
August/september 1995

G A M E D E V E L O P E R M A G A Z I N E

I
guess I’m getting older. While I
used to dream about showing up
for final exams totally unprepared
(well, not so much “dream” as
“remember”), the other night I
had a new kind of anxiety dream.
Apparently I ’m more anxious
about the future of digital enter-

tainment than I thought.
Okay, my wife Tina and I are in

my neighbor’s backyard in full scuba
gear. We’re looking for the hole in my
drysuit that flooded the previous week-
end. I pick up the phone and it’s this
sleazy movie producer I know, and he’s
panicked.

“Val Kilmer has frozen to death!
And they’re after me next! You have
to—” He cries before being cut off. I
know, although Mike and I had been in
a perfectly legitimate deal to make an
interactive game, that he’s somehow
involved me in one of his more colorful
movie-financing schemes. I tell Tina
that we have to leave immediately
because we’re in imminent danger.

So I take her hand and we start
moving down the row of chairs in an
empty Candlestick Park. Samuel L.
Jackson is there, reading the note left
by the terrorists, who have him in their
sniper scopes but let him go because
they don’t know where Bruce Willis is.
It turns out that the chairs are sur-
rounding the pool John Lilly used to do
dolphin communication research in.
Standing knee-deep in the pool is my
brother, holding up his 16-month-old
son, who’s babbling but doesn’t talk. A
bottlenose dolphin swims by, and I
wonder if the entropy of dolphin sig-
nalling shares characteristics with other
signals with complex meanings, such as
human language or DNA.

But it turns out that this is not
John Lilly’s dolphin pool, but an audi-
torium where they’re previewing Win-

dows 95 for $25 a ticket. That’s just
ridiculous, so Tina and I leave the audi-
torium for the lobby of our local Pacific
Regency theater. Tina tells me to buy
the popcorn while she goes ahead and
gets us seats. But wouldn’t you know it,
just as I’m getting in line, Steven Spiel-
berg walks by.

My keen journalistic instinct kicks
in and I ask Steven if I could ask him a
few questions sometime for the maga-
zine. He agrees and I tell him I’ll call
him in a few days when I’m prepared.
Steven shakes his head and says it’s now
or never. I get tongue-tied, but the
screenwriter William Goldman taps me
on the shoulder and says, “It ’s al l
changed since Jaws.” Seizing on that
(and forgetting that, given my druthers
in real life I’d rather meet Goldman
than Spielberg) I ask Spielberg, “Will a
video game ever give the director the
kind of control over the experience
needed to make a Jaws? Or a Schindler’s
List?”

Here, unfortunately, is where my
dream failed me. Spielberg answered
me in depth, but apparently my subcon-
scious gave up on second-guessing real-
ity and I couldn’t understand his sen-
tences. I got so frustrated trying to
understand him that I thrashed myself
into waking.

Dreams are our most powerful fan-
tasies, with the power to weave deep
allegory into our mundane personal
experiences. My dream was subjectively
a complex pondering on the nature of
communication and narrative. But even
if you can follow the metaphorical
thread of my dream, and the unusual
all-star cast creates some resonance in
you, another person’s dream is at best
an amusing and inefficient narrative.
Why? The three most important rea-
sons are the personal symbolic mean-
ing, the dismissal of explanatory transi-

Then There Was a
Doughnut and a Snake...

G A M E P L A N

2 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
71743.452@compuserve.com

Editorial Assistant Deborah Sommers
dsommers@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Chris Hecker
checker@bix.com

David Sieks
dsieks@arnarb.harvard.edu

Wayne Sikes
70733.1562@compuserve.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Group Circulation Manager Kathy Henry
Circulation Manager Mike Poplardo
Newsstand Manager Pam Santoro
Reprints Stella Valdez (415) 655-4269

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, H. Verne
Packer, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

Miller Freeman
A United News & Media publication

tions, and the personal nature of the
dream experience. You dream alone.

Cinema is the second most power-
ful narrative force we experience. I’d
give the nod to one-on-one story-
telling, but raconteurs are sadly rare,
and professional storytellers make their
meager livings almost exclusively with
children. Television affects us more,
but as a mental massage, not as a narra-
tive. Literature is broader, deeper, and
subtler, but no artists have as much
control over the audience as moviemak-
ers. And there has never been a director
more in tune with the nature of that
power than Spielberg.

I’m not saying that Hollywood is
producing better movies than it has in
the past or that Spielberg is artistically
head-and-shoulders above every direc-
tor, living or dead. But I do assert that
audience control has never been as pol-
ished. I’ll even commit sacrilege and
say that Spielberg routinely plays the
audience better than Hitchcock.

What about the potential of digi-
tal entertainment? The engagement of
the player is so focused that peripheral
elements seem to be useless — if it’s
not part of the gameplay, it’s not part
of the game. Putting the player in con-
trol seems central, but every other form
of fiction relies on plots driven by the
narrator, not the listener. And the best
fiction relies on plot points that appear
inevitable, but only in retrospect. With
the possible exception of Myst, no
game has achieved that.

It’s becoming cliche to equate cur-
rent interactive entertainment with the
early days of film, when films were
spectacle with little or no plot. The
comparison is generally used to reassure
us that we’ll get those talents able to
combine art and popularity—the Grif-
fiths, Eisensteins, Hitchcocks, Wilders,
Scorseses, and Spielbergs. But will we,
even in a hundred years? Even my sub-
conscious doesn’t know.

Your Hour’s Up
Before being wildly distracted by this
dream, I had planned to write this edi-
torial on the E3 show in Los Angeles, a
show that couldn’t contrast more with

the Computer Game Developer’s Con-
ference I wrote about in our last issue
(“Brain Goes Whoosh,” Game Plan,
June/July 1995). E3 was an awesome
spectacle: 750,000 square feet of exhi-
bition space devoted to the interactive
entertainment industry. Of that, about
700,000 square feet seemed devoted to
fighting games—now in flat-shaded,
three-dimensional polygons! The lack
of creativity in the cartridge industry
was overwhelming. The home comput-
er CD-ROM game is where all the
innovation is. I felt like I was seeing
Comdex in 1984—with mainframe
vendors amused at the notion that a
general purpose desktop computer
could take over from their specialized
hardware.

As Chris Hecker points out in this
month’s “Behind the Screen,” the new
generation of cartridge machines on
display were technically less than awe-
inspiring. My first reaction to Ninten-
do’s decision not to unveil the Ultra 64
was that it was disastrous not to show a
next-generation machine. But after
seeing the competition (and after a
couple of quiet meetings off the show
floor), I think that Nintendo is the
once and future king of the cartridge
market.

It ’s not a great surprise that I
ended up dreaming about Hollywood
after attending E3; Hollywood and the
cartridge industry are staring with
incestuous lust into each other’s eyes,
totally missing the fact that the home
computer is going to drive the U.S.
gaming industry and that U.S. software
developers are poised to become as
dominant in the entertainment software
industry as they are in the applications
industry. Those developers aren’t inter-
ested in shelling out tens of thousands
of dollars for a development license,
much less millions; they’re aiming for
the PC market, knowing that if they
deliver a Doom, a Wing Commander
III, or a Magic Carpet, the cartridge
manufacturers will fight to get them,
with their checkbooks open. Now
there’s a dream to lull you to sleep.

Finally, I ’d l ike to once again
thank those who made the first year of

Game Developer such a success. Since
our last issue, Game Developer was hon-
ored by the Computer Press Associa-
tion as a runner-up for “Rookie of the
Year” and won the WPA’s “Best New
Magazine-Trade” Maggie Award.
Without the volunteer efforts of the
editorial staff in the first year and the
great writers who took a chance with
us, we wouldn’t have had a magazine,
but without you, the readers, we
wouldn’t have had a success. The Mag-
gie belongs to them. But I get to hold
on to it. ■

Larry O’Brien
Editor

G A M E P L A N

4 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

ERRATAERRATA

O
kay, so we made a few errors in
our last issue. They all appeared
in “Perspective Texture Map-
ping Part II: Rasterization,”

Chris Hecker’s June/July installment
of Behind the Screen.

• Equation 1 on page 19 has a mis-
placed parenthesis that renders it
incorrect. The equation should read
as:

• On page 19, Chris Hecker wrote:
“If we’re exactly on an integer

pixel center we will light the pixel,
but if our x is at all greater than
the integer—to the left of the pixel
center—the ceiling will bump us up
to the next pixel that’s strictly
inside the edge.”

It should read:
“...to the right of the pixel center.”

• Oren Patashnik and Ronald L.
Graham were credited with having
written Concrete Mathematics. D.E.
Knuth was also an author of the
book.

x
x x
y y

y y xint ()= -
-

Ê

Ë
Á

ˆ

¯
˜ - +

È

Í
Í
Í

˘

˙
˙
˙

1 0

1 0
0 0

C
haracterizing your develop-
ment efforts for the coming
six months will require a little
Q and A: Will you migrate
all game development over to
Windows 95 immediately,
hold out and continue to
work on DOS-based games,

or take the middle-of-the-road
approach as you divert some DOS
development staff to Windows 95
efforts?

I talked to a sample of game devel-
opers in the industry, and found that
there’s no prevailing route. Also, I found
no correlation between the choices com-
panies made and the size of their com-
pany. One question many companies
wanted an answer to, though, was how
quickly Windows 95 would be adopted
by the game market.

Moore’s Launch Curve
There’s a theory that might help answer
this question. In a recent column in Soft-
ware Development (“The Launch
Chasm,” Tools of the Trade, July 1995)
Warren Keuffel describes Geoffrey
Moore’s concept of “the launch chasm.”
This phenomenon occurs after a product
release in high-tech markets, and by
studying it you get a sense of what will
likely happen once Windows 95 becomes
available.

Moore said that the market for a
given high-tech product can be repre-
sented by a bell curve made up of five
distinct categories of consumers, each of
which roughly corresponds to one stan-
dard deviation. These groupings are
called (in order of adoption) innovators,
early adopters, early majority, late majori-
ty, and laggards. As shown in Figure 1,

The Windows
95 Game Plan

The launch of

Windows 95 is weeks

away. At some point

in the coming months

it‘s going to alter your

development plans.

How will you prepare

for game develop-

ment‘s newest arena?

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 7

Figure 1. Moore’s Launch Curve

Consumer CategoryProduct
Launch

Time

Nu
m

be
r o

f P
eo

pl
e

M
ig

ra
tin

g
to

 N
ew

 P
ro

du
ct

In
no

va
to

rs

Ea
rly

 A
do

pt
er

s

Ea
rly

 M
aj

or
ity

La
te

 M
aj

or
ity

La
gg

ar
ds

the first two groups of consumers typical-
ly understand and are enthusiastic about
new technology and actively seek it out.
Unfortunately this group is relatively
small. Beginning with the early majority,
skepticism increases causing longer and
longer delays before people adopt the new
technology.

Leading the Way
Although game developers releasing
Windows 95 products this year will ini-
tially face a market of limited size (com-
pared to the DOS market), there’s an
upside: this smaller market of innovators
and early adopters will consist of a pro-
portionately high amount of hard-core
gamers, as most devoted gamers typically
live on the technological “cutting edge.”

Companies moving development
quickly over to Windows 95 will get a
head start in a number of areas over those
who stick with the tried-and-true DOS
world. In addition to the skills developers
learn, the benefits will propagate down to
staff in marketing, sales, documentation
writers, and most importantly, employees
in technical support.

Bringing Up the Rear
The majority of consumers will take
longer to adopt Windows 95. Skepticism,
ignorance, apathy, dedication to the old
way of doing things, or simply insufficient
hardware will hold most people back for

at least six months, if not longer.
Dataquest has projected the growth of the
Windows 95 installed base as seen in Fig-
ure 2. The company anticipates the
installed base of Windows 95 surpassing
that of Windows 3.1 and DOS combined
sometime in mid-1996. Dataquest’s pro-
jections for shipments of Windows 95 are
depicted in Figure 3, which illustrates
that shipments of Windows 95 will sur-
pass shipments of Windows 3.1 around
the end of this year.

One interesting aspect about
Dataquest’s predictions is its positive out-
look for Windows 95 through the end of
the decade. Windows 95’s successor,
Cairo, is scheduled for release in two to
three years, which will take some of the
wind from Windows 95’s sails. Beginning
in 1998, I’d predict fewer sales than
Dataquest projects.

For now however, DOS is with us,
and I suspect it will remain with many
consumers for years (my mother still uses
an Apple IIE, so I’m sure that some peo-
ple will be working on 386s in the year
2010). Many companies are banking on
the DOS market for the foreseeable
future, and I have no doubt that this mar-
ket will continue to be lucrative for years.
The majority of consumers who initially
shun Windows 95 may not be the
“digerati” who consume games on a
weekly basis, but many are consistent, if
not frequent, game buyers. In addition,

Windows 95’s backwards compatibility
keeps both markets open to your product:
you’ll sell to both the early adopters and
the hold offs.

Staying the Course
This is the route that Nova Logic is tak-
ing. I spoke with David Seeholzer, vice
president of software, and asked him how
many Windows 95 games the company
would be releasing this year.

“Zero,” Seeholzer replied. “We’re a
pretty small company and don’t have a
group of R&D people sitting around and
playing with stuff. All of our people are
pretty much working on our core prod-
ucts that are on the verge of getting
released within the next couple of months
or next year. As we have programmers
come free from projects in the next couple
of months, we’ll have one or two of them
play around with Windows 95 and evalu-
ate it. We’re always looking at new
opportunities to do games in a Windows
environment. But right now we just
haven’t spared the manpower to look into
it.”

I inquired whether this meant that
DOS would continue to be Nova Logic’s
primary platform for the foreseeable
future. “Yes, though I think we recognize
that DOS isn’t going to last forever,” See-
holzer said.

“There are things that we like about
DOS in terms of doing high performance

C R O S S F I R E

8 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 2. Software Installed Base

Year
199919981997199619951994

250,000

200,000

150,000

100,000

50,000

0

Source: Dataquest

Un
its

 (I
n

Th
ou

sa
nd

s)

DOS (w/o Windows) install base
Win 3.1 install base
Windows 95 install base
Win 3.1 and DOS install base
Total install base

52,674

97,612

130,951

152,142

184,934

213,134

70,335
74,636

84,503
71,954

52,343

16,568 6,333 36052,645
69,747 65,415

48,432
16,259 6,253 32021,991 14,765

6,539 3,911 80 1403090 0

29,500

76,172

125,549

163,681

190,814

games, it just doesn’t get in your way.
And the original Windows [3.x] got in
your way big time. WinG was an effort to
bridge the gap, which was successful on a
few fronts, but not on as many as we
would have liked. Windows 95 is trying
some additional things, but it still has
some major issues that we’re concerned
about. It’s our assumption that the trend
will continue, though–that eventually,
there will be a Windows environment
that we’ll feel comfortable doing our kind
of games on. Not to mention the fact that
DOS will probably become an unviable
way to publish.

“We know that there’s change ahead,
but we’re currently selling our products to
the huge installed base of people who can
run DOS, whether or not they also run
Windows... It’s quite possible that we
would have something next year. Because
we are small, we’re able to move pretty
quickly on things, and it’s not at all
unlikely, as we finish our current round of
products that we’d look into it, figure out
what we could do, and start to [develop
for Windows 95],” Seeholzer said.

However, if your shop is one that
will continue a solid effort in the DOS
development world, you may be sacrific-
ing an important technological lead to
those companies that dive into Windows
95 and train their staff early. Don’t give
away a head start if you don’t have to;
small pilot projects might be the answer.

Getting the Feet Wet
One game developer that seems to be
taking this route, though the company
doesn’t consider its game a “pilot pro-
ject” as such, is LucasArts. Tom Sarris
of LucasArts described the company’s
first Windows 95 title, “Indiana Jones
and His Desktop Adventures.”

“I hate to use this word, but it’s a
‘simpler’ title than perhaps what you’re
used to seeing from us,” Sarris
remarked. “Here’s a game that you can
play in between a half hour and an
hour. You can load it onto your PC and
goof around with it when you have an
extra half hour or so. It’s actually just on
one high-density floppy disk. It’s a top-
down view, much like [the 16-bit Nin-
tendo game] ‘Legend of Zelda,’ and has
over one billion game play scenarios.”

LucasArts’s “Indiana Jones and
His Desktop Adventures” is the only
Windows 95 title that the company is
planning to release this year, and may
turn into a series of games.

Taking the Plunge
Finally, I spoke to a company that’s
decided to dive straight into the Win-
dows 95 arena. San Francisco-based 47-
Tek released a sophisticated 3D fight-
ing game last year called Sento, which
was optimized for Matrox video accel-
erator cards. Mark Hirsch, the presi-
dent of 47-Tek, said that the company

would finish up 1995 with one more
DOS game and then is calling it quits
with that platform.

“We’re going to do three titles next
year and we’ll do a Windows 95 version
of at least two of them,” Hirsch said.
“The other three will go on the [Sony]
PlayStation, [Sega] Saturn, maybe
[Nintendo] Ultra64.”

When asked if he considered DOS
dead with the release of Windows 95,
Hirsch gave a straight and simple,
“Yes.” His company is using the Reality
Lab 3D API contained in the Windows
95 Game SDK, and will design upcom-
ing titles to support accelerators that
conform to the 3D DDI standard.

Both 47-Tek and Nova Logic are
small companies, so it makes sense for
them to concentrate limited resources
on specific technologies. The fewer
platforms they are divided among, the
more quickly they’ll exploit the power
of those platforms. LucasArts, on the
other hand, has a larger staff of devel-
opers and can afford to divert resources
in more directions without as large a
sacrifice to their overall development
efforts.

What are your plans for game
development over the next six to twelve
months? Drop me a line and tell me
about your experiences so far or strate-
gies your shop is using to prepare for
the move to Windows 95. ■

10 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

C R O S S F I R E

Figure 3. Software Shipments

Year
199919981997

37,013
43,629

63,619

80,986
85,986

109,237
112,362

37,013

43,629 34,256

17,132 2,119 208 2620,334
33,478 30,000

15,000
1,875 241 4016,679

10,148
4,256 2,132 244 33 143

29,363

62,942

83,867

108,996 112,322

19961995 19951994

120,000

100,000

80,000

60,000

20,000

40,000

0

Source: Dataquest

Un
its

 S
hi

pp
ed

 (I
n

Th
ou

sa
nd

s)

DOS (w/o Windows) shipped
Win 3.1 shipped
Windows 95 shipped
Win 3.1 and DOS shipped
Total Shipments

Poser, Dude!
Nicole Claro

Barbara Hanscome

B I T B L A S T S

W
e all know how difficult it
can be to create lifelike
humans in games and mul-
timedia applications (we’ve
discussed tough hair situa-
tions here before, you might
recall). Fractal Design
Corp. recently introduced

Poser, an application that lets you do
electronic “life drawing.”

Poser is designed to work closely
with other two- and three-dimensional
applications and provides stylized mod-
els—both male and female—that can be
moved, modified, shaped into any pose,
and viewed from any angle. It features a
choice of body sizes (from infant to adult
to superhero) and direct figure manipu-
lation—which means when you move a
body part, all connected parts will auto-
matically move accordingly. Once you’ve
shaped your model, you can apply multi-
ple light sources and bump and texture
maps to create a fully rendered human
model. The software runs on Macintosh
and Power Macintosh and will be avail-
able through August 31, 1995 for $99.
■ For more information contact:

Fractal Design Corp.
335 Spreckels Dr.
Aptos, Calif. 95003
Tel: (408) 688-5300

Multimedia galore
MFactory has announced mTropolis, a
fully object-oriented development system
for multimedia applications. Object ori-
entation lets artists rapidly create com-
plex environments and store, share, and
reuse any object or combination of
objects, predefined or user created. It has
a fully integrated debugger and multi-

platform portability for authoring and
playback. mTropolis also has an open
architecture, which lets you transparently
and smoothly enhance your system.
mFusion, the scalable technology at the
core of mTropolis allows you to create
titles that execute extremely fast, even on
lower-end platforms. mTropolis will ini-
tially be available as an editor for Macin-
tosh and Power Macintosh and a player
for Macintosh, Power Macintosh, and
Windows 3.x. Suggested retail price is
$4,995 for single-seat units.
■ For more information contact:

mFactory Inc.
1440 Chapin Ave.
Suite #200
Burlingame, Calif. 94010
Tel: (415) 548-0600

Lightning Fast
Criterion Software has announced Ren-
derWare Lightning. The real-time
three-dimensional graphics games library
was specifically created for development
on many platforms including DOS,
Windows 95, and Power Macintosh. It
features fast software rendering on PCs,
support for three-dimensional accelera-
tors on PCs and three-dimensional con-
soles, an easy-to-use API, powerful
importing tools, and automatic cross-
platform support. RenderWare Light-
ning costs $995 for a personal license
and $10,000 for a commercial license.
■ For more information contact:

Criterion Software
17-20 Frederick Sanger Rd.
Guildford, Surrey
GU2 5YD, U.K.
Tel: (408) 749-0493

12 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

New Bit Blasts

features! “The Buzz” is

a roundup of pertinent

corporate news.

“Schmooze News” is

industry gossip (you

just might see yourself

in there). Watch this

space for more new

and exciting things.

Yamaha Breaks the Bank
Yamaha’s new YGV612 three-dimen-
sional graphics controller chip features
texture mapping, Gouraud shading, and
Z buffering. Geared toward DOS and
Windows 95 game developers, the new
chip lets your games run in 640-by-480,
64-bit colors with high resolutions. It
supports a DRAM frame buffer, direct
PCI bus support, and integrated DAC. It
is currently available in sample quantities
for $40. You can’t beat that with a stick!
■ For more information contact:

Yamaha Systems Tech. Inc.
100 Century Center Ct.
San Jose, Calif. 95112
Tel: (408) 467-2300

Genre Busters
The untapped market of female teens
might not go for the traditional shoot-em-
up game, but will it go for the “social
adventure”? Or intensive personality analy-
sis? That’s what two game developers tar-
geting female teens are hoping for.

At press time, Games for Her—a
new division of American Laser Games—
was planning the release of its first title,
McKenzie and Co. According to the com-
pany’s press materials, the title is aimed at
female gamers aged 9 to 15 and will treat
players to the “real life dilemmas that
make going to an all-American high
school such an adventure.” With the help
of a CJ-17 jeep named McKenzie and a
band of wacky pals, the player must suc-
cessfully juggle the demands of school,
romance, friends, jobs, and family by
avoiding “bad” decisions throughout the
game, such as cutting class or lying to par-
ents. The player also gets to establish a

relationship with the boy of her dreams
and shop for a prom outfit with an elabo-
rate “shopping engine” featuring 400
clothing options provided by Urban Out-
fitter and Limited II stores.

Reading the game description, you
can’t help but wonder if McKenzie and
Co. could be the CD-ROM equivalent of
the Brady Bunch, feeding kids the illusion
of an ideal teen world that doesn’t exist.
Folks sensitive to gender stereotyping
might be appalled at the game’s shopping
engine. And where are the real teen dilem-
mas of the 90s—drugs, sex, teen pregnan-
cy, interracial dating, even the complex
issues surrounding tattoos and nipple rings?

Games for Her’s director of market-
ing, Patricia Flanigan, argues that while
these issues are real for today’s teens, they
aren’t necessarily what young women want
in a game. The “social adventure” themes
featured in McKenzie and Co.—school,
romance, career aspirations, and friends—
were determined from intensive focus
group research with girls from a wide
range of socio-economic backgrounds in

Albuquerque, N.M. “It’s what the girls tell
us they like,” says Flanigan. “The world is
tough for teens, and I think something like
this allows them to escape and to have
fun.” Flanigan says the social adventure is
just one of four genres Games for Her has
developed for teen women: mystery is
another; Flanigan will not reveal the other
two at this time.

Flanigan hopes to explore the heavier
side of teen life in Games for Her’s new
online service Her OnLine, a joint venture
with teen book publisher Daniel Weiss
Associates Inc. The new service, which at
press time was scheduled to premiere in
late summer, will feature chat rooms and
opportunities for teen women to hook up
with electronic pen pals and other
McKenzie gamers.

Flanigan is also being aggressive in
trying to open new marketing channels for
girls games, placing the title in outlets
other than computer stores. McKenzie
and Co.’s launch will begin with a national
mall tour and will include several alliances
and point-of-purchase tie-ins with retailers

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 13

t h e B U Z Z Zt h e B U Z Z Zt h e B U Z Z Z_________
• Interplay is all over the map. The company has announced an

agreement with GEnie Online Services to develop two games avail-
able exclusively on GEnie for six months. In August, the first title, a
deluxe version of Descent, originally developed by Parallax studios,
will makes its online debut on GEnie. In May, Interplay acquired
Shiny Entertainment, makers of the huge hit Earthworm Jim. This
marked Interplay’s first major acquisition.

• Nintendo’s got two new deals going. The company has entered into
an ecxlusive agreement with Multigen, under which Multigen will
create three-dimensional development tools for Nintendo’s 64-bit
machine, the Ultra 64. One of the users of those tools will probably
be Rare, a company based in the U.K., which will develop a series
of new 16-bit and 64-bit games for the Ultra 64 and other NIntendo
platforms as well as games for Game Boy and Virtual Boy. Rare,
which collaborated with Nintendo on the 1994 game Donkey Kong
Country, is the first video game development company outside of
Japan that Nintendo has invested in.

• Leo the Lion has gone digital. Major film studio MGM recently
announced the inception of MGM Interactive, a new multimedia
arm of the organization. The new division will produce multiplatform
and online titles (some new, some based on existing material) on its
own and in conjunction with various other companies.

and manufacturers of products popular
with female teens, including Sassaby Cos-
metics, Sam & Libby shoes, and Limited
II clothing stores. Packaged with the
game will be a music CD and a special title
called “Sure She Can,” featureing the sto-
ries of teen women around the country
who have made a difference.

The Most Important Person
GirlGames in Houston, Texas, is taking a
different approach to reaching female teens:
“Being You,” the company’s first title, is
geared to young women 14 and older and
will focus less on finding a guy and more on
finding yourself. Subtitled “The CD-ROM
for girls to learn more about who they are
and who they can be.” It will explore their
interests and goals using hundreds of activi-
ties based on personality profile tests. Play-
ers will download new content quarterly
from an online service and have access to a
resource list of organizations covering a
wide range of subjects—from astrophysics
to ceramics—that young women can con-
tact for more information.

GirlGames president Laura Groppe
feels the key to this market isn’t a specific
genre or hook, but titles that put power
into the users hands. “Our player will get
to the next quiz or activity because of deci-
sions she has actively made. She’s figuring
out what makes her tick, and that is very
empowering.” Groppe is keeping quiet
about who the game’s publisher will be and
any other details about the product, but
you can bet boy chasing won’t be part of it.
“Girls are approaching the 21st century
without a lot of guidance, and technology
is going to permeate their lives from every
angle,” says Groppe. “We want to equip
them with the tools they need.”

Whether the squeaky clean hijinks
featured in McKenzie and Co. or the per-
sonal explorations featured in Being You
will succeed or fail is yet to be seen. Both
Flanigan and Groppe say they are devoted
to sticking with this market regardless:
“We’re in this for the long haul,” says
Flanigan. ■

Nicole Claro is managing editor for
Game Developer.

Barbara Hanscome is managing editor
for Software Development.

B I T B L A S T S

14 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

S
c
h
m

o
o
z
e
 n

e
w

s
.
.
. Game Developer’s Conference Doubles again... More than 2,400 atten-

dees converged on the Santa Clara Westin April 22-25 for the 7th Annual Computer
Game Developers Conference (CGDC). Rival operating system vendors Microsoft
(Windows 95) and IBM (OS/2 Warp) were both out in force, giving goodies to devel-
opers. Apparently, the next killer game may propel its operating system into top posi-
tion and both companies are doing their best to woo game developers. It was a great
deal for people who wanted to load a few extra operating systems on their computer.

Logitech again threw the opening night bash with the ever popular velcro wall peo-
ple-throw, munchies, and libations. It was difficult to find friends as the room was
dark, the spotlights blinding and the music deafening. Industry veterans moved out
into the corridor and to the hotel bar to schmooze where they could be seen (and
heard!)

The unscheduled but traditional jam session at the CGDC spilled over into an extra
night with our talented digital musicians going analog to the delight of partying
gamers.

On stage were Dave Schultz (DBS Music) and Dave Albert (Sega). Brian
Moriarty (Mpath) and George Sanger (Big Fat) provided vocals. Michael
Land (LucasArts) and Mark Miller (Sega) played bass. Neal Grandstaff
(Dynamix) was on drums and vocals.

Guitarists included Craig Utterbach, Charlie Albert, David Albert (Sega),
and Jim Donfrio (Dijon). Burke Trieschmann blew harmonica. Rob Wallace
(Wallace Sound & Music) and Alexis Utterman (DeMaria Studios) traded off at the
keyboard. Don Griffen (Computer Music Consulting) did the honors on trumpet.

Microsoft Woos Game Developers... Microsoft rented Great America for its
game developer guests. After dropping over The Edge a few times, developers were
softened up for Microsoft’s Game evangelist, Alex St. John, whose dynamic pre-
sentation (with backing from the Game SDK programmers acting as a sort of Geek
Chorus) was designed to convince developers that Windows 95 will propel the PC in
to game ascendancy. The day after this awesome party, Microsoft held a seminar for
developers who want to use the Microsoft Game SDK. A great time was had by all
and Microsoft proved it could relate to game developers on their own level after all.

Nintendo Postpones 64-bit Gameplayer... Nintendo’s Ultra 64 next-
generation machine won’t be released as planned for Christmas season, but the
delay could hurt competitors as much as it could Nintendo, with a number of buyers
likely to wait until all the new machines are available for comparative shopping. The
game system is intended to sell for about $250 and to offer performance approaching
that of $20,000 workstations. The major concern I’ve heard about the Ultra 64 is the
cost of the individual game cartridges: because of the large amount of RAM in the
cartridges, they will be substantially higher than the competition’s games, which will
ship on CD-ROMs.

The Word from E3... The first Electronic Entertainment Expo in Los
Angeles had more than 4,000 attendees. With a surprise announcement at E3, Sega
began shipping the Saturn to American markets at the beginning of E3 weekend.
Countering with a surprise of its own, Sony announced that while the Playstation
will not ship until September, it will retail at $299, a solid slap at the $399 price tag of
Sega’s Saturn.

Nintendo’s introduction of the Virtual Boy met with skepticism from many in the
game development community, who are uncertain about the success potential of a
three-dimensional game platform that can only display two colors—red and black.

One major problem with E3 was the inability to hear anything—the companies turned
up the sound on their demos in an unbelievable “stereo war.” To quote one game
developer, “I knew we were in trouble when I was nearly run over by the high school
marching band because I couldn’t hear them!”

Windows 95 on August 24... Microsoft, fighting rumors that Windows 95
might turn into Windows 96, has named August 24 as the date the long anticipated
software will ship to retail stores. Secret documents leaked to this column via the
Internet indicate that Microsoft may plan to achieve this 1995 ship date by buying the
current year, renaming it “Year M” and postponing the year 1995 until next year.

Got gossip? E-mail The Gossip Lady at 71501.3553@compuserve.com.S
c
h
m

o
o
z
e
 n

e
w

s
.
.
.

B
y the time you read this arti-
cle, the Electronic Entertain-
ment Expo (E3) will be long
over, but in the time warp of
magazine article submission
deadlines it was just last week-
end in Los Angeles. E3 is the
game industry’s attempt to

break from the huge toaster, car
stereo, and microwave oven event
that is the Consumer Electronics
Show. Whether this breakaway was
successful remains to be seen, but one
thing is certain: the new generation of
video game consoles garnered a lot of
attention and floorspace. Atari,
Sega, 3DO, and Sony battled for
developers’ attention, each hoping to
wow people with its machine’s high-
end features and get the really cool games
developed for its platform—the Jaguar,
the Saturn, the Multiplayer, and the
PlayStation, respectively.

The reason I bring this to your
attention is the one feature advertised
above all others for each machine is—you
guessed it—texture mapping. Each com-
pany claims its system has the most realis-
tic texture mapping, or the fastest texture
mapping, or the least expensive texture
mapping.

I’ll mention one important
caveat before I lay into this generation
of hardware with technical criticism. It’s
completely unclear what relation, if any,
exists between texture mapping quality
and overall game quality (and certainly
sales). Super Mario Bros., for example,
has absolutely no texture mapping, but it
sure is a great game, both from a playabil-
ity and profitability standpoint.

Keeping that in mind, the texture

mapping on these machines sure does
suck.

How do they screw up texture map-
ping? Let me count the ways. First and
most noticeable is that all the texture
mapping hardware in this generation is
affine. Affine texture mapping, as we dis-

cussed in “Perspective Texture Map-
ping Part I: Foundations” (Under
the Hood, April/May 1995),
assumes the equation to map screen

coordinates to texture coordinates is
linear. This results in really nasty texture
warping when the linear equation and the

true equation start to differ by a sub-
stantial amount. The ironic part
about affine texture mapping is these
two equations differ most when the

textures are very close to your view-
point, which makes the problem easy to

spot.
You can clearly see this for

yourself in almost every game pro-
duced for these machines. Check out

the floors in some of the fighting
games or the walls in walkthrough or dri-
ving games. Get real close and prepare for
a stomach-churning texture dance.

Second, and particularly germane
to today’s discussion, some of these
machines only support integer-tex-
ture coordinates, that is, the vertices

of the polygons can only correspond
to integer coordinates in the source

bitmap. This wouldn’t seem so bad until
you realize one of the ways to combat the
affine problems I’ve mentioned is to sub-
divide your polygons until the linear
equation is a closer fit (we’ll cover this
technique in the near future). The subdi-
vision points are not likely to fall on inte-
ger texture coordinates, so this hardware

Perspective Texture
Mapping, Part III:
Endpoints and Mapping

If you think we‘ve

covered everything on

perspective texture

mapping, you‘re

wrong. In Part III of

this ongoing series,

we get a close look at

the math involved in

endpoints and

mapping.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 17

forces you to snap to the nearest integer,
resulting in jitter that’s plainly visible in
the games.

Finally, a few of the machines only
support integer screen-space polygon ver-
tices. In other words, if your polygon
comes out of your three-dimensional
transform pipeline with noninteger end-
points (as it’s very likely to do) you’ve got
to snap the vertex to an integer pixel loca-
tion, which causes even more jitter. Con-
veniently for the purposes of this article,
this is the exact jitter problem we intro-
duced into our own texture mapper when
we converted from floating-point to inte-
ger rasterization (“Perspective Texture
Mapping, Part II: Rasterization,” Behind
the Screen, June/July 1995). Of course, we
haven’t spent millions of dollars on devel-

oping a piece of hardware and marketing
it, so we can fix our jitter problem pretty
easily.

Jitter Bug
We don’t have the space to do a total
review of the work we covered in my first
two columns on texture mapping. How-
ever, the five-second summary is as fol-
lows. In the first column, we derived the
perspective texture mapping equations,
including the equations for perspective
projection and those for stepping the tex-
ture coordinates across the destination
polygon (these step values are called the
gradients). We also looked at how to cor-
rectly sample with subpixel accuracy.
This last topic caused us to investigate
how to get rid of the cost of this subpixel
accuracy while retaining its advantages,
and in the second column we showed
how to do this using a digital differential

analyzer (DDA). We converted our orig-
inal floating-point rasterizer to an integer
DDA to realize the savings, but we
uncovered a nasty jitter as our polygon
moved and animated.

This jitter was introduced because
our triangle gradients are calculated from
the endpoints of the triangle, and those
endpoints, when restricted to be integers,
change by a relatively large amount from
frame to frame. (The mathematically
inclined among you will notice that the
gradients are calculated from two times
the signed area of the triangle [which is
also the cross product]. When the end-
points are truncated to integers this area
changes, altering our gradients and caus-
ing the jitter.)

What we need is better precision on

the endpoints, but we want to keep the
advantages of using a DDA rasterizer.
Enter fractional endpoints.

Fractional Endpoints
When I say fractional endpoints, the
first thing that comes to mind is fixed-
point math. While we are going to be
using fixed-point numbers to represent
our vertices and to give us the extra pre-
cision we need to avoid the integer jitter,
you’ll see we’re not going to be rasteriz-
ing the edges using the familiar fixed-
point increments. As usual, to pack all
the information we need into this article,

I’m not going to be able to describe the
basics of fixed-point math. For a
description of fixed-point math that’s
easy to understand, I suggest reading
Michael Abrash’s Zen of Graphics Pro-
gramming (Coriolis Group, 1994) or the
PC Game Programmer’s Encyclopedia,
which is a neat freeware programming
book available via ftp on x2ftp.oulu.fi.

We’ll use 28.4 fixed point for our
endpoints. I’m going to use the integer-
dot-fraction notation for fixed-point
numbers, so 28.4 means we have 28 bits of
(usually signed) integer and four bits of
fractional precision.

We’ll use this format for two rea-
sons. First, four fractional bits is enough
to eliminate the jitter. Second, I happen
to know that the Windows NT polygon
rasterizer can be set up to do correct top-
left 28.4 rasterization, and it always
helps to have a proven version against
which to test (although I won’t show it
here, we can write a program that raster-
izes a polygon with our code, then ras-
terizes the polygon with Windows NT’s
rasterizer, so we can check for differ-
ences to test our rasterizer). Once you
see how the math works you’ll be able to
derive a rasterizer for whatever fixed-
point format you like best.

As I hinted before, instead of using a
fixed-point or floating-point incremental
step to move from one scanline to the
next, as our first rasterizer did, this raster-
izer will use an error-term DDA (much
like the Bresenham line-drawing algo-
rithm, covered in most graphics books).
However, unlike most DDA rasterizers
you’ve probably seen, our DDA parame-
ters will be initialized with fixed-point
numbers instead of integers.

We’ll start by defining exactly what
we mean by fractional endpoints. From
here on out, x and y are real numbers,
not integers, and their values are m/F
and n/F, respectively. The numbers m
and n are integers, and F is the scaling

B E H I N D T H E S C R E E N

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 19

Figure 1. Equations 1 Through 3

x
x x
y y

y y x

a
b

a
b

a
b

a b
b

a
b

a
b

a b
b

int ()

()

mod
(

= -
-

Ê

Ë
Á

ˆ

¯
˜ -() +

È

Í
Í
Í

˘

˙
˙
˙

È

Í
Í
Í

˘

˙
˙
˙

= -Í

Î
Í
Í

˙

˚
˙
˙

+ = - +
Í

Î
Í
Í

˙

˚
˙
˙

= - +Í

Î
Í
Í

˙

˚
˙
˙

=
Í

Î
Í
Í

˙

˚
˙
˙

+

1 0

1 0
0 0 1

1
1

1
1

1
2

3))

Figure 2. Equation 4

x
F my mn nm F n

F nint ()= - + - +Í

Î
Í
Í

˙

˚
˙
˙

D D D D
D

0 0 1
4

factor for whatever fixed-point format
you’re using. For 28.4 fixed-point, F =
16, for 16.16, F would be 65,536, and so
on. To convert from the fixed-point val-
ues to real numbers we divide by the
scaling factor. You commonly see the
opposite of this when you multiply a
floating point number by the scaling fac-
tor to get its fixedpoint value. Here are
some useful equations:

We’ll be reusing some of the formulas we
derived in the first two columns. Refer to
Figure 1 for Equations 1 through 3. The
variables a and b are integers in these
equations—remember that the mathe-
matically defined mod operator (used in
Equation 3) probably behaves slightly dif-
ferently than the modulus operator in
your chosen programming language. See
the FloorDivMod function in Listing 1 for
the correct implementation and
“Perspective Texture Mapping, Part II:
Rasterization” for an in-depth discussion.
Equation 1 shows the real formula for a
left edge under our fill convention (right
edges are the same equation minus one).
Let’s rewrite Equation 1 to use fixed
point:

If we do some basic algebra and use the
ceiling-to-floor conversion in Equation 2
(you can move integers into and out of a
ceiling or floor) on this we get the equa-
tion pictured in Figure 2.

Next we’ll introduce the symbol R
(Why R? I don’t know, mostly because
I’m running out of letters in the alpha-
bet!), set it equal to the numerator so
things look pretty, and finally use Equa-
tion 3 (the relationship between a rational
number and its floor and mod) on the
R/F∆n term inside the floor to give us our
initial condition:

x

m
F
n

F

y
n
F

m
Fint =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

-
Ê

Ë
Á

ˆ

¯
˜ +

È

Í

Í
Í
Í
Í
Í

˘

˙

˙
˙
˙
˙
˙

D

D
0 0

D D

D D

x x x
m

F
m m

F

y y y
n

F
n n

F

= - = = -

= - = = -

1 0
1 0

1 0
1 0

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

typedef long fixed28_4;
inline fixed28_4 FloatToFixed28_4(float Value) {

return Value * 16;
}
inline float Fixed28_4ToFloat(fixed28_4 Value) {

return Value / 16.0;
}
inline fixed28_4 Fixed28_4Mul(fixed28_4 A, fixed28_4 B) {

// could make this asm to prevent overflow
return (A * B) / 16; // 28.4 * 28.4 = 24.8 / 16 = 28.4

}
inline long Ceil28_4(fixed28_4 Value) {

long ReturnValue;
long Numerator = Value - 1 + 16;
if(Numerator >= 0) {

ReturnValue = Numerator/16;
} else {

// deal with negative numerators correctly
ReturnValue = -((-Numerator)/16);
ReturnValue -= ((-Numerator) % 16) ? 1 : 0;

}
return ReturnValue;

}
struct POINT3D {

fixed28_4 X, Y;
float Z;
float U, V;

};
inline void FloorDivMod(long Numerator, long Denominator, long &Floor,

long &Mod)
{

assert(Denominator > 0); // we assume it’s positive
if(Numerator >= 0) {

// positive case, C is okay
Floor = Numerator / Denominator;
Mod = Numerator % Denominator;

} else {
// Numerator is negative, do the right thing
Floor = -((-Numerator) / Denominator);
Mod = (-Numerator) % Denominator;
if(Mod) {

// there is a remainder
Floor—; Mod = Denominator - Mod;

}
}

}
gradients::gradients(POINT3D const *pVertices)
{

int Counter;
fixed28_4 X1Y0 = Fixed28_4Mul(pVertices[1].X - pVertices[2].X,

pVertices[0].Y - pVertices[2].Y);
fixed28_4 X0Y1 = Fixed28_4Mul(pVertices[0].X - pVertices[2].X,

pVertices[1].Y - pVertices[2].Y);
float OneOverdX = 1.0 / Fixed28_4ToFloat(X1Y0 - X0Y1);
float OneOverdY = -OneOverdX;
for(Counter = 0;Counter < 3;Counter++)
{

float const OneOverZ = 1/pVertices[Counter].Z;
aOneOverZ[Counter] = OneOverZ;
aUOverZ[Counter] = pVertices[Counter].U * OneOverZ;
aVOverZ[Counter] = pVertices[Counter].V * OneOverZ;

}
dOneOverZdX = OneOverdX * (((aOneOverZ[1] - aOneOverZ[2]) *

Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aOneOverZ[0] - aOneOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dOneOverZdY = OneOverdY * (((aOneOverZ[1] - aOneOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aOneOverZ[0] - aOneOverZ[2]) *

Listing 1. Changes for Fractional Endpoints (Continued on p. 21)

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 21

Notice that we moved the floored R/F∆n
term outside the main floor; we can do
this because a floored term is an integer by
the definition of the floor function, and
you can always move an integer into and
out of a floor.

Equation 5 is our initial DDA con-
dition. If we plug in integer y values and
do the math correctly, the floored R/F∆n
term will be our initial integer x starting
location, and the numerator of the mod
term will be our initial DDA error term.
Before we plug it into this equation, our
y should be prestepped to the first scan-
line according to our fill convention,
which defines the starting integer y as the
ceiling of the fractional y. Alternatively, if
you’re two-dimensionally clipping the
polygon at rasterization time, you’d make
y be the first scanline you want to draw
after clipping.

To calculate our DDA step variables
for x to step to x’, we plug y = y + 1 into
Equation 4 and see that our equation
changes by F∆m/F∆n. We use Equation 3
to convert this ratio into an integer and a
fractional part:

Equations 5 and 6 will step us on the inte-
ger raster grid, but we will step according
to the fractional edge, so we’ll get the extra
precision. As I’ve mentioned before, it’s
important to notice that the mod terms are
always positive, so when our error term
rolls over our DDA will always step by 1
(in contrast with some other DDAs you’ve

probably seen where you step by 1 for
right-going edges and by -1 for left-going
edges). This slightly odd behavior drops
out of the math when you do the flooring
divide and mod correctly, as we discussed
previously.

We’re still doing the same DDA step
as in my last column (the step code is
identical), but the various DDA values are
determined by the real fractional end-

points, not by the truncated integers.
More importantly, the gradients are calcu-
lated with the fractional endpoints, which
avoids the jitter problems that brought up
this fractional mess in the first place.

The results are surprising. Visually,
you can’t tell the difference between our
original floating-point rasterizer and the
new fractional endpoint rasterizer—they
both are completely solid and jitter-free—

x x
F m
F n

ErrorTerm

F m F n
F n

'

mod

()

int int= +
Í

Î
Í
Í

˙

˚
˙
˙

+

+Í

Î

Í
Í
Í

˙

˚

˙
˙
˙

D
D

D D
D

6

R F my mn

nm F n

x
R

F n
R F n

F n

R
F n

R F n
F n

= - +
- +

=
Í

Î
Í
Í

˙

˚
˙
˙

+
Í

Î
Í
Í

˙

˚
˙
˙

=
Í

Î
Í
Í

˙

˚
˙
˙

+
Í

Î
Í
Í

˙

˚
˙
˙

()

D D
D D

D
D

D

D
D

D

0

0 1

5

int
mod

mod

Listing 1. Fractional Endpoints (Continued from p. 20)

Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));
dUOverZdX = OneOverdX * (((aUOverZ[1] - aUOverZ[2]) *

Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aUOverZ[0] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dUOverZdY = OneOverdY * (((aUOverZ[1] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aUOverZ[0] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));

dVOverZdX = OneOverdX * (((aVOverZ[1] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aVOverZ[0] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dVOverZdY = OneOverdY * (((aVOverZ[1] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aVOverZ[0] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));

}
edge::edge(gradients const &Gradients, POINT3D const *pVertices,

int Top, int Bottom)
{

Y = Ceil28_4(pVertices[Top].Y);
int YEnd = Ceil28_4(pVertices[Bottom].Y);
Height = YEnd - Y;
if(Height)
{

long dN = pVertices[Bottom].Y - pVertices[Top].Y;
long dM = pVertices[Bottom].X - pVertices[Top].X;
long InitialNumerator = dM*16*Y - dM*pVertices[Top].Y +

dN*pVertices[Top].X - 1 + dN*16;
FloorDivMod(InitialNumerator,dN*16,X,ErrorTerm);
FloorDivMod(dM*16,dN*16,XStep,Numerator);
Denominator = dN*16;
float YPrestep = Fixed28_4ToFloat(Y*16 - pVertices[Top].Y);
float XPrestep = Fixed28_4ToFloat(X*16 - pVertices[Top].X);
OneOverZ = Gradients.aOneOverZ[Top]

+ YPrestep * Gradients.dOneOverZdY
+ XPrestep * Gradients.dOneOverZdX;

OneOverZStep = XStep * Gradients.dOneOverZdX
+ Gradients.dOneOverZdY;

OneOverZStepExtra = Gradients.dOneOverZdX;
UOverZ = Gradients.aUOverZ[Top]

+ YPrestep * Gradients.dUOverZdY
+ XPrestep * Gradients.dUOverZdX;

UOverZStep = XStep * Gradients.dUOverZdX
+ Gradients.dUOverZdY;

UOverZStepExtra = Gradients.dUOverZdX;
VOverZ = Gradients.aVOverZ[Top]

+ YPrestep * Gradients.dVOverZdY
+ XPrestep * Gradients.dVOverZdX;

VOverZStep = XStep * Gradients.dVOverZdX
+ Gradients.dVOverZdY;

VOverZStepExtra = Gradients.dVOverZdX;
}

}

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

and we get all the benefits of doing error-
term integer DDAs.

Listing 1 shows the changes to our
texture mapper to use fractional end-
points. One thing to watch for is overflow
in these equations, particularly in the
numerator of Equation 4. If your polygons
get really big, and your scaling factor is
large, you can overflow beyond 32 bits.
Most architectures make it possible to
keep a 64-bit numerator around for the
divide, so you can usually handle this if the
need arises.

Off The Map
Let me just come out and say it: there’s a
bug in the code from my first column on
perspective texture mapping. No, it’s not a
bug in any of the rasterization math or
implementation we’ve been poring over
for the last two issues, and it’s subtle
enough that you’d have to know what you
were looking for and look pretty hard to
find it. In fact, Michael Abrash and I were
talking about a related issue when we real-
ized there actually was a bug in the code
and math. We even tossed around the
idea of having a contest to spot the bug,
but I decided against it because I assumed
it was so subtle nobody would figure it
out. Of course, within the next day or so
Walt Donovan (walt@rendition.com)
from Rendition Inc. sent me e-mail

describing the very
problem!

The bug is in
the only part of the
code where I didn’t
rigidly define the
math before I start-
ed out: the real-to-
integer source-tex-
ture coordinate
mapping.

As we’ve seen,
we have rock-solid
m a t h e m a t i c a l
descriptions of the
rasterization, the
subpixel stepping,
the perspective pro-
jection, and the
gradient calcula-
tions. But when it
comes time in the

code to take our real texture coordinates
for the current pixel center and map
them into integer-source-texture coordi-
nates, we simply truncate with no expla-
nation of whether this is the correct
thing to do or not. It’s not, and we’re
going to figure out why. Here’s the sus-
pect code from our original DrawScanline
function (the variables on the right are
floating point numbers):

int U = UOverZ * Z;

int V = VOverZ * Z;

To understand why this code is
wrong, we need to understand how the
mapping from the source to the destina-
tion (or vice versa) works, and to under-
stand this, we need to understand the
lowliest element in the graphics pipeline,
the pixel. As we hinted in previous issues,
a pixel isn’t a single point as we’re used to
thinking, it’s really a box; a small box, but
a box nonetheless. Like every other box
(with sides of nonzero length), this one
covers an area, and we need to take that
area into account when we texture map
our polygon.

Figure 3 shows one complete pixel
and portions of a couple of its neighbors.
We’ll call N our integer pixel coordinate,
and you can see the edges, or walls, of the
middle pixel are each a half-pixel away

from the center. This geometry gives our
pixel a total area of one, as you’d expect.
The other pixel centers are exactly one
unit away on either side.

As we rasterize our polygon on the
destination grid, we’re very careful to only
light destination pixels when they’re “in,”
according to our precisely defined fill con-
vention, and we’re also very careful to only
generate source texture coordinates (using
the truncation code for the time being)
when we’re exactly on a destination pixel
center. We’re basically projecting the des-
tination pixel center back into the source
to figure out the source pixel color with
which to light the destination pixel. The
UOverZ * Z expression generates this real
source texture coordinate, and our “map-
ping rule,” such as it is, converts this real
number into an integer source coordinate
we can use to look up the texture pixel
(sometimes called a texel) value.

Figure 4, which shows the source
texture and its position on the destination,
gives us a way of visualizing the problem.
You can also see each of the source texel
boundries drawn in the destination for the
purposes of this illustration. If we were to
rasterize this destination polygon to tex-
ture map our source, we’d generate source
coordinates for each of the destination
pixel centers. As you can see (with the
help of the arrow showing one of the des-
tination pixel centers mapping back into
the source) those pixel centers rarely, if
ever, map to the source pixel centers.

Let’s look at how our current trun-
cation mapping rule affects various source
coordinates by viewing the pixels in Fig-
ure 3 as the source texels. If our perspec-
tive projection for a given mapping takes
a destination pixel center and maps it to
the real point denoted by the A in Figure
3, our truncation rule maps this to pixel
N (A’s value is greater than N, but less
than N + 1, so truncation maps it to N),
which looks about right. In general, we’d
like our mapping rule to take the real
source coordinates and map them to the
nearest integer pixel center, which means
any points that fall within the box for a
given source pixel get mapped to that
pixel’s integer coordinate.

Next let’s say our projection takes our
destination pixel center to B in Figure 3.

Figure 3. A Pixel

N-1 N

B

N+1

N-.5 N+.5

C

D A

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 23

Our truncation generates N - 1 for our
source coordinate, when N is clearly the
right answer! Oops.

Now that you see the bug, let me tell
you how we figured out it was there in the
first place. We were talking about various
texture mapping one day when Michael
asked how I would implement a blt (a
block transfer, or pixel copy) with my tex-
ture mapper. In other words, how would I
allocate the source-texture coordinates and
the destination-screen coordinates so that
the source-to-destination mapping was
one to one? It seems logical to be able to
do this, not so much because you’ll use the
texture code when you simply want to blt,
but because if the math is completely right
you should be able to get an exact 1:1
mapping just like all the other arbitrary
mappings you can get with perspective
projections.

I thought about this problem for a
second, and answered that I’d allocate the
corner texture coordinates and the desti-
nation coordinates at the exact same coor-
dinates on the screen, (-0.5,-0.5) and
(TextureWidth-0.5,TextureHeight-0.5).
(Our code only handles triangles so I’d
obviously need to call it twice to blt the
whole source, but the top-left and bot-
tom-right corners are all I needed to
describe the destination rectangle.) As
soon as I said this I realized I hadn’t
bothered to define the mapping rule from
real source coordinates to integer source
coordinates.

Figure 5 helps illustrate why I chose
the coordinates I did. I can’t stress enough
in this discussion that to get the correct
mappings we need to view pixels as areas,
not just as points. With this in mind, the
coordinates I gave Michael are the coordi-
nates of the inifinitely thin edge that com-
pletely surrounds our source texture
bitmap, as you can see in Figure 5. The
point (-0.5,-0.5) is the upper left-hand
corner of the texture (the upper left-hand
pixel center is at [0,0]), and (9.5,9.5) is the
lower right-hand corner—the edges total-
ly enclose the texture pixels. If I had cho-

sen integer source coordinates for the cor-
ners we’d be cutting the edge pixel areas in
half, which you can see if you take Figure
5 and draw an imaginary edge through the
pixel center.

Similarly, I chose the corresponding
screen coordinates for the destination. I
wanted the destination pixel centers to
map exactly to the source pixel centers, so
it was necessary to completely enclose the
destination pixels in the same manner as
the source pixels.

I realized I needed to define a map-
ping that took a real texture coordinate
and mapped it to the closest integer pixel
center. This is basically a rounding opera-
tion, and the function for rounding is:

Equation 7 is the familiar rounding rule
where you add a half and floor the result. I
looked at what effect this rule would have
on the texture mapper and it fixes the
problem with B in Figure 3, that’s for sure.
However, implicit in any rounding rule is a
tie-breaking rule that kicks in when the
value to be rounded is exactly halfway
between two integers, like C and D in
Figure 3. Equation 7 will map C to N + 1
and D to N, so it’s pretty clear that this is a

C Cint ()= +

Í

Î
Í
Í

˙

˚
˙
˙

1
2

7

Figure 5. Source Texture

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 4. Mapping

Destination

Source

top-left rounding rule, meaning if the pixel
center falls on the top or left edge of the
pixel it is considered “in,” and if it falls on
the bottom or right edge it is considered
part of the neighboring pixel. This is obvi-
ously very similar to our fill convention.

At first glance, a top-left rounding
rule seems to work well with our top-left
fill convention. It looks like the only way
for our mapping rule to generate a pixel
that’s out of bounds is for the right or bot-
tom edge of the texture to fall directly on a
pixel center in the destination (think about
shifting our blt destination coordinates
down and to the right by a half pixel so
they’re on integers in the destination), but
if the right or bottom edge of the texture
corresponds to a right or bottom edge of
the destination polygon we don’t draw
those pixel centers anyway because of our
fill convention. This beautiful harmony is
broken when you visualize rotating the
destination polygon by 180 degrees so that
its edges still correspond with integer des-
tination pixel centers, but the left edge of
the polygon corresponds to the right edge

of the texture. Now, if we apply our
rounding mapping rule we’ll start with the
right edge of the texture (TextureWidth -
0.5, or 9.5 in Figure 3), add a half, and
floor, resulting in a texture coordinate off
the edge of our texture! Are we back
where we started?

Same Time, Same Channel
The answer to that question is no, but to
find out how we’re going to solve the
problem you’ll have to tune in next time
because I’m out of space. I will give you a
hint, however. Equation 7 is just one
rounding rule. Here’s another:

Equation 8 works out to be a bottom-
right rounding rule, which would have
avoided the problem mentioned at the end
of the last paragraph, but would result in a
similar problem with our original orienta-
tion! Think about what criteria we have
for choosing between the two rounding

rules and join me next issue.
By the way, our texture mapper is

doing a form of resampling called point
sampling. We map the destination pixel
centers into the source and just take what-
ever texel in which we land. There are
other forms of resampling where you take
the corners of the destination pixel and
map them back into the source to form a
quadrilateral, and then filter the resulting
area into a single pixel color. Digital Image
Warping (IEEE Computer Society, 1990)
by George Wolberg covers a bunch of
these resampling techniques.

Once again I’d like to thank Kirk
Olynyk. He’s the reason I know the Win-
dows NT 28.4 rasterizer is correct—he
did the original math. ■

Chris Hecker thinks that regardless of
the outcome of the video game console wars,
it’s unlikely anyone will beat Sega’s “sphinc-
ter” advertisement for pure comedy value.
Discussion of various body parts and their
relationship to video games is available at
checker@bix.com.

C Cint ()= -

È

Í
Í
Í

˘

˙
˙
˙

1
2

8

B E H I N D T H E S C R E E N

24 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Building
Brains into
Your Games

I N T R O D U C T I O N T O A I

G
ame developers have always
pushed the limits of the hard-
ware when it comes to graphics
and sound, but I think we all
agree that when it’s time to
implement artificial intelligence
for a game, AI always gets the
short end of the stick! In this

article, we are going to study a potpourri
of AI topics ranging from the simple to
the complex.

Along the way, we are going to try
out a few demos that use a very rudi-
mentary graphics interface to illustrate
some of the simpler concepts. However,
most of our discussion will be quasi-the-
oretical and abstract. This is because AI
is not as simple as an algorithm, a data
structure, or similar things. Artificial
intelligence is a fluid concept that must

be shaped by the game it is to be used
on. Granted, you may use the same fun-
damental techniques on myriad games,
but the form and implementation may
be radically different.

Let’s begin our discussion with some
simple statements that define what AI is
in the context of games. Artificial intelli-
gence in the arena of computer games
implies that the computer-controlled
opponents and game objects seem to
show some kind of cognitive process
when taking actions or reacting to the
player’s actions. These actions may be
implemented in a million different ways,
but the bottom line, from an observers
point of view, is that they seem to show
intelligence.

This brings us to the fundamental
definition of intelligence. For our pur-

26 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 1. The Layout of Mode 13h

memory address (hex)
A000: 0000
A000: 0140

(0.0) (319,0)

320 X 200

(0,199) (319,199)

Column 319Column 0

Column 1

Length of video buffer = 320 • 200 = 64,000 bytes

Row 199

Row 1

Row 0

A000: F8CO

Any element you add

to a game to make it

more realistic

can only enhance it.

Artificial intelligence is

the next wave to make

your game think and

respond like a living,

breathing, (shooting)

opponent.

André LaMothe

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 27

// GMOD.H graphics module for demos

unsigned char far *video_buffer = (unsigned char far *)0xA0000000L;

void Plot_Pixel(int x,int y,int color)
{
// plots the pixel in the desired color a little quicker using binary shifting
// to accomplish the multiplications

video_buffer[((y<<8) + (y<<6)) + x] = (unsigned char)color;

} // end Plot_Pixel

void Set_Graphics_Mode(int mode)
{
// use the video interrupt 10h and the C interrupt function to set
// the video mode

union REGS inregs,outregs;

inregs.h.ah = 0; // set video mode sub-function
inregs.h.al = (unsigned char)mode; // video mode to change to
int86(0x10, &inregs, &outregs);

} // end Set_Graphics_Mode

void Time_Delay(int clicks)
{
// this function uses the internal timer to wait a specified number of “clicks”
// the actual amount of real time is the number of clicks * (time per click)
// usually the time per click is set to 1/18th of a second or 55ms

long far *clock = (long far *)0x0000046CL, // address of timer
start_time; // starting time

// get current time
start_time = *clock;

// when the current time minus the starting time >= the requested delay then
// the function can exit
while(labs(*clock - start_time) < (long)clicks){}

} // end Time_Delay

Listing 1. The Graphics Module GMOD.H

poses, intelligence is simply the ability to
survive and perform tasks in an environ-
ment. The tasks may be to hunt down
and destroy the player, find food, navi-
gate an asteroid field, or whatever. Nev-
ertheless, this will be our loose definition
of intelligence.

Now that we have an idea of what
we are trying to accomplish, where on
earth should we begin? We will begin by
using humans as our models of intelli-
gence because they seem to be reasonably
intelligent for carbon units. If we observe
a human in an environment, we can
extrapolate a few key behaviors of intelli-
gence that we can model using fairly sim-
ple computer algorithms and techniques.

These behaviors are blind reflexes,
random selection, use of known patterns,
environmental analysis, memory-based
selections and sequential behaviors that
may encompass some or all of the other
behaviors. We’ll take a look at all of these
behaviors and explore how we might
implement them in a computer game, but
first let’s talk about the graphics module
we are going to use for some of the
demos.

The Graphics Module
Half the world uses Microsoft C and C++
compilers and the other half uses Borland
C and C++ compilers—so it’s always a
problem publishing demos that depend on
the use of either. Hence, we are going to
write C code that is totally compiler inde-
pendent, based on a graphics interface that

we are going to write ourselves, and that
will work on both compilers. The graphics
interface will be based on graphics mode
13h, which is 320 by 200 pixels with 256
colors as shown in Figure 1. For the sim-
ple demos we are going to write, all we
want to do is place the VGA/SVGA card
in mode 13h and plot single pixels on the
screen. Thus we need two functions:

Set_Video_Mode(int mode);

and

Plot_Pixel(int x, int y,unsigned

char color);

We will use the video BIOS function
10h to set the video mode, but how can
we plot pixels? Plotting pixels in mode
13h is very simple because the graphics
are fully memory mapped. Basically,
mode 13h is a totally linear array of mem-
ory that represents each pixel with a sin-
gle byte. Further, this video memory
starts at location A000:0000. Figure 1
shows that there are 200 rows and 320
columns. Therefore, to compute the
address of any pixel at (x,y) we simply
multiply the Y component by 320 and
add the X. Or in other words:

memory offset = y*320+x;

Adding this memory offset to
A000:0000 gives us the final memory loca-
tion to access the desired screen pixel.

Hence, if we alias a FAR pointer to the
video memory like this:

unsigned char far* video_buffer =

(unsigned char far*)A0000000L;

Then we can access the video mem-
ory using a syntax like:

video_buffer[y*320+x] = color;

And that’s it. So, using that information,
we can then write a simple pixel-plotting
function and graphics-mode function.
These two functions should be added to
each demo so that the demos can perform
the graphics-related functions without
help from the compiler-dependent graph-
ics library. We’re also going to add a little
time-delay function based on the PC’s
internal timer. The function is called
Time_Delay() and takes a single parameter,
which is the number of clicks to wait for.
Listing 1 shows the complete graphics
interface named GMOD.H for the
demos contained within this article. Sim-
ply include the code of the graphics mod-
ule with each demo and everything
should work fine. Now that we have the
software we need to do graphics, let’s
begin our discussion of AI.

Deterministic Algorithms
Deterministic algorithms are the simplest
of the AI techniques used in games.
These algorithms use a set of variables as
the input and then use some simple rules
to drive the computer-controlled enemies
or game objects based on these inputs.
We can think of deterministic algorithms
as reflexes or very low-level instincts.
Activated by some set of conditions in the
environment, the algorithms then per-
form the desired behavior relentlessly
without concern for the outcome, the
past, or future events.

The chase algorithm is a classic
example of a deterministic algorithm. The
chase algorithm is basically a method of
intelligence used to hunt down the player
or some other object of interest in a game
by applying the spatial coordinates of the
computer-controlled object and the object
to be tracked. Figure 2 illustrates a good
example of this. It depicts a top view of a

I N T R O D U C T I O N T O A I

28 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 2. Tracking the Player

Alien 2
(Bx2, By2)

Alien 3
(Bx3, By3)

Player
(Px,Py)

Alien 1
(Bx1, By1)

typical battleground, on which three
computer-controlled bad guys and one
player are fighting. The question is, how
can we make the computer-controlled
bad guys track and move toward the play-
er? One way is to use the coordinates of
the bad guys and the coordinates of the
player as inputs into a deterministic algo-
rithm that outputs direction changes or
direction vectors for the bad guys in real
time.

Let’s use bad guy one as the exam-
ple. We see that he is located at coordi-
nates (bx1,by1) and the player is located
at coordinates (px,py). Therefore, a sim-
ple algorithm to make the bad guy move
toward the player would be:

// process x-coords

if (px>bx1)

bx1++;

else

if (px<bx1)

bx1—;

// process y-coords

if (py>by1)

by1++;

else

if (py<by1)

by1—;

That’s all there is to it. If we wanted
to reverse the logic and make the bad guy
run then the conditional logic could be
inverted or the outcome increment opera-
tors could be inverted. As an example of
deterministic logic, Listing 2 is a com-
plete program that will make a little com-
puter-controlled dot chase a player-con-
trolled dot. Use the numeric keypad to
control your player and press ESC to exit
the program.

Now let’s move on to another typical
behavior, which we can categorize as ran-
dom logic.

Random Logic
Sometimes an intelligent creature exhibits
almost random behaviors. These random
behaviors may be the result of any one of
a number of internal processes, but there
are two main ones that we should touch
upon—lack of information and desired
randomness.

The first premise is an obvious one.

Many times an intelligent creature does
not have enough information to make a
decision or may not have any information
at all. The creature then simply does the
best it can, which is to select a random
behavior in hopes that it might be the
correct one for the situation. For example,
let’s say you were dropped into a dungeon
and presented with four identical doors.
Knowing that all but one meant certain
death, you would simply have to random-
ly select one!

The second premise that brings on a
random selection is intentional. For
example, say you are a spy trying to make
a getaway after acquiring some secret doc-
uments (this happens to me all the time).
Now, imagine you have been seen, and

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 29

} break;

case 27: // exit
{
done=1;
} break;

} // end switch

} // end if

// perform bad guy logic
if (px>bx)

bx++;
else
if (px<bx)

bx—;

if (py>by)
by++;

else
if (py<by)

by—;

// draw player and bad guy
Plot_Pixel(bx,by,12);
Plot_Pixel(px,py,9);

// wait a bit
Time_Delay(1);

} // end main while

// reset graphics back to text
Set_Graphics_Mode(0x03);

// return success to DOS
return(0);

} // end main

Listing 2. A Demo of Deterministic Logic

// Deterministic chasing algorithm demo
// use numeric keypad to move player

#include <io.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <bios.h>
#include <math.h>
#include <string.h>

#include “gmod.h” // include our graphics
module

int main(void)
{

int px=160, // starting position of
player

py=100,
bx=0, // starting position of

bad guy
by=0,
done=0; // exit flag

// set the video mode to 13h
Set_Graphics_Mode(0x13);

// main event loop
while(!done)

{
// perform player logic

// get input from keyboard
if (kbhit())

// which way is player moving?
switch(getch())

{
case ‘8’: // up

{

if ((py-=2)<0)
py+=200;

} break;

case ‘2’: // down
{

if ((py+=2)>=200)
py-=200;

} break;

case ‘6’: // right
{

if ((px+=2)>=320)
px-=320;

} break;

case ‘4’: // left
{

if ((px-=2)<0)
px+=320;

the bad guys start shooting at you! If you
run in a straight line, chances are you are
going to get shot. However, if during
your escape you make many random
direction changes and zigzag a bit, you
will get away every time!

What we learn from that example is
that many times random logic and selec-
tions are good because it makes it harder
for the player to determine what the bad
guys are going to do next, and it’s a good
way to help the bad guys make a selection
when there isn’t enough information to
use a deterministic algorithm. Motion
control is a typical place to apply random
logic in bad-guy AI. You can use a ran-
dom number or probability to select a
new direction for the bad guy as a func-
tion of time. Let’s envision a multiplayer
game with a single, computer-controlled
bad guy surrounded by four human play-
ers. This is a great place to apply random
motion, using the following logic:

// select a random translation

for X axis

bx1 = bx1 + rand()%11 - 5;

// select a random translation

for Y axis

by1 = by1 + rand()%11 - 5;

The position of the bad guy is trans-
lated by a random amount in both X and
Y, which in this case is +-5 pixels or units.

Of course, we can use random logic
for a lot of other things besides direction
changes. Starting positions, power levels,
and probability of firing weapons are all
good places to apply random logic. It’s
definitely a good technique that adds a bit
of unpredictability to game AI. Listing 3

is a demo of random logic used to control
motion. The demo creates an array of flies
and uses random logic to move them
around. Press ESC to exit the demo.

Now let’s talk about patterns.

Encoded List Processing
Many intelligent creatures have prere-
corded patterns or lists of behaviors that
they have either learned from experience
or are instinctive. We can think of a pat-
tern as a sequence of steps we perform to
accomplish a task. Granted, this sequence
may be interrupted if something happens
during the sequence that needs attention.
But in general, if we forget about inter-
ruptions then we can think of patterns as
a list of encoded instructions that an
intelligent creature consumes to accom-
plish some task.

For example, when you drive to
work, school, or your girlfriend’s or
boyfriend’s house, you are following a
pattern. You get into your car, start it,
drive to the destination, stop the car, turn
it off, get out, and finally do whatever it is
you’re going to do. This is a pattern of
behavior. Although during the entire
experience a billion things may have gone
through your head, the observed behavior
was actually very simple. Hence, patterns
are a good way to implement seemingly
complex thought processes in game AI.
In fact, many games today still use pat-
terns for much of the game logic.

So how can we implement patterns
for game AI? Simply by using an input
array to a list processor. The output of the
processor is the control of a game object
or bad guy. In this case, the encoded list
has the following set of valid instructions:
• Turn right
• Turn left
• Move forward
• Move backward
• Sit still
• Fire weapon.

Even though we only have six selec-
tions, we can construct quite a few pat-
terns with a short input list of 16 ele-
ments as in the example. In fact there are
6 16 different possible patterns or roughly
2.8 trillion different behaviors. I think
that’s enough to make something look
intelligent! So how can we use encoded

I N T R O D U C T I O N T O A I

30 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Time_Delay(2);

} // end main while

// reset graphics back to text
Set_Graphics_Mode(0x03);

// return success to DOS
return(0);

} // end main

// Random logic demo
// moves a flock of flies around
// hit any key to exit

#include <io.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <bios.h>
#include <math.h>
#include <string.h>

#include “gmod.h” // include our graphics
module

#define NUM_FLIES 64 // start off with 64
flies

typedef struct fly_typ
{
int x,y; // position of fly
} fly;

int main(void)
{

fly flys[NUM_FLIES]; // the array of flies

int index; // looping variable

// set the video mode to 13h
Set_Graphics_Mode(0x13);

// initialize all flies to random position
for (index=0; index<NUM_FLIES; index++)

{
flys[index].x = rand()%320;
flys[index].y = rand()%200;
} // end for index

// main event loop
while(!kbhit())

{
// erase flies

for (index=0; index<NUM_FLIES;
index++)

Plot_Pixel(flys[index].x,flys[index].y,0);

// perform fly logic, translate
each fly +-2 pixels

for (index=0; index<NUM_FLIES;
index++)

{
flys[index].x+=(-2+rand()%5);
flys[index].y+=(-2+rand()%5);

} // end for index

// draw flies
for (index=0; index<NUM_FLIES;

index++)

Plot_Pixel(flys[index].x,flys[index].y,10)
;

// wait a bit

Listing 3. A Bunch of Dumb Flies

lists and patterns in a game for the AI?
One solid way is to use them to control
the motion of a bad guy or game object.
For example, a deterministic algorithm
might decide it’s time to make a bad guy
perform some complex motion that
would be difficult if we used standard
conditional logic. Thus, we could use that
pattern, which simply reads an encoded
list directing the bad guy to make some
tricky moves. For example, we might have
a simple algorithm like this:

int move_x[16] = {-2,0,0,0,3,3,2,1,0,

-2,-2,-,0,1,2,3,4};

int move_y[16] = {0,0,0,1,1,1,0,0,-1,-1,

2,3,4,0,0.-1};

// encoded pattern logic for a

16 element list

for (index=0; index<16; index++)

{

bx1+=move_x[index];

by1+=move_y[index];

} // end for index

You’ll notice that the encoded pat-
tern is made up simply of X and Y trans-
lations. The pattern could just as well
have contained complex records with a
multitude of data fields. I’ve written
detailed code that will create an example
of patterns and list processing, a demo of
an ant that can process one of four pat-
terns selected by the keys 1-4. Unfortu-
nately, it’s too long to print here. Go to
the Game Developer ftp site, though
(ftp://ftp.mfi.com/gdmag/src), and you
can download it there.

Now we’re starting to get some-
where, but we need an overall control unit
with some form of memory, and we must
select the appropriate types of behaviors.

Finite State Machines
Finite state machines, or FSMs, are
abstract models that can be implemented
either in hardware or software. FSMs are
not really machines in the mechanical
sense of the word, but rather abstract
models with a set of “states” that can be
traversed. Within these states, the FSM
not only has a special set of outputs but
remembers the state and can transition to
another state, if and only if a set of inputs
or premises are met. Figure 3 is a typical

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 31

Figure 3. A Typical State Diagram

S0
S1

Sn

S2

f01=true

f10=true

f12=true f21=true

f2n=true

fn1=true

fn=true

outputs

outputs

outputs

outputs

State
Transition premise

A=1
B=6
vi=20.6

typedef unsigned short DISTANCE;
const DISTANCE Tracking_Threshold = 50;
const DISTANCE Random_Threshold = 100;
DISTANCE theDistance;
//Define states and initialize
enum states{new, random, track, pattern};
states currentState = new;
//FSM loop
for(;;){

switch (currentState){
case new:

//Note: Switchbox only, causes no behavior
theDistance = CalcDistanceToPlayer();
if (theDistance > Random_Threshold){

currentState = random;
}else{

if (theDistance > Tracking_Threshold){
currentState = pattern;

}else{
currentState = track;

}
}
break;

case track:
DoTrackBehavior();
currentState = new;
break;

case pattern:
DoPatternBehavior();
currentState = new;
break;

case random:
DoRandomBehavior();
currentState = new;
break;

case default:
cerr<<"state machine has entered an unknown

state\n";
assert(FAIL);

}
}

Listing 4. The Core FSM Logic for Figure 7

depiction of a finite state machine. We
see that there is a set of states labeled, S0,
S1, S2, and Sn. We also see that there is a
set of connecting edges or arcs. These are
called transition arcs and are the premises
that must be met for the FSM to move
from state to state. Finally, within each
state is a set of outputs. These outputs can
be anything we wish—from motion con-
trols for a game’s bad guys to hard disk
commands.

So how do we model an FSM in
software and use it to control the game
AI? Let’s begin with the first question.

We can model an FSM with a single
variable and a set of logical conditions
used to make state transitions along with
the output for each state. For example,
let’s actually build a simple software state

machine that controls a computer bad guy
differently based on the bad guy’s distance
to the player. The state machine will have
the following four states:
• State 0: Select new state = STATE_NEW
• State 1: Move randomly = STATE_RANDOM
• State 2: Track player = STATE_TRACK
• State 3: Use a pattern = STATE_PATTERN

The FSM’s transition diagram is
shown in Figure 4. We can see that if
the bad guy is within 50 units of the
player, then the bad guy moves into
State 2 and simply attacks. If the bad
guy is in the range of 51 to 100 units
from the player, then the bad guy goes
into State 3 and moves in a pattern.
Finally, if the bad guy is farther than 100
units from the player then chances are
the bad guy can’t even see the player (in
the imaginary computer universe). In
that case, the bad guy moves into State
1, which is random motion.

So how can we implement this sim-
ple FSM machine? All we need is a vari-
able to record the current state and some
conditional logic to perform the state
transitions and outputs. Listing 4 shows a
rough algorithm that will do all this.

Note that S0 (the new state) does not
trigger any behavior on the part of the
opponent. Rather, it acts as a state
"switchbox," to which all states (except
itself) transition. This allows you to local-
ize in a single control block all the deci-
sion making about transitions

Although this requires two cycles
through the FSM loop to create one
behavior, it's well worth it. In the case of
a small FSM, the entire loop can stay in
the cache, and in the case of a large FSM
loop, the localization of the transition
logic will more than pay for the perfor-
mance penalty. If you absolutely refuse to
double-loop, you can handcraft the tran-
sitions between states. A finite-state
machine diagram will vividly illustrate, in
the form of spaghetti transitions, when
your transition logic is out of control.

Now that we have an overall thought
controller, that is, an FSM, we should
discuss simulating sensory excitation in a
virtual world.

Environmental Sensing
One problem that plagues AI game pro-
gramming is that it can be very unfair—at
least to the player. The reason for this is
that the player can only “see” what’s on
the computer screen, whereas the com-
puter AI system has access to all variables
and data that the player can’t access.

This brings us to the concept of
simulated sensory organs for the bad guys
and game objects. For example, in a
three-dimensional tank game that takes
place on a flat plain, the player can only
see so far based on his or her field of
view. Further, the player can’t see
through rocks, buildings, and obstacles.
However, because the game logic has

I N T R O D U C T I O N T O A I

32 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 5. Viewing Cones

Enemy

Enemy

Enemy

Player

View Cone

Figure 4. A Simple FSM for AI

S0
new

S1
Random

S3
Pattern

S2
Track

Player

D = distance

Bad guy

Distance >
100

Distance
<

50Di
st

an
ce

<
10

0
an

d
>

50

access to all the system variables and data
structures, it is tempting for it to use this
extra data to help with the AI for the bad
guys.

The question is, is this fair to the
player? Well, of course not. So how can
we make sure we supply the AI engine of
the bad guys and game objects with the
same information the player has? We
must use simulated sensory inputs such as
vision, hearing, vibration, and the like.
Figure 5 is an example of one such imagi-
nary tank game. Notice that each oppo-
nent and the player has a cone of vision
associated with it. Both the bad guys and
the player can only see objects within this
cone. The player can only see within this
cone as a function of the 3D graphics
engine, but the bad guys can only see
within this cone as a function of their AI
program. Let’s be a little more specific
about this.

Since we know that we must be fair
to the player, what we can do is write a
simple algorithm that scans the area in
front of each bad guy and determines if
the player is within view. This scanning is
similar to the player viewing the viewport
or looking out the virtual window. Of

course, we don’t need to perform a full
three-dimensional scan with ray tracing
or the like—we can simply make sure the
player is within the view angle of the bad
guy in question by using trigonometry of
any technique we wish.

Based on the information obtained
from each bad guy scan, the proper AI
decision can be made in a more uniform
and fair manner. Of course, we may
want to give the computer-controlled AI
system more advantage than the human
player to make up for the AI system
itself being rather primitive when com-
pared to the 100 billion-cell neural net-
work it is competing against, but you get
the idea.

Finally, we might ask, “Can we per-
form other kinds of sensing?” Yes. We
can create simulated light detectors,
sound detectors, and so forth. I have been
experimenting with an underwater game
engine, and in total darkness the only way
the enemy creatures can “see” you is to
listen to your propulsion units. Based on
the power level of the player’s engines the
game AI determines the sound level that
the bad guys hear and moves them
toward the sound source or sources.

Memory and Learning
The final topic we’re going to touch upon
is memory and learning. Memory is easy
enough to understand, but learning is a
bit more nebulous. Learning as far as we
are concerned is the ability to interact in
an environment in such a way that behav-
iors that seem to work better than others
under certain conditions are “memorized”
and used more often. In essence, learning
is based on memory of past actions being
good or bad or whatever. Imagine that we
have written a fairly complex game com-
posed of computer-controlled aliens.
These aliens use an FSM-based AI
engine and environmental sensing. The
problem is that one of the resources in the
game is energion cubes and the player and
aliens must compete for these cubes.

As the player is moving around in
the environment, he or she can create a
mental map of where energion cubes
seem to be plentiful, but the alien crea-
tures have no such ability; they can only
stand and are at a disadvantage. Can we
give them a memory and teach them
where these energion cubes are? Of
course we can, we are cybergods!

One such implementation would

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 33

Figure 6. A Memory Map

Room 1
p = 50%

Room 2
p = 40%

Room 3
p = 12%

Room 4
p = 0%

Room 5
p = 13%

Control

Logic

Memory

AI Engine

Energion

Player
Defenses

Weapons

Room 1

Room 2

Room 3

Room 4

Room 5

Typical Game Level

- Energion cubes

work as follows: We could use a simple
data structure that would track the num-
ber of times an alien found energion in
each geographical region of the
game.(Figure 6 illustrates one such mem-
ory map.) Then, when an alien was power
hungry, instead of randomly bouncing
around, the alien would refer to this
memory data structure and select the geo-
graphical region with the highest proba-
bility of finding energion and set its tra-
jectory for this region.

The previous example is a simple
one, but as we can see, memory and
learning are actually very easy to imple-
ment. Moreover, we can make the com-
puter AI learn much more than where
energion is. It could learn the most
common defensive moves of the player
and use this information against the
player.

Well that’s enough for basic AI
techniques. Let’s take a quick look at how
we can put it all together.

Building
Monsters from the Id
We have quite a repertoire of computer
AI tricks at our fingertips, so how should
we use it all? Basically, when you write a
game and are implementing the AI, you
should list the types of behaviors that
each game object or bad guy needs to
exhibit. Simple creatures should use
deterministic logic, randomness, and pat-
terns. Complex creatures that will interact
with the player should use an FSM-based
AI engine. And the main game objects
that harass and test the player should use
an FSM and sensory inputs and memory.
Figure 7 illustrates a final model of the
most advanced AI engine we can con-
struct with what we have to work with.

The Future
I see AI as the next frontier to explore.
Without a doubt, most game program-
mers have focused so much on graphics
that AI hasn’t been researched much. The

irony is that researchers have been mak-
ing leaps and bounds in AI research and
Artificial Life or A-Life.

I’m sure you’ve heard the common
terms “genetic algorithms” and “neural
networks.” Genetic algorithms are simply
a method of representing some aspect of a
computer-based AI model with a set of
“genes,” which can represent whatever we
wish—aggressiveness, maximum speed,
maximum vision distance, and so on.
Then, a population of creatures is gener-
ated using an algorithm that adds a little
randomness in each of the output crea-
tures’ genes.

Our game world is then populated
with these gene-based creatures. As the
creatures interact in the environment,
they are killed, survive, and are reborn.
The biological analog comes into play
during the rebirthing phase. Either man-
ually or by some other means, the com-
puter AI engine “mates” various pairs of
creatures and mixes their genes. The
resulting offspring then survive another
generation and the process continues.
This causes the creatures to evolve so
that they are most adapted for the given
environment.

Neural networks, on the other hand,
are computer abstractions of a collection
of brain cells that have firing thresholds.
You can enhance or diminish these
thresholds and the connections between
cells. By “teaching” a neural network or
strengthening and weakening these con-
nections, the neural net can learn some-
thing. So we can use these nets to help
make decisions and even come up with
new methods.

André LaMothe is the author of the
best-selling Tricks of the Game Program-
ming Gurus (SAMS Publishing, 1994) and
Teach Yourself Game Programming in
21 Days (SAMS Publishing, 1994). His
latest creation is the Black Art of 3D Game
Programming (Waite Group Press, 1995).

I N T R O D U C T I O N T O A I

34 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 7. Our AI Brain

Memory
System

Random
logic

Pattern
Logic

Heuristic
logic

Mixed
logic

S0 S2

S1

fsm- main control

Environment
Sensors

Sn

TinyMUSH:
Implementing
A MUD

I M P L E M E N T I N G A M U D

T
hough the roots
of multiuser dun-
geons (MUDs)
go back to games
like Zork and
Adventure, Roy
Trubshaw and
Richard Bartle

created the first true MUD in 1979. As
the Internet grew, becoming more acces-
sible, MUDs made themselves at home
on the Internet, evolving into a diverse
family of multiuser games.

The most common type of MUD is
the combat MUD, where players visit
unusual and mythic lands alone or in
groups, searching for creatures to slay
and quests to solve. In social MUDs,
people hang out, chatting in the virtual
pub of their choice.

Some MUD users, called mudders,
enjoy recreating their favorite fantasy
settings, using such authors as J.R.R.
Tolkein, Anne McCaffery, and C.S.
Lewis as inspiration. For the mudders
who crave storytelling in their favorite
fictional setting, there is the dramatic
roleplay MUD, in which people create
compelling drama in a kind of interac-
tive theater where stories can take
months or years to tell.

MUDs and Multimedia
With CD ROM-induced multimedia,
today’s games typically emphasize slick,
three-dimensional, ray-traced graphics;
high-quality voice recording; and catchy
MIDI scores. This media dependence is
so common, we often forget that the
most enduring games had little or no
wow potential—it was gameplay that
made the classics great.

Some people may think the popu-
larity of MUDs is simply due to their
being multiuser networked applications,
but that is only part of it—albeit, an
important part. For students who have
Internet access and are perpetually short
on cash, MUDs are dirt cheap enter-
tainment. But fiscal hardship alone
doesn’t explain why so many people pass
up conventional games to romp about
some virtual world.

This article covers the implementa-
tion of TinyMUSH, a popular type of
MUD. Due to time and space con-
straints, we will cover functionality
issues such as the network interface,
database, and in-game programming.

The MUD Basics
Regardless of type, all MUDs have a
common concept of location (virtual, of
course) that affects how players commu-
nicate. This strong concept of location
affects communications on a MUD. For
example, to speak aloud to a group using
the say command, players must be in the
same room as the group.

TinyMUSH is representative of
MUD servers leaning toward social
rather than combat interactions. Tiny-
MUSH is an open-ended application
that has no resolution, unlike a combat
MUD. Though TinyMUSH is typically
used for social hangouts and interactive
theaters, MUSHs provide a suitable
communications solution for small
groups of people who wish to communi-
cate and collaborate online.

Usually UNIX
MUDs do not use fancy graphics or
audio scores, but they do allow multiple

36 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

players to interact. MUDs need some
form of interprocess communication so
players on different machines at separate
physical locations are able to play
together. This requirement has made
networking a core technology in MUD
development.

The need for reliable networking is
one reason MUDs have gravitated
toward UNIX—TCP/IP, a popular
networking protocol, came bundled
with UNIX. Another reason is many of
the TinyMUSH developers are, or
were, undergraduates in universities
where UNIX is widely available. TCP is
not the only networking protocol, but
TinyMUSH’s heritage links it to
UNIX. On UNIX, the reliable, connec-
tion-oriented communication protocol
of choice is TCP.

The developers of TinyMUSH
wrote the application in their spare time
as a form of recreation and did not
design it for portability to every com-
puter architecture and operating system.
Making MUSH run on several flavors
of UNIX and VMS was more than
enough to occupy the developers.

The Network Interface
TCP/IP is really a group of protocols,
spanning the network and transport lay-
ers of the Open Systems Interconnec-
tion model (OSI). Two TCP/IP appli-
cation program interfaces (APIs) exist
on UNIX systems—the Berkeley Socket
interface, the choice for most program-
mers, and the less popular Transport
Layer Interface (TLI) developed at Bell
Labs. Though TinyMUSH supports
both APIs, due to space requirements,
this article covers only the Berkeley

Socket interface.
From a player’s perspective, a

TinyMUSH server resides on a specific
machine at a specific port. This port
address is a 16-bit integer destination
port number, which is part of the
TCP/IP header packet, along with a
source port number and a source, and a
32-bit destination address. These
addresses provide communication end-
points for TCP.

For historical reasons, TinyMUSH
comes with a default port setting of
4,201 but uses a value greater than
5,000. This minimizes the chance that a
conflict can occur between an operating
system port assigned to a miscellaneous
service and the TinyMUSH port num-
ber. UNIX reserves ports 0 to 1023 for
privileged operating system processes, so
selection of a port greater than 1023 is
mandatory.

The function make_socket() creates
a TCP/IP socket on the port for external
processes to connect to the server. If this
call fails, the routine exits. This action is
critical; MUSH exits on failure of bind().
A server that cannot bind a socket can-
not allow incoming connections.

TinyMUSH uses a simple method
to handle communications between the
TinyMUSH server and the players. A
user connects to a MUD using a client
like Telnet. Using Telnet, players send
commands consisting of character
strings to TinyMUSH. The MUD,
often called the server, receives and acts
upon the text. The MUD processes and
parses the player’s actions, sending the
results back to the player.

When a player’s client program
connects to a TinyMUSH server, the

Multiuser gamers:

Don‘t flounder in the

MUD. This article

explains the

workings of

TinyMush, a complete

system you can

download for free!

Ed Meinfelder and
Jeffrey Vance

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 37

operating system marks the file descrip-
tor corresponding to the socket as hav-
ing input pending. During the main
loop of the server MUSH calls select()
to see if any file descriptors are ready
for input or output. After select()
returns, the MUD services player con-
nections with pending I/O and handles
new connections.

TinyMUSH may disallow or
restrict connections from specific com-
puters or entire networks. After the
accept() call returns, the server makes
the connection to the player’s client.
Once connected, the server knows the
source address of the client. Tiny-
MUSH checks the source address
against a list of disallowed addresses
and mask pairs. For example, Tiny-
MUSH rejects the connection from all
clients at the host 128.92.15.15 if the
address pair 128.92.0.0 255.255.0.0 is in
the reject list.

After restriction checks for the
connecting player are made, a DESC
structure for the player is filled in. The
DESC includes the file descriptor, host
information, a player dbref, and doing
message, among other information.

The server sets the file descriptor to
nonblocking, representing the player’s
socket. A write() to a nonblocking file
descriptor won’t result in the server
waiting, pending completion of the
input or output operation. TinyMUSH
does not know the state of the player’s
client, so it is possible that the operating
system’s output buffer could otherwise
fill, blocking the server and hanging the
game.

Each DESC has input and output
queue pointers, allowing fast processing
of the user’s data. The DESC stores the
size of the input and output queues and
the amount of input and output.
Because sockets to player’s clients may
block at any time for arbitrary lengths of
time, the output queues are finite. After
the player’s output queues exceed a
limit, the server discards further player
output.

After the player successfully con-
nects, TinyMUSH completes and
returns the DESC. Next, the server dis-
plays a standard welcome message to the

user with a brief description of the com-
mands available. The commands avail-
able at this point are only those provid-
ed by the networking code.

TinyMUSH has a programmable
interface and it allows objects to run
many of the same commands as the
players. But some commands, l ike
LOGOUT and QUIT, only make sense for
connected players. Thus, the network-
ing code implements and handles these
commands, bypassing the rest of the
game. When the player connects to the
game, using either the command con-
nect or create, all the commands are
available.

The complete list of network-level
commands are:
• create
• connect
• QUIT
• LOGOUT
• WHO
• DOING
• SESSION
• OUTPUTPREFIX
• OUTPUTSUFFIX.

The commands listed in uppercase
letters are case sensitive; create and con-
nect are not. The capitalized commands
indicate that commands are executable
by players over a network connection
only.

The commands create and connect
are only available to players not yet asso-
ciated with a player object. Once the
connection is associated with a player
object, a flag in the DESC structure is set,
indicating that socket is connected.
Once the player connects, the create
and connect commands are no longer
available. The uppercase network com-
mands, available through the game, exist
in a small hash table.

The QUIT command disconnects the
user from the server. LOGOUT is more
complex; it disassociates a DESC structure
from a player object and places the user
back into a logged-out state, as if he or
she had just connected to the server. WHO,
DOING, and SESSION are all variants of one
command, showing information on con-
nected players.

OUTPUTPREFIX and OUTPUTSUFFIX are
among the less-used commands in

TinyMUSH. As the output from com-
mands such as WHO spans many lines, it is
difficult to determine where the output
of a single command begins and ends.
The OUTPUTPREFIX command takes a
string as an argument, like:

OUTPUTPREFIX ThisIsTheStart

and prints ThisIsTheStart on a separate
line before the output of every com-
mand. Programs, called robots, connect
to MUDs and require an easy way to
parse the results of their actions. OUTPUT-
PREFIX and OUTPUTSUFFIX are simple ways
for robots to find the start and end of
their command output. Robots function
as mailers, mappers, off-MUD database
interfaces, and amusing AI simu-
lacrums.

After the networking code parses
the user text into a command buffer, the
server searches for the text in a hash
table with the networking commands.
Should the hash routines not find the
command, TinyMUSH checks the DESC
structure to see if it is associated with a
player object. If the DESC indicates a con-
nected player, the function do_command
passes the command along to the func-
tion process_command, as it may be a
game-related command, like Say Hello.

If the DESC indicates no commands
associated with a player object, the serv-
er assumes it must use either the create
or connect command. The function
check_connect() parses the input into
three parameters. check_connect() then
checks the first two characters of the
first parameter of the command for the
strings co and cr to see if the player
entered either a connect or create com-
mand. If not, the server flags the input
as invalid and shows the user the stan-
dard welcome message again.

When the server recognizes a con-
nect command, MUSH searches for and
authenticates the player name password.
If the player name or password is
invalid, the server responds with a fail
message to the user. After three failed
attempts, the server closes and shuts
down the user’s connection. If the play-
er’s name and password are correct, the
server checks to see if players are

I M P L E M E N T I N G A M U D

38 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

allowed to log in and that the number of
players connected is less than the maxi-
mum. If both conditions are true or the
player is a wizard (a term for a Tiny-
MUSH administrator), then the
MUSH allows the user to log in.

The user is associated with a player
object by storing the player object’s
dbref in the DESC structure along with
the connect time. The player is shown
the welcome message for new players or
the message of the day for existing play-
ers. The game administrator receives an
additional message often set by another
administrator as a note. Should the
server be refusing logins or have more
than the maximum number of players
connected, the player receives a reject
message.

Once the player has been connect-
ed, the server initializes various attribut-
es on the player, such as the player’s last
site and last connect time. When the
player connects, all objects at the play-
er’s location receive the message:

<Player> has connected.

where <Player> is the player’s name.
The final act in connecting a player

is the queued execution of a set of com-
mands when the player logs in to the
game. These commands are stored in an
attribute called aconnect on the player,
objects in the master room, and the
master room itself.

The Command Interface
Learning TinyMUSH is not easy—there
are more than 200 commands and 150
functions—but the basics of MUSH are
not hard. TinyMUSH provides users
with an interpreted, shell-like language.
The internal language to TinyMUSH,
often called MUSH-code, is both a bane
and a boon—programming simple
things is easy, enabling new users to start
right away; but for complex tasks,
MUSH-code is tedious. Most users
never really learn to program MUSH—
instead, these players, like unsophisticat-
ed DOS users, stick to a minimal set of
commands they use often.

The TinyMUSH command inter-
face is user extensible. Users call player-

created commands “$ commands”
because the definition is preceded by a $.
$ commands appear no different than
the built-in commands to the user.
Attributes store the $ commands on
objects.

TinyMUSHes have the capability
to provide global $ commands in a mas-
ter room. When a player-typed com-
mand matches nothing, the server
checks the master room and its contents
for $ commands. The Tiny MUSH
master room enables user-defined global
commands in the master room to be
available everywhere on the MUD.

TinyMUSH has exits providing a
path from one object to another. Players
use exits like commands, traversing exits
by typing the name of the exit only.
Users can lock exits against some or all
players. When anyone tries to traverse a
locked exit, the server triggers the fail
action attributes for the exit. An action
is a set of three attributes: <name>,
o<name>, and a<name>. For the failure to
traverse an exit, the action attributes are:
fail, ofail, and afail. And, in the case
of players and things, objects trigger the
fail action when failing to pick up an
object that is locked.

A player opens an exit, linking and
locking it to location #0. Linking an exit
gives it a destination, and locking is a
way of restricting who can and cannot
use the exit. Locking the exit to #0
means that any object traversing the
cave exit must either be #0 or carrying
#0. Because #0 is a room on nearly every
MUSH, neither case is likely. When
Alaric attempts to traverse the exit, he
triggers the fail action. All players other
than Alaric will see the ofail text fol-
lowing Alaric’s name, and only Alaric
will see the fail message. The server
executes any commands in the exit’s
afail attribute, so any number of actions
can happen.

Executing the
TinyMUSH Commands
When a player types in the command
say Hello everyone!, the networking
code buffers the text in the player’s DESC.
After the network layer parses the com-
mand into a distinct command buffer,

the main loop eventually arrives at the
code that handles interactive commands.
The server calls the function do_com-
mand() with the player’s DESC and the
command typed.

Each player’s DESC contains a buffer
for interactively typed commands, but
there are noninteractive commands, too.
These commands are triggered by $
commands or other nondirect methods,
like an object programmed to bark like a
dog whenever anyone enters the room.
Noninteractive commands take a back
seat to commands from the sockets, so
the turnaround time for the players is
short. All objects take a backseat to
players, as the server adds commands
typed by objects to the end of a low-pri-
ority queue.

In the old days of TinyMUSH, the
command parser was one huge switch()
statement. As the command set grew,
the organization of the cases became
unwieldy and inefficient. The develop-
ers took the next logical next step—a
hash table was put in place for version
2.0.

In TinyMUSH, there are two com-
mand hash tables. The first hash table
contains commands reserved only for
connected players. The second table
contains the commands available to
both players and MUSH objects alike.
Listing 1 shows the in-game command
hash table.

When the function do_command()
receives a player’s command, the code
checks the command to see if it exists in
the command table for connected play-
ers. If the command is not in the hash
table with connected player commands,
the function do_command() calls
process_command(). The handling of play-
er commands has to be fast. The addi-
tion of the hash table to TinyMUSH
was a plus, but the developers took
another shortcut—the recognition of
single character lead-ins.

Single character leads are a group
of characters in a 256-character array,
where each character is the unique first
character of a commonly typed com-
mand or abbreviation of a command. A
command say has an abbreviation of “,
used like so:

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 39

“Hello everyone

You say “Hello everyone!”

Both say and “ exist in the com-
mand hash table, but only “ is a single-
character lead—s would make a lousy
single character lead, blocking any user-
defined commands or other built-in
commands starting with “s”. When
process_command() receives the command
buffer, the function uses the first char-
acter of that buffer as an index into the
array of single-character lead-ins, called
prefix_cmds[]. This indexing will quickly

acquire the pointer to the entry of the
command in the hash table, that is, if
the entry in prefix_cmds[] isn’t null. If
the prefix_cmds[] entry is null, the server
looks up the command in the hash table.

If the command typed did not have a
character lead-in, the server has more
work to do. It must match the player’s text
against all possibilities. Is the player typing
in a built-in command, like traversing an
exit, or triggering a $ command? And, if
the command is an exit or a $ command,
where are they—on the player, in the
room, or in the master room?

If the matching of a lead-in pro-
duces a NULL, TinyMUSH starts with
the home command, which deserves some
special treatment because it instantly
transports all players home. The game
checks the home command right after the
lead-ins because exits, matched before
commands, could redefine all the move-
ment commands, allowing the user to be
trapped.

To execute the player’s command,
the server must know the type of com-
mand. Is north an exit, or is it a local
command on a nearby vehicle to make it
go north? As exits and $ commands can
have any name, the server matches com-
mands to all the various possibilities.
The order of command matching is:
• Reserved commands for connected

players
• Common commands with unique

single-character lead-ins
• The home command
• Exits in the same room as the player
• Global exits in the master room
• Built-in commands (like say)
• Leave aliases for objects
• Enter aliases for objects
• $ commands on the player
• $ commands on nearby objects and

the location
• $ commands on objects in player’s

inventory
• $ commands on the master room and

any objects in the master room.
Because the game matches $ com-

mands last, those commands cannot
redefine anything, but players can use
exits to redefine built-in commands.

The function process_command() han-
dles the matching order of the commands
after the connected player-only com-
mands. Once the processing function is
called, the server will handle each com-
mand depending on what sort of com-
mand is entered. The server handles all
built-in commands with process_cmdent()
and exits by move_exit(). The $ com-
mands are first matched in atr_match1()
and placed on the low-priority queue for
execution after the interactive commands.

Because the MUSH built-ins are
the commands used most often, a look
into how process_cmdent() handles com-
mands is worthwhile, especially since

I M P L E M E N T I N G A M U D

40 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

typedef struct cmdentry CMDENT;
struct cmdentry {

char *cmdname;
NAMETAB *switches;
int perms;
int extra;
int callseq;
void (*handler) ();

};

NAMETAB, defined in htab.h, is a list of switches that modifies the command behavior. Rather
than sending text to an object, a message could be sent to an object’s contents with the use of
/contents on the @pemit command.

typedef struct name_table NAMETAB;
struct name_table {

char *name;
int minlen;
int perm;
int flag;

};

Example CMDENT entries from command.c:

For the command, @pemit, which sends text to an object, in the form:
@pemit <object>=<text>. The command:

@pemit The Statue=The pigeons are coming!

Would send the text, “The pigeons are coming!” to the object named “The Statue.”

{
(char *) “@pemit”,
pemit_sw,
CA_NO_GUEST | CA_NO_SLAVE,
PEMIT_PEMIT,
CS_TWO_ARG | CS_INTERP,
do_pemit

},

The switches are:

NAMETAB pemit_sw[] =
{

{(char *) “contents”, 1, CA_PUBLIC, PEMIT_CONTENTS},
{(char *) “list”, 1, CA_PUBLIC, PEMIT_LIST | SW_MULTIPLE},
{(char *) “object”, 1, CA_PUBLIC, 0},
{NULL, 0, 0, 0}

};

Listing 1. The In-Game Hash Table

the built-ins compose the core function-
ality of MUSH.

The function process_cmdent()
provides the sanity checking before
calling the command handler pointed
to in the CMDENT type. When the hash
location routine returns a pointer to the
built-in command table, the entry is of
the type CMDENT . CMDENT contains a
detailed description of a command,
including possible command switches
that alter the command behavior, per-
missions for who may invoke the com-
mand, special flags for the command
handling function, flags describing the
arguments, and a pointer to the com-
mand handling function. A hash table
of type CMDENT describes all the MUSH
built-in commands.

Before the server calls the com-
mand handler function, one last check
remains: should the command’s argu-
ments be evaluated? Evaluation will
expand the substitution characters’ func-
tional expressions in a recursive-descent
fashion. After the server decides
whether or not to evaluate the argu-
ments, TinyMUSH calls the command
handler via the function pointer in
CMDENT, handling the player’s request.

The Database Layer
Hackers treat the database layer of
TinyMUSH with more respect—even
awe—than any other part of Tiny-
MUSH. New, aspiring TinyMUSH
hackers, called mushhacks, avoid modi-
fying this section with good reason—
mess the database up and the best you
can hope for is that large sections of
your virtual world will become corrupt-
ed. At worst, one wrong move can result
in the premature end of the MUD,
mangling the database into a worthless
pattern of bits. It’s not just the program-
mer’s lost work, either—it is everyone’s.
Database corruption causes many
human years of player efforts to be lost.

Dbm makes the TinyMUSH data-
base possible. UNIX usually comes with
the dbm library, and if dbm is not pre-
sent, it is replaceable with gdbm, a pub-
licly available version of dbm by the
Free Software Foundation. Dbm is able
to maintain huge numbers of key and

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 41

void
shovechars(port)

int port;
{

[...]

while (mudstate.shutdown_flag == 0) {
get_tod(¤t_time);
last_slice = update_quotas(last_slice, current_time);

process_commands();
if (mudstate.shutdown_flag)

break;

/* test for events */

dispatch();

/* any queued robot commands waiting? */

timeout.tv_sec = que_next();
timeout.tv_usec = 0;
next_slice = msec_add(last_slice, mudconf.timeslice);
slice_timeout = timeval_sub(next_slice, current_time);

FD_ZERO(&input_set);
FD_ZERO(&output_set);

/* Listen for new connections if there are free descriptors */

if (ndescriptors < avail_descriptors) {
FD_SET(sock, &input_set);

}
/* Mark sockets that we want to test for change in status */

DESC_ITER_ALL(d) {
if (!d->input_head)

FD_SET(d->descriptor, &input_set);
if (d->output_head)

FD_SET(d->descriptor, &output_set);
}

/* Wait for something to happen */
found = select(maxd, &input_set, &output_set, (fd_set *) NULL, &timeout);
if (found < 0) {

if (errno != EINTR) {
log_perror(“NET”, “FAIL”, “checking for activity”, “select”);

}
continue;

}
/* if !found then time for robot commands */

if (!found) {
do_top(mudconf.queue_chunk);
continue;

} else {
do_top(mudconf.active_q_chunk);

}

/* Check for new connection requests */

check = CheckInput(sock);
if (check) {

newd = new_connection(sock);
if (!newd) {

check = (errno && (errno != EINTR) &&
(errno != EMFILE) &&
(errno != ENFILE));

if (check) {

Listing 2. The MUSH Main Loop Function (Continued on p. 42)

content pairs in a database, accessing a
keyed item quickly using a hash routine.

The database consists of a few files,
but the main file has the .db suffix. This
file contains the size, version, the list of
user-named attributes, and some infor-
mation for each object. The DB file
stores the following object data:
• name
• location
• exits
• contents
• attributes contained
• parent
• lock
• owner
• monetary worth
• status flags.

Sound familiar? It should—this
information is stored in the in-memory
object array of type OBJ.

The database is simply formatted

because it’s read in sequentially and
checkpointed at intervals during run
time. The part of the database contain-
ing the attribute data, sometimes called
the attribute database, is more complex.
Attribute text may exist anywhere in
the attribute file, so all reads are ran-
dom-access. The attribute database uses
dbm. The dbm database uses the
attribute and object numbers combined
for a key. The data in the dbm database
associated with the key is an offset and
length into the flat file that stores the
attribute text.

When an attribute is being refer-
enced, the server calls atr_get_raw().
MUSH creates a unique key for the
attribute and calls FETCH(). FETCH() is a
define attribute, referencing the function
cache_get(). The cache is a transparent
layer over the database. When an object
is referenced and not present in the

cache, the object is read in from disk.
During run time, the game employs

a bitmap of the file storing the attribute
text, with each bit corresponding to a
block within the file. The server uses the
bitmap to allocate and deallocate space
from the file. If an attribute being writ-
ten to the file is larger than any free area
in the file, TinyMUSH calls the func-
tion grow_bit(). grow_bit() extends the
database bitmap. Then, the game writes
the attribute to the end of the file, the
position in the attribute file, and the
length of the key into the dbm database.

Putting It All Together
TinyMUSH, like all C programs, has a
main() function where execution begins.
In main(), the server performs startup
initializations; it checks to see if a new
database is to be created, initializes
memory allocation structures, hash
tables, reads in the file of configuration
parameters, loads the database, and calls
shovechars(). The loop in shovechars() is
where the game remains until shut-
down, when the database is written out,
all file descriptors written to, and the
server exits.

Listing 2 shows the main loop of
TinyMUSH; the function shovechars()
continues until an administrator types
@shutdown, setting the shutdown flag that
terminates the game. In this loop, the
current time is important—players may
enter only so many commands per time
slice, and select() waits until the end of
the next time slice or when any network
activity occurs, whichever comes first.

Because TinyMUSH bases com-
mand quotas on time, the server
acquires the current time in the main
loop. The server uses command quotas
to limit the number of interactive com-
mands one player may execute in a peri-
od of time, called a time slice. With the
quotas updated to reflect the current
time, the MUSH server executes as
many commands as users can afford
with their quotas.

During its execution, TinyMUSH
must perform regular maintenance tasks
periodically. The database must be
checkpointed, disconnected, and float-
ing rooms identified, idle players boot-

I M P L E M E N T I N G A M U D

42 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

log_perror(“NET”, “FAIL”, NULL, “new_connection”);
}

} else {
if (newd->descriptor >= maxd)

maxd = newd->descriptor + 1;
}

}
/* Check for activity on user sockets
/* DESC_SAFEITER_ALL() is a define which steps through the player
/* descriptors, which contain the sockets.
*/

DESC_SAFEITER_ALL(d, dnext) {

/* Process input from sockets with pending input */

check = CheckInput(d->descriptor);
if (check) {

[...]

/* Process received data */

if (!process_input(d)) {
shutdownsock(d, R_SOCKDIED);
continue;

}
}
/* Process output for sockets with pending output */

check = CheckOutput(d->descriptor);
if (check) {

if (!process_output(d)) {
shutdownsock(d, R_SOCKDIED);

}
}

}
}

}

Listing 2. The MUSH Main Loop Function (Continued from p. 41)

ed, garbage objects collected and so on.
So the main loop of shovechars() calls
dispatch(). The function dispatch()
checks the time to see if any periodic
events need to be performed.

Once the game queues its com-
mands and miscellaneous events, it waits
until either network activity occurs (on
the player sockets), or the current time
slice expires with the select() function.
If there is network activity, MUSH typ-
ically processes no commands from the
queue of noninteractive commands and
processes three commands from the
queue if no network activity exists. As I
mentioned, the bias to interactive com-
mands exists to give the players first
crack at the CPU.

After select() in shovechars()
returns, two fd_sets return, informing
the server which file descriptors have
input ready and are ready to receive out-
put. These fd_sets enable the network-
ing code to handle the player connec-
tions by exception rather than polling.

At the end of the main loop in

shovechars(), the server checks the exis-
tence of pending input and output on
the player’s sockets. TinyMUSH checks
all the sockets, reading those with input
and placing commands in a linked list.
The server now writes to sockets ready
to receive pending output until they
block or until MUSH has written all
pending output to the socket. Then, the
loop begins again and repeats until a
wizard types @shutdown, ending the game.

MUDS:
Nonstop Playgrounds
MUDs are international activities, run-
ning for days or weeks at a time. The
MUSH may stop to make a stable back-
up or go down with a system crash. But
other than that, TinyMUSH, like most
MUDs, just keeps looping about, pro-
cessing commands, allowing virtual
playgrounds on the Internet to continue.

By necessity, we couldn’t discuss
many significant parts of the server,
including the operation of the in-memory
database cache, the operation of the com-

mand queues, the method of argument
evaluation, and in-game game help sys-
tems. We have also included only a small
sampling of appropriate code listings. To
access the remainder of my listings, go to
the Game Developer ftp site at
ftp://ftp.mfi.com/gdmag/src. The code to
TinyMUSH is freely available via anony-
mous ftp at caisr2.caisr.cwru.edu in the
directory /pub/mush. On the Web, try
ftp://caisr2.caisr.cwru.edu/pub/mush/. ■

Edmond L. Meinfelder works at the
Naval Research Laboratory in the Center for
Computing Science’s Research Networks
Group. He can be reached via e-mail at
edmond@cmf.nrl.navy.mil, on the Web at
http://www.nrl.navy.mil/CCS/people/edmo
nd/, or through Game Developer magazine.

Jeffrey A. Vance works for TRW. You
can contact him via e-mail at
shadow@eng.umd.edu or through Game
Developer magazine.

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 43

Real-Time
3D Modeling

R E A L - T I M E 3 D M O D E L I N G

T
he hottest new games are immer-
sive three-dimensional environ-
ments controlled by the players—
games known as real-time 3D
games. In making this type of
game, an artist must create the
three-dimensional models seen
during gameplay. This is called

real-time 3D modeling.
The best way to get a technical

handle on real-time 3D modeling is if
you understand its low-level storage
structure. In this article, we’ll explore a
3D Studio .ASC file line-by-line and
discuss it in terms of real-time 3D mod-
eling. After that, we’ll see a tutorial that
will demonstrate one of the lesser-
known areas of real-time 3D modeling:
3D sprites.

How Does it Work?
The term “real-time 3D modeling” means
building computer models of anything for
real-time three-dimensional applications.
In our case, we specifically mean games.
The term is really quite specific. Real-time
means the code computes, on the fly, the

scene players see while they are playing.
Descent, Flight Unlimited, Indycar Rac-
ing, and most virtual reality games are
examples of real-time 3D games. These
games contrast with prerendered three-
dimensional games like Myst or 7th
Guest.

Of course, games do exist that
span this division. For example, Alone
in the Dark features a real-time three-
dimensional human model walking
around in prerendered rooms. If you’ve
seen this game, the difference between
the two types of art is immediately
obvious.

Doom is also an example of a real-
time 3D game—sort of. The characters
are what I call 3D sprites—a series of small
bitmaps, which are pictures of a person
viewed from several angles. Some people
would not call the graphics used in Doom
true real-time 3D, which is usually syn-
onymous with vector-based polygonal
three-dimensional models. However, vec-
tor models and 3D sprites both represent a
three-dimensional object in a virtual
world. Because they are both gross
approximations of the three-dimensional
object they represent, I submit them both
to the skeptical reader as valid forms of
real-time 3D models.

It is true that vector models have
capabilities that 3D sprites do not. For
example, you can change the shape of a
vector model in real time. 3D sprites also
have strengths that polygon models lack,
so let’s accept each as a different way of
solving the same problem: accurately rep-
resenting an object in a real-time simulat-
ed environment. We’ll explore 3D sprites
in detail later on. For now, let’s talk about
vector models.

44 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

1. Ambient light color: Red=0.3 Green=0.3 Blue=0.3
2.
3. Named object: “Flat Square”
4. Tri-mesh, Vertices: 8 Faces: 12
5. Vertex list:
6. Vertex 0: X:1.000000 Y:1.000000 Z:1.000000
7. Vertex 1: X:-1.000000 Y:1.000000 Z:1.000000
8. Vertex 2: X:-1.000000 Y:-1.000000 Z:1.000000
9. Vertex 3: X:1.000000 Y:-1.000000 Z:1.000000
10. Face list:
11. Face 0: A:2 B:1 C:0 AB:1 BC:1 CA:1
12. Material:“Default”
13. Face 1: A:3 B:2 C:0 AB:1 BC:1 CA:1
14. Material:“Default”

Listing 1. Square.ASC

The newest games

increasingly rely on

impressively ren-

dered three-dimen-

sional graphics. Here

are some tips for

creating efficient

three-dimensional

models in real time.

Josh White

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 45

Limitations of
Real-Time Modeling
Game artists beware—real-time modeling
is very limiting compared to normal three-
dimensional modeling. If you’re working
in 3D Studio, you can experience the limi-
tations that real-time modeling imposes,
only by disabling inherent functions such
as shadows, reflections, anti-aliasing, and
all material features except small textures.
You can use only flat shading and ambient
lighting, don’t use more than 1,000 faces,
and render to 320-by-200 pixels only. No
problem? Then you’re a real-time 3D
artist!

We real-time 3D artists learn to
understand the reasons for these limita-
tions and work with (and around) them.
The limits are imposed because three-
dimensional games usually need a frame
rate between 10 and 30 frames per second
for smooth motion—at least 20 times
faster than 3D Studio renders a compara-
ble scene. Our art will actually be judged
in another dimension—smoothness. As
our model gets simpler the frame rate
improves, and the gameplay gets smoother
and better.

If we understand the basics of how
our models are rendered at run time, we
can make sure trade-off decisions benefit
the art in the game. For example, many
game architects often avoid smooth shad-
ing in favor of textured, flat shading; how-
ever, this deserves some thought.

Untextured smooth shading does
have strengths. If a model is Gouraud
shaded, you can very simply model curved
surfaces without affecting the appearance
of the model, which frees up faces to be
used elsewhere. Smooth shading also
yields excellent results on curved objects of

a single color, such as a pool cue or car
body.

So, there is a tradeoff between the
detailed surfaces provided by textured,
flat-shaded faces and the speed and
smoothness of Gouraud shading. We
need both artistic judgment and technical
knowledge to make the correct decision.

3D Studio .ASC File
Let’s get technical and explore exactly
what real-time 3D models are made of.
To be specific, we’ll assume this common
working situation. An artist supplies a
simple 3D Studio model to a program-
mer, who uses it to write or test his or her
parser program.

Listing 1 shows SQUARE.ASC,
which is about the simplest model you can
make with 3D Studio. It defines a flat
square composed of four vertices and two
triangular faces. The first line describes
the lowest lighting level possible. We’ll
deal with lighting another day; we can
safely ignore it for now.

Line 3 starts the definition of an
object. 3D Studio, in the simplest case,
stores its data by organizing objects that
contain faces and vertices.

We cannot have a vertex that does
not belong to any object. If we want a sin-
gle vertex in space, we must define a one-
vertex object. For object-oriented pro-
grammers, this structure should make
sense, and similar structures are used in
many three-dimensional engines. (The
terms “three-dimensional engine” or
“graphics engine” refer to the basic code
that takes a three-dimensional model and
renders it in real-time. It is separated from
the rest of the game code, for example
physics simulation, scoring, and so on.)

3D Studio objects may optionally
contain other data, such as hierarchy rela-
tionships between objects (parent/child)
and animation path information, but our
example does not.

Line 4 summarizes the object that
follows, describing what kind of object it
is (trimesh) and its basic size.

Lines 5 through 9 show a group of
X, Y, and Z coordinates defining the
three-dimensional points (vertices) in
space. These vertex definitions can include
optional information such as UV coordi-
nates, but our example does not.

Lines 10 through 14 define a finite
planar triangular surface known as a face.
It is defined by referencing the vertex
numbers (A:2 B:1 C:0). Several faces can
reference the same vertex, which is called

“vertex sharing.” This is common in 3D
Studio files and real-time three-dimen-
sional files alike. The faces have other
important data such as textures or
smoothing information, but all we care
about for now is the vertex references and
the material name.

Each face is followed by a text name
that describes a 3D Studio “material.”
This is a reference to a set of colors, tex-
ture maps, and other attributes that 3D
Studio uses to render a surface. Most of
the fancier settings (for example, bump
mapping, specular highlight mapping, and
so on) are not possible in real-time games,
so most developers only parse the texture
map name and settings, the basic color
values, and perhaps the opacity mapping
(similar to alpha channel support).

That’s it! If this information is sup-
ported by the programmers’ code, the
simplest real-time three-dimensional
models can be read in.

So what?
In the .ASC file, the key is the basic

structure of a vertex list followed by a face
list that refers back to the vertices. Unlike
other three-dimensional structures such as
the crude 3DFACE entity found in .DXF
files, a 3D Studio face cannot exist with-
out vertices to connect to. This is a good
thing for real-time games because the
simple, small data structure allows niceties
like easy real-time manipulation of models
(that is, three-dimensional morphing).
You simply move the vertices, and the
faces follow automatically.

The downside is that 3D Studio does
have some annoying limits in its data
structures, mainly that it supports only tri-
angular faces. Many game developers find
that four-sided faces are a good solution to

many problems, including convenient sur-
faces to texture and even more efficient
storage of models.

Now, let’s explore another kind of
three-dimensional modeling—3D Sprites.

3D Sprites Tutorial
A 3D sprite is made of a series of pictures
of the same object from different viewing
angles. 3D sprites are a powerful tech-
nique for representing objects that are dif-
ficult to build with polygons, such as
human figures, clouds, or fire. Using
detailed source art (even small pho-
tographs) lets you portray convincing
detail without slowing the game down
with lots of polygons.

The bad news has to do with memo-
ry: The many bitmaps that compose the
3D sprite eat up RAM very quickly. Thus
the number of bitmaps are usually under
very strict budgets, limiting the smooth-
ness of motion. Also, animating a 3D
sprite takes up even more memory. Mem-
ory use is our main limitation, so this
tutorial will concentrate on ways to reduce
memory use in 3D sprites. We can make a
3D sprite by using the following five steps:
• Get a source
• Figure the number of frames consider-

ing range and symmetry

R E A L - T I M E 3 D M O D E L I N G

46 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

O
ne common question that developers ask is, “Why doesn’t 3D Studio support
four-sided faces?” There are some problems with four-sided faces (known as
“quads”) compared to three-sided faces (triangles). The most common problem,
warping, occurs when the four corner vertices do not lie on the same plane. It is
very hard for an artist to avoid making warped quads when creating a complex,

organic shape. Programmers know warping results in inaccurate normals, which cause
many problems. For example, the warped quad will disappear when viewed edge-on.

Another problem unique to quads is an invalid shape such as a bow tie. These degenerate
shapes often occur when a model is deformed in real time, though they can be created by
accident (especially by ex-3D Studio modelers who are not used to quads).

USING QUADS WITH 3D STUDIO
If quads are supported, a simple, effective solution is to incorporate a “face combiner”
feature in the three-dimensional file parser. This code searches for coplanar triangular
faces that share two vertices and combines pairs of them into quads.

If more than two faces could be combined, the parser must make a decision. Some parsers
decide randomly; others use the “edge visibility” settings stored in 3D Studio files to
determine which pairs of faces to combine. This allows the artist to set the divisions
inside 3D Studio using Modify/Edge/Visible in the 3D Editor.

W H E R E A R E T H E Q U A D S ?

We assume a spheric camera range with 16 points around the equator and eight levels
from pole to pole, yielding 128 frames maximum:

Description Frames RAM

Original sprite (complete sphere) 128 524K
Limit camera range (half sphere) 64 262K
One plane of symmetry (quarter sphere) 32 131K

Table 1. 3D Memory Use Table

• Set the camera angles and make the
camera position list

• Automate the rendering and render the
frames

• Hand off the sprite.

Get A Source
To make a 3D sprite, we start with a
three-dimensional source. In theory, this
can be a real-world object, like a sports car
or a person. However, the source is usually
a normal three-dimensional computer
model intended for standard rendering.
This model will never be imported into
the game directly, so its polygon count
and other limitations don’t apply. For this
tutorial, we’ll use a three-dimensional
model of a Porsche 911.

Decide the Camera Range
Next, we must decide from which possible
positions the sprite could be seen during
game play. To accomplish this, imagine
that our Porsche is enclosed in a sphere,

the surface of which is
called the camera
range. Each point on
the camera range repre-
sents a possible posi-
tion of the player view-
ing the car, and each
view is called a frame.
Figure 1 shows the
camera range on our
source model, the
Porsche.

Can our Porsche
be seen from any direc-
tion (that is, any point
on the camera range)?
In the worst case, such
as an enemy plane in a
flight simulator, it will,
but in most cases, some
areas can be eliminated.
This is good because
the less we can see, the
more frames we can use

to show the rest of the model.
For example, if the car is placed in a

open (but inaccessible) garage, the garage
blocks the viewer from ever seeing the
back of the car. We don’t have to store
any frames that show the back, because it
can’t be seen during the game. This leaves
us with just half (or less) of the camera
range we had.

Use Planes of Symmetry
Our car has a plane of symmetry, that is,
one half is a mirror image of the other
half. By writing game code that mirrors
the frames at run time, the game can sim-
ulate both sides of a symmetrical object.

If our object is radially symmetrical,
like a glass bottle, we can reduce our frame
count even further. We only need one
viewing angle in the horizontal direction,
decreasing our camera range drastically.
Of course, this won’t work for our car.
With its plane of symmetry, our camera
range is now a quarter-sphere.

Figure the Number of Frames
Next, we must decide how many frames of
our sprite will be available within the
game. This depends on the available
RAM, the size of the bitmap, the color

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 47

Figure 1. The Camera Range

1. Ambient light color: Red=0.0 Green=0.0 Blue=0.0
2.
3. Named object: “CamPPositon”
4. Tri-mesh, Vertices: 30 Faces: 0
5. Vertex list:
6. Vertex 0: X: 0.001081 Y: 0.002534 Z: 0.994797
7. Vertex 1: X: -0.155636 Y: -0.268908 Z: 0.944466
8. Vertex 2: X: -0.296596 Y: -0.513057 Z: 0.798534
9. Vertex 3: X: -0.407624 Y: -0.705364 Z: 0.571674
10. Vertex 4: X: -0.477557 Y: -0.826492 Z: 0.286697
11. Vertex 5: X: -0.499364 Y: -0.864262 Z: -0.007422
12. Vertex 6: X: 0.0013 Y: 0.002534 Z: 0.944466
13. Vertex 7: X: -0.155636 Y: 0.273977 Z: 0.944466
14. Vertex 8: X: -0.296596 Y: 0.518126 Z: 0.798533
15. Vertex 9: X: -0.407624 Y: 0.710432 Z: 0.571674
16. Vertex 10: X: -0.477557 Y: 0.83156 Z: 0.286696
17. Vertex 11: X: -0.499364 Y: 0.86933 Z: -0.007422
18. Vertex 12: X: 0.001286 Y: -0.298214 Z: 0.932635
19. Vertex 13: X: 0.001274 Y: -0.610524 Z: 0.783235
20. Vertex 14: X: 0.001266 Y: -0.885267 Z: 0.455405
21. Vertex 15: X: 0.001258 Y: -0.992485 Z: -0.007423
22. Vertex 16: X: 0.001286 Y: 0.303283 Z: 0.932634
23. Vertex 17: X: 0.001274 Y: 0.615592 Z: 0.783235
24. Vertex 18: X: 0.001266 Y: 0.890335 Z: 0.455405
25. Vertex 19: X: 0.001258 Y: 0.997552 Z: -0.007424
26. Vertex 20: X: -0.346193 Y: 0.002534 Z: 0.932634
27. Vertex 21: X: -0.557221 Y: 0.261643 Z: 0.783235
28. Vertex 22: X: -0.557221 Y: -0.256575 Z: 0.783235
29. Vertex 23: X: -0.753137 Y: 0.47179 Z: 0.455405
30. Vertex 24: X: -0.852744 Y: 0.002534 Z: 0.516384
31. Vertex 25: X: -0.753137 Y: -0.466722 Z: 0.455405
32. Vertex 26: X: -0.80824 Y: 0.590785 Z: -0.007424
33. Vertex 27: X: -0.977282 Y: 0.210601 Z: -0.007424
34. Vertex 28: X: -0.977282 Y: -0.205533 Z: -0.007424
35. Vertex 29: X: -0.80824 Y: -0.585717 Z: -0.007423

Listing 2. Camera Position List: CAMPPOS.ASC

depth, and the compression (if any) of the
bitmap in memory.

For our example, let’s say we will
have 128K of memory available for this
sprite, bitmaps will not be compressed,
and our game will use 8-bit color. Table 1
shows a 3D sprite memory use table. This
gives us 30 bitmaps of 64-by-64 pixels. If
the programmers don’t know how much
memory will be available for this object,
don’t render the sprites until the coding is

farther along and the mem-
ory resources are more
defined.

Set the
Camera Angles
Once we know how many
frames we can use, we must
decide which angle they
will show; that is, which 30
viewing directions in the
camera range are most
important? Figures 2a and
2b show the camera posi-
tions on a sphere (top and
side views). The obvious
starting point is a simple
latitude and longitude grid
over the quarter sphere, but
there are other factors to
consider:

The latitude and lon-
gitude distribution is not
ideal because the points are
closer to the poles. A better
starting point would be a
geodesic sphere. This soc-
cer-ball-type arrangement
distributes the points evenly
over the surface of the
sphere.

The most likely view-
ing angles should have
more frames because we
prefer the model to move
smoothly when it is seen
most often.

A complete coverage
is also important. If we
completely leave out large
areas of the camera’s range,
the model will appear to
jump when viewed from
those areas.

The shape and appearance of the
model must be considered. If our object
was a lollipop, we would use fewer frames
in which the stick wasn’t visible because
jerky motion would be less noticeable with
the stick absent.

Here’s how to create the camera
locations using 3D Studio. (Before
actually doing this, set the coordinate
labels correctly). When 3D Studio cre-
ates .DXF files—and .ASC files, too—

the Y and Z coordinates are swapped by
default. You can fix this by setting the
coordinate labels in the 3DS.SET file
as follows. (Remember to save the old
settings!):

H-LABEL = Z

W-LABEL = X

D-LABEL = Y

After you’ve reset the settings, follow
these steps:
1. Use Create/GSphere/Faceted to create

a geodesic sphere around your object.
The “Values” setting should be set to
196 faces, yielding 30 points on a quar-
ter-sphere. The exact number of faces
you want will vary (when in doubt,
choose more). The sphere should have
a radius of 1 and be centered at 0,0,0.
Choose an appropriate name like CAM-
POSITION.

2. Erase the faces of the sphere that are
totally outside your camera range; that
is, three-quarters of the sphere. Erase
the isolated vertices.

3. Choose Modify/Object/Attributes to
check how many vertices remain. If the
number of vertices is less than your tar-
get amount, you must use a GSphere
with more vertices in Step 1. Other-
wise, use Modify/Vertex/Delete to
erase the extras that are farthest from
your camera range.

4. Move the vertices into the camera
locations you’ve chosen. Use Modi-
fy/Axis/Place to set the axis in the
center of the sphere and use Modi-
fy/Vertex/Rotate to move the ver-
tices. Using a rotation around the
center of the sphere will keep the
vertices on the sphere’s surface. If
you use other editing commands and
accidentally move the vertices off the
surface, create a second sphere
(repeat Step 1), freeze it, and com-
pare your distorted vertices to its cor-
rect surface.

5. Select the object and save it to a .3DS
file (in the File menu, choose Save
Selected). Load that 3DS file.

6. Delete all the faces in the object, keep-
ing the isolated vertices.

This is your model of the camera
positions.

R E A L - T I M E 3 D M O D E L I N G

48 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 2a. Top View on a Sphere

Figure 2b. Side View on a Sphere

Make the
Camera Position List
Depending on what we plan to do with
the camera position list, we will save it as a
.3DS , .ASC, or .DXF file. We’ll have to
know more about how the rendering
engine incorporates sprites before we
decide, but somehow we have to provide
this list. The rendering engine will use the
list to determine which frame to show
when the player is able to see the sprite.

For the simplest format, save your
information as an .ASC file, then open
the file in a normal text editor. The list of
vertices that follow the object name is your
camera position list. They should look
something like the CAMPOS.ASC file
listing, shown in Listing 2.

Automate the Rendering
The next step is to render each frame from
each camera position. We could simply
create a camera at each location and ren-
der it, but there’s a tricky, handy way to
automate this. The idea is to create a sin-
gle camera that jumps from point to point
in the Keyframer. Follow these steps:
1. Save your original file as a .DXF file

with one layer.
2. Fix the .DXF file. Listing 3 shows the

CAMPOSE.DXF file.
When you save a .DXF file from the
3D Editor, 3D Studio cannot import it
as a path because it assumes you’re sav-
ing a surface, not a line. Here’s how to
get around this problem:

1. Open the .DXF file in a text
editor. Search for ENTITIES. Look
on the screen for POLYLINE, a few
lines down.
2. Move down to the line that has
70 all by itself (about five lines
down from POLYLINE).
3. The number on the next line
after 70 should be 8, not 64.
Change this number, save, and exit.

3. Create a camera, go to the Keyframer,
and set the number of animation
frames (animation length) to one more
than the number of camera positions
you have.

4. Choose Paths/Get/Disk. In the file
dialog box, choose the .DXF file you
just saved. In the next dialog box, make
the camera move to the path start, and

do not allow the keys to be adjusted for
constant speed.

5. Choose Paths/Show-Hide and click on
the camera to see the path. The camera
will now have a path with a keyframe
for each position in the list.

6. Check to see that the last two anima-
tion frames are the same camera posi-
tion; if so, reduce the animation length
by one. If they are not, there may be
more camera positions that are not
shown. Increase the animation length
and reload the path.

Render the Frames
Once the camera is set up, we render the
images, saving each one to a separate file.
When rendering, we will have to deal with
the following problems:
• Backgrounds. The object must be isolat-

ed from its background during render-
ing. Using alpha channel is ideal but is
not often supported in real-time games.
If alpha channel is unavailable, set the
background color to an RGB value that
will not appear in the rendered object.
This is the easiest way for graphics
engines to separate the sprite from its
background.

• Perspective. We have to choose a com-
promised perspective angle (“fish-eye
vs. zoom” camera setting) when we
render because the perspective doesn’t
change during gameplay. Base the
amount of perspective on how the
object will be most commonly viewed.
Generally, err on the side of less per-
spective.

• Rendering Size. The goal is to make full
use of the final 64-by-64-pixel frame.

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 49

[Lines omitted: The first 147 lines are
the “header” section and are not used by
3DS; in fact, they can be deleted.]

0
SECTION
2
ENTITIES
0
POLYLINE
8
CAMPOSITON
66
1
70
8
71
30
72
0
0
VERTEX
8
CAMPOSITON
10
0.001081
20
0.002534
30
0.994763
70
192
0
VERTEX
8
CAMPOSITON
10
-0.155636
20
-0.268908
30
0.944432
70
192

[Lines omitted: The “0 | VERTEX ...”
block repeats for each of the 30 vertices.
]

0
VERTEX
8
CAMPOSITON
10
-0.296596
20
-0.513057
30
0.798500
70
192
0
VERTEX
8
CAMPOSITON
10
-0.808240
20
-0.585717

30
-0.007457
70
192
0
SEQEND
8
CAMPOSITON
0
ENDSEC
0
EOF

Listing 3. CAMPOS.DXF

Minimize empty space by spending
time with the field-of-view camera set-
ting, carefully getting as many frames as
possible to completely fill the rendered
bitmap. Usually, it is necessary to use
the same camera settings for all frames;
otherwise, the sprite will appear to grow
or shrink during gameplay. Because
many frames will inevitably have large
areas of background, it will pay to store
the frames using some simple compres-
sion algorithm like RLE memory.

• Lighting and Effects. There aren’t any
real limits here, but lighting will
appear to be symmetrical if we are tak-
ing advantage of planes of symmetry.
For example, if we put a blue spotlight
on the left side of the model and we
use a plane of symmetry, blue lights
will appear on both sides of the model
when it’s in the game. This also
applies to shadows and other effects.

• Redundant Frames. If we can’t see a dif-
ference between any two frames, one of
the frames is redundant and unneces-

sary, even if the frames were rendered
from very different angles. We can have
the two different viewing angles refer-
ence the same bitmap, which saves
memory.

Hand Off the 3D Sprite
Once we’ve rendered, all that remains is
for us to check all the files for errors and
give them, with the camera position list
file, to the programmers. This is all the
material they need to integrate the 3D
sprite into the game. Figure 3 shows our
first rendered frame.

Real-Time Art—It’s Great!
Let’s end with something for the artiste in
all of us. As creative developers, especially
artists, the limits of real-time three-
dimensional modeling are a stiff price to
pay, but what we get is the freedom of a
whole new medium. Our art is not locked
onto a camera path or frozen into a single
frame.

The players are free to explore our art
like kids on a playground—crawl around
under it, fly over it, or bump along with
their virtual noses pressed against it. It’s
truly the next step in computer art, and
well worth learning. ■

Josh White is a partner in Vector
Graphics, building real-time three-dimen-
sional models for game and virtual reality
developers. He can be reached via e-mail
at vectorg@crl.com or through Game
Developer magazine. Josh is a frequent
poster on rec.games.programmers and
comp.graphics.packages.3dstudio, so look
out for him there.

R E A L - T I M E 3 D M O D E L I N G

50 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Figure 3. A Fully Rendered Frame

I
n this article, I refer specifically to AutoDesk’s modeling software 3D Studio
because it is commonly used to build real-time models. Many other significant
modelers—for example, Caligari TrueSpace—also support 3D Studio’s file for-
mats. I mention this because it is only fair to point out that there are other model-
ers you can use.

WHY .ASC?
3D Studio allows many types of three-dimensional file formats to be saved, such as .PPRJ,
.DXF, .ASC, and .3DS. This article explores the .ASC format, simply because it is stored as a
text file and is the most self-explanatory. Many programmers support the binary .3DS for-
mat instead, but it’s beyond the scope of this article.

WRITING 3D STUDIO FILE PARSERS
If you want to write code that reads or writes the .3DS files that 3D Studio generates, the
.3DS file format is documented in AutoDesk’s 3D Studio R3 File Toolkit, and the author,
Grant Blaha, usually answers questions on the free 3D Studio e-mail list at
majordomo@autodesk.com.

FREE INFORMATION
Documentation on file formats, including 3D Studio, is also available via ftp on avalon.chi-
nalake.navy.mil and on the ftp site for game programmers, x2ftp.oulu.fi.
To learn more about 3D Studio from other users:
• Send e-mail to majordomo@autodesk.com with the subject “subscribe 3dstudio.” To

unsubscribe, e-mail majordomo@autodesk.com with the subject line “unsubscribe
3dstudio.” Don’t write the list alias itself; this will annoy the natives.

• Check out the USENET newsgroup alt.3d.studio if you can. This is better than subscrib-
ing via majordomo@autodesk.com because you don’t get bombarded by e-mails
whether you want them or not.

W H Y 3 D S T U D I O ?

O
n the Chopping Block this
month is Rise of the Triad by
Apogee Software. Rise of the
Triad is a scrolling, first-per-
son perspective three-dimen-
sional action game. The fast
action constantly challenges
your reflexes. Triad has a high

entertainment factor as well. You’ll
come up against clever devices and haz-
ards such as fire chutes and jets that can
burn you to a crisp, poison gas jets that
can be triggered by opening doors or
throwing a wall switch, rotating blades
that appear out of the floor or ceiling,
and movable walls that can crush you
against another wall.

The use of features such as jump
pads that propel your character into the
air to grab suspended objects and Gravi-
tational Anomaly Disks that move up
and down or travel over the ground in

predefined pathways adds an extra level
of creativity and originality. I found some
elements of the game such as the “Dog
Mode” power-up (as opposed to “God
Mode”) very amusing. And we mustn’t
overlook the Violence Level adjustment
for tailoring the blood-and-guts graphics.

The primary Triad executable,
ROTT.EXE, is a little over 1MB. Triad
was written with the Watcom C/C++
Run-Time system. The game runs in
protected mode using the DOS4GW
DPMI system by Rational Systems. The
engine contains a large number of sys-
tem diagnostics and error detection rou-
tines, which are especially useful when
you’re designing new game levels.

How Does it
Look and Sound?
The graphics techniques used in creat-
ing the Triad environment are very

Rise of
the Triad

The world within Rise

of the Triad is largely

possible thanks to

innovative ray-casting

techniques. Wayne

Sikes looks at Apogee‘s

use of masked walls,

floor sound tiles, and

columnar storage of

image data.

Wayne Sikes

C H O P P I N G B L O C K

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 53

Apogee has upped the ante on Rise of the Triad’s ray-casting engine, which was originally
intended for Wolfenstein 2.

interesting. The Triad world is rendered
with a ray-casting algorithm that uses a
90° field of view. Do not assume that
this is just another run-of-the-mill ray-
casting engine. Apogee has upped the
ante on ray casters with its Triad engine.
Originally, Apogee projected this engine
for use in Wolfenstein 2. Later, the
company refined it into the Triad game
engine. In fact, many of the graphic
images in Rise of the Triad were origi-
nally intended for Wolfenstein 2.

Further rendering on Triad is
achieved using 320-by-200-pixel graph-
ics in Mode X. (Many game engines that
originally rendered their graphics using
320-by-200-pixel Mode 13h are now
switching to Mode X.) Triad’s develop-
ers optimized the ray caster for speed
and used well-developed methods for
achieving high frame rates while keeping
the graphics clean.

For example, consider the case of
masked walls—walls you can see
through. These walls may be actual walls
containing glass windows or gratings you
can look through or they may take the
form of physical barriers such as picket
fences. Older ray casters rendered these
walls using two separate castings. The
first casting would locate and render the
wall farthest away from the viewpoint,
and the next casting would locate and
render the masked wall on top of the
wall rendered with the first cast. You
could then look through a transparent
area in the closest wall and see the back-
ground wall.

This method demands a large
chunk of system time and achieves mar-
ginal frame rates. The Triad ray caster
renders masked walls as “patches” placed
on top of background walls or other
objects. Essentially, only one ray cast is
done, the background is rendered, and
finally the masked wall is scaled, rotated,
and drawn to fit on top of everything
else. The patch looks great and can be
done quickly.

Another feature of the ray caster
Triad uses is its ability to draw walls of
varying heights. Older ray casters gener-
ated environments that had a very blocky
appearance. The variable-height envi-
ronment of the Triad world makes it

appear much more realistic. Each Triad
game map contains height information
that instructs the engine to render the
world using one of 16 possible heights.

The sky background is another area
where the engine really shines. Rather
than simply drawing background sky and
ground or floor textures followed by the
ray caster overlaying its data on top, the
Triad engine draws the sky as a series of
image tiles. Areas of visible sky are tiled
into the Triad world. Using the player’s
current viewing angle and altitude, the

engine renders the appropriate piece of
the sky area. The end result is a realistic
sky background that required only a
small amount of system time to generate.

Because the sky background repre-
sents the boundary of the Triad world,
some interesting effects can be designed
into the game’s maps. For example,
because the Triad world ends at the edge
of the floor or ground map tiles, you can
fall off the edge of the world when you
intentionally (or accidentally) step off a
floor tile.

C H O P P I N G B L O C K

54 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

// Header structure.
typedef struct
{

char identification[4];
long numlumps;
long infotableofs;

} WADHEADER, *PWADHEADER;

// Directory structure.
typedef struct
{

long filepos;
long size;
char name[8];

} LUMPS, *PLUMPS;

// Masked object (actors and sprites) structure.
typedef struct
{

short origsize; // the orig size of “grabbed” gfx
short width; // bounding box size
short height;
short leftoffset; // pixels to the left of origin
short topoffset; // pixels above the origin
short collumnofs[320]; // only [width] used, the [0] is

// &collumnofs[width]
} PATCH, *PPATCH;

// Transparent object structure.
typedef struct
{

short origsize; // the orig size of “grabbed” gfx
short width; // bounding box size
short height;
short leftoffset; // pixels to the left of origin
short topoffset; // pixels above the origin
short translevel;
short collumnofs[320]; // only [width] used, the [0] is

// &collumnofs[width]
} TRANSPATCH, *PTRANSPATCH;

// Structure used for floor and ceiling data.
typedef struct
{

short Width,Height;
short Orgx,Orgy;

} FLOORCEILING, *PFLOORCEILING;

Note: These structure examples are given in the Official ROTT Specifications file, ROTSP1, by
Apogee Software.

Listing 1. WAD File Structures

The tiles used for mapping player
floor area are one of the more interesting
aspects of Triad levels. How can floors
be interesting you ask? Some grid-based
games delegate floor space by assuming
that all area enclosed by walls is floor
space. In Triad, the floor space is specifi-
cally marked with floor tiles. These tiles
are not images or floor textures; instead,
they are referred to as “floor sound tiles.”
The engine uses the values of the floor
tiles to determine how to distribute the
various game sounds. For example, if
you’re standing on a floor tile that has
the same value as the tile under a hazard
such as a fire chute, you will hear the
sound made by the fire chute. Alterna-
tively, if you’re on a floor tile that is dif-
ferent from that under the hazard, you
will not hear the hazard. You can cre-
atively exploit this feature when design-
ing maps.

Primary Data Storage
Most of the graphic and sound data is
stored in DARKWAR.WAD. This file
is about 14.6MB and has the same for-
mat as the Id Software WAD file used
in Doom. Listing 1 shows example code
for several WAD file structures. (The
structures in Listing 1 are contained in
Apogee’s Official ROTT Specs file,
ROTSP1. You can find this file on
CompuServe in the 3-D Action Games
library of the Action Games forum (GO
ACTION). I included the patch, trans-
parent patch, and floor and ceiling struc-
tures just in case you want to look at
these objects while examining the WAD
file. The data in DARKWAR.WAD is
grouped according to type. For example,
most of the wall data is stored between
the WALLSTRT and WALLSTOP
directory entries.

Most of the graphic data in Triad is
stored using a particularly interesting
method. The Triad bitmap data is stored
in columnar format. Most drawing pro-
grams usually store their image files
using formats such as PCX. The bitmap
data is stored in row x column format.
This is not the best storage format for
rendering images in ray-cast environ-
ments, because ray-cast data is rendered
as a sequence of vertical lines. When

storing data in its final WAD format,
Apogee converts the row x column
bitmap data into column x row format,
which speeds the rendering process.

Map Fundamentals
Triad map files have either an RTL or
RTC suffix. RTL files are used mainly
for single-player games, and RTC files
are designed for ROTT Comm-bat
(multiplayer) games. The primary differ-
ence between these two files is that the
RTC files contain no computer-generat-
ed enemies or exits.

Both map file types have the same
internal format: an 8-byte version struc-
ture, a block of 100 map header struc-
tures that contain (among other things)
the size and location of the map data,
and the map data stored in compressed
Run Length Encoded (RLE) format.
Listing 2 gives version and header struc-
tures for Triad map files. (The structures
given in Listing 2 are contained in
Apogee’s Official ROTT Specs file,
ROTSP1.)

The VERSION structure contains the
file’s RTL or RTC signature plus the file
format version specification. Each map

file contains 100 RTLMAP structures with
each structure corresponding to a stored
map. The Used variable indicates whether
or not a map is stored in this map slot.
RLEWtag is the encoding tag used for
compressing and decompressing the map
data. The Planestart and Planelength
arrays contain the offset positions and
lengths of the map data.

When uncompressed, each Triad
map consists of three planes of data.
Each plane is an array of 128-by-128,
16-bit words. At first glance, the map
data format is somewhat confusing. It’s
easiest to view the map as a grid of 128-
by-128 map cells. (I use the reference to
Triad map “cells” because most of us are
familiar with spreadsheet programs that
have their data in cells.) A map cell is
composed of three values—one value
from each of the three map planes. Each
plane contains unique data, and we can
label the planes as the Wall Plane, the
Sprite Plane, and the Info Plane to help
simplify this concept even more.

The Wall Plane contains (as you
probably already deduced) the data for
the vertical walls. Triad walls also consist
of objects such as wall switches, doors,

C H O P P I N G B L O C K

56 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

#define NUMPLANES 3
#define ALLOCATEDLEVELNAMELENGTH 24
#define WALL_PLANE 0
#define SPRITE_PLANE 1
#define INFO_PLANE 2

// Version structure.
typedef struct

{
char Signature[4];
unsigned long Version;
} VERSION, *PVERSION;

// Header structure. There are 100 of these in each file.
typedef struct

{
unsigned long Used;
unsigned long CRC;
unsigned long RLEWtag;
unsigned long MapSpecials;
unsigned long Planestart[NUMPLANES];
unsigned long Planelength[NUMPLANES];
char Name[ALLOCATEDLEVELNAMELENGTH];
} RTLMAP, *PRTLMAP;

Note: These structure examples are given in the Official ROTT Specifications file, ROTSP1, by
Apogee Software.

Listing 1. Map File Structures

transparent windows (you can shoot the
glass out), gratings, fences, and arch-
ways. For mapping purposes, the Wall
Plane also contains the floor sound tiles.

The Sprite Plane holds most of the
visible objects in the game such as enemy
players, light fixtures, power-up objects
that give you health, hazards such as
rotating blades and knives that periodi-
cally cycle in and out of the floor or ceil-
ing, jump pads, boxes, and trees. Path
information is also stored in this plane
and is used for controlling the movement
of game-generated enemies and walls
that can be moved or pushed.

The Info Plane provides a very ver-
satile method for storing height, song,
X and Y coordinates, exit, and minute
and second time data. For example,
some game objects can have height
above the player floor level. To specify
an object’s height, the object is loaded
into the Sprite Plane, and its height is
stored in the Info Plane. In another
example, you can control many game
objects using wall switches. To program

a door that is controlled by a switch, the
door object is placed in the Wall Plane,
and the X and Y coordinates of the
controlling wall switch are placed in the
door’s Info Plane. Special data such as
sky tiling are also stored in the Info
Plane.

Want To Design
Your Own Maps?
Triad map data can be very tedious to
edit by hand, plus you can easily make
many mistakes (as I found out). I found
the Triad maps interesting enough
(and fun enough) to warrant writing a
map utility that edits existing maps and
also lets you create new ones. The edi-
tor, ROTTED, is a full-featured, easy-
to-use Windows system that edits
Triad maps using a simple image tiling
system. (The attractive image tiles were
provided by Apogee Software.) You
can find ROTTED.ZIP on Com-
puServe in the 3-D Action Games
library of the Action Games forum
(GO ACTION).

Not Another
Doom Wannabe
Many Doom clones have appeared in
recent months, but Triad isn’t one of
them. It has enough outstanding features
to be in a category by itself. The ray-cast-
ing engine is unique, the game world con-
tains several hundred creative objects and
actors, and the mapping system is one of
the most flexible that I have seen. The
Apogee “Developers Of Incredible Power”
are definitely living up to their name! ■

Wayne Sikes has been a computer
hardware and software engineer for the last
12 years. He has an extensive background
in C, C++, and assembly language pro-
gramming. He also has several years experi-
ence as a computer systems intelligence ana-
lyst, a field in which he specialized in deci-
phering and disassembling computer code
while working on classified government
projects. He has written numerous computer
gaming help utilities. You can reach him via
e-mail at 70733.1562@compuserve.com or
through Game Developer magazine.

C H O P P I N G B L O C K

58 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

T
here is something intrinsically
convincing about a three-
dimensional rendering. Even
when an extremely photoreal-
istic effect has not been
attempted, the visual cues
inherent to three-dimensional
art still manage to satisfy the

subconscious in some basic way. For
the artist, a good three-dimensional
design package can facilitate the real-
ization of creative vision and remove
barriers to expression, imbuing even
fantastic images or effects with uncan-
ny authenticity.

I enjoy working in three dimen-
sions because it allows me to flex differ-
ent creative muscles than “working flat.”
When I’m working in the three-dimen-
sional environment, my role is more
akin to that of sculptor, lighting and set
designer, costumer, makeup effects
artist, and puppeteer all rolled into one.
However, beyond the challenges of

these various roles and the challenge of
mastering the modeling and rendering
software itself, three-dimensional
design presents the artist with another
more insidious challenge: maintaining
an identity.

Convincingly solid though the
images may be, and despite the possi-
bilities of numerous special effects,
many three-dimensional images can
tend to display a certain homogeneity. I
do not imply that creativity and talent
are in less demand when you use this
medium, nor do I suggest that these
qualities are less evident in a three-
dimensional rendering.

Too often what is lacking, howev-
er, is what we might call evidence of the
artist’s hand. In a two-dimensional
work, the personality of the artist
resides closer to the surface; even when
the computer is used to create the
image, a less digital gimmickry exists
between concept and product. When

Make
Your Mark

When you first studied

art, were you using a

computer? Probably

not. Here are some

tools that let three-

dimensional artists

get back to their roots

and apply many

traditional techniques

electronically.

David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 61

Handcrafted character is a mouse click away. It took less than a minute to transform a ray-
traced truSpace image into an impressionistic painting using the Auto Van Gogh feature in
Fractal Design’s Painter 3. An essentially infinite array of tools and user-defined settings let
you make subtle or sweeping changes automatically or one brush stroke at a time, to imitate
all sorts of natural media materials and surfaces.

depth is created not by a sophisticated
algorithm but by the mind, eye, and
hand of the artist, that is a small sort of
magic. In many cases, an artist’s sketch-
book will contain more of the unique
flair and flavor of that artist than the
final texture-mapped, light-sourced,
fully rendered image or animation.

The blurring of individual style that
is, not infrequently, a by-product of
three-dimensional art can even be
viewed as advantageous. When several
artists contribute to a game’s graphics,
the unintentional homogenizing effect of
three-dimensional rendering can work to
lend a uniformity of appearance to the
final whole. Yet while it may be desirable
for the different graphic elements of
your game to have constancy, it is less
than desirable for that game to look like
everyone else’s game. Distinctive graph-
ics can be one of the first hooks to
attract a game buyer to your title.

Three-dimensional modeling and
rendering tools should not be viewed as
a shortcut or a high-tech trick, but as
one more medium that we as artists
must work to make the most of. The
novelty has been worn thin enough that
we—and the game-buying public—can
begin to see beyond the superficial grati-
fication provided by shadowmaps and
perfect specular highlights and now
want more. Merely using three-dimen-
sional tools to render title screens, cut
scenes, backgrounds, sprites, or any
other game element is not in itself going
to score anyone a lot of points.

The coming generation of fast-
twitch, real-time-rendered-on-the-fly,
three-dimensional games will still be
buoyed by the “Gee whiz” factor. But
prerendered three-dimensional material
is no longer news and viewers will look
at it with an increasingly jaded eye as
the inevitable “Ho-hum” factor sets in.
As artists, we must continually strive to
keep the visual elements of our games—
from title sequence to gameplay and
everything in between—as distinctive
and compelling as we know how.

Using What We Know
Before coming to the computer, most of
us had our artistic roots in drawing and

painting on paper or canvas. For me,
those experiences—and the years spent
developing my own approach to that
work—remain one of the cornerstones
of my artistic sensibility and continue to
influence my work in digital media
today. If you’re interested in translating
the hands-on quality and distinctive
personal style of natural media to the
digital medium, then you’ll want to take
a look at Painter. In its third release,
Painter, from Fractal Design, brings to
the computer screen a staggering array
of effects amazingly similar to those cre-
ated with traditional art materials like
pen and ink, airbrush, watercolor, or
even glossy, gloppy impasto oils.

Primarily an illustration package,
Painter—with your help—can create
stunning images that are all the more
amazing because they look for all the
world like they were created not on the
computer but at an easel. The range of
possibilities is essentially limitless, with
so many variables provided to affect the
look of an image that you will while
away countless happy hours experiment-
ing with different techniques and still
discover new surprises—surprises you
can then pass on to the players of your
game.

In Painter, you work with “brush-
es” of user-defined shape and size, even
allowing control over the action of the
virtual bristles—with settings for thick-
ness, clumpiness, and hair scale. You are
also able to control the action of the
brush stroke, which can be predefined to
be made up of smaller multiple strokes
of different colors for a soft, impression-
istic effect. The marks you make mimic
the appearance of pencil, crayon, mark-
er, chalk, charcoal, oil pastel, pen and
ink, scratchboard, watercolors, oils, and
airbrush—each with its own menu of
variations.

You can further manipulate the
image with the simulated effect of an
eraser, droplets of water, bleach, the
darkroom techniques of dodging and
burning, and masking that allows hard
or feathered edges or even conforms to
the texture of the surface you work on.
Yes, I know you’re working on paper or
canvas, but your audience won’t: Painter

lets you select a virtual surface on which
to work. This can be as smooth and fea-
tureless as the screen of your typical
painting program, or can look like a
wide variety of interesting textures that
can be customized to suit your needs.
The art materials you use interact with
the selected surface much like their nat-
ural media counterparts.

There’s almost too much in Painter
3, and the system of “drawers” and
dropdown menus and pop-up dialogs
with multiple slider controls can be a bit
bewildering to navigate at times. Docu-
mentation is a bit thin but is generally
sufficient to point you in the right direc-
tion. More help can be found in Inside
Fractal Design Painter 3.0 (Macmillan)
and Artistry, a Painter newsletter pub-
lished 10 times a year, both by Karen
Sperling. Happily, your customized
brushes, textures, color sets, and “ses-
sions” of applied effects can be named
and saved, so once you figure something
out you can keep it for later use.

The sheer range of visual styles
possible with Painter and the unexpect-
edness of such natural media techniques
on the computer screen should start
some ideas percolating in your head
already. But more than just a way to
paint without making a mess, this pro-
gram throws in the abilities of a power-
ful image editor and a capable animation
tool.

Existing images or animations can
be opened in Painter and treated to sub-
tle retouching using any of the painting
tools or plug-ins including most Photo-
shop filters. Or they can be cloned and
completely reworked. By recording a
session, it’s possible to apply an effect or
multiple effects to an entire animation,
introducing a surface texture or causing
the whole to appear rendered by the
staccato dabblings of impressionist mas-
ter George Seurat, for example. I’ve
been experimenting with various
painterly effects to rework three-dimen-
sional stills and even whole animations.
The results nicely combine the authen-
ticity of the three-dimensional render-
ing with the freshness and vitality of an
actual painting. You wouldn’t use this
sort of effect for everything, but it can

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

be a great way to tone down the slick-
ness of a three-dimensional image for a
historical period setting or whenever you
might want a more painterly, personal
look.

Another neat crossover between
Painter and your work in three-dimen-
sional graphics is the ability to create
your own seamless tiles with Painter’s
Capture Pattern utility. A wraparound
color technique causes marks that stray
off the edge of your pattern to continue
on the opposite side. So you can easily

use Painter’s various media looks and
surface textures to create your own
materials to map to three-dimensional
objects.

Creating an animation in Painter is
very much akin to the traditional cel
techniques of film animation. That is, it
lacks a lot of the improvements that
more dedicated animation software can
provide, like tweening between
keyframes and morphing one shape into
another.

If you’re experienced in cel anima-
tion, moving the sketching, inking, and
painting of frames off the peg bar and
onto the computer will seem a real
boon. (Most animation houses have
abandoned cels and computerized these
processes as well.) If you’re used to

three-dimensional animation or more
sophisticated animation effects software,
however, Painter may seem a bit under-
featured in this department. Except
when applying a prerecorded session to
an entire animation (called a Frame
Stack in Painter), you’re pretty much
drawing frame by frame. Onionskinning
lets a series of subsequent frames show
through, one on top of the other (as
many as five at a time), which aids in
progressing a movement through its var-
ious stages. A tracing paper function

also allows rotoscoping, so that digitized
video can be reinterpreted by hand,
which can be a lifesaver when it comes
to capturing the timing and nuances of
human or animal movement in a hand-
drawn scene.

Editing from Autodesk
Another way to get the most out of your
digital animations is to polish them in
post with a suite of sophisticated editing
tools, and your old friends at Autodesk
want to help. “Sound, paint, and
motion...Complete 2D animation for
Windows” is how the company bills its
brand new Animator Studio. This is
more than just an update of Autodesk’s
popular Animator Pro—indeed, it is all
you need to make walking, talking ani-

mations. Users of that earlier title will
be comfortable with most of the meth-
ods and conventions utilized here,
though the switch from DOS to Win-
dows has simplified and improved some
processes. To get Animator Pro users
quickly up to speed, the changes have
been well documented and the tutorials
take nothing for granted.

Moving beyond the capabilities of
Animator Pro, the animation functions
now exist as the main of four supporting
modules: Animator, Soundlab, Scriptor,

and Player. Soundlab is a very usable
editor that lets you create and filter
audio files and synch them with your
animations. Player runs AVI, FLI,
FLC, and Quicktime files and can be
freely distributed. Scriptor is intended to
string together animation and audio files
for presentations or self-playing shows,
but in its first release I found it still
quite buggy. Hopefully, Autodesk will
have released patches to remedy these
problems before you even have a chance
to read about them here. While these
three modules round out the package for
general use, they are of less concern to
us than Animator, which is packed with
useful animating and editing features
that can help you introduce interesting
effects to existing animation files or cre-

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 63

Your three-dimensional renderer doesn’t have to do all the work. These geometric forms were created in Caligari’s truSpace and the lurid back-
ground added at rendering time to act as a “green screen” for later compositing. The sophisticated selection tools in Autodesk’s Animator Studio
easily separate the forms from the background in every frame, without any hint of a halo. Composited with a background animation, the whole is
treated with Kai’s Power Tool filters for the final effect.

ate new ones from the ground up.
The first thing that struck me

about this new product was the manu-
al. That is, the—as in one, singular—
manual, rather than the collection of
weighty tomes traditionally received
with an Autodesk title. We’re not talk-
ing about a thick book here, either; as
software reference goes, this verges on
slender. Online help duplicates infor-
mation from the manual and adds to it,
and as a nice extra allows you to add
your own notes and bookmarks to
return you to sections you use most. As
this package is not short on features, it
is a testimony to the usable nature of
the interface that one slim volume
proves sufficient.

That interface remains admirably
uncluttered despite the wealth of fea-
tures it manages to support. Movable
selection boxes for tools, filters, and
colors default to a neat, out-of-the way
row to screen left. When an animation
is opened, it appears as a filmstrip
across the top of the screen, while the
active frame is shown at full size in a
roomy central work area. Pop-up
dialogs provide fine-tuning control for
almost every aspect of this program. On
a 1,024-by-780 screen, everything fit
with room to spare. After working your
way through a couple of tutorials you’ll
feel right at home with Animator’s tools
and workspace.

To start with, you can paint into a
frame to create a new image or alter an
existing one. To do so, you select one of
several available brushes. Brushes can
also be customized, though not to the
degree possible in Painter. Pressure sen-
sitivity is supported for stylus users, and
there is also an airbrush tool with vari-
able controls, and the usual straight-
line, curved-line, and rectangle tools.
Compared to Painter, these provisions
seem somewhat skimpy, but they fulfill
the basics. Using a stylus and the onion-
skin feature you can create nice hand-
drawn animations, and a multiple undo
lets you easily fix slip-ups. The real
strengths of the program, however, are
its labor-and-time-saving animation
shortcuts and a useful array of sophisti-
cated editing capabilities.

A range of about thirty “inks” are
really filters for applying special effects.
These include such nifty items as Clone
ink, which copies brushstroke by brush-
stroke the area you paint into with it;
Colorize ink, which adds only hue, leav-
ing lightness values unaffected (sort of
like coloring over a black-and-white
photo with a translucent marker); Soft-
en ink, which gently blurs an area; and
Jumble ink, which adds a more chaotic
blurring effect. These and the rest of the
ink choices allow you to really tailor the
appearance of an animation to meet
your needs.

Another useful ink selection pro-
vided by Animator is Alpha ink. In
addition to color-keyed alpha channel
support, this allows you to affect the
opacity of a specific area by painting
into it. In addition to increased com-
positing possibilities, this lets you
remove unwanted elements from an ani-
mation by rendering them transparent.
So you can, for instance, mark up the
frame with guidelines to indicate the
paths of animated objects, then use
clone ink to make the guidelines invisi-
ble when you’re done with them. Used
in conjunction with onionskinning, this
can really facilitate hand-drawn anima-
tions. Anime, anyone?

Perhaps best of all, the selection
tools in Animator are flexible and
sophisticated. By keying on the back-
ground color with the Magic Wand
tool, for example, you can select out the
entire background, leaving the fore-
ground object for you to cut and com-
posite or modify with some other effect.
You can instantly apply this sort of
selection over time to affect a segment
so that you don’t need to work frame by
frame. It is also possible to add to a
selection before acting on it, so several
areas within a frame can be indicated
and edited as one.

A selection—even one spanning
multiple frames—can be saved as a
sprite and then painted into a different
animation. When you add an animated
sprite to a movie, its movement is auto-
matically extrapolated over the segment.
You can then modify the sprite’s
motion path by clicking and dragging

handles along its course, which can
really help fine-tune a movement. Ani-
mator also provides predefined Action
Envelopes that can be applied to a
sprite to automatically cause its move-
ment to gradually accelerate or deceler-
ate as it progresses.

Defining a segment creates two
keyframes as the start and finish of that
segment and you can easily apply
desired changes over time between these
keyframes. These changes can include
color interpolation (a gradual shift from
one color to another), morphing one
shape into another (as long as both
comprise the same number of vertices),
and movement of an object from one
area of the picture frame to another. All
that is required is to set the first and last
keyframes. The in-between transition is
then automated.

The selecting and editing features
of Animator provide some powerful and
flexible tools for altering and composit-
ing digitized video or animations you
might already have made in a three-
dimensional program or elsewhere. To
expand on that flexibility, Animator is
compatible with Photoshop plug-ins
and, for its initial release, is being bun-
dled with a special Kai’s Power Tools
package that includes Gradient Design-
er. This adds such an abundance of
functionality to Animator right out of
the box that you’ll not soon run out of
new looks to bring to your animations.

When there are no surprises left for
the artist, few are to be expected for the
audience. It should be our task to con-
tribute what we can to keep game play-
ers in a continual state of surprise, won-
derment, and delight, and that means
never getting too comfortable with the
way we do things so that players never
get bored with what they’re seeing.
These are just two possible tools that
might help you bring your graphics to
the next level, and bring the players with
you. Which is, after all, where you want
to keep them. ■

David Sieks is a contributing editor
to Game Developer. Contact him via e-
mail at dsieks@arnarb.harvard.edu or
through Game Developer magazine.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

	back:

