relative to the camera.

This is where the infamous RESIDENT EVIL “tank” control scheme comes
from. In RESIDENT EVIL (and ALONE IN THE DARK), control is relative to the
player avatar’s facing direction rather than the camera’s facing direction.
Left and right rotate the character in place, and forward moves him in
the direction he is currently facing. The advantage to this system is that
the controls are thus decoupled from the angle of the camera, which
makes it possible to run straight continuously regardless of how often or
how dramatically the camera angle changes. The major drawback to this
system is that it makes no intuitive sense; camera-relative controls are
immediately understandable to most people, but character-relative control
schemes have a steep learning curve.

Fortunately, there are several solutions to this problem. One uncommon
but effective solution is to move the “forward” control off of the analog stick and
put it on a button. In FATAL FRAME 2 moving forward can be accomplished using
the analog stick, but the protagonist can also be made to run in a straight line
by holding down the run button. The GameCube remake of the original RESIDENT
EVIL takes this idea one step further with its “Type C” control scheme. In that
case the deep analog trigger on the GameCube controller is used to drive the
character forward (shallow push to walk, full click to run) and the control stick
is only used for adjusting the character’s heading left and right. These types of
control schemes feel a bit like a driving game, but they work well and remove
most of the pain of character-centric controls.

An even better solution is the one introduced by Square’s PARASITE
EVE. The developers of that game made a key observation: camera-centric
control systems only fail when the camera cuts. Their solution was to tie
changes in the character’s forward direction to the player’s input rather
than to the camera. Whenever the control stick is released, it is immediately
re-calibrated so that “up” becomes “forward” relative to the current view
direction. As long as the player is moving, the definition of “forward” will
not change even if the camera cuts. This allows a player to hold “up” on the
control stick and run through any number of arbitrary camera angles, but
still experience movement within any given shot as relative to the direction
of the camera producing that shot. A couple of years after PARASITE EVE came
out, Capcom used the same scheme for DEVIL MAY CRY, and it has remained
the standard ever since.

In fact, a movement system that relies on static cameras is incredibly
beneficial to a brawler like DEVIL MAY CRY. Combat in that game is designed
to look smooth, fast, and sexy, and part of that equation is the way that the
controls map directly to the current camera angle. When Dante decides to cut
an enemy in half, he automatically rotates and swings exactly in the direction
that the analog stick is pointing relative to the current camera shot. This
method allows the player to target enemies simply and quickly with much
more precision than would be possible if the camera were in constant motion.
In fact, other brawlers that use moving procedural cameras often have to

GAME DEVELOPER | AUGUST 200926

Capcom's GameCube
remake of RESIDENT EVIL

0908gd_cameras_vIbs.indd 26 7/20/09 4:20:46 PM

invent schemes to allow the player to target his opponents without relying on
precise analog input (consider the target mapping system in MARK OF KRI or
the transition to target-relative movement in PRINCE OF PERSIA when the prince
draws his sword). DEVIL MAY CRY’s combination of PARASITE EVE-style sticky
control calibration and precise combat mechanics has made it the basis for
modern brawler game design.

O T H E R C O N S I D E R A T I O N S
» Let us assume that a hand-crafted camera system is right for your game,
and you have chosen to implement the PARASITE EVE/DEVIL MAY CRY sticky-
calibration input model. Here are a few things to keep in mind.

Being able to cut to arbitrary angles is a powerful feature, but it is
probably best from a control perspective to never cut to a camera angle that
is 180 degrees rotated from the previous camera angle. Even with sticky
calibration controls, a 180-degree cut causes the player’s controls to be
exactly reversed. While running forward might not be a problem, left and
right will be opposite what the player expects until they release the stick and
the control mapping re-calibrates. 180 degree cuts are also disorienting;
when moving down a hallway or path, a full half-circle rotation of the camera
can confuse the player about which way he should be heading. If you have an
open space that is covered by several different cameras, ensuring that this
sort of 180-degree cut never happens can be a challenge (depending on the
layout of the space, the player may be able to trigger cameras in a sequence
that you did not expect). To combat this, games like DEVIL MAY CRY tend to
place cameras in concentric circles out from the center of a space (thereby

forcing all nearby potential camera angles to be within 180 degrees of the
current angle). Other games simply avoid open spaces that require more
than one camera angle to represent; RESIDENT EVIL tends to box the player into
small, rectangular spaces, while GOD OF WAR often pulls the camera back and
lets it pan or truck to cover a space.

Another thing to consider is that most hand-crafted camera games do not
allow the player to manipulate the camera at all. This is perhaps used to break
the feeling that the camera is an extension of the avatar’s eyes, but there
is another, more practical reason as well. One major benefit to hand-crafted
cameras is that it is possible to know exactly which parts of the game world
will be visible. This information can be used to dramatically improve the visual
quality of the scene; for example, geometry and lights in the level can be
sorted and culled with respect to each camera angle offline, giving the CPU
time to do other things at runtime. Games like RESIDENT EVIL: CODE VERONICA,
GOD OF WAR, and SILENT HILL 3 are among the best-looking games for their host
platforms because they take advantage of all kinds of performance tricks that
hand-crafted cameras enable.

Finally, it is worth noting that hand-placed cameras give the player a very
different sense of space than does a procedural camera. The boundaries of
the current camera shot define the edges of the player’s vision, and since
hand-crafted cameras adjust their view direction much less frequently than
procedural cameras, it is very easy to obscure important locations in space.
Many of the games mentioned in this article go out of their way to build
secondary and tertiary methods for communicating the existence of objects
in the world that may be close by but not visible from the current shot.

0908gd_cameras_vIbs.indd 27 7/20/09 4:20:54 PM

http://www.GDCChina.com

GAME DEVELOPER | AUGUST 200928

SILENT HILL causes its protagonists’ heads to turn toward interesting objects,
FATAL FRAME provides a first-person mode for looking around and combat,
and in RESIDENT EVIL the characters automatically aim at the closest enemy.
Ranged weapons are particularly problematic, as it is almost impossible
(and not very fun) to shoot things that are off the side of the screen.

There is a high concentration of horror games that employ hand-crafted
cameras; perhaps this is because shot composition is particularly valuable
for building tension. The other game genres that often use hand-crafted
cameras are the adventure genre (THE LONGEST JOURNEY, BROKEN SWORD, etc),
upon which RESIDENT EVIL and its progenitor ALONE IN THE DARK are based, and
the modern brawler genre (GOD OF WAR, NINJA GAIDEN, etc) as defined by DEVIL
MAY CRY, which itself began life as a RESIDENT EVIL game.

H A N D T O M O U T H
» In this article I have focused almost exclusively on cameras that are set up
and controlled by hand, as the best cinematography in games today comes
from titles that were built that way. But there are other ways to achieve similar
effects. Cing’s TRACE MEMORY uses the DS’s top screen to show dramatically-

composed stills of the area that the player is exploring while the bottom screen
renders the same environment in real time using a basic top-down perspective
camera. ICO uses a combination of procedural cameras and hand-crafted
cameras that switch based on the player’s motion to produce interesting
shots without cutting. And the most recent ALONE IN THE DARK uses procedural
and hand-crafted cameras interchangeably to separate areas that are mainly
traversal-oriented and areas that need to be dramatically shot.

Making a cinematic game is not a simple task; it requires pulling together
every discipline in game development. That said, one way to inject drama
into a game is to employ an interesting camera system. The behavior of the
camera is so deeply tied to the way fundamental game mechanics work that
any camera system will bring with it a variety of important trade-offs. But
whatever type of camera system you use, think about how shot composition
can help you communicate with the player at an emotional level.

CHRIS PRUETT is by day a mild-mannered game engineer working on Google's Android

platform. By night he runs Chris' Survival Horror Quest (www.dreamdawn.com/sh), a blog

dedicated to the analysis of horror games. Email him at cpruett@gdmag.com.

 In the introductory
sequence to Konami’s
SILENT HILL, the protagonist
follows his daughter into
a narrow, L-shaped alley.
Initially the camera is
positioned in the corner
of the alley’s bend and is
looking at the character
head on. As the character
moves forward toward
the camera, it lifts and
twists in tandem with the
player’s motion so that the
opposite side of the corner
is revealed. By the time the
character reaches the bend,
the camera has moved
upward and is now looking
straight down at the top
of his head. As the player

turns and heads down
the corridor, the camera
reverses its previous
movement and keeps the
player’s back in the center
of the frame. This motion
is complex and unsettling,
and it is a great lead-in to
the next shot, in which
suddenly everything has
become unnaturally dark
and SILENT HILL’s central
fear mechanic is revealed.

In one of the first scenes
in DEVIL MAY CRY, the
protagonist runs up a hill
and enters a castle though
a hole in its outer wall. The
shot for this is simple: the
camera is pulled away

from the landscape and
rotates in place to follow the
character as he approaches
the castle wall. What is nice
about it is that once he
enters, the camera does not
immediately cut to show the
inside of the castle. Instead,
it automatically pans up
to show the castle’s wall
and spire, establishing the
location in which the player
will spend most of the game.

Early in Capcom’s
RESIDENT EVIL 2, Leon,
the protagonist, enters a
deserted police station.
As he travels through
one of the outer rooms
we are treated to a shot
of a large picture window
looking out into the dark.
As he passes the window
we see something—just
some arms and legs and
maybe a tail—scuttle
past the window and out
of sight. Leon doesn’t
notice the movement,
but we do. He opens the
door directly in front of
the window and enters
a long hall. Immediately

upon passing into the
hall the shot changes to
one on the outside of the
building, looking in at Leon
through a large window.
The implication is clear:
whatever it is that we saw
moving outside is now
looking in. After taking
a few steps the camera
cuts again to give a better
view of the hallway, and
a few steps after that the
creature in question—a
new monster called the
Licker—is introduced.

The GOD OF WAR series is
chock-full of dramatic
action sequences that rely
on complex maneuvering
of a real-time camera. A
good example is the early
colossus fight in GOD
OF WAR 2, in which the
camera deftly swings from
behind the protagonist
to a perpendicular angle,
revealing a pane of
windows with the colossus
lurking outside. The
camera then leads the
player through a window
and down into the main

combat area. In the course
of fighting the colossus
the protagonist launches
himself at the giant statue
and the camera follows a
pre-determined path that
highlights the action.

The introductory sequence
to FATAL FRAME 2 consists
of the protagonist running
through a forest toward
a deserted village. This is
a simple sequence—the
player can only follow a
single, narrow path and
there is no interactivity on
the way—but it is made
interesting by the way that
the sequence is shot. At one
particularly nice point, the
camera is placed very low to
the ground and pointed up
at the protagonist, and as
she rounds a curve it hugs
the inner wall of the path.
This kind of shot coveys a
sense of oppressiveness;
we can see sun through
the top of the forest canopy
high above, but down at
the ground level things are
dark, claustrophobic, and
foreboding.

the state of the art
It is useful to consider a few examples from existing titles as reference when discussing the nuts and bolts of cinematography in
games. Here are a few examples of complicated and interesting shots that have occurred in games over the last decade or so.

Tecmo's FATAL FRAME 2.

0908gd_cameras_vIbs.indd 28 7/20/09 4:20:59 PM

http://www.dreamdawn.com/sh
mailto:cpruett@gdmag.com

http://WWW.CCPGAMES.COM/JOBS

GAME DEVELOPER | AUGUST 2009 3030

EVOLVING FROM ONE BUSINESS MODEL TO ANOTHER CAN BE TRICKY. HIGH VOLTAGE SOFTWARE HAS A 16-YEAR HISTORY OF
developing over 75 licensed titles across nearly every platform and genre, and THE CONDUIT marks our first original intellectual
property outside of a few smaller-scope WiiWare titles. As a company, we’ve been successful in managing and sustaining our
publisher relations as a development partner—but how would we fare as our own masters? Could we apply what we learned as
work-for-hire developers to our own creations? Developing original IP, we learned, has many applicable parallels but is also quite a bit
different from crafting licensed titles. THE CONDUIT has served as a starting point and valuable platform for evaluating and improving
our process as we continue to move further into original IP creation.

W H A T W E N T R I G H T

1) SELF-FUNDING. We were in the rare and fortunate position to independently fund all of the
product development of THE CONDUIT, which freed us to wholly define the feature set and

core gameplay experience on our own terms. It was tremendously exciting and liberating—it’s
the brass ring every independent developer dreams about—and it added a high level of
company-wide project pride and ownership to the title and resulted in increased involvement and
dedication from the team.

Developing much of the title without a publisher attached also really put our name out there
into the community, and it has paid big dividends for us. High Voltage Software became more
known in the industry, and while we were largely unproven as a developer of original IP, our chosen
genre and console (An exclusive FPS on the Wii? They must be mad!) and our mostly unregulated
product development allowed us to interact directly and openly with the gaming community.
Gamers are a tough crowd—they’re brutally honest and allegiances can be fickle—and we believe
we took the right approach in actively incorporating them into the process as much as possible
throughout development. We solicited media and fan feedback and asked them what they wanted
in the title early and often, while we had plenty of time to integrate that feedback. We were as
direct and honest as possible with them regarding our goals for the game. Company management
and development team members responded to emails and posted on forums. We listened
to comments and took notes during industry events and private showings and incorporated
elements and functionality from the feedback whenever appropriate to our core vision and goals.
A vocal and rabid fan community grew up around THE CONDUIT as a result and the internet buzz
went a long way toward creating goodwill within the community, which in turn attracted the
attention of publishers interested in the game. We embraced the fact that we’re an independent

developer—sadly, we’re becoming a rarer and rarer
breed—and we think that the community responded to it
and appreciated our level of involvement with them.

Independently developing the game allowed us
to focus on quality and sort out how best to focus on
quality within our process and culture. We defined
our own milestones internally, which afforded us the
opportunity to go back and rework areas of the game
that we felt needed some extra attention. We were able to
pursue new and innovative techniques and technologies
to include different shader and lighting treatments in the
environments. We reworked characters to take better
advantage of the normal maps as we became more
familiar with them. We redesigned weapon functionality
and allocated extra time to polishing our control scheme
and customization options. We prototyped and tested
functionality in ways we were never afforded with our
time-to-market properties. This freedom truly gave us a
higher level of iteration and commitment to quality—it
was a flexibility that is difficult to achieve in licensed
titles that typically need to be shipped day and date with
a movie release or season launch—and we feel that this

0908gd_pm_conduit_vIjf.indd 30 7/20/09 4:12:07 PM

WWW.GDMAG.COM 31

0908gd_pm_conduit_vIjf.indd 31 7/20/09 4:12:14 PM

http://WWW.GDMAG.COM

additional attention has considerably
improved the overall quality of THE
CONDUIT and our quality studio-wide.

2) WII CONTROLS. When the Wii
was originally announced,

we believe that most everybody had
candy cane visions of first-person
lightsaber duels and immersive
shooter action dancing around in
their heads. This unfortunately hasn’t
been the case. Conceptually, the Wii
Remote and Nunchuk should by all
rights represent a superior interface
to dual analog controls ... but the
Wii games released, with scant
exceptions, aren't really bearing this
out, and FPS titles aren't gaining
noteworthy traction on the console.
Tiny incremental improvements were
certainly being made in the genre,
but there still wasn’t the widespread
acceptance of the Wii’s input devices
as viable options for first-person
shooters that we had imagined and
seemed entirely feasible. When
preliminary development of THE
CONDUIT began, we set out to ensure
that we took full advantage of this
unique differentiator—indeed, it
was the main reason we decided
to develop the game on the

platform—as we felt the Remote and
Nunchuk absolutely belonged in the
conversation alongside the mouse
and keyboard and dual analog sticks.

We didn’t completely appreciate
the magnitude of the challenges of
making the controls feel great and
intuitive, but remained committed
throughout development to our “Wii
can be a superior FPS interface”
postulation, as we felt it would make
or break THE CONDUIT. We assigned
dedicated resources for that reason
to ensure that we established a new
bar for FPS controls on the system.
There’s an direct analog between
firing a weapon and aiming the
pointer, between tossing a grenade
and flicking the wrist—that you just
can’t get on another console. The Wii’s
controls, when done “right” and given
proper consideration, are marvelously
intuitive and accessible, and we find
getting a "Wii kill" a notably more
satisfying experience than moving
your thumb or sliding a mouse—it’s a
virtually black-magic-intangible sort
of goal that we think we eventually
achieved, and that even our harshest
critics have been largely unanimous
in pointing out as one of the title’s
greatest strengths.

3) CUSTOMIZATION. Similar to
our controls, we also felt

that it was necessary to offer the
player a level of configuration and
customization that isn’t found
in many games, especially on
consoles. We always knew we had
to include solid presets for players
who just wanted to hop in and play.
Moreover, we wanted to give the
player the ability to play the game
as he or she sees fit, rather than
try to force our “best” scheme and
settings onto players and force them
to learn to play it our way.

This “key feature” comes with a
bit of a secret. It’s important to note
that this design philosophy evolved
during development—we weren’t
originally planning to offer as robust
a customization set to the player in
the retail game. The functionality
was developed primarily as tools for
the design team to find the optimal
scheme. We quickly discovered
that there simply wasn’t one “right”
scheme for every player. Everyone
played THE CONDUIT a little differently
and had dissimilar preferences. And
we felt this was likely indicative of
the intricate and subtle disparity
of the larger Wii gamer audience,

GAME DEVELOPER | AUGUST 2009 32

PUBLISHER
Sega

DEVELOPER
High Voltage Software

PLATFORM
Nintendo Wii

RELEASE DATE
June 23, 2009

NUMBER OF FULL-TIME
DEVELOPERS
30

LENGTH OF DEVELOPMENT
22 months

GAME DATA

0908gd_pm_conduit_vIjf.indd 32 7/20/09 4:12:23 PM

WWW.GDMAG.COM 33

so we ultimately decided to expose it all in the end product. This level of
customization has been particularly well received by reviewers and fans,
and is a perfect example of a positive opportunity emerging during the
adaptive course of product development that wasn’t a consideration in the
initial design.

The pointer and motion controls are relatively new input devices, and
as such we felt that there would inevitably be a certain level of suspicion or
resistance to them among a segment of “core” gamers. Just as our parents
will likely never see video games as anything beyond PAC-MAN or ASTEROIDS,
some people will still feel the Wii controls are inherently inferior to the
established mouse-and-keyboard and dual analog standards.

Unquestionably, we gamers love novelty and innovation, but regrettably
we are reluctant to change when something works. We must come clean
that many of us on the team were at the outset in that suspiciously
willful group. Reflecting on game history, however, it wasn’t that long
ago that FPSes and consoles didn’t mix at all. GOLDENEYE (and HALO,
more appreciably) changed that and opened up those newfangled game
genre opportunities to a diverse new type of gamer. We hope to make the
same argument for the Wii by not only offering great controls, but the
customization options as well to ease the transition a bit for those that may
need an extra nudge toward picking up the controls.

4) MULTIPLAYER. Multiplayer became a significant facet of THE CONDUIT,
and it almost didn’t happen. Initially, THE CONDUIT was a single-player-

only experience. But it became immensely clear extremely quickly that a
multiplayer component was of colossal interest to the community, and we
went straight to work securing the considerable additional funding to amply
support it. Thankfully, our investor thought it was an especially relevant and
worthwhile addition to THE CONDUIT as well. It’s been very highly regarded on
the Wii and is the complementary element that really gives the title “legs,”
as the marketing spinsters say.

Our initial design was pretty bare bones, but the more time we spent on
it, the more we recognized that it had genuine potential to truly define our
game on the Wii. Subsequently, we devoted loads of additional resources
to flesh it out and offer a feature set that's competitive to what gamers
expect in an online FPS title. While it was a nerve-wracking decision to add
multiplayer to THE CONDUIT, it was the right one and we have a much better
game because of it.

5) FOCUS. This is tough to adhere to consistently, but by and large
we did a good job of defining a solid and compelling feature set

and didn’t waste a lot of cycles on a system or feature that we felt was
not essential to the final game. It’s always a tough decision saying no to
something, or to pull the plug on functionality that just isn’t coming along,
or even worse, to stop working on something that has big potential but just
isn’t supported by the budget or schedule.

A good example of this commitment to quality is our “girlfriend” mode.
We got a ton of feedback during development that people wanted an “in
the same room” experience, so we spent a little time adding a second
reticule that would allow a second player to play the game with a friend
along the lines of SUPER MARIO GALAXY. On paper, it sounded like a good idea
and perhaps even a nice solution to allow a buddy to join in the action,
but after quickly prototyping it, we discovered it wasn’t very much fun
at all. Our primarily run-and-gun experience encourages a lot of camera
movement—something the 2nd player couldn’t control—and the end result
was ultimately frustrating for both players. We did recognize that there
was potentially something to the concept of the mode, but it would have
required significant additional work to make it fun and polished. Magnifying
the risk, it would have required work from all of our disciplines, so we cut it.

W H A T W E N T W R O N G

1) FIRST ORIGINAL IP TITLE. As the company’s first full original IP,
everyone was incredibly excited about the potential of the project

and wanted to make his or her mark on the game. We had often dreamed

of developing our own IP, but learned during the initial preproduction phase
of development that we weren’t entirely prepared for the enormity of this
daunting endeavor. It would have been easy to get lost at sea without a
licensing Sherpa providing us our typically detailed property style guides,
scripts, and all manner of assets to draw inspiration from. Even more
terrifying, we were missing another layer of project management—our
external publishing partner—vigorously overseeing the development
process, wrangling the scope and direction, and supplying actionable
feedback. Would we blow our budget and not reach our goals? It was a
completely new development environment for us and one that took some
adjustment on all levels of the company.

The early going was unbelievably challenging as we worked to define
a solid vision for the game. We knew we wanted a first-person shooter on
the Wii. We knew we wanted to play up the conspiracy elements in a near-
future Washington D.C. We knew we had great tech and could offer one of
the best-looking games on the console. The rest was much, much vaguer.
We were accustomed to having a publisher help define our art style, help
establish the story or mission beats, and give input toward the desired style
of gameplay (“We want GTA4 in space!”). As a result, roles weren’t initially as
well-defined and quite a few signals got crossed, with some directions being
interpreted as Holy Writ, while at other times they were consigned to the
suggestion box. The early days on THE CONDUIT at times resembled The Tower
of Babel, with copious frustrations, disappointments, gnashing of teeth, and
pulling of hair at all levels of High Voltage.

The story has a happy ending, nonetheless, and the ship was righted. As
the communication and management problems became clearly identified,
an internal framework for feedback and discussion was implemented
and the process became a great deal more formalized. In many ways, we
modeled our system on something we knew very well—the traditional
publisher-developer model—with “official” feedback being given, estimates
made, and a single executive decision-maker giving the go-ahead for a
particular feature, functionality change, or gameplay adjustment. Executive

0908gd_pm_conduit_vIjf.indd 33 7/20/09 4:12:36 PM

http://WWW.GDMAG.COM

management became the “external publishing partner” and license sign
off. This fundamentally eliminated the majority of the confusion and
aggravation, and allowed for a much clearer direction to take shape.

2) SCHEDULE/TEAM COORDINATION. Early product development was
focused on establishing our new Wii-specific tech pipeline to find out

what we could and couldn’t do with it, as well as creating demo levels to show
off at industry events and brag about to media outlets. We knew we were
trying to accomplish something that few other third party developers were
trying to achieve on the Wii—we earnestly believed we were filling a void
on the console and were treading into largely uncharted waters by treating
the Wii as an under utilized system appropriate for “core” gamers—and
we were excited and proud to show off all of our hard work. We were wildly
successful in this regard, as we generated immense buzz throughout product
development, but it did come at a gargantuan cost in terms of managing a
coherent and well-organized schedule. We hadn’t really scheduled technology
familiarization/iteration or demos into the schedule (even the most casual
reader of these Game Developer postmortems should have heeded those
obvious and sensible warnings!), which suffered brutally at the hands of a
delighted public as a result.

To that end, team composition was equally problematic as we struggled
to define the early schedule. High Voltage always has several teams
working in parallel on a variety of projects—we don’t keep all our eggs
in a single basket. Honestly, that’s the key to how we have stayed in the
business of making video games for 16 years—and as a result, we have
developed an exceptionally flexible and fluid system of managing personnel
as we transition from project to project, ramp up and down throughout
development cycles, and experience the ordinary ebb and flow of our young
industry’s reactionary and intransigent behavior. Resource coordination
is among our principal strengths as a company, but it also needs to be
managed especially cautiously. And that dog bit us at the project onset.

THE CONDUIT's team was simply too large during early development to
effectively manage. Pre-production was clearly too short (isn’t it always?)
as content creators were newly assigned to the team with not enough
clear direction or, even worse, not enough work to go around. The resultant
pressure to show forward project momentum and keep these people gainfully
employed resulted in starting level work and character and object creation
before it was properly conceptualized, as designers played catch-up to provide
meaningful work for artists and programmers. Our level design suffered as
a result and some of this content ended up being team-demoralizing “throw-

away” work. The cart was before the horse in this respect, and art and dev
drove design in many cases, forcing them to make levels work around the
layout and find alternate solutions for issues based on already-created assets.
Much can be learned from the old adage: measure twice, cut once.

3) TECHNOLOGY VS. DESIGN. We had some fantastic technology before
kicking off the project, but we weren’t entirely prepared to use it in

full production. The toolsets weren’t robust enough and the team wasn’t
sufficiently practiced with the pioneering techniques and procedures essential
for implementing and taking full advantage of our new technology. The product
development team wasn’t comprehensively prepared to hit the ground running
once the production bell rang. Inevitably, a cyclical struggle began. There was
a continuous back-and-forth between our technology team and our product
development team throughout the creation of THE CONDUIT. In retrospect, there’s
undeniably a sense now of “if only we’d known this earlier.” While this process
is an inevitable part of creating innovation and we’d like to have quite a few “do-
overs” (certainly not unique to our project), it was perhaps compounded in our
case as we worked diligently to discover all the new shaders, lighting systems,
and post-processing effects that we now had available to us.

Our early focus on the technology (largely aimed at creating great visuals
and giving a current-gen look on the Wii) did deeply impact the fundamental
game design on many levels. In a few cases during early development,
creating a dazzling game trumped creating a fun game as we learned the
shiny tech and pipeline. It was certainly not intentional, but the sexy and
easily distracting realities of new engine creation caused us to occasionally
lose focus on the “fun” as preliminary product development began and
instead focus on the technical and more bling-oriented aspects of the game.

4) MULTIPLAYER. The decision to add multiplayer (while absolutely
the right decision and a giant positive in the end product) came at

a profound cost to the team. Work on multiplayer began months into full
development, well after most of the core systems (weapons, character
states, animations, and so forth) were already planned and built.
Consequently, without having taken appropriate multiplayer considerations
into account, an extensive amount of additional time and resources was
invested in making these single-player systems work in a multiplayer
addendum, and in several cases, comprehensive workarounds were
required for systems that in retrospect should have been rewritten entirely.

Furthermore, we weren’t fully prepared as a company to handle the
vast internal multiplayer testing that was required for an online FPS.

Historically, we had no need for a dedicated multiplayer lab, or
the indispensable complement of QA personnel to support it.
While Sega was an enormous resource once we signed them as
our publishing partner, early going was a cruel challenge. Ever-
resourceful MacGyver-like DIY Midwest developers that we are,
we adopted a less than ideal approach for multiplayer testing: a
good chunk of the product development team brought kits home
three to four nights a week for hours of multiplayer testing for
months on end. It was an exhausting schedule for the team—far
from perfect conditions—but a regrettable necessity.

Relatively late in the production schedule, we didn’t have
a suitably stable networking experience. The legitimate fun of
multiplayer was found even later than that, making it difficult to
tweak and tune as much as we would have preferred. In the end
product, we feel we delivered a really solid online experience,
but in hindsight there are several areas that didn’t get the level
of attention or polish that we felt they deserved, as the bulk
of the multiplayer development resources were depleted just
trying to make it work at all. It’s a resounding testament to the
solid design and resolute efforts of a passionate team that THE

GAME DEVELOPER | AUGUST 2009 34

0908gd_pm_conduit_vIjf.indd 34 7/20/09 4:12:48 PM

WWW.GDMAG.COM 35

CONDUIT’s multiplayer turned out so well, but it was
a very bumpy ride by all accounts.

5) OUTSIDE FACTORS. Creating an original
IP placed sizeable demands on the

team and company that were new to us as a
studio; demands that we didn’t quite adequately
appreciate when beginning production. While
the level of community and industry excitement
for THE CONDUIT was enormously appreciated, we
didn’t initially have the infrastructure in place to
effectively respond to the nearly absurd volume
and intensity of attention we received.

We were continually preparing for industry
events and generating demo builds to show off
the latest and greatest. The art and video support
for marketing and PR needs was unprecedented
for us as a studio. Pre-release, we received a
humongous outpouring of encouragement,
suggestions, and questions that fueled us but
was equally overwhelming.

We pride ourselves on our level of
involvement with the community, but this also
added more stress on the company. Interview
requests were constant. Fan emails and phone
calls (and even unannounced visits to the
building!) arrived in legions. As much as was
possible, we’ve responded—there was a level of
welcome exhilaration and interest for doing these
things—with requests being fielded by everyone
from our CEO and founder down to our animators
and character modelers, although a side effect is

that it did pull some people away from our main
focus—making a great game.

Post-release, we received congratulations,
suggestions for the future, and also general
support emails to troubleshoot connectivity or
networking problems. As a result, we assigned a
meticulous associate producer to help manage
a good number of these emergent requests and
correspondences, and tried to limit impact on
the team progress as much as possible. We had
patched the dam nicely with our thumb, but
this welcome success and outside enthusiasm-
driven extra stress was something that we
could have better anticipated and prepared for.
Nintendo fans are some of the greatest and most
vocal fans in the world. And the internet, as it
turns out, is a very big place. We aren’t deterred
by this; quite the opposite in fact. Next time we’ll
bring a bigger boat.

A W E L C O M E D I S C L A I M E R
» THE CONDUIT has proven itself a somewhat
polarizing title, with the caveat “for the Wii” a
constant companion as gamers and reviewers
attempt to qualify and categorize the game. It’s a
distinction that we’ve come to embrace, though
we of course recognize that the term isn’t always
meant as a compliment. THE CONDUIT is a decidedly
“core” experience on a console not known for
wholeheartedly embracing them. First-person
shooters are staples on the PC, Xbox 360, and
Playstation 3, yet largely ignored on the Wii.

Graphical chops are enormously important to
most FPS titles, yet THE CONDUIT is exclusively on
a system celebrated more for its unique controls
and diverse audience than its graphical fidelity.
The Wii’s online component is not as ubiquitous
or established as on other current generation
systems, yet we opted to focus heavily on our
multiplayer offerings. By outward appearances, THE
CONDUIT and the Wii are strange bedfellows indeed.

Where we ultimately find our place in the
original intellectual property games market is
still very much to be determined. But we do
know that we love making games for the Wii,
and while there were certainly a lot of bumps
along the road, we believe we’ve demonstrated
that first-person shooters do indeed belong on
the console. We sincerely hope gamers agree
as well, but regardless, we’ve earned a fabulous
education during the development of THE CONDUIT
and are excited to apply these lessons to even
more ambitious titles moving forward. The
best is definitely still to come for High Voltage
Software, and the lessons learned here during
our introductory foray into creating original
intellectual property will prove germane as we
continue to nurture our abilities as game creators
and assemble fun and extraordinary worlds
across all genres and platforms.

J O S H O L S O N was a producer on THE CONDUIT. E R I C

N O F S I N G E R is High Voltage Software's chief creative

officer. Email them at jolson@gdmag.com.

0908gd_pm_conduit_vIjf.indd 35 7/20/09 4:12:56 PM

mailto:jolson@gdmag.com
http://WWW.GDMAG.COM

TOOLBOX

THE DIGITAL PAINTING REVOLUTION IS UPON
us, and we all stand on the edge of infinite
possibilities. At no time in recorded history
have there been so many opportunities for
creative artists, and we have never had more
sophisticated tools with which to render
the visions of our imaginations than we do
now. I can say with confidence that the new
Corel Painter 11 is on the very edge of digital
painting software.

I will admit that I am a bit biased. I have
been a Painter user and evangelist for more
than 11 years, and I can still remember when
they sold Painter in a tin paint can. That said,
I promise to be as objective as I can when
reviewing its latest incarnation.

Before we get into the specifics of the
new Painter let’s get something out of the
way. Whenever you bring up the topic of
digital painting software the conversation
inevitably turns to a debate about Painter
versus Photoshop. In my opinion this is a dialog
that serves very little purpose. My answer
has always been to use both. There is a slight
overlap in their functions and a major overlap
in the outcome of the finished process, but
they are both amazing programs that do very
different things.

I hear a lot of people’s comments and grief about Painter’s transforming
functions, and I’ve come up with a very good solution for making complicated
transformations to a 2D image. I open Photoshop. Painter is a painting
program. It does a crap job of doing my taxes too. Life is a multi-layered
cascade of applications, and I think that great digital art reflects the
collaboration of many programs. When a digital artist can combine the
strength of these tools they will truly see limitless potential.

THE MOST ACCURATE DIGITAL COLOR
SELECTION TOOL KNOWN TO MANKIND!
» As one of the most robust painting and brush creation engines available
in the modern world, Painter has taken the artist’s ability to manufacture
beauty to a new level with its new color picker.

I create many of my digital paintings from real life observation—whether
it is a landscape or portrait, I’m always observing the color of the natural world
and attempting to communicate that into the 2D bit map world of pixels. With
all previous color pickers, selecting the right color always felt like shooting a
dart at a dartboard, and the slightest movement of the Wacom pen could result
in a drastically different color selection. Those days are behind us.

Painter’s remodeled color picker can now scale to half the size of the
screen. With the accuracy of the new color picker, millions of colors are at
your whim. Once your color is selected you can use the up, down, left, and
right arrows keys to explore the subtle variations. This is a huge help to any
classically-trained traditional artist making the move to digital. It's important

for anyone who knows the value of slight value
changes in light and form.

Painter also allows you to totally customize
your pallet interface and brushes and then share
that information with other users. This means
that by exporting my workstation I can share an
exact digital replica of my working environment
with any digital artist around the world.

REAL MEDIA
» The distinguishing characteristic of Corel
Painter is its dedication to synthesizing the
experience of working with natural media
in the digital realm. Now the software has
moved one step closer to completing this
illusion by enabling the width of its brushes to
dynamically change based on the angle of the
Wacom pen in the artist’s hand.

For example, if you are sketching with
Painter’s conté brush and you tilt the brush
to the side it will achieve a thicker stroke,
mimicking the same real life action. The
result of this feature is a more natural
sketching experience. Lines and strokes
have more variation and can communicate
more information, building a more believable
and engaging final image. Combine a real media
chalk brush with a simulated paper texture and

you may just be fooled into believing that you are actually sketching.
The pattern chalk is one of the most revolutionary brushes in the new

Painter. It gives users the ability to take any black and white shape and
assign that as the brush. To think that traditional painters have been locked
into the paradigm of painting pictures with dead animal hair! Now there are
no limitations to what brushes can be constructed from.

With so many options, brushes and custom variables, it’s easy to
become intimidated. This is really more of a user negative than a Painter
negative, but sometimes less can be more. I think Painter would still be
a standout product with half the options that it gives the user. With the
overwhelming amount of variables you can set in your brush preferences,
the combinations and infinite possibilities are staggering.

CRACKED PAINT
» Still, there are some quibbles with the current evolution of Painter. Large
file support could be better. This only applies when you work on images that
will be displayed the size of billboards, but it’s still a concern. For me, a big
con is anything that limits my creativity. The ability to work on extremely
large files with out any lag or slowdown would be great.

While we’re on the subject of files: what’s a .rif file? Lets take the cutting
edge that Painter presents and trim off the fat. Over the past decade I have
never come up with a reason to save in the priority Painter .rif format.

Painter also needs a larger user base. More people need to be taking
advantage of Painter and giving Corel their feedback. It needs to be in

GAME DEVELOPER | AUGUST 200936

COREL PAINTER 11
BY ANDREW JONES

ILLUSTRATION BY ANDREW JONES

0908gd_toolbox_vIjf.indd 36 7/20/09 4:14:17 PM

WWW.GDMAG.COM 37

[OUR RATING SYSTEM] EXCEPTIONAL GREAT FAIR POOR UNFORTUNATE

every digital art college and
curriculum. The more the Painter
user community grows, the more
Corel will strive to evolve the tool in
response to that.

GOING WILD
» I tell my students that Painter
is like a wild animal, or a beautiful
woman. It can sometimes be
amazingly unpredictable in its
behavior. It is out of this type
of chaos that great art is born. I
can open a new canvas and have
absolutely no idea what my final
result will look like. With access to
millions of colors and thousands
of tools and variations of tools,
I could paint the same subject a
thousand times with Painter and it
would never look the same—and
I’ll never run out of paint. It’s this
propensity for novelty and change
that I appreciate most about the
tool. It’s important not to get
obsessed with what Painter is but
what it makes possible.

My greatest moments in digital
painting are the times where I
become so consumed with the
work I am creating that I forget
I’m using a computer. My hands
disappear, the Wacom dissolves,
the menus blur and vanish, and
I’m at a place of pure creative
expression. This is a moment that
I have only been able to achieve
with Painter. Like the proverbial
finger pointing at the Moon, don’t
get fixated on the finger but cast
your gaze at the Moon. The Moon
is the full bandwidth of creative
possibilities, and thanks to Corel
we as a tribe of creative individuals
are one step closer to the Moon
than we were yesterday.

ANDREW JONES has contributed concept

art to ICEWIND DALE: HEART OF WINTER, the

METROID PRIME series, and HELLGATE: LONDON.

You can find him navigating airport security

lines, exotic locations, and venues that

feature the latest in underground electronic

music, art, and community. Email him at

ajones@gdmag.com.

Corel Corporation
PAINTER 11

¤ STATS
1600 Carling Ave.
Ottawa, ON
Canada K1Z 8R7
www.corel.com

¤ PRICE
$199.00

¤ SYSTEM REQUIREMENTS
Windows version:
Windows Vista or Windows XP (with
latest Service Pack)
Pentium IV, 700 MHz or greater
1 GB of RAM
500 MB of hard disk space
24-bit color display
1024 x 768 screen resolution
Mouse or tablet

Mac OS version:
Mac OS X 10.4 or 10.5 (with latest
revision)
Power Mac G5, 700 MHz or greater
1 GB of RAM
500 MB of hard disk space
24-bit color display
1024 x 768 screen resolution
Mouse or tablet

¤ PROS
1 The color selector is now the

most advanced color selection
technology available to digital
artists.

2 The real media features give many
of Painter’s classic brushes a new
dimension. It may seem like a
novelty but any improvement to
my digital painting experience is a
welcome addition.

3 Painter unlocks your creativity.
Corel has gone to amazing
lengths to put more creative
combinations in the artist’s
hands.

¤ CONS
1 Complexity. The amount of

control that Painter puts into
your hands can be intimidating.

2 Sluggish when working with large
files.

3 Needs more users. Painter has
the potential to stand next to
Photoshop as the industry
standard.

ART TRAINING REVIEWS
BY TOM CARROLL

LYNDA.COM
MAYA 2009 ESSENTIAL TRAINING BY GEORGE MAESTRI

I’ve already gone on record in Game Developer as saying that software
developers introduce way too many versions of their software way
too quickly for the average person to absorb. That said, thank god for
companies like Lynda.com that make it their job to absorb new software
revs about as quickly as Bounty soaks up grape juice. Specifically, Lynda
now offers various levels of training in the new Maya 2009, and trainer
George Maestri breaks it down into small chunks that are easy to process.
Maestri’s voice and delivery are also very easy to process. In particular
I felt that the polygonal modeling section was well done, especially
considering that most of the videogame industry is still utilizing relatively
simple models, even if they’re loaded with sophisticated normal maps
delivered through Zbrush or Mudbox. Maya’s Paint Effects capabilities,
extremely under utilized by many, if not most, are also well explained.
 www.lynda.com

size matters

RTPatch and Pocket Soft are registered trademarks of Pocket Soft, Inc.

www.rtpatch.com

0908gd_toolbox_vIjf.indd 37 7/20/09 4:14:21 PM

http://www.corel.com
http://LYNDA.COM
http://Lynda.com
http://www.lynda.com
http://www.rtpatch.com
mailto:ajones@gdmag.com
http://WWW.GDMAG.COM

TOOLBOX

GNOMON WORKSHOP
DESIGNING CREATURES IN ADOBE
PHOTOSHOP WITH AARON SIMS

Veteran film designer Aaron
Sims is behind one of the latest
instructional DVDs from the
Gnomon Workshop. Sims, who
designed the look for such films
as AI, Terminator 3, Constantine,
and Fantastic 4, shares his secrets
on how to use Photoshop to lay
down a character design. The DVD
is excellent in all phases, including

showing how to use Warp, Liquefy,
and various layer blend modes
to build up the character sketch
quickly and efficiently—but he
reaches the highest heights
by demonstrating how to add
appropriate surface details. Being
a 3D character artist is one of the
top jobs in videogames because
the available slots in the industry
are eagerly sought after and
jealously guarded. One of the best
ways to attract attention to your
own work is to have a selection
of well thought out and executed
2D designs. Borrowing from Aaron
Sims’ repertoire of skills will help to
put your own work over the top.

www.thegnomonworkshop.com

DIGITAL TUTORS
INTRODUCTION TO MUDBOX 2009
Mudbox has furthered the revolution
in computer graphics software by
making it possible to sculpt and

texture quickly and efficiently in 3D,
but you’d be amazed at how little
training is available for the package.
Digital Tutors’ Introduction to
Mudbox 2009 provides nearly seven
hours of “production-focused”
training to help beginners get up to
speed on the techniques currently
being used in film, games, and
design. The list of topics covered
is long and varied, and it includes
everything that experienced pros
and newbies alike want to know,
such as making custom stamps
and projection painting (that is
most often used to add selective
details to models that are fairly far
along). The ten minute segment that
helps to explain how to refine facial
details was especially informative,
but a slightly shorter tutorial about
painting eye textures was not to
be outdone. Pick up Introduction to
Mudbox 2009. Think of it as comfort
food for Mudbox fans.

www.digitaltutors.com

EAT 3D
NEXT-GEN TEXTURING

Do you ever feel like you’re fading
out of a career that is constantly on
the move? Training content like Eat
3D’s Next-Gen Texturing will help you

hold onto your edge. The reason?
It's a topic that will never become
irrelevant as long as there are
various 3D models that need to look
good, dammit! This block of training
utilizes Photoshop, 3D Studio Max
2009, and UnrealEd to step through
what it takes to model and texture
a complex environment scene, and
then to check that scene to make
sure it's working according to plan.
Because you’re focusing on creating
great textures, this downloadable
training is relevant regardless of
whether you're using 3ds Max.

The main textures you create are
concrete, wood, cloth, grass, ground,
and metal.

http://eat3d.com

ESCAPE STUDIOS
ONLINE 3DS MAX COURSE

Billed as the essential course for
anyone who wants to learn more
about the power of 3ds Max for
architectural visualization and
design, Escape Studios’ Online
Visualization Course contains more
than 10 hours of HD video content.
It takes the student from modeling
and texturing various assets within
an office environment to creating
shaders to enhance their look and
using Mental Ray to make the final
render eye-poppingly brilliant. This
course is a must for anyone who is
just getting into Max, or for users
of other 3D software who need to
brush up on the subject.

www.escapestudios.com

BALLISTIC PUBLISHING
EXOTIQUE4, MASSIVE BLACK,
AND D’ARTISTE (DIGITAL ARTISTS
MASTER CLASS)
While it may seem strange to have
a book blurb within an art DVD
column, publishers like Ballistic
Publishing have really addressed
the industry’s need for analog
collections of the best digital work.
Especially in the d’Artiste series,
the books themselves provide a
blow-by-blow account of how some
of these pieces were created. My
favorite of the three books listed
here is Massive Black, mostly
because it shows the project-based
sketches, comps, finished artwork
and animation tests, but also some
of the team’s personal artwork,
too. While d’Artiste provides great
instruction, I can’t help but feel that
sometimes they’re skipping a little
too much of the in-between, making
the jumps more like leaps of faith.
And Exotique4 simply lives up to its
name: exotic to the extreme.

www.BallisticPublishing.com

TOM CARROLL is a video game artist

currently with a prominent game studio.

He is a contributor to myIPD.com, an

intellectual property portal. Email him at

tcarroll@gdmag.com.

GAME DEVELOPER | AUGUST 200938

0908gd_toolbox_vIjf.indd 38 7/20/09 4:14:24 PM

http://www.thegnomonworkshop.com
http://www.digitaltutors.com
http://eat3d.com
http://www.escapestudios.com
http://www.BallisticPublishing.com
http://myIPD.com
mailto:tcarroll@gdmag.com
http://www.spiel-s.com
mailto:info@spiel-s.com

We are actively recruiting across all disciplines for the following locations:

Irvine, California I Austin, Texas I Velizy, France I Cork, Ireland

Seoul, South Korea I Shanghai, China I Taipei, Taiwan

www.blizzard.com/jobs

 I S H I R I N G

® ®

®

®

© 2009 Blizzard Entertainment, Inc. All rights reserved.

blizzard_ad_gdc_program_B_r1.indd 1 3/9/09 6:41:43 PM

http://www.blizzard.com/jobs

http://WWW.NEVERSOFT.COM

THE INNER PRODUCT // NOEL LLOPIS

PROCEDURAL
CONTENT
CREATION
MAKING SOMETHING OUT OF NOTHING

CONTINUED ON PAGE 42

ILLU
STR

ATIO
N

 B
Y M

ATT B
R

ALY

GAME DEVELOPER | AUGUST 2009 41

PROCEDURAL CONTENT CREATION IS NOTHING NEW. IT’S A CONCEPT THAT’S BEEN AROUND SINCE
the beginning of video games. Even though nowadays hand-crafted content in games is king, we
still rely on procedural content quite a bit for heightfield terrains, water surfaces, or particle effects.
And, of course, games like SPORE rejuvenated the concept and took it a step further by procedurally
creating animations and textures.

This month’s column delves into the use of procedural content creation in games, and
specifically how it was used and what I learned during the development of my game FLOWER GARDEN
for the iPhone, which uses procedurally-created flowers in pots as its central focus.

WHY PROCEDURAL CONTENT
» The main reason to create content procedurally is that it can be cheap. Really cheap. Generating
new content is a matter of turning knobs and moving sliders. At that point, our imagination is the
limit of what we can do, and there’s very little work involved in creating each asset.

Before any content can be generated though, the code and tools to create it need to be in place.
This means that procedural content creation has a steep initial cost, but it flattens out to almost
nothing once that technology is in place. In contrast, hand-created content has a much lower initial
cost (in the form of exporters and asset pipeline) but a higher-per asset creation cost (see Figure
1). This creates an economy of scale, where procedural content creation is much cheaper for large
amounts of content.

Procedural content can also be a very effective form of compression. Just a few bytes or
Kilobytes of information are enough to generate intricate, high-resolution textures, or a full galaxy
of alien worlds. This is particularly beneficial for downloadable games that need to keep asset
size to a minimum. The flip side to this is that generating procedural content on the fly can be
a performance-intensive step, so it’s a tradeoff between asset size and CPU time. Fortunately,
these days we have plenty of idle cores around that can be put to good use. As a plus, procedural
generation can usually be parallelized easily, or at least done concurrently with level loading.

Games that use procedural content can also generate nearly-infinite variations of content on
the fly to avoid repeating the same asset multiple times. A game with procedural vegetation can
generate thousands of variations of the same plants, which will make the landscape look much
more natural. Variation can also be used to adapt to the particular situation in the game: time of day,
player’s past actions, etc. That would all be much more difficult with pre-generated content.

In FLOWER GARDEN, the main reason I decided to create flowers procedurally was to keep content
creation costs to a minimum. The game centers around growing flowers from seeds, and the final
game shipped with 20 different seed types. I later added another 10 bonus downloadable seeds
(with more coming). Modeling 30–50 different flowers, plus all the stages of growth would have
been very expensive and difficult to iterate with an artist. Creating a totally new seed type from
scratch procedurally takes about 10–5 minutes, and is literally a matter of moving some sliders
around tweaking DNA parameters.

The other reason I decided to use procedural content creation was to allow for cross-pollination
of flowers to create hybrids. This is something that would be almost impossible with pre-generated
flowers, but would have been very easy to implement with procedural generation. Unfortunately,
this was a feature I put on hold half-way through development, so it was not implemented in the
released version. It still remains as an option for a future update though.

0908gd_inner_product_vIjf.indd 41 7/20/09 4:15:20 PM

THE INNER PRODUCT // NOEL LLOPIS

Even so, each flower is slightly different than all the others. When a seed
is generated, its parameters are tweaked slightly from the reference DNA, so
no two flowers are exactly alike.

Content size wasn’t a deciding factor, but it helps that the data
necessary to fully describe a flower and how it grows weighs in at under
3KB. And that’s just the raw size of the binary structure, without any
attempts to compress it further.

TYPES OF PROCEDURAL CONTENT
» Almost any type of content in a game can be generated procedurally. We
usually think of meshes, because that’s one of the easiest types of content
to create—for example, creating a road mesh from a spline laid out in the
tool. But it can really be applied to any type of content: textures, animations,
and even sounds or speech.

Another important distinction of procedural content is when it happens.
On one extreme, content can be generated on the fly, during the game
runtime, maybe as frequently as every frame. At the opposite extreme,
content can be generated offline by an artist and used as a starting point
for a piece of hand-created content, which is then saved and loaded through
the static asset pipeline. That distinction is a continuous spectrum, so it’s
also possible to generate content at load time, or on demand at runtime, but
cache it while it’s being displayed.

The only type of content that’s procedurally generated in FLOWER GARDEN
is geometry. Even though the patterns on the petals might look different at
first glance, they’re just a small set of pre-created texture masks that are
used to interpolate between two colors.

What is perhaps surprising is that the full mesh for each flower is re-
generated each frame. That’s because flowers grow in real time, so they
can change appearance from frame to frame. Also, since there’s no vertex
shader support on the iPhone 3G, all the animation for the stems and petals
is done on the CPU, and is based on simple spring systems. It was easy to
fold the animation into the last step of the procedural mesh creation, so it
happens every frame to achieve a smooth animation.

THINKING PROCEDURALLY
» It seems that every other word so far has been “procedural,” but we
haven’t defined yet what exactly we mean by “procedural content creation.”
One possible definition is “content that is created in code,” as opposed to
hand-created content like I mentioned earlier. That’s a bit vague, so let’s
step back and look at what it really means to generate content procedurally.
What is going on when we do that?

It turns out that most forms of procedural content creation are
interpolations along some axes. There are some types of procedural content
creation that are more purely mathematical, such as Perlin noise or fractals.
But the vast majority of procedural creations are based around the idea of
interpolating between two extremes. Another way to think about procedural
content creation is as a mapping in n-dimensional space that associates
input values with a huge space of content. It is by choosing the right axes

that we’re parameterizing all the possible content that can be created.
By that definition, picking a random color for the armor of an enemy

would be considered procedural generation. That is example is extreme
because we’re only interpolating parameters along a single axis. If in
addition to color we can change size, armor rating, and decals, we’re much
closer to what we mean when we refer to procedural content creation.

A more common example is character creation. Many games can change
character skin, hair, facial expression, build, clothes, and many other
characteristics. In this case we have about 30–40 axes along which to vary
our choices. The main limitation is that some of those axes are discrete, with
only some limited values in each of them (hair style or clothing).

The flowers in FLOWER GARDEN are created from a DNA-like structure
containing information about both their characteristics in full bloom (color,
size, number of petals, number of leaves, shapes, and so forth) and the
parameters controlling how it grows over time (rate of growth, germination
time, or when different parts start growing). Each DNA structure has about
350 parameters that can be tweaked separately. All those parameters—
except for the few referring to the texture mask used on the petals and
leaves—are analog, and the space of possibilities created by all those axes
is staggering.

Before you can write any code that creates content, you need to know
really well how to create that content. After all, you can only write a program
to do something you know how to do by hand. In my case, I checked out
every library book I could get my hands on dealing with flower and plant
morphology and learned all I could about the topic. This allowed me to learn
new aspects (like the phyllotaxis arrangement of petals), and break the
problem down into manageable chunks.

This research phase also allowed me to decide what things not to tackle.
For example, I decided to keep plant structure as simple as possible, so I
ignored different types of inflorescences and stuck with a single stem with
multiple leaves and one flower.

FIGURE 2 Stages in FLOWER GARDEN's flower creation.

GAME DEVELOPER | AUGUST 2009 42

FIGURE 1 Hand created content vs. procedural content costs.

CONTINUED FROM PAGE 41

0908gd_inner_product_vIjf.indd 42 7/20/09 4:15:23 PM

WWW.GDMAG.COM 43

Once you’re familiar with the vocabulary of the space you want to
generate content in, and you’ve decided which axes you will be using to
spawn the space, it’s time to start coding.

MAKING THINGS OUT OF THIN AIR
» Now that we completely understand the problem space, we’re ready to
start writing some code to generate that content based on some inputs.
Except that it’s not as simple as it sounds. How do we go about creating
a plant that is swaying in the wind, half wilted, and about to start
blooming? Or how about a large, residential building, a bit run down, and
with the roof caved in? As usual, the answer is to break the problem into
manageable steps.

I already mentioned the first type of breakdown, which is to tackle
each part separately. The plant can be broken down into stem, leaves,
petals, sepals, head, body, pistils, and so forth.
Finding hierarchical relationships also helps to
simplify the problem. For example, a building
can be broken down into floors, each of which
is made up of different rooms. Each part is
more manageable in isolation and they can be
assembled together as a final step.

The more interesting type of breakdown is
at the creation level. Even once we’ve narrowed
down the problem to creating a single petal,
there’s still too much data and complexity to go
from a simple description all the way to the final
geometry format (where is this petal, how bent
is it, how shiny is it, what state of fluttering is it
in, how grown is it?). To tackle this problem, it
helps to identify several stages in the creation
process, each of them more detailed and
refined than the previous one. Each stage is
used to generate the next one, and the final one
is the actual geometry to render (or whatever
type of asset you’re creating).

In FLOWER GARDEN there are six distinct
stages (see Figure 2).

 DNA. Everything starts with a DNA structure,
containing about 350 parameters. These
parameters are very high level, and describe
both the final look of the plant and how it will
grow over time: size, color, shapes, arrangement, etc. As an example, in this
stage, the stem is described simply in terms of length, radius, and color.
Each parameter contains both a starting and an ending value to change as
the plant grows.

 Seed. From this ideal DNA structure, every time a seed is planted, I create
a seed structure, which is identical to the DNA but has some randomness
added in some of the parameters (height varies a bit between each plant,
but not the number of petals for example).

Current info. Given this seed, and the amount of time passed, a structure
containing a high-level description of the plant given its current growth is
created. The stem info structure contains the same information as the DNA
one, but without any ranges, just the current parameters of the stem at this
point in the life of the plant.

Plant state. From the plant information and the previous frame state, a new
state is computed. This state contains the simulation results for the spring

systems, as well as the watering information for the plant. The stem state
includes information such as current curvature and velocity.

Description. The description is created from both the plant information
and the plant state, and it’s a more detailed description of the plant,
without getting down to the polygon level yet. In this case, the stem
description includes an array with joints, each of them with the correct
length and orientation.

Geometry. Finally, from the description, we can generate the final geometry
that will be rendered.

One advantage of having clearly-defined stages is that we can choose when
to update each one. For example, it’s clear that we only need to create the

seed stage from the DNA once. But we might
choose to only update the current info state
once every few frames, or not at all even if the
plant is not actively growing.

It’s important to realize that this is just
a conceptual way of thinking about content
creation. In practice, you probably will want
to keep some context as you’re creating each
part of the asset instead of treating them in
complete isolation. By doing that, you’ll be able
to reuse potentially expensive calculations
you just computed in a previous step (for
example, by reusing the transformation of the
neighboring petal and just adding an extra
rotation to it). It will also allow you to create
more efficient meshes by having a broader view
of the content you’re generating (for example,
by combining all petals in a single mesh, or
even in a single triangle strip).

LESSONS LEARNED
» This is not news, but it’s worth reiterating:
Procedural content can be great, but make
sure it can be tweaked to the satisfaction of
artists and designers. Otherwise you’ll end up
with worlds full of generic-looking landscapes,
forests, or even flowers.

By the time you’re done writing the code
that generates the content, you’re pretty close to an expert in that area.
It’s important to realize that you know all about the different axes along
which your content will be generated, but your brain can’t visualize every
combination that results from it. Allow yourself time to explore the ranges
of what’s possible. Crank some of the sliders to the maximum (or beyond
the maximum you had initially set), or add a feature to create truly random
content by picking random values along each of the axes. I guarantee you’ll
surprise yourself and will discover things you never thought were possible. I
ended up creating some unique flowers by cranking up the curvature of the
petals to the point that they would interpenetrate with other petals, forming
a very special bell shape.

It all comes down to three things: Learn the problem space, choose good
axes to parameterize content, and implement it in small steps. With that,
there’s nothing you can’t create.

N O E L L L O P I S has been making games for just about every major platform in the last

ten years. He's now going retro and spends his days doing iPhone development from local

coffee shops. Email him at nllopis@gdmag.com.

0908gd_inner_product_vIjf.indd 43 7/20/09 4:15:28 PM

mailto:nllopis@gdmag.com
http://WWW.GDMAG.COM

http://www.us.playstation.com/Jobs

PIXEL PUSHER // STEVE THEODORE

WWW.GDMAG.COM 45

CHECK OUT THAT ASSET!
A STRATEGY FOR MANAGING ART FILES

THE LAST EPISODE OF PIXEL PUSHER WAS A BRAVE ATTEMPT TO DO THE
impossible—namely, to get artists interested in file management. Bo-o-o-
o-ring! Seriously though, the paradoxical point we tried to stress was this:
File organization is important precisely because it’s so dull and so annoying.
If you try to ignore the boring, bureaucratic business of file naming and
storage you’re doomed to lost files, impossible debug sessions, and lots of
grousing when assets get passed among teammates. On the other hand,
not many of us can really get enthusiastic about clerical work. It’s a case of
“bored if you do, damned if you don’t.”

In the time-honored Pixel Pusher fashion we offered a way out of this
unfortunate dilemma. The technological fix we proposed relies on the same
kind of techniques that music and video applications use for managing big
libraries of songs or movies. Just as your MP3 library can be searched and
sorted by artist, genre, year, or album no matter how the folders on your
iPod are arranged, it should be possible for you to find and work with game
assets quickly and easily using search and sort keys that make sense for
your project. By integrating this kind of information (the fancy buzzword is
“metadata”) into common operations like opening, saving, and exporting files
you can save time, keep better track of your data, and waste less energy on
manual file mongering. At any rate, that’s the hope—so this month, we’re
going to look at some of the practicalities of implementing such a system.

ASSERTION
» Before you can set out to clean up your file management mess, it’s
worth asking what you’re really interested in managing. A large modern
game contains an unimaginable wealth of data. Trawling through that huge,
trackless mass of information is a serious proposition—hardly the sort of
thing you’d ordinarily want to tackle with a scripting language like MaxScript,
Python, or Mel.

Fortunately though, this enormous cloud of files condenses down to a
more comprehensible size when you remember that individual files aren’t
really what you’re managing. When an artist
gets tasked with fixing a hitched run-cycle or
adding a new object to a particular scene, the
conversation always starts with a game asset or
level rather than a file. “The golden dragon’s run
is a couple of frames too long,” or “design needs
some more trees to screen out the terrace in the
temple level,” are natural ways to talk about the
problem. It’s also what we should be thinking of when we search for files.

The list of characters, vehicles, props, and levels in a game can still be
quite large, but it’s a tiny fraction of that daunting total file count. Hence, it’s
also a big step down in complexity both for the users and the tools team.
It makes sense, for this reason, to build a system that recognizes that all
those files are grouped together to form game assets rather than living in
a vacuum. On the human side, this helps because assets have memorable
identities, which makes them ideal landmarks. On the computer side, this
reduces the problem from directly managing tens of thousands of files to
the much simpler job of managing dozens or hundreds of assets.

Focusing on assets, rather than files, is the right way to help both users
and tools deal with the scary complexity of a modern game project. An
asset-based system speeds up finding things by asking two easy questions:

“What am I working on?” and “What part of it do I care about?” instead of
the one very hard question: “Which one of the 13,745 files in this folder
hierarchy do I want?” This may sound daunting, but the scripting needed
to make this work is pretty simple. Modern machines are fast enough that
even script-based tools can speed up file finding enormously over the
traditional hunt through the file dialog box. You can achieve quite a lot with
fairly simple techniques that should be within the capabilities of a typical
technical artist.

ASSEMBLY
» There are lots of ways to build an asset-based set of tools, but we'll
sketch out a very basic one. The easiest way to build an asset toolkit is
simply to represent every asset with a single file—for the sake of simplicity
we’ll call it an “asset file.” These asset files act like a database index for your
entire project—anything that ends up in the game is part of some asset file
or another (or possibly is shared between assets). Your tools can use the
asset files to find the information they need without bugging the user.

The asset file doesn’t have to be complicated. It’s basically a text file
containing all the metadata tags that describe the asset. The set of tags you
support can be as simple or as complex as your project requires. Most tags
are pretty obvious: what faction or team does this character belong to? Is
this an outdoor or an indoor prop? Is this a single or multiplayer level? You
can also add tags to help with production management: Has this asset been
approved? Is it placeable in the game? You could even use tags to assign
assets to teams or individual artists. In all of this you’ll be helped by the fact
that tags—unlike folders!—aren’t mutually exclusive; tagging an asset for
Sally the modeler doesn’t mean you can’t also tag it for Joe the animator.

To get value from these asset files you’ll need to offer some UI to make
sure users don’t have to laboriously type in lots of tags (with the attendant
typos). The easiest way to handle this is to script the creation of new asset
files—asking users to create them by hand will never be popular! Luckily

most projects don’t need an enormous volume of tagging, and either Mel or
MaxScript can provide an adequate list of “approved” tags. A handy trick is
to treat the disk path of the asset files themselves as if they were tags, so
everything in the “levels” folder appears as if it’s tagged with “levels” and so
on. Since even a tag-based project will still have files and folders, this gives
you a lot of useful tagging information for free.

ASSUMPTIONS
» To use these asset files, you’ll need a script to catalogue them all so the
user is presented with a quick, painless search through what will probably
be a long list. Disk access is pretty fast these days (on a modern machine,
a Max or MEL script can catalog 10,000 files in 3–4 seconds). However, you
don’t want to go hunting across the entire disk every time the user asks

A fast but slightly over-generous search that updates
while you type will make finding files a breeze.

0908gd_pixel_vIjf.indd 45 7/21/09 11:53:37 AM

http://WWW.GDMAG.COM

PIXEL PUSHER // STEVE THEODORE

for an asset file; it’s probably best to scan the file tree for assets once at
the beginning of your Max or Maya session, keeping the results around in
memory for speedy access.

Once you’ve got this list of files and their associated tags in memory, the
next step is to winnow it down to the items that match any keys your user
types in. The “search” consists of simply looping through all the collected
assets, collecting any assets whose name, path, or tags match what the user
typed. (See Figure 1.) Just as when searching for music, the key here is to
be quick, rather than precise. You might think you’d need a complex database
style query of the “this AND that but NOT this other” variety, or complex
pattern matching. Don’t bother. This is an artist’s tool,
and a complex database style UI will rarely repay the
time it takes to build. A fast but slightly over-generous
search that updates while you type, on the other hand,
will make finding files a breeze. The real key is to simplify
that original list of hundreds of assets down to an easily
managed list of half a dozen or so, allowing the user to
finish with a mouse click or by tabbing through the list.
Combined with a well-chosen set of tags, the strategy is
much more efficient than hunting through a huge file tree.

ASPIRATION
» Once the user has selected the asset, there’s a second step: selecting
the aspect of that asset you want to edit. Selecting an asset isn’t the same
thing as selecting a single file, it’s almost like navigating to a directory full
of files—although, as we’ve said before, with a metadata-based pipeline you
don’t care as much whether the files that “belong” to an asset are physically
located in one particular folder. Instead, the asset file acts as a registry of all
the pieces that go together to make up the asset. If the asset is a character,
its animation files could all be listed in the asset file. For a level, individual
encounter spaces or stages might be listed instead. A shader might include
paths to the bitmaps it needs. The principle is always the same: anything
a user or a script might need to know to work with the asset should be

recorded in the asset file explicitly. Moreover, you want store them in a way
that makes the job of each file clear.

Naturally, you won’t be scoring high on the “artists hate clerical work”
index if you expect artists to maintain asset files by hand. You’ll want
to provide a dialog that makes it easy to add new files and assign their
pipeline functions easily. Many teams already have tools for setting up
files with approved naming conventions and file locations; adapting these
to update asset files is fairly straightforward. The key here is asking users
to clearly tell you what they’re doing, rather than trying to guess their
intentions by parsing file names or locations. For example, “I am adding

a walk animation” is easy for a computer to deal with, but “I happen to
be creating an animation with ‘walk’ in the name” is not. Fortunately new
files are added to an asset only rarely, so it’s not a terrible burden to ask
the user for important information as part of the creation step. Once the
new animation, part, or what-have-you is added the system will forever
know the role it plays and where to find it, and the user won’t have to be
pestered for help in digging it up.

The idea of keeping this list of all the bits and pieces of the final game
character, level, or prop stored in your asset file has three big advantages
beyond just bypassing the clunky “file open” dialog:

First, it’s the key to getting users to their work efficiently. To refer to an
earlier example: it’s natural for a human to think “go fix the golden dragon’s
run cycle”—but it’s hard to express this to a computer unless you have
something like an asset file to help your scripts find the files you need. The

GAME DEVELOPER | AUGUST 2009 46

FIGURE 1 Asset searching in action. Here, tags link to various assets by context.

Focusing on assets, rather than files, is the right
way to help both users and tools deal with the

scary complexity of a modern game project.

0908gd_pixel_vIjf.indd 46 7/20/09 4:16:22 PM

WWW.GDMAG.COM 47

STEVE THEODORE has been pushing pixels for more than a dozen years. His credits

include MECH COMMANDER, HALF-LIFE, TEAM FORTRESS, and COUNTER-STRIKE. He's been a

modeler, animator, and technical artist, as well as a frequent speaker at industry

conferences. He’s currently content-side technical director at Bungie Studios. Email him

at stheodore@gdmag.com.

asset file provides all the relevant bits and pieces in one place, no matter
how they may be spread out on disk. This speeds up the otherwise tedious
business of finding or checking out files enormously. Plus it’s a natural
complement to automatic source management scripts that handle check-ins
and check-outs and no-dialogs-needed exports.

Secondly, recording all this stuff in the asset file is a huge boost to
the power of other scripts and tools. Rules like “go up two folders then
look for a folder called ‘animations’ and check for <assetName>_run_cycle.
ma” are awkward to maintain in script, and are vulnerable to all sorts
of human errors. Contrarily, if the various roles a file can perform are
simply recorded in the asset file, matching the intention of a script with
the location of a file is trivial. Need the high res source model so you can
recast your normals? The normal mapper tool can check the asset file
to see if you’ve got one. Looking for the max file that makes the palm
tree you reference all over the jungle level? The jungle’s asset file should
have a pointer to it, even if it’s in a shared library folder rather than in the
jungle folder.

That last point brings up the third handy feature of an asset-based
toolset. Storing paths in the asset file lets you do file sharing on the
cheap—if two vehicles both reference the same model of a tire, you don’t
have to tie yourself in knots to decide the torturous folder hierarchy
which lets them both see it. Rather, simply including its location in both

asset files allows modelers working on either vehicle to quickly get to
the file they need. Of course, this won’t magically resolve some of the
other issues involved in asset sharing (always a touchy subject) but it
can certainly make simple sharing easier, safer, and less of a pain for
overstressed artists.

ASTOUNDING!
» To sum up, there’s a lot to be said in favor of using a system like the one
described here as a key component of your art tools setup. An asset-based
system can be much faster than a traditional file tree for common tasks,
and the gatekeeper scripts that make it work also cut down on the tedious,
error-prone clerical work that drives artists crazy. It’s true that neat files and
faster checkouts aren’t as sexy as cool new shaders or whiz-bang animation
rigs, but biting the bullet and putting together a good file handling toolkit will
more than pay for itself. Plus, once it’s done, putting together the cool stuff
will be a bit easier as well.

ILLU
STR

ATIO
N

 B
Y M

AR
IEL CAR

TW
R

IGH
T

Asset tagging the hard way.

0908gd_pixel_vIjf.indd 47 7/20/09 4:16:28 PM

mailto:stheodore@gdmag.com
http://WWW.GDMAG.COM

Activision - Generic Ad

Activision

project:

client:

moc#:

date:

06937

01/14/09
FIN7.75" x 10.5"

6.75" x 9.5"

trim:

safe:

8.25" x 11"

100%

bleed:

mech: 100%print:

http://activision.com

WWW.GDMAG.COM 49

TURN-BASED VS. REAL TIME
WHICH WAY SHOULD YOUR NEXT GAME ROLL?

ONE OF THE MOST IMPORTANT CHOICES A
designer makes at the start of a project is
whether to make a turn-based game or a real
time one. Each type of base game mechanic
provides potential benefits and drawbacks. While
turn-based games favor more strategic and
transparent play, they can feel a little stodgy to
players used to action-oriented titles. Real-time
games, on the other hand, are more immersive
and multiplayer-friendly but can also easily
overwhelm new players if not well-paced.

Turn-based games, of course, descend
directly from the board game tradition, predating
video games. Indeed, the fanbase for turn-based
games still overlaps significantly with the fanbase
for board and card games. Real-time games
(excluding sports), however, were only truly
possible with the advent of computers. Quite a
few games—SUPER MARIO BROS., TEAM FORTRESS,
FIFA, PAC-MAN—could only ever conceivably be
developed as real-time games.

There are quite a few games that could go
either way though, with an understanding that
each path comes with its own set of trade-offs.
Rogue-like dungeon-crawlers, for example,
have been made as both turn-based and real-

time games. Early versions, such as NETHACK,
were purely turn-based; the game’s clock only
moves forward each time the player takes
an action. However, Blizzard’s DIABLO put the
same explore-and-loot formula into a real-time
environment and created an experience that was
less strategic but more visceral and potentially
addictive. Furthermore, without the waiting
inherent in a turn-based system, the designers
could develop a viable multiplayer mode.

Nonetheless, DIABLO has not supplanted the
continuing popularity of turn-based roguelikes,
such as POKEMON MYSTERY DUNGEON or SHIREN THE
WANDERER, which maintain their own tactical
charm. Thus, deciding between turn-based and
real time is not a question of which system is
better or worse, but rather a question of which
set of trade-offs best fits the game the designer
wants to make.

HOW MUCH STUFF?
» One simple way to look at a game is by asking
how many game systems and elements the player
needs to master to feel competent. For example,
a typical shooter might have ten weapons; a real-
time strategy game might have fifteen units per

side; a role-playing game might have twenty spells
available. New players can be intimidated by the
sheer quantity of new concepts and options a
game presents to them, and the time pressure
of a real-time game only makes this learning
experience an even greater challenge.

When first prototyping the original CIVILIZATION,
Sid Meier originally built the game as a real-time
simulation. Inspired by Will Wright’s SIMCITY, he
tried to extend the concept to a global scale. But
he quickly found that players were overwhelmed
by the high number of new game systems they
needed to juggle at once. After all, SIMCITY had
no diplomacy, no trade, no combat, no research,
and definitely no marauding barbarians. Thus, he
changed course and rebuilt his prototype as a
turn-based game, and the phrase “just one more
turn” entered the gaming lexicon.

Designers should always be aware that each
game can only contain so much “stuff” before
the center cannot hold, and the experience
overpowers the senses. By removing time
pressure, turn-based games allow players to
adjust the learning curve to their own needs.
Veterans can still play quickly, but new players
can take their time poking around the interface
and thinking through their moves.

This makes turn-based games generally
more accessible than real-time ones. It is
no surprise that many of the most popular
casual games are turn-based, from staples like
SOLITAIRE and MINESWEEPER to PopCap’s stable of
BEJEWELED, BOOKWORM, and PEGGLE.

DETERMINISTIC OR CHAOTIC PLAY?
» At their core, turn-based and real-time games
play to different strengths. One example is
the question of whether an experience should
be deterministic or chaotic. With the former,
success often depends on knowing exactly
what the results of one’s actions will be; in
PUZZLE QUEST, for example, the player needs to
know that when a row of four skulls disappears
(forming an attack), the other pieces will fall
in a specific way so that a new column of
consecutive red gems might form. Just because
some luck elements are involved—such as
the unknown new pieces which fall from the
top—doesn’t mean that the player isn’t mapping
out an exact series of events in her head. This
sequential gameplay is one of the core strengths
of turn-based games.

CONTINUED ON PAGE 50

Although it plays in real time, PLANTS VS. ZOMBIES has the deterministic mechanics of a turn-based game.

DESIGN OF THE TIMES // SOREN JOHNSON

0908gd_design_vIjf.indd 49 7/20/09 4:17:26 PM

http://WWW.GDMAG.COM

On the other hand, chaotic, unpredictable
gameplay is a strength of real-time games.
When players first spot a Heavy/Medic combo in
TEAM FORTRESS 2 (in which the weak Medic unit
follows and heals the very strong Heavy), they
know that they are probably in trouble, but the
sequence of events to follow is so varied that
players know it’s impossible to overanalyze
the situation. A sniper could kill the medic. An
explosion might knock the heavy off a platform.
A spy might sneak up behind them. An event
on the other side of the map might encourage
one side to simply abandon the area. Real-time
games support chaotic gameplay best because,
with the added pressure of a shared clock,
players are not able to reduce each situation
down to a repeatable series of moves and
counter-moves.

MULTIPLAYER OR SINGLE-PLAYER?
» Another divide which defines the different
strengths of turn-based and real-time games
is whether the focus of the experience is
multiplayer or single-player. Generally speaking,
multiplayer games work best in real-time,
whereas turn-based games usually focus on
single-player sessions. Turn-based games like
ADVANCE WARS and CIVILIZATION, have only a tiny,
hard-core multiplayer audience (though more
casual games like MARIO PARTY or board games
like CATAN work well this way). On the other
hand, real-time games with similar themes,
such as COMMAND & CONQUER and AGE OF EMPIRES,
respectively, gained much of their popularity
from their multi-player modes.

The reason for this divide is clear—waiting
for another player to finish his turn is anathema
to fun—so designers looking for a synchronous,
multiplayer experience almost always prefer

real-time games. However, because no one else
is waiting, designers of purely single-player
games give themselves the option of using turn-
based elements whenever convenient, to either
add some spice or allow more strategic play.
For example, the single-player game FALLOUT 3
allows players to pause real-time combat and
enter V.A.T.S. mode to strategize which enemy
body parts to target, even displaying the exact
probability of success for each possible choice.
The game then “rolls” for the hits. Similarly, the
BALDUR’S GATE series uses a hybrid model, with
real-time combat that pauses depending on
certain player-selected events, such as when
a character receives damage or a new enemy
becomes visible.

BREAKING THE RULES
» These are but a few of the many games that
blur the line between “pure” turn-based and
real-time systems. For example, what about
turn-based decisions with a time limit, such
as MADDEN’s play-calling clock? What about X-
COM, with its crunchy real-time strategic shell
surrounding a gooey turn-based tactical core?
Or the TOTAL WAR series, which does the exact
opposite? What about EUROPA UNIVERSALIS, which
is technically real-time but plays out so slowly
that it “feels” like a classic, sprawling turn-
based strategy game. How about asynchronous
Web-based games like TRAVIAN, which play out
over months instead of minutes, eliminating
the time pressure but keeping the multi-player
benefits of real-time play? What about BANG!
HOWDY, which plays as a typical tile-based
tactical wargame, except that each unit’s turns
regenerate in real-time? In reality, a vast
continuum stretches from one extreme to the
other, and most games find a space somewhere

in the middle.
Therefore, the most

important thing to focus on is
not the labels themselves but
what types of gameplay they
represent. For example, the
tower-defense game PLANTS VS.
ZOMBIES is ostensibly real-time,
but its characteristics are more
in line with traditional turn-based
games. The gameplay itself
is strictly deterministic, even
more so than many turn-based
games. The map consists of five
tracks along which the zombies
progress, each with exactly nine
slots on which to place defensive
plants. Furthermore, the zombies’
behavior is entirely predictable—
Pole Vaulting Zombies will always
jump over blocking Wall-Nuts,

even if that means falling right into the jaws of a
Chomper plant. The game may look chaotic to an
observer, but—like most tower-defense games—
the strategic play is built upon predictable
enemy behavior. The real-time mechanics simply
provide time pressure, not the other qualities
usually associated with the format, such as
chaotic play or a multi-player mode.

Likewise, BOOM BLOX is a turn-based game
which eschews the usual strengths of the
format. In the game, players have a discrete
number of throws of a ball with which to knock
down various block-based structures. Unlike
most turn-based games though, BOOM BLOX is a
very chaotic affair, with unpredictable physics-
based game mechanics. Unlike PLANTS VS.
ZOMBIES, in which players’ actions take place on
a precise 5-by-9 grid, players of BOOM BLOX use
strictly analog controls to point at the screen
and then “throw” the ball with the Wii Mote.
Chaos theory dictates that an identical series
of throws will almost never happen twice in a
row. Furthermore, this unpredictable nature
coupled with the very short turns (each only
a single throw) makes BOOM BLOX an excellent
multi-player game, a rare feat for turn-based
video games.

Thus, in the end, deciding whether to make a
game real-time or turn-based is less important
than deciding which aspects of those formats
are most relevant to the overall design. As they
say, one needs to learn the rules to know how to
break them.

SOREN JOHNSON is a designer/programmer at EA Maxis,

working on an unannounced project. He was the lead

designer of CIVILIZATION IV and the co-designer of CIVILIZATION

III. Read more of his thoughts on game design at www.

designer-notes.com. Email him at sjohnson@gdmag.com.

GAME DEVELOPER | AUGUST 2009 50

DESIGN OF THE TIMES // SOREN JOHNSON

The V.A.T.S. mode in
FALLOUT 3 gives users the
option to switch at will to
a strategic play style.

CONTINUED FROM PAGE 49

0908gd_design_vIjf.indd 50 7/20/09 4:17:29 PM

http://www.designer-notes.com
mailto:sjohnson@gdmag.com
http://www.designer-notes.com

WWW.GDMAG.COM 51

RETRO FITTING IN
OUT WITH THE NEW AND IN WITH THE OLD

THE NEWEST TREND IN GAMING
is old games; or rather, taking
classics from the halcyon days of
floppy disks and 8-bit cartridges
and bringing them up to date for
21st century audiences. If the
opportunity to work on a remake
presents itself, take it. It’s a
fascinating peek into a formative era
of gaming on which many of today’s
audio professionals were weaned.

But the process of updating a
classic is full of unique challenges.
In these instances, companies are
paying to remake a game they’ve
paid for once before—sometimes
more than once before. Knowing
some of the pitfalls you’ll face in
advance can help save critical time
and money.

NOSE TO THE GRINDSTONE
» Step one is the easy part:
become an expert on the original
game’s audio. Play through the
game completely at least once
and make detailed notes on all the
sound effects, music, and voice,
if any exists. Your playthroughs
should result in a detailed asset
list covering every audio file in the
original, whether it needs to be
updated, where it occurs in-game,
and what kind of update it will get.
Note how many sound effects
seem to be capable of playing back
simultaneously. Note whether
the music in the original loops or

plays simply as one-shots, and
whether changes to this would
be a benefit. If the game has
successful sequels, find out if they
used recurring actors as part of
their voice cast.

More likely than not, any game
being remade is going to have some
form of existing fan community.
Tap into fan game FAQs, web
sites, and playthrough videos on
YouTube. Make sure that you know
the complete scope of the game
and have documented everything,
including branching gameplay,
alternate endings, and easter eggs
which may affect audio.

TINKER AND TWEAK
» After you know the scope of
the project, befriend the game’s
engineering team. A remake
involves a massive amount of
reverse engineering and the
engineering crew will be crucial
to any successful audio retrofit.
If the game is being rebuilt atop
the game’s original engine, audio
may very well find itself limited
to only as many triggers and
implementation hooks as initially
shipped with the title. Adding
new scripts and audio triggers
into old code can be like trying
to add a wing onto a house of
cards. It’s not impossible, but
expect some push-back from
the engineering team and be

prepared to compromise. If a
new or hybrid engine is being
developed, level designers and
engineering staff will be critical
to any new implementation
support. Additionally, you may
need engineering to help with
everything from extracting any
text scripts intended for dialogue
recording to extracting and
translating old proprietary music
file formats into usable MIDI data.

Audio gets updated in retro
games because it sounds bad, and
it sounds bad because of technical
limitations from an older era of
gaming. With those limitations
now no longer relevant, there are
basically two ways to look at the
challenge of updating the game’s
original audio content. The first
is to recreate new, higher quality
versions based upon the sound
of the original audio. The second
is to create new, higher quality
versions based upon the intent of
the original audio.

The difference between when
to base your changes off of original
sound or original intent will only
come from hearing the audio
in context. For decades, games
weren’t able to use digital audio
files and relied on tone generators
and MIDI sound cards for their
playback. In many of these
instances, an exact translation
of sounds would be completely

inappropriate for today’s
audiences. Just because a game
from twenty years ago uses a MIDI
snare drum every time a door is
opened or closed doesn’t mean
that a beautiful 24 bit, 96kHz bank
of randomized snare samples is
the right choice for the new game’s
suite of door sounds. In this case,
you have an opportunity as a
sound designer to really explore
the sound of this world in ways
that haven’t been heard before.
Though working in an existing
franchise, there’s a fantastic
amount of freedom available.

The same goes for composers.
What may have once been written
for two square waves and one
triangle wave fifteen years ago may
now find itself meriting anything
from full orchestra to solo voice to
a jazz or rock quintet. It may also,
however, still find itself comprised
mostly of square and triangle
waves, though updated with 21st
century production techniques and
forming the core of a new glitch hop
track. The question of context will
again decide the direction along
with the aesthetic goals of the core
design team.

Regardless of the changes
made, the primary goal is to
always remember that your
new work will be meticulously
scrutinized alongside the original.
Never lose sight of what made
the original a classic in the first
place. If the original was fun, don’t
suck the fun out in an attempt
to put your creative stamp all
over an already beloved game.
Simply enjoy the history lesson
and the chance to pay homage to
the gaming greats of the not-so-
distant past.

JESSE HARLIN has been composing music

for games since 1999. He is currently the

staff composer for LucasArts. You can

email him at jharlin@gdmag.com.Capcom's original BIONIC COMMANDO (1988) for the NES and BIONIC COMMANDO REARMED (2008) for PlayStation 3, Windows, and Xbox 360.

JESSE HARLIN // AURAL FIXATION

0908gd_aural_fix_vIbs.indd 51 7/20/09 4:18:54 PM

mailto:jharlin@gdmag.com
http://WWW.GDMAG.COM

enter.
active.learning.

FIEA is a part of the University of Central Florida, a leader in modeling and simulation, optics and photonics, computer science and many other disciplines.

Your next job. At FIEA everything from our
industry-based curriculum to our new MOCAP studio is geared
toward teaching you what you need to know to become a
successful video game producer, programmer or artist.

Earn an accredited Master’s degree in 16 months while being
mentored by industry veterans who have shipped more than
40 games and films. So tip your cap to our 95% placement
rate and learn more at www.fiea.ucf.edu.

Florida Interactive Entertainment Academy

Producer, artist, programmer track | Fully accredited Master’s degree | 95% placement rate | Financial aid available | www.fiea.ucf.edu

Florida Interactive Entertainment Academy
University of Central Florida

500 West Livingston St.
Orlando, FL 32801

407-823-2121 info@fiea.ucf.edu

C

M

Y

CM

MY

CY

CMY

K

gradCap_careerGuide.pdf 2/11/2009 11:14:15 AM

http://www.fiea.ucf.edu
http://www.fiea.ucf.edu
mailto:info@fiea.ucf.edu

http://www.alphageeknation.com
http://www.alphageeknation.com

A N I M A T I O N | D E S I G N | E N T E R T A I N M E N T B U S I N E S S | F I L M | R E C O R D I N G A R T S | S H O W P R O D U C T I O N | V I D E O G A M E S | W E B

Create the Game

Game Art

Game Development

Game Design

©
 2

00
8

Fu
ll

Sa
il,

 In
c.

Master’s | Bachelor’s | Associate’s Degrees

fullsail.edu

Game Design at Vancouver Film School
shows students how to make more
enemies, better heroes, cooler levels,
and tighter connections to the industry.

In just one year, you’ll learn every
aspect of game design. Your portfolio
project is a playable video game.

VFS grads get snapped up by top
companies like BioWare, Radical, Relic,
and Ubisoft, and the LA Times named
VFS a top 10 school "most favored by
video game industry recruiters".

VFS student work by
Moo Won Kim vfs.com/enemies

>>
GE

T
ED

UC
AT

ED

54 A U G U S T 2 0 0 9 | G A M E D E V E L O P E R

GDP_05012009_00054 7/15/09 10:50 AM Page 44

http://fullsail.edu
http://vfs.com/enemies

Financial assistance and career services available.
Now accepting applications.

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Francisco, CA 94107,

(415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC,

GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve

issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other

countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER:
Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes

of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972.

Send payments to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. For back issues write to Game Developer, 4601 W. 6th St. Suite B,

Lawrence, KS 66049. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1)

(785) 841-2624. Please remember to indicate Game Developer on any correspondence. All content, copyright Game Developer magazine/

United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

Activision . 48

Blizzard Entertainment . 39

CCP . 29

Center for Dig ita lI mag i ng. 55

Crytek . 13

Epic Ga mes . 2 2 ,C3

Eye tronics . C2

Full Sail University . 54

Havok. 21

I mage Me trics . 6

Neversoft . 40

Perforce Software. 25

Po cke tSoft. 37

R A DGa me Tool s . C4

Seapine Software . 17

Sony Computer Entertainment. 44

Spiel Stud ios . 38

University of Advancing Technology. 53

Uni versity of Centra lFlorida 52

Va ncouver Fi l mSchool . 54

Westchester Community Col lege. 55

Xa it ment . 3

XSENS Technologies. 9

A U G U S T 2 0 0 9 | G A M E D E V E L O P E R 55

Westchester
Community

College
Center for the

Digital Arts
in Peekskill

Create
Art in the
Digital

Age
914-606-7300
www.sunywcc.edu/peekskill

>> GET EDUCATED

GDP08012009_00055 7/16/09 3:24 PM Page 47

http://www.sunywcc.edu/peekskill
http://CDIABU.COM

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

STAYING SANE
YOU NEED HELP

YOU PROBABLY THINK YOU’RE FINE. AFTER ALL, YOU DON’T RUN AROUND
the office making blib-blib-blib noises with your finger over your mouth—
not in a crazy way, anyway. But let’s not forget that game development
can be a harrowing process, and that a long and difficult project can take
an emotional toll. You’re probably thinking of how some of your more
unfortunate colleagues might not have survived the last product cycle
with all of their marbles intact (or, more accurately, even fewer marbles
than they started with). But before you get all high and mighty about how
everyone else ought to be carted off to the asylum, take a moment to make
sure that you aren’t the one in need of the head-clearing effects a well-
made straitjacket can impart.

It can often be hard to tell exactly how batty you’ve gone, because
your perceptions of yourself will be as distorted as your impressions of
anything else—but there are hints. Take a look at the symptoms below to
see if you mightn’t be in need of a little “alone time” to unwind from the
project at hand (in a padded cell, perhaps):

HALLUCINATIONS
» Sometimes it’s hard to tell if you’re experiencing them or not. You could
have sworn you were in a meeting yesterday where everyone decided to
cut that level. Wasn’t everyone else in that meeting, too? You could have
sworn we didn’t decide to make an open-world game in the Unreal engine.
Right? Because, I mean, that would be absurd ... right?

Other times, a hallucination will be very obvious. No, that designer’s
face is not made out of cottage cheese. No, the tangle of cables in back of
your desk is not trying to eat you. No, your dev kit is not speaking to you
in Deep Speech about opening a portal to the Far Realm and beginning a
demon beast invasion of the human plane. I know—too bad.

PARANOIA
» The way the front desk girl smiles at you when you come into work in
the mornings. The way that artist said the creature you wanted would be
“difficult” to animate. You can tell they’re barely containing their derisive
laughter at the very sight of you. And you’re pretty sure they all go to big
lunches together and talk about you—about how your time is coming.
You’re seriously considering setting up a tripwire across your office door
that will send your bookshelf full of dictionary-sized tomes collapsing on
the head of anyone who bursts in trying to fire you. If all you can think
of is the delicious irony when the last thing that producer sees is Steve
McConnell’s Rapid Development hurtling toward his face, well, yes, that’s
amusing. But do seek help.

ANGER MANAGEMENT ISSUES
» The hapless production intern ordered sandwiches again. The poor
kid just wasn’t thinking about it very carefully—about how those crappy,
soggy six-inch subs murdered the team’s morale every time they showed
up. That didn’t mean you had to scream bloody murder at the sight of that
mushy bread and browning lettuce. You didn’t need to go berserk and, in an
apoplectic rage, flip that plastic platter out of his hands, his eyes as wide as
saucers as sandwich pieces rained down on top of his head.

We snickered the first time. The second time it happened we started to
wonder if you were okay. And the third time it wasn’t even sandwiches, it

was an enchilada tray! Man, seeing him standing there dumbfounded with
the sauce and the cheese on him was super funny, but maybe also just the
tiniest bit not totally right.

We would have brought this up earlier, but we were afraid that you
would, you know, get angry.

SUBSTANCE ABUSE
» It always starts innocuously enough. The bottle was for special late
nights, when the team was there after nine and the build was humming
along. Then it sort of became after eight. Then it sort of became after dinner,
and then it sort of became with dinner. Then it sort of became the chaser to
those beers or margaritas you’d order at lunch. Then it somehow replaced
the hemoglobin in your blood such that it was necessary to have in you at
all times to carry and distribute oxygen from your lungs. (Note: that is not
actually possible.) As you should understand by now, drugs and alcohol
won’t fill the hole in your life ... try some happy pills from your doctor
instead. The stuff they make these days is strong!

SOBBING UNCONTROLLABLY
» Possibly you don’t need me to tell you this, but I’ll say it anyway.
Breaking down and crying is a sign of problems. Not that I or anyone I know
has ever done this, mind you. I’m just saying. On a theoretical level.

YOU DECIDED TO MAKE VIDEO GAMES FOR A LIVING
» Well, there’s my incontrovertible proof that you’re crazy to begin with.
Allow me to pull back the curtain, Doctor Caligari style, and reveal that you
were already in the loony bin this whole time. Heyo!

M A T T H E W W A S T E L A N D is a pseudonymous game developer who has a fairly

common first name. Email him at mwasteland@gdmag.com.

GAME DEVELOPER | AUGUST 2009 56

ILLU
STR

ATIO
N

 B
Y JO

N
ATH

AN
 K

IM

0908gd_arrested_dev_vIbs.indd 56 7/20/09 4:19:43 PM

mailto:mwasteland@gdmag.com

EVEN IF YOUR
ROYALTY

PROCESSING
OFFICE IS

CURRENTLY
UNOCCUPIED,
your game can be Unreal.

No matter what size your budget. No matter what type of game.
Unreal can be your game engine. Email Mark Rein at getunreal@epicgames.com

Epic_Unreal_Royalty_7-75x10-5.indd 1 7/2/09 2:17:08 PM

mailto:getunreal@epicgames.com

http://www.radgametools.com

	Contents
	POSTMORTEM
	HIGH VOLTAGE'S THE CONDUIT

	FEATURES
	MIDDLEWARE SHOWDOWN
	BANG! ARE YOU DEAD?
	THE FEARFUL EYE: CINEMATIC CAMERAS

	DEPARTMENTS
	GAME PLAN
	HEADS UP DISPLAY
	TOOL BOX
	THE INNER PRODUCT
	PIXEL PUSHER
	DESIGN OF THE TIMES
	AURAL FIXATION
	ARRESTED DEVELOPMENT

