
April/MAy 1995

G A M E D E V E L O P E R M A G A Z I N E

N
ormally I make it a rule not to
recommend any programming
tool that I haven’t used to
develop a program from
scratch. I’m going to break that
rule to recommend Borland’s
Delphi. I’ve only used it to
develop a program that trans-

lated from Celsius to Fahrenheit degrees,
but the only reason I’m not altogether
committed to Delphi is (I’m blushing as I
type this) I’ve never learned Pascal. Well,
I’m going to learn it now. For Windows
developers, and for Windows game devel-
opers especially, Delphi is so far ahead of
the competition it’s embarassing.

The world of Windows development
has always been one of compromise. Tools
such as Visual Basic offer immediate grati-
fication when moving from writing code
to seeing your program run, but the per-
formance has always suffered in compari-
son with compiled code. On the other
hand, compiled C++ offers near-optimal
performance, but all but the most trivial
programs have compilation times mea-
sured in minutes, not seconds. Program-
mer productivity vs. compiled perfor-
mance. Pleasure for the programmer vs.
pleasure for the user. The iron compro-
mise of Windows.

Delphi makes no compromises. For-
get the claims of how many hundreds of
thousands of lines of code are compiled
per minute, the point is that Delphi’s
speed of compilation is such that the
move from editing to debugging is seam-
less; when your screen flickers you think a
background compilation process is being
spawned but, in fact, you’re seeing the
results of the final link.

Delphi is being marketed toward the
current marketing darling, corporate
developers, and there’s no question that it
will cut a swath through the ranks of Visu-
al Basic and PowerBuilder users out there.
However, game developers have even more

to gain by examining Delphi. Why? The
huge, relatively untapped Windows game
market. With Delphi, you can use WinG
to get your images on screen relatively
quickly, and you also can get many more
compile-link-debug cycles in a program-
ming session. Windows game develop-
ment inevitably involves hit-and-miss pro-
gramming challenges (no matter how
experienced you are, the Windows API
can surprise you), so more cycles means
faster development. When you’re done,
your programs run at compiled speeds.

Also, Delphi abstracts the Windows
API. If this abstraction isn’t good enough
for you, feel free to create your own. Del-
phi’s code reuse infrastructure is excellent,
with full object-orientation and the ability
to package groups of objects together as
functional components. Develop an engine
for isometric projection, and you can save
it as its own package and use it as a start-
ing point for future games.

Delphi is based on Object Pascal
which, as I said, is a new language to me.
However, it’s very straightforward—C++
it ain’t. Although I’ve already discovered
some things that I don’t like (the keyword
private doesn’t act the way I think it
should, and I can never figure out where
semicolons are expected), I’ve also already
come up to speed on the basic structure of
the language. You should have no trouble
picking it up and, just as importantly, you
shouldn’t have any trouble finding new
programmers fluent in it.

You’ll be reading a lot about Delphi
in the corporate programming magazines,
where it will be primarily lauded for its
ability to create database applications. But
I’ll make a bold prediction—the most suc-
cessful Windows game of 1996 will be
written entirely in Delphi. Until that ships,
I’ll be busy learning where the stupid semi-
colons go. ■

Larry O’Brien
Editor

Delphi is
the Answer

G A M E P L A N

4 GAME DEVELOPER • APRIL/MAY 1995

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
nclaro@mfi.com

Editorial Assistant Deborah Sommers
dsommers@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Chris Hecker
checker@bix.com

David Sieks
dsieks@arnarb.harvard.edu

Wayne Sikes
70733.1562@compuserve.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Circulation Manager Kathy Henry
Circulation Assistant Phil Payton
Newsstand Manager Pam Santoro
Reprints Stella Valdez (415) 655-4269

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice Presidents H. Vern Packer, Donald A.
Pazour, Wini D. Ragus
Vice President/CFO Warren (Andy) Ambrose
Vice President/Administration Charles H. Benz
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

MillerFreeman
A MEMBER OF THE UNITED NEWSPAPERS GROUP

Dear Editor:

Iwould like to offer a few suggestions to sup-
plement Andre LaMothe’s article “The Myste-
rious Mode 13h” (Sept. 1994).
I am a shareware game programmer who has

been using Mode 13h for about two years now. I
can see at least one obvious ways to speed up
the graphics functions Mr. LaMothe described.
The first would be to avoid using the palette
ports (0x3C7/0x3C8) as much as possible. One
blatant way that I can see to do this would be to
eliminate reading the port whenever the pro-
gram needs the value of a specific register.
Instead, simply create a structure:

typedef struct {

unsigned char red[256];

unsigned char grn[256];

unsigned char blu[256];

} PaletteStr;

Clear the structure in the beginning of the
program, and also clear the palette (set all
“bucket” values to (0,0,0)) using the write
port. Then, whenever the structure is updated,
simply update the array value as well. That
way, a function can simply look up a value in
an array instead of having to write/read to a
port. This also streamlines the color cycling
function by eliminating the overhead associat-
ed with procedure calls (about five processor
cycles). Simply rotate the array, then push the
whole thing out to the VGA card when the cycle
function is done.

Mason McCuskey
via e-mail

MORE READING MATTERMORE READING MATTER
Dear Editor:

Ienjoy your magazine, I find it helpful and
interesting. I would like to see the price go
down or the amount of material in it go up,

but I still think that it’s worth it. I think it
would be enormously helpful if after each arti-
cle you gave a brief reading list of good books
that provide more information about a partic-
ular topic. For instance, in the December issue
you featured a great article on Mode C (umm...
excuse me...Mode X) but I would like to know
of a book that would give a beginning-to end
breakdown of the technique. This would help
those who aren’t quite as technically
advanced as some, and keep the folks who are
advanced happy. Plus the market for computer
books is so full of crap that it would be nice to
have someone who knows something suggest
good books.

Gideon Stocek
via e-mail

Editor Larry O’Brien responds:
Good suggestion! We’re running book reviews
regularly to try to cut through the crap (see
Dean Oisboid’s article on page 48). One sugges-
tion: don’t buy a book that calls you stupid. If
the title’s condescending, the text will be as
well.

WHERE’S THE CODE?WHERE’S THE CODE?
Dear Editor:

I’m looking for the code for Carl Muller’s
article “Hitting on Collision Detection”
(Sept. 1994). The article states that it is

available on CompuServe, but I can’t find it.
Do you have any more detailed information on
exactly where it is, the filename, forum, and so
on? I’d also like to know if it’s available on any
ftp sites.

Leonard Guy
via e-mail

Editor Larry O’Brien responds:
On CompuServe, Go SDFORUM and visit our
library. Or set your browser to the
/pub/gdmag/src ftp directory of whiz.mfi.com.

More to
the Mystery

Something on your

mind? A response to an

article, a query about

code, a little poem or

ditty, perhaps? If you

have anything to get

off your chest, please

do. We’ll probably

print it here.

by Our Readers

S E Z U !

GAME DEVELOPER • APRIL/MAY 1995 7

D
igital entertainment is often
in the media spotlight. Usu-
ally we hear about technolog-
ical breakthroughs, though—
rarely are high-tech compa-
nies involved in controversies.
There have been some
notable exceptions, though,

and surely Fremont, Calif.-based Media
Vision stands out as a Silicon Valley
soap opera. Media Vision scraped bot-
tom last summer when it filed for
Chapter 11, ironically due to the lack of
vision that the company—led by former
CEO Paul Jain—had. However, this
year Media Vision emerged from bank-
ruptcy and is attempting a comeback
with the help of new management and
capital. The company has refocused on
its core technology, audio cards, and is
in the process of rebuilding the public’s
confidence and researching new audio
technologies.

The company’s problems began
back in 1993. Media Vision was well
positioned in the red-hot multimedia
market, thanks to its Pro AudioSpec-
trum sound cards and multimedia
upgrade kits, yet ongoing price wars
with rival sound card makers like Cre-
ative Labs and an overextended product
line were taking their toll on the com-
pany. In October of 1993, Media
Vision rolled out a plan to produce
CD-ROM games, instantly making it a
major player in the game industry.

As a complementary product line,
the company’s announcement was well
received by investors. News of the
game venture helped propel the compa-
ny’s stock. Media Vision shares reached
$46 in January 1994—barely 14

months after the company went public
at $15. Although the stock was gener-
ally regarded as overvalued, nobody
realized how much so until a few
months later.

Greenberg Blows
The Whistle
Herb Greenberg, a columnist for the
San Francisco Chronicle, did some inves-
tigating and discovered that Media
Vision had falsified sales records and
engaged in shady business practices to
paint a better picture of the company’s
finances. According to Greenberg,
Media Vision secretly rented ware-
houses to hide returned merchandise,
pressured engineers and sales reps to
get defective products out the door,
offered huge incentives to distributors
and retailers who ordered large quanti-
ties of merchandise (known as “channel
stuffing”), and most egregiously, doc-
tored shipping papers to charge a large
quantity of multimedia upgrade kits to
a previous fiscal quarter.

Jain, who some believe was the
force behind the company’s question-
able practices, was a favorite target in
Greenberg’s columns. One of Green-
berg’s columns even poked into Jain’s
personal life, referencing allegations
that he illegally used Media Vision’s
corporate assets to “court women.” I
bet Jain loathed opening up his morn-
ing paper for fear of what he’d read in
the business section.

When these stories surfaced, the
FBI and the SEC quickly took notice.
On May 9, 1994, the two agencies
began a probe into securities violations
committed by the company. Media

Media Vision
Picks Up
The Pieces

”We‘ll be quiet, but

we‘ll be here,“

says Robert Brownell,

CEO of Media Vision. The

company took some

recent blows —many

of them self-inflicted.

Now it‘s back with a

kinder, gentler

business sense.

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • APRIL/MAY 1995 9

Vision’s stock, which had been plum-
meting in recent weeks due to questions
surrounding the company’s financial
status, closed that day at 2 7/8. One
week later, Jain and three other corpo-
rate officers resigned.

In the wake of Jain’s departure,
Robert Brownell, the vice president of
domestic sales, took over as CEO.
Brownell inherited the unenviable posi-
tion of rebuilding the company, and
one of his first actions was selling the
company’s game publishing arm, which
included The Daedalus Encounter and

Critical Path, to Virgin Interactive.
Unfortunately for the company,

Brownell’s move didn’t stave off bank-
ruptcy. Two major creditors balked at
the company’s reorganization plan, so
on July 25th, 1994, Media Vision filed
for Chapter 11. The clincher followed:
the company admitted that its $20 mil-
lion profit for 1993 wasn’t quite accu-
rate. In fact, there was no profit for the
previous year: the company actually lost
$99 million. Media Vision attributed
the revision in numbers to unaccounted
product returns and marketing costs,
improperly recorded sales, and doubtful
accounts.

Since it came clean with investors
last summer, Media Vision has taken
steps to rebuild itself. In August, it
secured a $10 million credit line from
Trust Company of the West (TCW) to
help fill $24 million in backlogged
orders and prepare for heavy demand
during the Christmas shopping season.

On December 30th, Media Vision
emerged from Chapter 11. Its stock,
which just a year earlier had been trad-
ing in the 40s, was canceled and worth-
less. To cover previous debts, the com-
pany issued 20 million shares of new
common stock, of which TCW will
own 43%. Two TCW officers sit on
Media Vision’s board of directors. The
company, once composed of close to
500 employees, is about half that size
now. Media Vision has also entered
into an agreement with the SEC,
according to which the agency will rec-
ommend that no enforcement action be
taken against the company, as long as
Media Vision cooperates with the SEC
and the Dept. of Justice.

From the CEO: Brownell’s
Plans To Rebuild
I recently spoke with Robert Brownell,
and he explained Media Vision’s plans.
His humility contrasts his company’s
brazen past, and he’s circumspect about
the hard lessons the company has
learned with consumers and resellers.

“Our position is more one of con-
trolled growth. We’re not just chasing a
growth curve to see how much in sales
we can ring up. We’re very cautious

when dealing with the reseller channel
that we don’t put too much product in,
[rather] that we put the right product
in. We don’t try to give [resellers] eight
kits when we know only two of them
are going to sell. We’re not in that
mode anymore. I guess some of the
competitors still do that,” Brownell
commented.

Brownell on the practice of chan-
nel stuffing: “That happens everywhere.
[If] you continue to throw out new
products and... you don’t deal with
[your older products] as rapidly as you
should, then you have a problem. We
monitor the sell-through at the retail
level very closely, to make sure that we
don’t put our products in that position.
And we don’t do deals with the reseller
channel that could put us in that posi-
tion. We just say, ‘Buy what you think
you can sell. Here’s our pricing. If this
works for you, then great. We’ll support
you.’”

What are Brownell ’s goals for
Media Vision in 1995? “We haven’t
publicly stated our dollar goal, and we
probably won’t until the end of the first
quarter. But [with respect to] my goals
for the company, the first... was to get
through bankruptcy. To get our house
in order. And now we’re in that posi-
tion. We have developed a plan to go
forward, [and] we need to execute on
that plan... 1995 should be a quiet year
for us.”

Brownell has stated that Media
Vision will get back to its core market. I
asked him to elaborate on this plan:
“Our core technology is audio, graphics,
and actually, video. One of the areas
that we’ve been working on over the last
several years is waveguides. We have
one of the licenses out at Stanford and
we think we’re the farthest along, and
we have a working chip at this time.
We hope that this will translate into
some products in the fourth quarter, but
I don’t think it will have a major impact
until next year. We feel that’s our best
shot, and we want to build our company
around it. It will differentiate us in the
market.”

It was encouraging to hear that
waveguides is an integral part of the

C R O S S F I R E

10 GAME DEVELOPER • APRIL/MAY 1995

Brownell‘s humili-

ty contrasts his

company‘s brazen

past, and he‘s cir-

cumspect about

the hard lessons

the company has

learned with

consumers and

resellers.

company’s plans. Waveguides is a soft-
ware technology that was developed at
Stanford University’s Center for Com-
puter Research in Music and Acoustics.
It uses algorithms to mimic the subtle
characteristics of musical instruments
and human voices.

“[Waveguides] is professional
audio at consumer prices,” Brownell
explained. “You can develop sounds and
you can create new sounds that have
never been developed before. If you
wanted to know what a 10-foot-long
trombone sounded like, you could do it.
A guitar with a 15-foot-long neck. You
can actually recreate the [sound of]
vocal chords and how they interact with
the mouth cavity. When you hear a
clarinet, you hear the [player’s] breath.
We think this is the next standard of
sound. We’ll be showing it to game
developers soon.”

Brownell also indicated that due to
Media Vision’s past financial troubles,
the company was no longer pushing for
a VESA standard for audio cards (see

“Sounding Out the VESA Audio Stan-
dard” by Jon Burgstrom, June 1994).

Does Media Vision have any plans
to reenter the game development market?

“No. I shouldn’t say never, but it’s
something that takes a lot of focus and
attention. And because of the fact that
it’s not our core strength, and that we
don’t devote 100% of our time to it, it’s
a difficult business. It’s a ‘hits’ business.
The cost of developing [games] is so
high—it requires a lot of cash and
investment before you get a payoff. I
feel that it’s better left to people who
are devoting 100% of their attention to
it. It’s a million dollars to develop a
title—that’s before promotion costs.

“The start we got off to in that
business wasn’t very good. We didn’t
have enough to sustain it. [Of] our
existing titles, two or three were good,
and the rest were O.K. I liked a lot of
the [games] that were coming down the
pipe, but it would have been another 12
to 24 months before they started to
show any returns. And, at the same

time, you have to continue to develop
because you can’t stand still. So I really
do believe it’s best left to people who
just deal with software.”

Brownell had some interesting
insights into the multimedia upgrade
market, in which he sees a second
round of upgrade kit purchasing. This
coming round of purchasing will be
fueled by people who already bought an
upgrade kit or PC containing a single or
double-speed CD-ROM drive and
standard 8-bit or 16-bit sound card,
and who would like to move up to a
quad-speed unit and a superior sound
card. Brownell doesn’t see this second-
round market growing as explosively as
the first round of kit sales.

What’s his take on Media Vision’s
competitor, Creative Labs?

“I know that they have a lot of
product out in the channel. Again,
we’re not chasing [Creative Labs’ pro-
jected] growth curve. They said they
were going after a billion dollar [in
sales] year, and that’s too risky for us
right now. If we build good products,
and make it easy for the customer to use
them, ...do the right price points, the
sales will come. And whatever [the
sales] are, they are. If you do a good job
and you support the customers, your
sales will increase. But if you try to
force it, and think that no matter what
you put in the kit is going to sell at
whatever price point, you’re only fool-
ing yourself in the long run. It will be
interesting to see how the industry
shakes out. We’ll be quiet, but we’ll be
here. Especially through ‘95. We gotta
prove to people that we can do it.
Deliver what we said we were going to
deliver on.”

What has Brownell heard about
ex-CEO Paul Jain?

“Nothing. I haven’t really talked
with him since he left. He might have
already started another company, but
I’m not sure.”

There’s hope for this company. ■

Alex Dunne is contributing editor for
Game Developer magazine. Contact him
via e-mail at 75010.2665@compuserve.com
or through Game Developer.

C R O S S F I R E

12 GAME DEVELOPER • APRIL/MAY 1995

Hair in a
Can it Ain’t

B I T B L A S T S

O
ne of the greatest challenges
facing game today’s game
animators is not how to cre-
ate amazing graphics, or how
to render realistic morphs, or
even how to incorporate
believable live-action video
into their games. There’s a

pursuit far thornier than any of these,
and that is...hair.

Yes, hair. Whether the character
needs a Mike-Brady perm, a floppy
toupee, or a purple mohawk, designers
have always had difficulty creating lus-
cious head-topping or body-covering
tresses that are true-to-life. Until now,
that is. Alias CompuHair will put an
end to bad hair days for three-dimen-
sional characters forever. The new
product from Alias uses an advanced
computer technique called particle sys-
tems, which uses the power of Silicon
Graphics workstations to render real-
looking hair and fur.

Users can customize the hair
using options for color, transparency,
length, curliness, and thickness. The
Alias Digital OptiF/X system, the
main component of Alias PowerAni-
mator 6.0, integrates the Alias particle
system generator to create interactions
between particles and NURBS or
polygonal-based models in the scene.
It’s this integration that lets you com-
bine hair and fur with other three-
dimensional modeling and rendering
elements like wind, gravity, and light,
to create waving hair, shadowed hair,
glowing hair, and the like.

Wait, there’s more! If you want to
find out even more about this, simply
stay up until 1:00 a.m. sullenly driving

the channels with your remote until
you see the infotisement. Actually, you
can join the Alias Hair Club for Ani-
mators by accessing Alias’s World
Wide Web server at www.alias.com.
Perhaps you’ll meet the organization’s
president who, I understand, is also a
client.

For More Information Contact:
Alias Research Inc.
110 Richmond St. E.
Toronto, Ont., Canada M5C-1P1
Tel: (416) 362-9181

Waves of Stucco and Velvet

S
ure, hair’s important—who hasn’t
been hair-obsessed at one time or
another (especially during adoles-
cence)? But there are lots of things

that have nothing to do with live char-
acters that can often make or break a
game. Fractal Design’s Really Cool
Textures recently came on the market as
add-on packages for use with Fractal
Design Painter and Fractal Design
Sketcher.

The company’s newest series
increases the number of paper grains
and patterns available to users of
Painter and Sketcher. You can create a
texture and use it as a background or
link it to any natural-media tool to
allow you to paint with textured ink or
paint. The series comprises Miles of
Tiles, Walls and Reliefs, Grains and
Weaves, and Patterns and Nature.
Really Cool Textures costs $29.99.

For More Information Contact:
Fractal Design Corp.
335 Spreckels Dr.

14 GAME DEVELOPER • APRIL/MAY 1995

Animation, animation,

animation! It seems

like that‘s what it‘s all

about. But it‘s also

about upgrades,

design, textures wacky

and wonderful and the

hairdo to end all hair-

dos (Ted Danson, eat

your heart out).

Nicole Claro

Aptos, Calif. 95003
Tel: (408) 688-5300

Quickdraw and More

E
lectric Image Inc.’s ElectricImage
Animation System now supports
Apple’s quickdraw three-dimen-
sional API and metafile format.

With this technology, users can view
their animation projects in real time, as
they are creating them. Accelerated
three-dimensional graphics can only
increase the speed of the user interface,
the company says.

Once available only for high-end
workstations, the new API and three-
dimensional cards will soon be open to
all customers. Electric Image will release
two versions—one for Power Macintosh
and one for Macintosh. Both versions
import, render and animate objects from
multiplatform modeling programs and
both include sync sound animation,
deformations, and various plug-ins.
ElectricImage Power Macintosh 2.1 and
Macintosh 2.0 sell for $7,495. Owners
of ElectricImage 2.0 (Macintosh ver-
sion) can upgrade to the Power Macin-
tosh 2.1 versions for $495.

For More Information Contact:
Electric Image Inc.
117 E. Colorado Blvd., Ste. 300
Pasadena, Calif. 91105
Tel: (818) 577-1627

Toonz Galore

M
icrosoft has just released version
3.5 of SoftImage Toonz (the soft-
ware formerly known as Creative
Toonz—not to be confused with

the rock star) for the Silicon Graphics

platform. The product includes a com-
plete range of functions based on tradi-
tional cel-drawing processes, such as
audio input to scanning, pencil test, set
palette, special effects, and compositing.
By adding separate modules, you can
customize SoftImage Toonz for scan-
ning, ink and paint, and rendering.

Version 3.5 includes enhanced ver-
sions of many of the features available on
past versions as well as new modules and
utilities, and several major bug fixes. Soft-
Image Toonz 3.5 features an icon-based,
simpler user interface; X-sheet, an expo-
sure sheet based on the ones used in tra-
ditional animation; a camera stand, which
adjusts cels and layers to size and back-
ground, that exists in the same interface
as the X-sheet; and resolution indepen-
dence, which lets users select film, video,
or HDTV output. SoftImage Toonz 3.5
costs approximately $16,995, with various
modules available at extra cost.

For More Information Contact:
Microsoft Inc.
1 Microsoft Wy.
Redmond, Wash. 98052-6399
Tel: (206) 882-8080

Ooh, Cyberspace!

A
utodesk has upgraded its Cyber-
space Developer Kit (CDK).
Release 2 is a Windows NT/32s-
based upgrade of the toolset for

three-dimensional visualization and sim-
ulation. CDK Release 2 features a com-
prehensive code set that incorporates
170 C++ classes and more than 1,400
functions that lets professional users,
such as game developers, create interac-
tive, three-dimensional environments.

It’s rendering-solution independent and
can be extended to support future hard-
ware- and software-based rendering
methods. CDK Release 2 costs $1,995.

For More Information Contact:
Autodesk, Inc.
2320 Marinship Way
Sausalito, Calif. 94965
Tel: (800) 879-4233

Further Rendering

A
nd in other upgrade news, Render-
Morphics has released version 2 of
Reality Lab, its three-dimensional
API. With full cross-platform inte-

gration and compatibility, Reality Lab 2
provides new special effects options and a
feature set that includes depth cueing,
projected shadows, and more. The func-
tionality of version 1 is further enhanced
through Immediate mode, a module that
allows low-level control over polygon
lighting and rendering through direct
access to vertices and normals. This
improves custom lighting and transform
effects, warping, twisting, and bending of
object, and procedurally defined objects.
Reality Lab 2 supports Windows, DOS,
System 7 and UNIX and contains specif-
ic Pentium optimization, which ensures
that it is even faster than version 1.

For More Information Contact:
RenderMorphics Ltd.
Unit 15, The Turnmill
63 Clerkenwell Rd.
London EC1M 5NP U.K.
Tel: 44 (0) 71 251 4411

Nicole Claro is managing editor for
Game Developer magazine.

GAME DEVELOPER • APRIL/MAY 1995 15

U N D E R T H E H O O D

16 GAME DEVELOPER • APRIL/MAY 1995

I
f there is one technical feature
today’s high-performance three-
dimensional games must have, it is
texture mapping. The technique of
texture mapping stretches across
almost every genre of game, from
role-playing games like Ultima
Underworld and System Shock,

through simulators like Indy Car Racing
and Wing Commander III, to action
games like Doom and Descent.

Given its popularity, you’d think
there would be a wealth of information
available on how to actually write your
own perspective texture mapper. You’d
be wrong.

When I was researching this article
(actually, when I was trying to figure out
if an article on perspective texture map-
ping was even needed), I looked high
and low for intuitive descriptions and
working sample code, but not much
exists. Most articles on the Internet
describe affine texture mapping, and the
few perspective texture mapping articles
I did find on x2ftp.oulu.fi, an excellent
game programming ftp site managed by
Jouni Miettunen, use overly complicated
descriptions and aren’t accompanied by
working code. Even old standbys, like
Computer Graphics: Principles and Practice
(Addison-Wesley, 1992) by James D.
Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes (commonly
called Foley and van Dam, much to the
chagrin of Feiner and Hughes, I’m sure)
and the bible of texture mapping, Digital
Image Warping (1990, IEEE Computer
Society) by George Wolberg, are woeful-
ly inadequate if you actually want to
write a texture mapper, especially one
fast enough to be compelling for games.

I’m going to address this lack of
documentation in this and the second
part of this article. First, using nothing
more than basic algebra and geometry,
I’ll show you an easy-to-understand
mathematical foundation, for how and
why perspective texture mapping works.
I’ll also provide sample code to imple-
ment the naive algorithm. In the second
installment, we’ll speed it up to interac-
tive performance.

Assumptions, Definitions,
and Concepts
If we want to cover everything in two
articles, we’re going to have to move
pretty fast. To do this, I need to assume
you know a bit about three-dimensional
graphics. If you don’t know how object
space, world space, view space, and
screen space interact, or you don’t know
what those terms mean, you should
probably pick up a book like Foley and
van Dam before reading this article.

The term “texture mapping”
describes a whole family of techniques,
but for these articles, we’ll define texture
mapping as drawing a planar polygon as
if a bitmap was glued to the polygon’s
face. This bitmap goes through the same
transforms (or at least looks like it does)
as the polygon, so if we view the polygon
almost edge on, the bitmap, or texture,
will look like it’s edge on as well. Figure
1 shows a checkerboard viewed at an
angle. You can see how the squares get
smaller as they recede, just as you’d
expect.

To accomplish this mapping, we
associate a texture bitmap with each
polygon and texture coordinates with
each vertex of the polygon. In addition

Perspective
Texture Mapping
Part I: Foundations

Figure 1. Textured Checkerboard

to the normal (x,y,z) triplet to define a
vertex in three dimensions, we specify the
texture coordinates u and v. These coor-
dinates are two-dimensional coordinates
into the texture bitmap, and the pixels in
this bitmap are sometimes called texels.

To make things easy to visualize,
our diagrams and equations will be in
two dimensions—think of working in a
slice through the three-dimensional
space—but our results extend easily into
three dimensions.

Perspective Projections
Most three-dimensional game graphics
are based on perspective projections. Per-
spective projections make distant objects
seem smaller than closer objects and dis-
tort angles so scenes look realistic.

The basic equation for the perspec-
tive projection uses similar triangles that
share a vertex at the origin (the view-
point). If we take the point (x0,z0) (ignore
the u coordinates for the time being) and
project it onto the dashed vertical z=d
line in Figure 2 to give us (x0´,d), the
equation for the relationship between
these two points is:

In other words, the ratio of the
height of the triangle formed by ((0,0),
(x0´,d), (0,d)) to the length of its base is
the same as the ratio of the height of the
triangle formed by ((0,0), (x0,z0), (0,z0)) to
the length of its base. If we assume d=1
for the current example, and generalize
this equation to all unprojected points
(x,z), we get:

If we view the z=d line as the one-
dimensional equivalent of the two-
dimensional screen plane (pretend you’re
looking down on the plane from above,
so you can only see it as a line), Equation
1 says we can generate screen coordinates
(x´ for values of x) by dividing the unpro-
jected object coordinates by their z val-
ues. This is the perspective projection in
its essence.

Mapping Direction
In three-dimensional graphics, we con-
sider transforming from object to screen
coordinates moving “forward,” so Equa-
tion 1 is called a forward mapping—it
projects the source polygon forward onto
destination pixels. To use a forward map-
ping for texturing a polygon, you step
along the polygon in object space and
project each generated point forward to a
destination pixel position. Forward map-
pings don’t work very well for texture
mapping, however, because it’s hard to be
sure how far to step in the source so that
the projected coordinates don’t skip or
overwrite any pixels in the destination.

Backward mappings, on the other
hand, allow us to step in screen space,
processing each pixel exactly once. If we
manipulate Equation 1 to give us a back-
ward mapping from x´ to x we get:

x = x´z (2)

This tells us we can generate values
of x from values of x´ if we multiply x´ by
z. We can easily generate the desired u
texture coordinate once we have x, but
first we must find the correct z to feed into

x x
z' ()= 1

x
d

x
z

' 0 0

0
=

GAME DEVELOPER • APRIL/MAY 1995 17

Little has been writ-

ten on perspective

texture mappers, an

invaluable feature of

any high-perfor-

mance game. This

month, Chris Hecker

fills the void with the

first of a two-part

article on the subject.

Chris Hecker

Equation 2 (we already know x´ because
it’s the current pixel we want to write).

It would be great if we could gener-
ate z values directly from x´ values using a
simple linear interpolation. We often use
linear interpolations in graphics in the
form of digital differential analyzers
(DDAs), and fixed and floating-point
interpolations, but we know linear inter-
polation is only accurate when we are
interpolating a linear equation. Let’s
explore the relation between x´ and z to
see whether they are linear with respect
to one another, which in turn will tell us
if we can use linear interpolation to gen-
erate z from x´.

A linear equation is any equation of
the form:

y = AX + B (3)

for any real values of A and B (this is
called the slope-intercept form, where A
is the slope of the x,y line, and B is the y-
intercept, or value of y when the line
crosses the y axis). That is, as x changes
by a constant amount, y changes by a
constant amount proportional to the
change in x.

To find the relationship between x´
and z, we first take the equation for the
unprojected line in object space, x = Az +
B. The actual values of the constants A
and B are based on the endpoints of the
line segment, and are irrelevant to this
derivation. Next, we substitute this into
Equation 2 to get an equation in z and
x´, and solve for z:

Az + B = x´z
B = z(x´-A)

and finally:

Equation 4 is definitely not a linear equa-
tion with respect to x´, so we can’t direct-
ly compute z incrementally from values
of x´. However all is not lost, because a
little algebraic manipulation gives us:

Equation 5 is a linear equation with
respect to x´. The only problem is, it’s a
linear equation of 1/z with respect to x´,
not z itself! We can use Equation 5 to
linearly interpolate values of 1/z and take
the reciprocal at each pixel to get the real
value of z. In other words, we can linearly
interpolate 1/z and divide x´ by 1/z to
generate values of x according to
Equation 2. These values of x allow us to
compute values of u that we can use to
look up the correct color from the texture
bitmap to store in x´. Voila, perspective
texture mapping.

It turns out we can compute u
directly instead of computing x, saving a
step and simplifying our lives. By defini-
tion in Equation 1, x/z is linear in screen
space (it’s actually equal to screen space,
which is about as linear as you can get!).
Just as x and z are linear with respect to
each other because the object is planar
(or linear, in Figure 2), u and x are linear
with respect to each other for the same
reason. Well, if x/z is linear in screen
space, and x is linear with u, then u/z is
linear in screen space as well (you can
prove this to yourself by playing around
with Equations 1, 3, and 5). Instead of
dividing x/z by 1/z to generate x coordi-
nates that we then use to solve for u
coordinates, we can interpolate u/z and
divide it by 1/z to generate the u values
directly.

Affine texture mapping ignores
these results and linearly interpolates u
and v in screen space without the divide.
This results in funky warping, but for
some polygons it’s not too bad (and

because there’s no divide it has the
potential to be a lot faster). A compari-
son is beyond the scope of this article,
but you can find affine texture mappers
on x2ftp.oulu.fi, which I mentioned pre-
viously.

Our Story So Far
Let’s take a break, sum up our results to
this point, and outline a simple algorithm
to perspective texture map the line seg-
ment in Figure 2.

We’ve shown that 1/z and u/z are
linear in screen space, so the algorithm
for texture mapping Figure 2 goes like
this:
• Project the object vertices into screen

space, giving x´ = x/z and u´ = u/z.
• Let z´ = 1/z at each vertex.
• Linearly interpolate u´ and z´ between

xo´ and x1´, stepping x´ by 1 pixel each
loop.

• At each pixel x´, calculate u by u´/z´,
and use u to fetch the correct texel.

• Write the texel to the destination at
x´.

The proofs for y and v are analogous
to those for x and u, so this is all there is
to writing a three-dimensional perspec-
tive texture mapper.

Interpolation Breakdown
In the simplified algorithm I’ve outlined,
we linearly interpolated u´ and z´ over
the length of the scanline. Each linear
interpolation usually involves these steps:
• Figure out the start and end values of

the interpolants (in Figure 2, u0´,z0´
and u1´,z1´, respectively).

1 1 5z B x A
B= -' ()

z B
x A= -' ()4

U N D E R T H E H O O D

18 GAME DEVELOPER • APRIL/MAY 1995

Figure 2. Perspective Projection

(0,0) z

z = dx

(x0',d,u0')

(x0,z0,u0)

(x1,z1,u1)

• Calculate the amount each changes as
it moves from start to end (u1´-u0´ and
z1´-z0´).

• Divide the change by the distance over
which you want to interpolate (x1´-x0´)
to get each step.

• Increment from the start to the end by
this step.

This is a fair amount of work, and if
we plan to rasterize polygons like the tri-
angle shown in Figure 3, we have even
more work to do. We need to interpolate
at least 1/z, u/z, and v/z (and possibly
one or three colors), and if we first calcu-

late the interpolants down each edge, and
then calculate new ones when we get to
each scanline we will soon get lost in a
sea of interpolants going in all sorts of
directions. Luckily, there is a better way.

It just so happens that the incre-
ments in each linear interpolant for a sin-
gle step in x or in y are constant across
the whole polygon. This is a very impor-
tant and very cool result because it means
we can calculate these increments—called
the gradients—once and never need to
worry about calculating interpolants
again during rasterization. In other
words, when we want to rasterize a poly-
gon, we calculate the gradients in x and
in y for each parameter at the very begin-
ning, and every time we step in x or y or
both we just add in the appropriate gra-
dients. When we get to a scanline we
want to draw, we don’t need to calculate
linear interpolations for all of our para-
meters as we step across the scanline in x,
because we already have their gradients
with respect to x sitting around! In the
same vein, stepping down an edge is sim-

ply some combination of the gradient in
x and the gradient in y. (If you think
about it, this also means you only need to
interpolate the parameters down one
edge. Ponder that one for a while.)

To show how gradients are calculat-
ed, let’s use the triangle P0P1P2 in Figure
3. Each vertex has a screen space x and y
associated with it (x´,y´), but in addition
there is an arbitrary parameter, c´, which
could be color for Gouraud shading or
1/z, u/z, or v/z for perspective texture
mapping. It is any parameter we can lin-
early interpolate over the surface of the
two-dimensional (screen space) triangle.

Given this triangle, let’s figure out
how the parameter c´ changes if we hold
y constant and step in x. We will use the
point P4 in our construction (P3 and P4

are both on the P1P2 line in Figure 3). It
is clear that y4´ = y0´, and we can derive
the other coordinates for P4 using the line
equations:

and:

Substituting y0´ for y4´ and solving for the
various coordinates gives us:

and:

Next, refer to Figure 5 to compute
the difference in c´ (called dc´) as it
moves from P0 to P4 with Equation 6.

The analog for c´ with respect to y
as we move from P0 to P3 is also shown in
Figure 5, in Equation 7. (Notice the
denominators: dx = -dy.)

The values dc´/dx and dc´/dy are
called the gradients for the parameter;
dc´/dx is the gradient with respect to x
and dc´/dy is the gradient with respect to

y. We can calculate the gradients for 1/z,
u/z, and v/z with respect to both x and y
at the top of our texture mapper and
never need to calculate them again during
the rasterization of this polygon.

Our new texture mapping algorithm
looks like this:
• Project the object vertices into screen

space, giving x´, y´, u´ = u/z, v´ = v/z,
and z´ = 1/z.

• Calculate the gradients in x and y for
u´, v´, and z´.

• Linearly interpolate down each edge
and across each scanline using the gra-
dients.

• At each pixel, calculate u by u´/z´ and
v by v´/z´, and use u and v to fetch the
correct texel.

• Write the texel to the destination at
x´,y´.

The only thing we’re missing is a
consistent fill convention to make sure
we light the correct destination pixels as
we rasterize the polygon. Once we have a
fill convention, we can guarantee poly-
gons will abut properly and we won’t
have any skipped pixels (dropouts) or
overwrites at the edges.

Conventional Wisdom
A fill convention is a set of rules that
describes how to light pixels in the screen
under various edge conditions. The first
step towards implementing a fill conven-
tion is defining exactly which pixels we
want lit when a polygon is rasterized.
Figure 4 shows the raster grid of the dis-
play, with pixel centers marked with
black dots.

We will define what’s called a top-
left fill convention. Top-left refers to the
tie breaking rule used when the edge of a
polygon lands exactly on a pixel center; if
the edge is a top or a left edge, the pixel
is in the polygon, if it’s a right or a bot-
tom edge, the pixel is considered out.
You can see this convention in Figure 4.
If the red edge is shared by the blue and
the yellow polygon, they will not light
any of the same pixels. The horizontal
red edge is the top of the yellow polygon,
so the pixels are considered members of
that polygon. In contrast, the horizontal
red edge is a bottom edge of the blue
polygon, so the pixels are not lit. All

c
c c
y y y y c4

1 2

1 2
0 2 2'

' '
' ' ' ' '= -
-

Ê
Ë

ˆ
¯ -() +

y y

x
x x
y y y y x

4 0

4
1 2

1 2
0 2 2

' '

'
' '
' ' ' ' '

=

= -
-

Ê
Ë

ˆ
¯ -() +

c c
y y

c c
y y

1 2

1 2

4 2

4 2

' '
' '

' '
' '

-
- = -

-

x x
y y

x x
y y

1 2

1 2

4 2

4 2

' '
' '

' '
' '

-
- = -

-

U N D E R T H E H O 0 D

20 GAME DEVELOPER • APRIL/MAY 1995

Figure 3. Calculating Gradients

Pn = (xn',yn',Cn')P2

P0
P4

P1

P3

other pixels—those not intersected on
pixel centers—are lit if they are “strictly
in” the polygon. In other words, the pixel
center must be completely inside the
edge for the pixel to be lit. In contrast
with Figure 4, real edges are infinitely
thin, so the pixel center is either out,
intersected exactly, or in.

The next step is to define the fill
convention mathematically. A top-left fill
convention is defined by the ceiling func-
tion for the left and top edges, and the
ceiling-1 of the right and bottom edges.
(The ceiling function bumps a fractional
number up to the next integer unless it’s
already an integer, in which case the
number stays the same.) We’ll be step-
ping in y to generate scanlines, so the
equation for generating x coordinates
from y coordinates as we step from P0 to
P2 in Figure 3 is:

We apply the ceiling function to
this equation to give us integer raster val-
ues for a given y:

If our starting coordinates are real
numbers instead of integers, we need to
apply our convention to the y coordinate
as well to generate the initial y value:

On a number of scanlines in Figure
4, the real edge—the line on which we’re
interpolating our parameters—differs
from the starting pixel center by some
small amount. Pixels in the display are
not points, they’re actually boxes with an
area around the pixel center (the pixel
center is the integer coordinate, and the
box extends 0.5 pixels to each side), and
when stepping from pixel to pixel we
want to make sure we step from one pixel
center to the next. If we don’t step on
pixel centers, our textures will appear to
swim as our polygon rotates because we
aren’t sampling from the same place in

the pixel each time. Also, when reading
from what are essentially random places
in each pixel it’s possible to generate tex-
ture coordinates outside the texture
bitmap (which could crash our program).

Find Your Center
Given that we want to sample the texture
from the exact pixel center, we need to
make sure our interpolants are
prestepped on each scanline by the differ-
ence between the real edge and xint. If we
do this correctly, our texture mapper will
never read outside the texture (assuming
the texture coordinates are valid in the
first place, of course), and our textures
will not swim as our polygon moves
around the screen. Also, we won’t get the
“hairy texture” artifacts you see in a ras-

terizer that doesn’t step on pixel centers,
where lines in the texture that should be
straight come out with little notches and
pimples.

Figure 6 shows a close-up of a
group of pixels. To start rasterizing, we
must first step our edge to the point A.
This involves an x and y prestep for our
interpolants, marked with dotted lines.
Now, we can precalculate each parame-
ter’s step in y and in x for a single scan-
line step in the screen using the gradients
we calculated beforehand, so each time
we move from one scan to the next, we
just add each step to its interpolant to
find the new value. When it’s time to
draw a scanline, we must step to the first
pixel center. Figure 6 shows this step as a
dotted line at each scanline.

y y0 0int' '= []

x
x x
y y y y xint

' '
' ' ' '= -
-

Ê
Ë

ˆ
¯ -() +È

ÎÍ
˘
˚̇

2 0

2 0
0 0

x
x x
y y y y x= -

-
Ê
Ë

ˆ
¯ -() +2 0

2 0
0 0

' '
' ' ' '

GAME DEVELOPER • APRIL/MAY 1995 21

Figure 4. Fill Conventions, ,

0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Figure 5. Equations 6 and 7

dc
dx

c c
x x

c c y y c c y y
x x y y x x y y

' ' '
' '

(' ')(' ') (' ')(' ')
(' ')(' ') (' ')(' ') ()= -

- = - - - - -
- - - - -

4 0

4 0

1 2 0 2 0 2 1 2

1 2 0 2 0 2 1 2
6

dc
dy

c c
y y

c c x x c c x x
x x y y x x y y

' ' '
' '

(' ')(' ') (' ')(' ')
(' ')(' ') (' ')(' ') ()= -

- = - - - - -
- - - - -

3 0

3 0

1 2 0 2 0 2 1 2

0 2 1 2 1 2 0 2
7

All this prestepping probably sounds
expensive, but there is a way to do it that
requires no extra multiplies per scanline.
We’ll discuss this in more detail next
month.

Summary and
Random Notes
This article is too long already, but
there’s still plenty we haven’t discussed.

First, we didn’t talk about all the
special cases where linearly interpolating
the texture coordinates actually is correct,
like walls and floors. A close examination
of the math above will show you why this
is true (hint: look at the gradients for the
1/z term). Games like Doom use this to
speed up their texture mappers at the
expense of not allowing arbitrarily orient-
ed polygons. There’s lots of information
covering these techniques on the Internet.

We also didn’t discuss antialiasing
or homogeneous coordinate systems.
Digital Image Warping is a great resource
for antialiasing and image resampling,
while Foley and van Dam cover homoge-
neous coordinates.

Even considering what we missed,
we certainly covered a lot of material in a
small space, and I encourage you to
reread this article with a piece of paper in
hand and try to prove the various results
for yourself.

The sample code included with this
article implements the perspective texture
mapping algorithm. It is a high quality
implementation with one small problem:
it’s a bit slow, doing a divide and two mul-
tiplies per pixel. In the next column I’ll
show how to optimize this code, which
will give you a production quality perspec-
tive texture mapper you can just plop right
in your game engine. ■

Chris Hecker wishes he had a Ph.D. in
mathematics so he didn’t have to struggle
with the derivation of the equation for the
area of a triangle whenever he wanted to use
it. In the meantime, he can be reached at
checker@bix.com or through Game Devel-
oper magazine.

U N D E R T H E H O O D

22 GAME DEVELOPER • APRIL/MAY 1995

#include<windows.h>
#include<math.h>

struct POINT3D {
float X, Y, Z;
float U, V;

};

void TextureMapTriangle(BITMAPINFO const *pDestInfo,
BYTE *pDestBits, POINT3D const *pVertices,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits);

/******** structures, inlines, and function declarations **********/

struct gradients {
gradients(POINT3D const *pVertices);
float aOneOverZ[3]; // 1/z for each vertex
float aUOverZ[3]; // u/z for each vertex
float aVOverZ[3]; // v/z for each vertex
float dOneOverZdX, dOneOverZdY; // d(1/z)/dX, d(1/z)/dY
float dUOverZdX, dUOverZdY; // d(u/z)/dX, d(u/z)/dY
float dVOverZdX, dVOverZdY; // d(v/z)/dX, d(v/z)/dY

};

struct edge {
edge(gradients const &Gradients,

POINT3D const *pVertices,
int Top, int Bottom);

inline int Step(void);

float X, XStep; // fractional x and dX/dY
int Y, Height; // current y and vert count
float OneOverZ, OneOverZStep; // 1/z and step
float UOverZ, UOverZStep; // u/z and step
float VOverZ, VOverZStep; // v/z and step

};

inline int edge::Step(void) {
X += XStep; Y++; Height—;
UOverZ += UOverZStep; VOverZ += VOverZStep;

Listing 1. Perspective Texture Mapper

Figure 6. Pixel Centers
0 1

A

B

C

1

2

0

2

GAME DEVELOPER • APRIL/MAY 1995 23

pLeft,pRight,pTextureInfo,pTextureBits);
TopToMiddle.Step(); TopToBottom.Step();

}

Height = MiddleToBottom.Height;

if(MiddleIsLeft) {
pLeft = &MiddleToBottom; pRight = &TopToBottom;

} else {
pLeft = &TopToBottom; pRight = &MiddleToBottom;

}

while(Height—) {
DrawScanLine(pDestInfo,pDestBits,Gradients,

pLeft,pRight,pTextureInfo,pTextureBits);
MiddleToBottom.Step(); TopToBottom.Step();

}
}

/********** gradients constructor **********/

gradients::gradients(POINT3D const *pVertices)
{

int Counter;

float OneOverdX = 1 /(((pVertices[1].X - pVertices[2].X) *
(pVertices[0].Y - pVertices[2].Y)) -
((pVertices[0].X - pVertices[2].X) *
(pVertices[1].Y - pVertices[2].Y)));

float OneOverdY = -OneOverdX;

for(Counter = 0;Counter < 3;Counter++) {
float const OneOverZ = 1/pVertices[Counter].Z;
aOneOverZ[Counter] = OneOverZ;
aUOverZ[Counter] = pVertices[Counter].U * OneOverZ;
aVOverZ[Counter] = pVertices[Counter].V * OneOverZ;

}

dOneOverZdX = OneOverdX * (((aOneOverZ[1] - aOneOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aOneOverZ[0] - aOneOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dOneOverZdY = OneOverdY * (((aOneOverZ[1] - aOneOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aOneOverZ[0] - aOneOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

dUOverZdX = OneOverdX * (((aUOverZ[1] - aUOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aUOverZ[0] - aUOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dUOverZdY = OneOverdY * (((aUOverZ[1] - aUOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aUOverZ[0] - aUOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

dVOverZdX = OneOverdX * (((aVOverZ[1] - aVOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aVOverZ[0] - aVOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dVOverZdY = OneOverdY * (((aVOverZ[1] - aVOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aVOverZ[0] - aVOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

}

/********** edge constructor ***********/

edge::edge(gradients const &Gradients,
POINT3D const *pVertices, int Top, int Bottom)

{
Y = ceil(pVertices[Top].Y);
int YEnd = ceil(pVertices[Bottom].Y);

Listing 1. Perspective Texture Mapper (Continued on p. 25)

OneOverZ += OneOverZStep;
return Height;

}

void DrawScanLine(BITMAPINFO const *pDestInfo,
BYTE *pDestBits, gradients const &Gradients,
edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits);

/******** TextureMapTriangle **********/

void TextureMapTriangle(BITMAPINFO const *pDestInfo,
BYTE *pDestBits, POINT3D const *pVertices,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits)

{
int Top, Middle, Bottom;
int MiddleCompare, BottomCompare;
float Y0 = pVertices[0].Y;
float Y1 = pVertices[1].Y;
float Y2 = pVertices[2].Y;

// sort vertices in y
if(Y0 < Y1) {

if(Y2 < Y0) {
Top = 2; Middle = 0; Bottom = 1;
MiddleCompare = 0; BottomCompare = 1;

} else {
Top = 0;
if(Y1 < Y2) {

Middle = 1; Bottom = 2;
MiddleCompare = 1; BottomCompare = 2;

} else {
Middle = 2; Bottom = 1;
MiddleCompare = 2; BottomCompare = 1;

}
}

} else {
if(Y2 < Y1) {

Top = 2; Middle = 1; Bottom = 0;
MiddleCompare = 1; BottomCompare = 0;

} else {
Top = 1;
if(Y0 < Y2) {

Middle = 0; Bottom = 2;
MiddleCompare = 3; BottomCompare = 2;

} else {
Middle = 2; Bottom = 0;
MiddleCompare = 2; BottomCompare = 3;

}
}

}

gradients Gradients(pVertices);
edge TopToBottom(Gradients,pVertices,Top,Bottom);
edge TopToMiddle(Gradients,pVertices,Top,Middle);
edge MiddleToBottom(Gradients,pVertices,Middle,Bottom);
edge *pLeft, *pRight;
int MiddleIsLeft;

// the triangle is clockwise, so
// if bottom > middle then middle is right
if(BottomCompare > MiddleCompare) {

MiddleIsLeft = 0;
pLeft = &TopToBottom; pRight = &TopToMiddle;

} else {
MiddleIsLeft = 1;
pLeft = &TopToMiddle; pRight = &TopToBottom;

}

int Height = TopToMiddle.Height;

while(Height—) {
DrawScanLine(pDestInfo,pDestBits,Gradients,

U N D E R T H E H O O D

GAME DEVELOPER • APRIL/MAY 1995 25

Height = YEnd - Y;

float YPrestep = Y - pVertices[Top].Y;

float RealHeight = pVertices[Bottom].Y - pVertices[Top].Y;
float RealWidth = pVertices[Bottom].X - pVertices[Top].X;

X = ((RealWidth * YPrestep)/RealHeight) + pVertices[Top].X;
XStep = RealWidth/RealHeight;
float XPrestep = X - pVertices[Top].X;

OneOverZ = Gradients.aOneOverZ[Top] +
YPrestep * Gradients.dOneOverZdY +
XPrestep * Gradients.dOneOverZdX;

OneOverZStep = XStep *
Gradients.dOneOverZdX + Gradients.dOneOverZdY;

UOverZ = Gradients.aUOverZ[Top] +
YPrestep * Gradients.dUOverZdY +
XPrestep * Gradients.dUOverZdX;

UOverZStep = XStep *
Gradients.dUOverZdX + Gradients.dUOverZdY;

VOverZ = Gradients.aVOverZ[Top] +
YPrestep * Gradients.dVOverZdY +
XPrestep * Gradients.dVOverZdX;

VOverZStep = XStep *
Gradients.dVOverZdX + Gradients.dVOverZdY;

}

/********** DrawScanLine ************/

void DrawScanLine(BITMAPINFO const *pDestInfo,
BYTE *pDestBits, gradients const &Gradients,
edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits)

{
// we assume dest and texture are top-down

int DestWidthBytes =
(pDestInfo->bmiHeader.biWidth + 3) & ~3;

int TextureWidthBytes =
(pTextureInfo->bmiHeader.biWidth + 3) & ~3;

int XStart = ceil(pLeft->X);
float XPrestep = XStart - pLeft->X;

pDestBits += pLeft->Y * DestWidthBytes + XStart;

int Width = ceil(pRight->X) - XStart;

float OneOverZ = pLeft->OneOverZ +
XPrestep * Gradients.dOneOverZdX;

float UOverZ = pLeft->UOverZ +
XPrestep * Gradients.dUOverZdX;

float VOverZ = pLeft->VOverZ +
XPrestep * Gradients.dVOverZdX;

if(Width > 0) {
while(Width—) {

float Z = 1/OneOverZ;
int U = UOverZ * Z;
int V = VOverZ * Z;

*(pDestBits++) = *(pTextureBits + U +
(V * TextureWidthBytes));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

}
}

}

Listing 1. Continued from p. 22

Programming
Digitized Sound
On the Sound Blaster

D I G I T I Z E D S O U N D

I
n the early days of PC sound, we had
the PC speaker and its lesser-known
sidekick, the Programmable Interval
Timer (PIT). You could program
the frequency of this hardware timer,
and hook the timer up to the speak-
er. By changing this frequency, you
could produce a surprising variety of

sound effects and music.
There was only one problem—

gamers and programmers hated it. So the
world moved onto generation two: the
AdLib FM Synthesizer. You could pro-
gram it to produce decent music and even
certain sound effects.

There was still a problem. The
sound effects stunk.

Along came the Sound Blaster. It
combined a digital-to-analog converter
(DAC) with an FM synthesizer. Now,
game programmers had access to decent
music and decent sound effects. Finally.

There was much rejoicing. Until the
question arose as to how to program the
thing.

In developing DiamondWare’s
Sound ToolKit, we discovered scarce and

poorly written documentation on the
Sound Blaster. In this article, we’ll give
you the information you need to start
developing your own digitized sound
code.

Theory of Digitized Sound
As with most areas of computer program-
ming, it is good to know some general
background theory. It’s often the case that
the “easy” pitfalls are far from obvious.
With sound, there are a number of possi-
ble problems that will cause audible
glitches.

When digitized sounds are produced
from an analog source, signals travel
down an interconnect cable, go through a
preamplifier, and are eventually processed
by an analog to digital converter. We
mention this because each step will have
an effect on sound quality and overall vol-
ume.

Figure 1 shows the difference
between continuous (analog) and discrete
(digitized) waves. Unlike analog waves,
digitized sounds are quantized, meaning
that the amplitude at each point can have
only one of a finite number of values. In
addition, the sounds are discretely sam-
pled; that is, the value is sampled periodi-
cally. Both facts raise important consider-
ations. We’ll discuss the amplitude prob-
lem first, then the time problem.

The range of values for each sample
is finite. In a typical game playback sys-
tem, this is 8 bits, or -128 to +127. The
softest sound that can be represented is
±1, and any sound softer than this thresh-
old will be lost at 0. The loudest sound is
about ±127. Any sound louder than this is
clipped, producing a harsh and nasty
noise.

26 GAME DEVELOPER • APRIL/MAY 1995

Figure 1. Comparing Analog and Digitized Waves

A A

t

Continuous Discrete

t

When you’re mixing two or more
sounds together, this clipping limit
applies to the total mix. Thus, you want
to produce your sounds at low volume
levels so you can mix several of them
without problems. If you are stuck with
preproduced sounds, there are two ways
to cut their dynamic range. The first is
straightforward—you divide each sample
by a constant. This is often implemented
as a shift-right operation. It’s fast and
easy, but if you divide too much you will
lose the softer parts of your sounds.

The other method is to dynamically
compress your sounds. Basically, this will
soften the louder parts and raise the softer
parts. This is what pop radio stations do.
After this process, the entire sound is
equally loud. The implementation of this

is beyond the scope of this article, but we
mention it here for completeness. Quality
sound processing software has the ability
to compress dynamic range.

A digitized sound is considered a
discretely sampled waveform because it is
not contiguous in the time domain. In
other words, you’re sampling the wave-
form at T=1 and T=2 but there’s no
information for T=1.5. When it’s played
back, there’s obviously sound at every
moment—even in between the sample
points, which is the crux of the problem.

To understand this dilemma, let’s
look at analog waveforms. It turns out
that every possible analog waveform can
be represented by the sum of a finite
number of pure sine waves.

The plot of a sound on an oscillo-

It‘s the low-down

dirty details of

making your game

sing. And talk. And

growl. And make

funny little beeping

sounds...it‘s...

Sound Blaster!!!

Keith Weiner
Erik Lorenzen

GAME DEVELOPER • APRIL/MAY 1995 27

Figure 2. Wave and Spectrum/Pulse and Spectrum

A

(a) (b)

(c) (d)

t f

t f

Continuous

A

scope is a time-domain plot, as shown in
Figure 2a. That is, while the Y-axis repre-
sents amplitude, the X-axis represents
time. It’s possible to transform a wave into
the frequency-domain. A plot after such a
transformation, shown in Figure 2b, uses
the X-axis to represent frequencies; each
point farther to the right would be a high-
er frequency. You could read the graph to
determine, for example, how loud the
1KHz component is. The highest fre-
quency sine wave in this series is no higher
than the highest frequency in the original
wave. Figure 2c illustrates a square-wave
pulse, comprising an infinite frequency of
components, as you can see in its frequen-
cy-domain plot, shown in Figure 2d.

Now, let’s get back to digital sound.
It turns out that to “capture” a given fre-
quency, you need to sample the wave at a
rate at least twice as high as that frequen-
cy. For example, if you had a sound at
1KHz, you should sample it at 2KHz or
higher. This is known as the Nyquist rate.

Figure 3 demonstrates the effects of
sampling a wave above and below the

Nyquist rate. In Figure 3a, we see the
original analog wave and its spectrum in
the frequency domain. If this signal is
sampled above the Nyquist rate, as shown
in Figure 3b, it can be correctly recon-
structed. If the signal is sampled below the
Nyquist rate, as shown in Figure 3c, there
is not enough information to properly
reconstruct the wave and aliasing occurs.

How can we capture a sine wave with
only two points per cycle? We know in
advance that it is a sine wave. There’s only
one possible sine wave that can be formu-
lated, given two points during each cycle.
Any waveform can be broken down into
sine waves, so we have a way of discretely
capturing (digitizing) analog sounds.

There’s one last issue we must
cover—playback. Because the waves are
discretely sampled and are represented by
few points, they’re going to look quite
square, as shown in Figure 4. Square look-
ing digital signals connote “high frequen-
cy.” If you play them back as is, they’re
going to have lots of noise—in fact, you’ll
hear a complete harmonic overtone of

your sample. This lends a nasty metallic
sound. The solution is to filter the output
of the DAC in analog, eliminating all fre-
quencies above half the sampling rate.

The Sound Blaster Family
We’ve seen 10 models of Sound Blaster
from Creative Labs and dozens of clones
from third parties. Fortunately, they all
share the common architecture first pre-
sented in the Sound Blaster 1.5. By far,
the Sound Blaster 16, Sound Blaster
PRO2, and Sound Blaster 2.1 sold the
most units, and they’re still selling today.

This article will focus on the Sound
Blaster 1.5, because it’s the lowest com-
mon denominator. The higher models all
support the Sound Blaster 1.5’s modes.

Detecting the Sound Blaster
You can find the Sound Blaster by parsing
the BLASTER environment variable. It’s the
easiest method, and it’s recommended by
Creative Labs and other manufacturers,
especially because it can’t crash the user’s
machine. This is how we’ll do it here.

The BLASTER environment variable
comprises several sections. A typical
BLASTER variable might look like this:

BLASTER=A220 I5 D1 H5 P330 M250 T6

where:
• A is the base port address (here, it’s

220h). Values may be 210h to 280h.
• I is the IRQ (interrupt request) level.

Values may be 2, 3, 5, 7, or 10.
• D is the 8-bit DMA channel. Values

may be 0, 1, or 3.
• H, if present, is the 16-bit DMA chan-

nel. Values may be 5, 6, or 7.
• P, if present, is the port for MPU401,

either 300h or 330h.
• T is the type of Sound Blaster card.

You can program the Sound Blaster
in 14 easy steps:
• Reset the DSP (digital signal proces-

sor) and put it into a known state.
• Set up your interrupt service routine

(ISR).
• Enable the IRQ the Sound Blaster

card is using.
• Program the DAC speaker.
• Program the DMA controller for a

single cycle transfer.

D I G I T I Z E D S O U N D

28 GAME DEVELOPER • APRIL/MAY 1995

Figure 3. Sampling Rates and Aliasing

A

A

A

(a)

1 2 1 2 3

(b)

(c)

t

1 2 f

1 2 f

f4

1 2 3 f4

1 2

Aliased Original

fsamp

fsamp

Ny

Ny

3 f4

• Program the playback rate (time con-
stant).

• Program the DSP output/input for
single-cycle transfer.

Transfer begins immediately after
step 7. At this point, you can go draw
some graphics, read a disk, and get some
coffee. When the buffer is done, the
Sound Blaster will generate an interrupt.
This will transfer control to the ISR.

Next:
• Acknowledge the DSP.
• Send the programmable interrupt con-

troller (PIC) an end of interrupt
(EOI).

• Program the Sound Blaster to play
another buffer or set a flag to show
that we are done playing.

After we have finished all data trans-
fers, we need to:
• Disable the DAC speaker.
• Disable the IRQ.
• Unhook the ISR.
• Reset the Sound Blaster DSP, leaving

it in a good state, ready to work with
other applications.

Detect and Reset
Before we assume that the presence of the
BLASTER variable means we have a Sound
Blaster in the system, we can check to see
if a DSP really does exist at the specified
port, shown in Table 1, and attempt to
send it a reset by doing the following:
• Write a 1 to the sb_RESET port.
• Wait three microseconds (msec).
• Write a 0 to sb_RESET.
• Read sb_READ_STATUS (up to 65,535

times), waiting for the msb (most sig-
nificant bit) to be set.

• If the msb never gets set, no Sound

Blaster card is present.
• Read sb_READ_DATA. If the return value

is AAh, a Sound Blaster card is present.
• If the return value is not AAh, repeat

Steps 4 to 6 until the count runs out,
or a Sound Blaster card is found.

Reading and Writing
To read data from the DSP, we must
read from sb_READ_STATUS until the msb is
set. Then, read from sb_READ_DATA:

unsigned sb_ReadDSP(unsigned baseport)

while(!(0x80 & inp(baseport +

sb_READ_STATUS))); //waiting for the

//MSB to be set

return((unsigned)inp(baseport +

sb_READ_DATA));

}

To write to the DSP, read from
sb_COMMAND_STATUS until the msb is reset.
Then, write the desired command (or
command data) to sb_WRITE_COMMAND:

void sb_WriteDSP(unsigned baseport,

unsigned value) {

while(0x80 & inp

(baseport +sb_WRITE_STATUS));

// wait for the MSB to be clear

}

outp(baseport + sb_WRITE_COMMAND,

(int)value);

}

Handling DSP Interrupts
The DSP will generate an interrupt when
ever it’s done recording or playing a
DMA buffer. To keep the system from
crashing and the Sound Blaster playing,
we need to set up an ISR. Each interrupt
must be acknowledged by reading
sb_ACKIRQ. This tells the DSP that you
have received the interrupt, and it can
stop pulling the line.

Using DSP commands
A DSP revision of 1.xx accepts 20 com-
mands, as shown in Table 2. We will only
need to use five commands to get up and
running. To simplify the following dis-
cussion, we will use the example functions
sb_ReadDSP and sb_WriteDSP.

The DAC speaker controls what we
hear (and what the Sound Blaster hears).
With the speaker on, we can hear the
digitized playback, but the Sound Blaster
can’t hear us (record), and vice versa.

To turn on the speaker, send sb_DAC-
SPKRON to the DSP and wait 112 msec for
the DSP to complete the operation:

sb_WriteDSP(baseport, sb_DACSPKRON);

Turning the speaker off is similar;
send sb_DACSPKROFF to the DSP and wait
even longer (220 msec)—no one said this
hardware was fast:

sb_WriteDSP(baseport, sb_DACSPKROFF);

The sb_SETTIMECONST command sets

D I G I T I Z E D S O U N D

30 GAME DEVELOPER • APRIL/MAY 1995

Port Number Write Read During IRQ

2X6h sb_RESET None Normal
2XAh None sb_READ_DATA Normal
2XCh sb_WRITE_COMMAND sb_WRITE_STATUS Normal
2XEh None sb_READ_STATUS sb_ACKIRQ (read-only)

X denotes base address. For base address of 220h, the ports are 226h, 22Ah, 22Ch, and
22Eh.

Table 1. Sound Blaster DSP Ports

Figure 4. Comparing a Digitized Wave to the Original Analog Wave

A A

t

Original wave Digitized wave

t

how many samples per second the DSP
will record or playback, but it doesn’t take
a sampling rate directly. We must convert
from Hz to the Sound Blaster time con-
stant. The time constant is always an
unsigned byte:

tc = 256 - (1000000 / (num_channels *

sampling_rate));

sb_WriteDSP(baseport, sb_SETTIMECONST);

sb_WriteDSP(baseport, rate);

To play a sound, send the DSP one
of the output sound commands. We’ll use
sb_PLAY8BITMONO. Follow this command
with 2 bytes representing the size of the
buffer. The buffer can be between 1 and
65,536 bytes. No one would want to pro-
gram the Sound Blaster to transfer 0
bytes, so 0 means 1 byte, and 65,535
means 65,536 bytes:

lowbyte = (unsigned char)(buffsize - 1);

highbyte = (unsigned char)((buffsize - 1)

>> 8));

sb_WriteDSP(baseport, sb_PLAY8BITMONO);

sb_WriteDSP(baseport, lowbyte);

sb_WriteDSP(baseport, highbyte);

Interrupt Programming
No discussion of Sound Blaster DSP pro-
gramming would be complete without
mention of the 8259A PIC. Integrally
related is the 80x86 processor’s interrupt
mechanism, including the vector table.
Let’s go over the steps involved in an IRQ
and its handling.

The Sound Blaster must go through
nine steps to build an IRQ:
• The Sound Blaster DSP signals the

PIC that it wants to interrupt the
CPU.

• The PIC checks the interrupt mask
register (IMR) to see if this is cool.

• If so, the PIC checks to see if any high-
er-priority IRQ’s are being serviced.

• If so, it waits until they send an end of
interrupt (EOI) to the PIC.

• If not, the PIC sends a signal to the
CPU over a dedicated line.

• If the interrupt flag is set, the CPU
replies with an interrupt acknowledge
(INTA).

• The PIC then sends an IRQ and the
IRQ level.

• The CPU pushes the flags, CS, and
IP registers—in that order—on the

current stack
• The CPU jumps to the address speci-

fied in the vector table for this IRQ.
To respond to an IRQ (for ISR’s

only):
• Tell the hardware (the Sound Blaster

DSP) to stop pulling the interrupt line.
• Send an EOI to the PIC.
• Set a global variable—a flag—for main

program loop (this step is optional).
• Prepare the next sound buffer.
• Return from interrupt (IRET instruc-

tion).
There’s a simple INT 21 (DOS) call

to hook the interrupt vector, which is
even easier in C. We also need to enable
our interrupt in the PIC itself. To do this,
read the IMR, reset the bit corresponding
to the IRQ level to which the Sound
Blaster DSP is set, and write the IMR:

#define dig_IMRPORT 0x21

temp = inp(dig_IMRPORT); //Read the IMR

temp &= dig_onmask[irqlevel];

//Enableour channel

outp(dig_IMRPORT, temp); //Write the IMR

Programming the
DMA Controller
The 8237A high-performance program-
mable direct memory access (DMA) con-
troller provides a way to transfer data
between memory and the I/O bus without
using CPU. If you program it properly, it
allows for easy and nearly overhead-free
data transfers. Make a mistake, however,
and you’ve as good as sent a garbage truck
to dump a pile of trash in memory!

An AT-class machine has two
DMA controllers and eight DMA chan-
nels. The DMA controllers have 44 I/O
ports and four modes of operation.

We’ll only discuss channels 0, 1, and
3 (2 is used by the floppy controller).
These are the 8-bit channels. Channels 4
to 7 are 16-bit channels and aren’t used
by 8-bit Sound Blasters.

We’re interested in single-cycle
DMA mode, which means one byte is
transferred by the DMA controller for
each data request (DREQ) it receives
from the Sound Blaster DSP.

There are nine steps to program-
ming a DMA controller. Steps 2 through
8 employ either shared registers—used for

GAME DEVELOPER • APRIL/MAY 1995 31

Number Description

10h Set polled output mode and PCM (uncompressed) samples.
14h Set DMA output mode and PCM samples.
74h Set DMA output mode and 8- to 4-bit ADPCM samples.
75h Set DMA output mode and 8- to 4-bit ADPCM samples

(with reference byte).
76h Set DMA output mode and 8- to 3-bit ADPCM samples.
77h Set DMA output mode and 8- to 3-bit ADPCM samples

(with reference byte).
16h Set DMA output mode and 8- to 2-bit ADPCM samples.
17h Set DMA output mode and 8- to 2-bit ADPCM samples

(with reference byte).
38h Set polled output mode and MIDI data.
20h Set polled input ode and PCM (uncompressed) samples.
24h Set DMA input mode and PCM (uncompressed) samples.
30h Set polled input mode and MIDI data.
31h Set interrupt input mode and MIDI data.
D0h Pause DMA.
D4h Resume DMA.
40h Set time constant
80h Pause DMA for a specified duration.
E1h Get DSP version.
D1h Enable DAC speaker.
D3h Disable DAC speaker.

Table 2. DSP.1 xx Commands

all channels—or channel specific registers:
• Disable interrupts.
• Disable our DMA channel (shared

register).
• Reset the flip-flop (shared register).
• Set our channel’s mode (channel-spe-

cific register).
• Program the address register (channel-

specific register).
• Program the page register (channel-

specific register).
• Program the count register with one

less than the actual transfer count
(channel-specific register).

• Enable the DMA channel (shared
register).

• Enable interrupts
The DMA controller works with

physical addresses, not with segment:off-
set addresses, not with selectors, and so
on. In real mode, it’s easy to translate
from segment:offset to a physical address
(protected-mode selectors can be trans-
lated as well). The DMA controller
works with a page number, which is liter-
ally the physical address divided by
65,536. A DMA buffer cannot cross such
a physical page address; you must verify
that your buffer meets this criterion!
Within the physical page, the DMA
controller increments an offset. Code to
translate from segment:offset to physical
page and offset is:

off = (*((unsigned _far *)&(sound)));

seg = (*((unsigned _far *)&(sound) + 1));

seg <<= 4;

padd = seg + off; // calc physical

address

page = padd >> 16; // calc page number

Don’t be put off by our method of
obtaining the segment and offset of a
pointer. This may seem complex, but
we’re simply taking a pointer to sound;
the first word this points to is the offset,
and the second is the segment.

Explanations of the workings of the
DMA controller tend to be very lengthy.
Fortunately, the DMA controller is very
well documented. We refer you to two
books that provide in-depth explanations
for further reading: Developer Kit for
Sound Blaster Series, 2nd Ed. (Creative
Labs, 1993); and The Indispensable PC

Hardware Book (Addison-Wesley, 1993),
by Hans-Peter Messmer.

The Code
The code that accompanies this article
compiles with Microsoft C/C++ 7, Bor-
land C/C++ 3.1 and 4.0. It should port
easily to other DOS C environments.
We used the large memory model when
we compiled it. We tested it with a
Sound Blaster 1.5, 2.1, Pro 2, 16, and
AWE32. The code is available on Com-
puServe in the SDFORUM in the
GDMag Library. ■

Keith Weiner and Erik Lorenzen have
developed a sound toolkit for DOS games,
called DiamondWare’s Sound ToolKit
(available from MVP Software). Contact
them via e-mail at keith@dw.com or
erik@dw.com.

D I G I T I Z E D S O U N D

32 GAME DEVELOPER • APRIL/MAY 1995

W
orking with the Sound Blaster
can require a graduate degree
in the language of acronyms.
Hence, we provide here a
breakdown of the abbrevia-

tions used throughout this article.

EOI End of interrupt

DAC Digital-to-analog
converter

DMA Direct memory
access

DREQ Data request

DSP Digital signal
processor

IMR Interrupt
mask register

INTA Interrupt
acknowledge

IRQ Interrupt request

ISR Interrupt service
routine

PIC Programmable
interrupt controller

PIT Programmable
interval timer

T H E G L O S S A R Y

Supercharge
Your Sprites

S U P E R C H A R G E Y O U R S P R I T E S

A
s we continue on our quest for
the fastest graphics perfor-
mance possible, we are going
to focus on drawing sprites.
Just what is a sprite? A sprite
is usually defined as a graphi-
cal image that moves inde-
pendently on the screen.

Characters in video games are sprites.
So are bullets, explosions—even the cur-
sor is a type of sprite.

Unlike tiles or text, sprites often
come in irregular shapes and sizes.
These varied shapes often make it diffi-
cult to optimize a general-purpose
drawing routine. To achieve superior
performance when drawing sprites, we
are going to examine a technique called
“compiled sprites,” sometimes referred
to as “compiled bitmaps.”

Normal Sprites
To start, we need to understand how
sprites are usually implemented. Today,
most sprites are drawn by a programmer
or artist using a paint program or some
form of sprite editor, which itself is a
custom paint program. The program
draws the image in a rectangular work
area, using a palette of colors.

When you begin a new sprite, the
work area is filled with a color, usually
black, white, or grey, that you’ve desig-
nated as a “transparent” or background
color. The actual color doesn’t mat-
ter—it’s simply a value that the pro-
grammer decides will be used to indi-
cate transparency.

When the sprite is drawn by the
program, only the portions of the image
block that are not the transparent color
are actually drawn. The areas with the

transparent color are left alone, and the
background shows through.

Because irregular shapes are so dif-
ficult to code for, you would usually
choose to store a sprite in memory as a
rectangular array of pixels. A normal
sprite drawing routine then goes
through the following steps. First, it
computes the screen address that corre-
sponds to the upper left pixel in the
sprite’s array, even if the pixel is trans-
parent. Then it scans the sprite’s data
from left to right and top to bottom,
checking each pixel to see if it is trans-
parent. If it is not, the program draws
that pixel to the screen at an offset cor-
responding to that pixel’s position in the
sprite’s data array.

This method works very well and
you can optimize it with assembly lan-
guage. But it is not as fast as routines
that draw solid blocks or tiles, like the
ones I presented in “Faster Image
Drawing” (Feb./Mar. 1995). And the
worst part is that it is slower than these
routines despite the fact that fewer pix-
els are actually drawn. This wouldn’t be
a big deal if we didn’t use sprites very
much, but for many action-oriented
games, we use them extensively.

Imagine you are writing a Super
Galaxian-style game. The player’s ship,
shields, and every bullet, missile, explo-
sion, and enemy ship is an irregularly
shaped sprite. You will have to redraw
every object for each frame of gameplay.
If your sprite drawing routines aren’t
very good, the game is going to bog
down when the action gets fast and
furious. Now it becomes obvious why
you want the fastest sprites possible.

Performance is lost when you draw

34 GAME DEVELOPER • APRIL/MAY 1995

irregularly shaped sprites not because
the code is inefficient, but because for
every pixel, a decision must be made
whether or not it should be actually
drawn. In sprite-drawing routines, it
turns out that not drawing a pixel usual-
ly imposes a big performance hit on
normally tight assembly language code.
This happens because the CPU has to
jump, flush its prefetch queue, and
reload it. The code could be reversed,
but the performance would suffer every
time a pixel is drawn. You must take
one of two paths because there is no way
around the fact that a decision must be
made. Or is there?

Looking Back,
Looking Forward
It the earliest days of 8-bit computers, a
game would often have dedicated code
to draw individual sprites. Some systems
even had hardware support for sprite
graphics. (Here’s a historical trivia fact:
The Atari 2600 game system only had
128 bytes of RAM, so each line of each
sprite had to be drawn with custom code
in ROM.)

Programmers would hand-code
routines to draw each line, box, and
pixel that made up a sprite. The advan-
tage was that only the pixels that needed
to be drawn were coded. The biggest
drawback was that it was a slow process,
requiring the programmer to change
code every time one single bit in a sprite
was changed, possibly introducing bugs
each time. As graphics got bigger and
changed more frequently during devel-
opment, this method proved less practi-
cal and general purpose routines took
over.

But what if the computer could
automatically generate code that draws
each sprite, knowing exactly what to
draw and what to eliminate for each
image? All the comparisons, branching,
and other decision-making code that
would normally be executed every time
the sprite was drawn or moved would be
eliminated. The processing time saved
for every sprite in every frame drawn
would add up quickly. That is the basic
premise behind compiled sprites.

Compiled Sprites
There are two main categories of com-
piled sprites. One is what I call “data
compiled,” which converts the sprite
image into a stream of data that is fed to
a special routine. All the calculations,
comparisons, and decisions are made by
the compiling routine during the com-
piling process and encoded into the data
stream.

The drawing routine itself is a sim-
ple state machine that reads each chunk
of data and processes it in exactly the
same way. The inner loops are unrolled
and contain no comparisons or branches
to slow things down. The data stream
provides all the information needed.
This technique provides a significant
performance increase and is often used
with larger or compressed graphic
images.

The second category consists of
what I call “code compiled” sprites. The
program generates actual machine lan-
guage instructions that draw the specific
image on the screen. There are no deci-
sion or control instructions, only direct
writes to video memory. This method
provides additional performance gains

Sprites come in all

shapes, sizes, and

colors. This variance

often presents per-

formance challenges

for developers. Here

are some tips to help

you achieve superior

performance when

drawing sprites.

Matt Pritchard

GAME DEVELOPER • APRIL/MAY 1995 35

over data compiled sprites, and is what
we will now focus on. From this point
on, when I refer to compiled sprites, I’ll
be talking about code-compiled sprites.

For this article, I have written a
routine in C, shown in Listing 1, which
will compile a 256-color sprite for either
Mode X or Mode 13h. I’ve also provid-
ed the assembly language setup routines
needed to call the compiled sprite code

in Listing 2. With minor modifications,
you should be able to use these routines
in any program you wish. But I’ll bet
you aren’t satisfied with just using the
routines; you want to know what makes
them tick. Let’s take a closer look at the
routines and discuss how they work.

How it Works in a Program
First, here’s a quick overview of where
the routines fit into a typical game. Nor-
mally, sprites are loaded from disk and
placed into memory buffers either at
startup or at some stopping point, such
as a between rounds screen. With the
sprite image in memory, the program

S U P E R C H A R G E Y O U R S P R I T E S

36 GAME DEVELOPER • APRIL/MAY 1995

/* == */
/* COMPLBMP.C - Routine to compile a 256-color bitmap image for */
/* Mode X or Mode 13h. */
/* Author: Matt Pritchard for Game Developer Magazine. */
/* Adapted from MODEX108 */
/* == */

/* This stuff could go into a .h file */

/* Macro Definitions needed by Compile_Bitmap */

#define ucharf unsigned char far
#define uchar unsigned char
#define uint unsigned int

#define hi_word(x) (unsigned char) (x >> 8)
#define lo_word(x) (unsigned char) (x & 0x00FF)

/* Prototypes for Compiled Bitmap Routines */

ucharf * Compile_Bitmap (ucharf *, int, int, int, int);

void far pascal draw_compiled_bitmap (uchar far *, int, ints);
void far pascal draw_compiled_bitmap_13h (uchar far *, int, ints);

/* ——————————————————————————————————————*/

/* This function takes a Sprite that is stored in a two-dimensional array, such
as char ImageData[32][32], and creates a buffer that contains the machine
language code to quickly draw that image in Mode 13h or Mode X.

The sprite data is stored line by line, from top to bottom. Each line
is stored from left to right. A transparant color value is used to
indicate which pixels are not part of the image and should not be drawn.

Because Mode X supports various screen sizes, we must know the width
of the screen a sprite will be displayed on in advance. For Mode 13h,
that width is normally 320.

When possible, two adjacent pixels will be drawn with one 16-bit MOV
instruction. This results in smaller and faster code.

This function allocates a buffer to hold the compiled code and
returns a far pointer to it. The pointer need only be a char type
pointer, since our assembly language routine does the actual calling of it.

If the sprite is too big or the program has run out of memory, a null pointer
is returned, otherwise a pointer to the compiled code is returned.

*/

ucharf * Compile_Bitmap (ucharf * theImage, /* Far Ptr to the Sprite */
int X_width, /* Width of the Sprite */
int Y_width, /* Height of the Sprite */
int Trans_Color, /* Transparent Color */
int Screen_Width) /* Width of the screen */
{

int x, y, p; /* Loop counters for X, Y, and plane */
int Words, Bytes; /* Count of each type of instruction */
int b1, b2; /* Valid pixel flags */
uintVidOffset, Offset; /* Offsets for memory calculations */

int BytesPerLine; /* Width of display in address bytes */
longCompiledBufferSize; /* The size of the compiled sprite code*/
longc; /* Counter for the code writing loop */

ucharf * theBuffer; /* Pointer to the compiled code buffe */

int Num_Planes; /* The number of video planes (4 or 1)*/
int Next_Pixel; /* The number of bytes between adjacent pixel*/
int Code_Overhead; /* Size of any overhead code needed */

/* The variable Mode_X controls if we are compiling a sprite for Mode 13h or
Mode X. For Mode X, we must split the image into four separate planes and

Listing 1. A 256-Color Sprite (Continued. on p. 38)

The program

generates actual

machine language

instructions that

draw the specific

image on the

screen.

calls the compile_sprite routine with
basic information about the sprite.

The compile_sprite function allo-
cates a second memory buffer and fills it
with machine language instructions
made from the sprite data. Then, it
returns a pointer to the newly compiled
code to the program. Depending on
what is needed by your program, you
can deallocate the original sprite buffer,
freeing up additional memory. This
compiling process isn’t necessary each
time the program is run; the code pro-
duced is completely relocatable, so you
could load and save the compiled sprites
just like regular sprites.

When the program needs to draw a
sprite, it calls a special routine with a
pointer to the compiled sprite code and
the X,Y screen position at which the
program will draw the sprite. This rou-
tine first sets up the CPU’s registers
with the correct position on the screen
and then directly executes the compiled
sprite code by jumping to it. The com-
piled sprite code then actually returns to
the routine that called the special rou-
tine. To the programmer, this process
closely resembles calling a normal sprite
drawing routine.

How it Compiles the Sprite
When we call the routine to compile the
sprite, we send it the following informa-
tion about the sprite:
• A pointer to an array containing the

sprite image
• The width of the array in bytes
• The height of the array in lines
• The color value that will indicate

transparent pixels
• The width of the screen at the time

the sprite will be drawn.
The routine needs that last item,

width of the screen, to compute the off-
sets into display memory for each pixel.
In Mode 13h, the width will always be
320, but in Mode X (see my article
“Mode X Revealed,” Dec. 1994), it can
vary according to the programmer’s
wishes.

Compiling the sprite is a two-pass
process. On the first pass, the sprite
image is scanned, and each pixel is
examined to see if it is a transparant

S U P E R C H A R G E Y O U R S P R I T E S

38 GAME DEVELOPER • APRIL/MAY 1995

add plane switching code to the compiled sprite. If the value of Mode_X is
0, we compile for Mode 13h, otherwise we compile for Mode X. */

int Mode_X = -1; /* -1 = Mode X, 0 = Mode 13h */

if (Mode_X) {
Num_Planes = 4;
Next_Pixel = 4;
Code_Overhead = 20;

} else {
Num_Planes = 1;
Next_Pixel = 1;
Code_Overhead = 5;

}

BytesPerLine = Screen_Width / Num_Planes;

/* First, we pass through the bitmap and count up the number of adjacent pixel
pairs and the number of single pixels. With this information, we will know
how big a buffer to allocate. */
Words = Bytes = 0;

for (p = 0; p < Num_Planes; p++)
{

for (y = 0; y < Y_width; y++)
{

Offset = y * X_width;
for (x = p; x < X_width; x+=Next_Pixel)
{

/* Check the current pixel to see if it should be displayed */

b1 = (theImage[Offset+x] != Trans_Color) ? -1 : 0;

/* Check the next adjacent pixel (if there is one), and see if
it should also be displayed */

if ((x + Next_Pixel) < X_width) {
b2 = (theImage[Offset+x+Next_Pixel] != Trans_Color) ? -1 : 0;

} else {
b2 = 0;

}

/* Check for a pair of adjacent pixels, or a lone single pixel */

if (b1) {
if (b2) {

Words++; /* Another adjacent pixel pair */
x+=Next_Pixel; /* Skip over the next pixel */

} else {
Bytes++; /* One more lone pixel */
}

}
}

}
}

/* Determine how big a buffer we need for the compiled code, allocate it, and
get a far pointer to it. */
CompiledBufferSize = Code_Overhead + (6 * Words) + (5 * Bytes);

/* Here is where the users can insert their own error handling code */
if (CompiledBufferSize > 65535) {

/* Error; compiled sprite would be too large (greater than 64K). */
return (0);

}

if ((theBuffer = (ucharf *) malloc((size_t) CompiledBufferSize)) == 0) {
/* Error allocating buffer; out of memory. */
return (0);

}

/* Now, we go through the image again, this time creating the code to write into
the compile code buffer. */

Listing 1. A 256-Color Sprite (Continued from p. 36)

pixel. Every normal pixel is checked to
see if it is adjacent to another normal
pixel. This process generates a count of
how many single pixels and adjacent
pixel pairs make up the sprite.

Once the pixels are counted, the
routine calculates the size of the com-
piled sprite code, and allocates memory
to hold the code. Speaking of memory,
how much memory do compiled sprites
take up? The size of the compiled sprite
buffer will vary from image to image,
but will be approximately 4 bytes per
pixel drawn. Transparent areas produce
no code. If a sprite is stored in a 32-by-
32-pixel grid, but only about half the
pixels are actually drawn, the grid will
take up 1K, while the compiled sprite
should take up about 2K.

The size varies because our routine
creates code to draw two adjacent pixels
with one instruction whenever possible.
The actual code created is:
MOV [BX+offset], <16-bit constant>,

which is 6 bytes long and draws two
pixels. For pixels that are stuck by them-
selves, the code created is:

MOV [BX+offset], <8-bit constant>,

which is 5 bytes long and draws a single
pixel.

The routine makes a second pass
through the image, this time generating
actual code whenever a single pixel or
pixel pair is encountered. If we are com-
piling for Mode X, plane switching code
is generated in between each video
plane. Finally, instructions to return to
the calling routine are added at the end
of the buffer.

Mode 13h vs. Mode X
For Mode 13h, compiled code creation
is very straightforward. But for Mode X,
things get more complicated. In Mode
X, we have to draw all the pixels on each
video plane before going to the next
video plane. Because of the video planes
in Mode X, the two adjacent pixels we
compile into one instruction are actually
four pixels apart on the screen. In addi-
tion, we must include a 5-byte sequence
to select the next video plane into the

GAME DEVELOPER • APRIL/MAY 1995 39

c = 0;
for (p = 0; p < Num_Planes ; p++)
{

for (y = 0; y < Y_width; y++)
{

Offset = y * X_width;
for (x = p; x < X_width; x+=Next_Pixel)
{

/* Check the current pixel to see if it should be displayed */

b1 = (theImage[Offset+x] != Trans_Color) ? -1 : 0;

/* Check the next adjacent pixel (if there is one), and see if it
should also be displayed */

if ((x + Next_Pixel) < X_width) {
b2 = (theImage[Offset+x+Next_Pixel] != Trans_Color) ? -1 : 0;

} else {
b2 = 0;

}

/* Generate code for a pair of pixels, or for a single pixel. */

if (b1) {
VidOffset = (BytesPerLine * y) + ((x-p) / Num_Planes);

if (b2) { /* Create Code to write Word Constant */

theBuffer[c++] = 0xC7; /* MOV word ptr */
theBuffer[c++] = 0x87;
theBuffer[c++] = lo_word(VidOffset); /* BX+VidOffset */
theBuffer[c++] = hi_word(VidOffset);
theBuffer[c++] = (uchar) theImage[Offset+x];
theBuffer[c++] = (uchar) theImage[Offset+x+Next_Pixel];

x+=Next_Pixel; /* Skip over second pixel*/

} else { /* Create Code to write Byte Constant*/

theBuffer[c++] = 0xC6; /* MOV byte ptr */
theBuffer[c++] = 0x87;
theBuffer[c++] = lo_word(VidOffset); /* BX+VidOffset */
theBuffer[c++] = hi_word(VidOffset);
theBuffer[c++] = (uchar) theImage[Offset+x];

}
}

}
}

if ((Mode_X) && (p < 3)) { /* Generate plane switching code*/

theBuffer[c++] = 0xD0; /* ROL AL, 1 ; Get New mask*/
theBuffer[c++] = 0xC0;
theBuffer[c++] = 0x13; /* ADC BX, CX ; Add in Addr wrap*/
theBuffer[c++] = 0xD9;
theBuffer[c++] = 0xEE; /* OUT DX, AL ; Select new Plane*/

}
}

/* Create exit code to return to the calling program */

theBuffer[c++] = 0x5D; /* POP BP ; Restore BP */
theBuffer[c++] = 0x1F; /* POP DS ; Restore DS */
theBuffer[c++] = 0xCA; /* RETF8 ; Exit & Clean Up Stack*/
theBuffer[c++] = 0x08;
theBuffer[c++] = 0x00;

/* Return a pointer to the Buffer containing the Compiled Code */

return (theBuffer);

}

Listing 1. Continued from p. 38

S U P E R C H A R G E Y O U R S P R I T E S

40 GAME DEVELOPER • APRIL/MAY 1995

; Here, I assume it to be a table of word values
; which are stored in the current code segment.

Mov BX, [BP].DCB_Ypos ; BX = Ypos
Add BX, BX ; Scale BX to Word Offset
Mov BX, wp CS;Line_Offset[BX] ; Get Offset of Line Ypos

Mov AX, [BP].DCB_Xpos ; Get UL Corner Xpos
Mov CL, AL ; Save Plane # in CL
Shr AX, 2 ; X/4 = Offset Into Line

; ***** USER NOTE ***** MODIFY AS NEEDED *****
;
; CURRENT PAGE is a DWORD pointer to the currently active
; Mode X video memory page. The first word is the offset
; into the video adaptor, and the second is the constant
; value of A000 - the VGA’s graphics memory segment.
; Here, I assume it to be in DGROUP.

Lds DX, dp CURRENT_PAGE ; Get Current VGA Page
Add BX, DX ; DS;BX->Start of Line
Add BX, AX ; DS;BX->Upper Left Pixel

; Select the first video plane, and set up the registers
; so the next 3 planes can be quickly selected.

And CL, PLANE_BITS ; CL = Starting Plane #
Mov AX, MAP_MASK_PLANE2 ; Mask & Plane Select
Shl AH, CL ; Select correct Plane
Mov DX, SC_Index ; VGA Sequencer ports
Out DX, AX ; Set Initial Vid Plane
Inc DX ; Point DX to SC_Data
Mov AL, AH ; Mask for future OUT’s
Clr CX ; CX = Constant 0

; Setup DS; BX = Upper left corner of Image in VGA memory
; BP = Local Stack Frame
; AL = OUT mask for Selecting video Plane
; CX = Constant value 0 for ADC
; DX = SC_Data; VGA Sequencer Data Port
; AH = Destroyed
; SI,DI = Not modified during call
;
; Now we jump to the compiled code which actually draws the
; sprite. The compiled code will return to the caller.

Jmp dp [BP].DCB_Image ; Draw Sprite

DRAW_COMPILED_BITMAP ENDP

;===
; DRAW_COMPILED_BITMAP_13h (CompiledImage, X_pos, Y_Pos)
;===
;
; Sets up a call to a compiled bitmap in Mode 13h.
;
; ENTRY; Image = Far Pointer to Compiled Bitmap Data
; Xpos = X position to Place Upper Left pixel at
; Ypos = Y position to Place Upper Left pixel at
;
; EXIT; No meaningful values returned
;

; ===;
; COMPLBMP.ASM - Compiled Sprite Setup & Call Routines for;
; Mode X or Mode 13h. ;
; Author; Matt Pritchard for Game Developer Magazine. ;
; Adapted from MODEX108 ;
; Assembler Used; MASM 5.10a ;
; ===;

.MODEL Medium

.286

.CODE

; ===== General Constants & Macros =====

wp EQU WORD PTR
dp EQU DWORD PTR
fp EQU FAR PTR

; ===== VGA Register Values & Constants =====

VGA_Segment EQU 0A000h ;Vga Memory Segment

SC_Index EQU 03C4h ; VGA Sequencer Controller
SC_Data EQU 03C5h ; VGA Sequencer Data Port

MAP_MASK_PLANE2 EQU 01102h ; Map Register + Plane 1
PLANE_BITS EQU 03h ; Bits 0-1 of Xpos = Plane#

;==
; DRAW_COMPILED_BITMAP (CompiledImage, X_pos, Y_Pos)
;==
;
; Sets up a call to a compiled bitmap in Mode X.
;
; ENTRY; Image = Far Pointer to Compiled Bitmap Data
; Xpos = X position to Place Upper Left pixel at
; Ypos = Y position to Place Upper Left pixel at
;
; EXIT; No meaningful values returned
;

DCB_STACK STRUC
DW ?,? ; DS, BP
DD ? ; Caller

DCB_Ypos DW ? ; Y position to Draw Bitmap at
DCB_Xpos DW ? ; X position to Draw Bitmap at
DCB_Image DD ? ; Far Pointer to Graphics Bitmap
DCB_STACK ENDS

PUBLIC DRAW_COMPILED_BITMAP

DRAW_COMPILED_BITMAP PROC FAR

Push DS ; Save DS
Push BP ; AX-DX are destroyed
Mov BP, SP ; Set up Stack Frame

; Get DS;BX to point to (Xpos,Ypos) on the current
; display page in VGA memory

; ***** USER NOTE ***** MODIFY AS NEEDED *****
;
; Line_Offset is lookup table containing the start
; offset for each line in VGA display memory.

Listing 2. Compiled Sprite Setup and Call Routine (Continued on p. 41)

compiled sprite buffer before we com-
pile the pixels in the next video plane.

In Listing 1, the variable Mode_X
controls the output of compiled sprite
code. If it is nonzero, the image is bro-
ken into four memory planes, and the
plane switching code is added to the
compiled sprite. If Mode_X is zero, then
code for Mode_13h is produced.

Listing 2 shows two separate func-
tions for drawing a compiled sprite—one
for Mode X and one for Mode 13h. The
Mode X routine, draw_compiled_bitmap,
loads registers with the screen address
and plane-switching values. The Mode
13h routine, draw_compiled_bitmap_13h,
only needs to load registers with the
screen address.

Because compiling sprites reduces
the process to its bare essentials, some
limitations exist. You can’t resize, rotate,
or clip a compiled sprite to a rectangle.
With normal sprites, you could write a
different sprite drawing routine that
performed these operations.

Suggestions for
Improvements
The sprite compiling code I’ve present-
ed here is only a start. There is no rea-
son we can’t include other capabilites in
the compiled code. Clipping on one axis
could be accomlished by ordering the
compiled instrctions along that axis and
using a jump table. Among the things
that could be added are:
• Add support for EGA and VGA 16-

color sprites
• Add support for SVGA and VESA

modes
• Add support for word-aligned writes

to video memory
• Add support for 32-bit instructions
• Add support for vertical or horizontal

clipping.
I leave it to you, our reader, to

decide where to take it. Until next time,
happy coding! ■

Matt Pritchard is a software developer for
Lacerte Software in Dallas, Texas, and the
author of MODEX110, a comprehensive
freeware ModeX library. You can reach
him via e-mail at matthewp@netcom.com
or through Game Developer magazine.

GAME DEVELOPER • APRIL/MAY 1995 41

PUBLIC DRAW_COMPILED_BITMAP_13H

DRAW_COMPILED_BITMAP_13H PROC FAR

Push DS ; Save DS
Push BP ; AX-DX are destroyed
Mov BP,, SP ; Set up Stack Frame

; Get DS;BX to point to (Xpos, Ypos) in VGA memory

; ***** USER NOTE ***** MODIFY AS NEEDED *****
;
; Line_Offset is lookup table containing the start
; offset for each line in VGA display memory.
; Here, I assume it to be a table of word values
; which are stored in the current code segment.

Mov BX, [BP].DCB_Ypos ; BX = Ypos
Add BX, BX ; Scale BX to Word Offset
Mov BX, wp CS;Line_Offset[BX] ; Get Offset of Line Ypos
Add BX, BP].DCB_Xpos ; Get UL Corner of Sprite

Mov AX, VGA_Segment ; Segment A000
Mov DS, AX ; DS;BX -> VGA memory

; Setup DS; BX = Upper left corner of Image in VGA memory
; BP = Local Stack Frame
; AX = Destroyed
; SI, DI = Not modified during call
; CX, DX = Not modified during call
;
; Now we jump to the compiled code which actually draws the
; sprite. The compiled code will return to the caller.

Jmp dp [BP]. DCB_Image ; Draw Sprite

DRAW_COMPILED_BITMAP_13H ENDP

END

Listing 2. Compiled Sprite Setup (Continued from p. 40)

Has Push-
Button Game
Design Arrived?

P U S H - B U T T O N G A M E D E S I G N

I
f you think about it, what are the var-
ious language compilers used by the
software industry besides virtualized
machine tools? High-level language
compilers, advanced graphic render-
ing systems, audio routine libraries—
these are all tools that help game
developers build the parts that com-

pose a game product.
Historically, the complexity and spe-

cialization of machine tools has grown as
an industry grows. Look at any mature
manufacturing industry, and the diversity
of specialized tools supporting that indus-
try is likely to boggle your mind. The
younger the industry, the less rich are the
toolsets you can use to build new products.

In the computer game industry, the
pinnacle of the software development
“machine tool” is the proprietary develop-
ment platform. For example, Sierra
Online’s long-term success is due in no
small part to the fact that it ventured into

adventure games—a game genre with
proven appeal. More importantly, it then
developed SCI, its adventure game devel-
opment system, which it used to mass
produce new adventure games.

Other early and somewhat legendary
development systems include LucasArts’s
SCUMM and Microprose’s MADS.
Recently, there’s been more talk about
development platforms as everyone looks
for a leg up on the competition. Sierra
Online recently finished upgrading its
aging development engine and redubbed it
SCI32, while newcomer Rocket Science
drew envy with its ballyhooed Game Sci-
ence system.

The MADS System
Microprose sold the aging MADS system
to Sanctuary Woods, which turned around
and overhauled the entire system. “The
new system is called M4DS,” says Matt
Grueson, executive producer and director
of the advanced development group.
Grueson codesigned MADS when he was
still with Microprose. When he and a
small development group moved en masse
to Sanctuary Woods, they convinced their
new employer to purchase MADS from
Microprose.

The purpose behind MADS,
M4DS, and other development systems is
to dramatically increase productivity. By
reducing the number of programmers
needed to complete any given project, the
overall budget for a project is drastically
reduced. Grueson is clearly sold on the
concept, “I had two goals. I wanted to give
the end-user a better-looking, better-feel-
ing game, and I wanted it to be more cost
effective for us to produce these games.”

“With a development engine, pro-

42 GAME DEVELOPER • APRIL/MAY 1995

Selecting shadow colors for a specific background in MADS. The character’s shadows are dif-
ferent in each scene—to match the background art.

gramming is where we save the most
money. We don’t need armies of pro-
grammers to make everything happen.”
Microprose’s lushly animated Dragon-
Sphere required only one person-year of
programming time using MADS, in com-
parison to what Grueson estimates would
take other companies, using less evolved
development tools, three to four program-
ming person-years to develop. “Based on
what I know about the other development
systems, their cost would be 50% to 100%
higher than ours. If someone was trying to
do everything DragonSphere does, and
programming it from scratch, I can’t even
fathom how much time and money that
would take.”

Collecting the Parts
To design an effective development sys-
tem you have to start thinking about any
game as a collection of parts. A game con-
sists of programming and content. Spend
any time talking to designers of these
development systems and the most com-
mon phrase you will hear is “asset man-
agement.” Assets are your content, your
media: PCX files, bitmaps, WAV files,
and the like.

On the software side, a game con-
tains a collection of routines or functions
that perform specialized tasks on different
media types. The road toward creating a
solid development system begins with a
good library of such routines, both for
graphics and sound.

Get enough solid routines together,
encapsulate them within an interface or
within a highly abstracted (easy to learn
and read) scripting language, and you have
the core of a development system. The
benefits are numerous. This structure

forces you to reuse software assets, which
saves money, and the routines that go into
the development engine as parts tend to
receive extra attention and become highly
optimized over time.

Ideally, programmers can then focus
on improving and adding new parts to the
development engine, while (less expen-
sive) teams of game designers and artists
develop titles. In reality, programmers are
still an integral part of any development-
system-assisted team, even if they’re there
only to make the game do new tricks.

The Ideal System
The ideal development system abstracts as
much of the programming as possible so
that artists and designers can use high-
level, low-learning curve tools to build the
game. “The important thing we kept in
mind as we developed these tools was the
programmers working on these tools were
not the users. The customers were the
production team. We wanted each part of
the team to be able to work with the sys-
tem in the way that was natural to them.
The artists could do the art with the sys-
tem, the game designers could do the
writing and game design, and you didn’t
have programmers doing everything,” says
Grueson.

M4DS is a great example of how a
fully developed, well-planned develop-
ment works. The M4 connotes four Ms:
multimedia, multiplatform, multiplayer,
and multipoint. Building on MADS,
Grueson’s team adds multimedia exten-
sions, primarily streaming data handlers
that let the system handle lossless video
data. Says Grueson, “The data streamer
allows us to integrate audio, video, and
collision data, like Rebel Assault did—

Fledgling though it

may be, the game

industry is more than

ready for Sanctuary

Woods‘s M4DS and

Rocket Science‘s

Game Science, two

systems that herald

the onset of push-

button game design.

David Gerding

GAME DEVELOPER • APRIL/MAY 1995 43

almost any type of data that we want to
put into the stream. It’s fully virtualized. It
even handles laying out the files in the
correct and optimal order for the best
access times.”

By keeping many of the requisite
game structures represented in data rather
than code, M4DS also promises to be
highly portable. “We’ve got a Macintosh
engine planned, and we’ve got most of the
work done for a 3DO engine, though
we’re not sure we’re going to proceed with
that yet,” Grueson says.

Sanctuary Woods has also incorpo-
rated a communications sublayer into the
engine that will allow for distributed
games where multiple players can interact.
“The system is designed so that the world
within it can be completely virtual. You
can have players or nonplayer characters...
all interacting within the same game uni-
verse. These ‘points’ can be hooked up via
modem, network, whatever. Because the
communication layer is completely sepa-
rate, we can write a communications dri-
ver for practically any kind of communica-
tion type we might need, including inter-
active television,” says Grueson.

The Building Blocks
The main components of M4DS include
a Sprite Editor, Animation Editor, Scene
Editor, Object Editor, and Conversation
Editor. The Sprite Editor lets artists turns

a series of sprites into any one of 24 pro-
prietary formats that trade off various lev-
els of compression depending on the func-
tionality of the sprite required within the
game.

The Animation Editor lets artists
take backgrounds, sprites, and sounds and
define the interaction between these
assets. Explains Grueson, “If we have a
sprite series of a moving car, a bouncing
ball, and a kid walking down the sidewalk,
plus a background of a street, the anima-
tion will pull all those components togeth-
er and optimize each of the sprite series to
get the most animation in the least
amount of disk space.”

Every asset is given a specific name,
and those names are available to all pro-
grammers, designers, and artists. When
designing a development system, it’s a
good idea to follow Grueson’s lead and
require common file naming conventions
so that every member of the development
team can quickly assess the contents of an
asset by looking at the name.

The Scene Editing tool lets the
designer and artists lay out all the ele-
ments that compose a particular scene.
Because M4DS is primarily a graphic
adventure development system, the
metaphors and organizing principals it
employs follow the structures and aesthet-
ic typical to the adventure game genre.
For example, the active screen elements or

hot-spots common to all traditional
graphic adventures get plenty of attention
in M4DS, including a hot-spot properties
editor.

The organizing components of any
graphic adventure are collections of
“scenes,” and, subsequently, Scene Edit is
where most of the graphical work gets
done, reveals Grueson. Even though a
development system is usually built upon
an organizing metaphor such as scenes, it
should also help artists and designers
sweat the details, such as allowing artists
to match a characters drop-shadow to
each specific background.

As for the core game logic, designers
working on M4DS use a proprietary
scripting language modeled closely on C.
According to Grueson, “We chose that
because you don’t really have to train
everybody in it.... Our programmers know
it, and the syntax is already pretty well
defined.”

Game Science
On the cutting edge of development sys-
tems, and offering an entirely different
perspective is the Game Science develop-
ment system from Rocket Science. Rocket
Science is doing graphically intensive,
high-motion action arcade games, and the
organizing metaphor is, appropriately, a
world away from Sanctuary Woods’s.
Most of the work is done in a layout pro-
gram called Composer that is reminiscent
of Macromedia Director. “The Composer
lets you lay out the game in the form of a
conditionally branching time line. We call
it TimeSpace,” explains Sean Callahan,
software engineer at Rocket Science.
Callahan—one of the principal designers
of QuickTime while he was at Apple—
created the Composer prototype.

“Our main idea was to create a sys-
tem so that game designers could create
and develop without being programmers,”
says Callahan. “In Composer, the designer
can do the layout, do the connections, and
display it a reasonable level to see how the
branches look and that kind of thing. It
even tries to approximate the resolution of
what the graphics will look like when its
run on the target.”

The target is important to Callahan
because Rocket Science’s ambitious goal is

P U S H - B U T T O N G A M E D E S I G N

44 GAME DEVELOPER • APRIL/MAY 1995

M
icrosoft has released three Windows extensions that, taken together, could
easily form the core of a simple development engine and there for the tak-
ing. Sure, everyone knows about WinG, the quasi-double-buffering routine
that speeds up graphics blitting under Windows. But go online and get ahold
of WinToon, a set of routines that lets you superimpose a sprite on a win-

dow playing an AVI file. Also, there’s WaveMix, which will let you mix several WAV file
sources in real time for multilayered sound effects. Of course, you must already be a Win-
dows programmer or be willing to learn. Microsoft is providing these extensions to get
developers to develop games for Windows, and they really are worth a look.

Also, be sure to check out Klik and Play by Francois Lionet and Yves Lamourex. It’s a con-
sumer-targeted “game creator” that will teach you a lot about how to think of action
games in terms of components. It’s way cool.

Finally, Director 4.0 has been released. If you’re a PC or Windows fanatic, is new Windows
version is a powerful, cross-platform development system in its own right, though you
will likely need to learn Lingo, its scripting language, to do anything approaching a com-
mercial-quality game.

R O L L I N G Y O U R O W N D E V E L O P M E N T S Y S T E M

to make Game Science entirely platform
independent and able to compile to a tar-
get platform at the push of a button. As
such, the system currently handles a limit-
ed number of media types, including
QuickTime movies, sprites, and digitized
audio, though the system’s abilities are
changing to meet new demands.

“Right now we are just looking at
how we are going to let Composer handle
three-dimensional graphics. While our
current system doesn’t support true three-
dimensional rendering right now, when
we render the three-dimensional images
on the SGI, part of the output we include
in the file is three-dimensional reference
information that is stored in one of the
tracks in QuickTime. So, for example, if
you’re driving down a tunnel and you take
a right turn... the car headlights seem to
reflect on the wall in the right way because
we’ve got enough of the three-dimension-
al information about the tunnel in the
QuickTime track,” reveals Callahan.

Rocket Science is just putting the
finishing touches on the PC version of

Loadstar, originally compiled for the Sega
CD target. But all that hard work will pay
off in the future, when subsequent titles
are readily “compiled” for the PC in a
fraction of the time most companies
would spend to port a product. “The
trickiest part in getting the compiler to
port to the different platforms is figuring
out all the timing issues with the different
drives and the graphic hardware,” says
Callahan.

The Argument Against
Development Systems
Sure, there are cost advantages to imple-
menting a development system, and the
allure of such seemingly elegant produc-
tion is highly attractive. Is there a down-
side? Yes and no. The potential downside
is that games designed with a common
development system will look and play
alike. While the cookie-cutter similarity
between Kings Quest 4-7 hasn’t hurt the
games’ critical acclaim, sales, or profits,
there will always be game purists demand-
ing something new and different. Sierra

can rightly claim that each new graphic
adventure offers something the previous
version did not, but the changes have been
incremental, rather than revolutionary.

The trick is to let the game designers’
needs define the growth of the develop-
ment system. The tools that programmers
periodically add to the development plat-
form should answer designers’ and artists’
needs. It’s simply a matter of keeping the
developmental tail from wagging the dog.

Push-button game design has
arrived, and as the toolsets evolve, game
artists, designers, and programmers will
likely need to press fewer and buttons to
see their dreams take form. Paradoxically,
as the tools proliferate, it may take greater
and greater genius in the future to build a
game no one has played before. What a
marvelous challenge! ■

David Gerding is a freelance writer
who teaches interactive media at Columbia
College of Chicago.

P U S H - B U T T O N G A M E D E S I G N

46 GAME DEVELOPER • APRIL/MAY 1995

Programming
in C and C++:
The Literature

B O O K R E V I E W

I
n the days before computers became
a lifestyle and surfing was only done
at the beach, you found computer
books in dark corners of university
libraries under “engineering.” Not
anymore. Eventually, every book-
store, whether on campus or in a
mall, had rows of computer books

covering everything from Ada to Zmo-
dem. But where were the hard-core refer-
ences for programming games?

In the past two years, a surge of
books that proclaims to reveal all these
secrets has emerged. While none of them
will make you an instant game program-
ming superstar, any one of them will
prove enlightening in some way. Which
ones are worth the time and money? I
analyzed seven books on DOS game
development according to their various
strengths and weaknesses.

Flights of Fantasy
First of the group is Flights of Fantasy
(The Waite Group, 1993, $34.95) by
Christopher Lampton. This 550-plus-
page book focuses on developing a 256-
color VGA flight simulator using Borland
C++. Lampton states up front that the
simulator won’t compare to a high-end
program like Falcon 3.0, but that it will
give you the basic rudiments and structure
to understand how these programs work.

Most of the book is devoted to the
essentials of graphics: designing land-
scapes, the mathematics of flying, how to
remove hidden surfaces, and polygon clip-
ping, for example. Lampton explains
clearly about interfaces using joysticks, the
keyboard, or a mouse. He even manages
to touch upon the process of adding
Sound Blaster support to your games.

The only major negative aspect
about this book is its limited range of
applicability. It may prove too daunting if
you try to use the Lampton’s book to pro-
gram something more high-level, such as
an arcade game.

For flight simulator fans, though,
this is the book. Novice programmers may
want to get this for its clarity of writing
and its chapter on interfaces. Certainly the
information on three-dimensional model-
ing will be of some benefit for those writ-
ing first-person-perspective games.

Creating Turbo C++ Games
Clayton Walnum’s Creating Turbo C++
Games (Que Corp., 1994, $29.99) is a bet-
ter book for the novice programmer than
Flights of Fantasy. The 470-page book
covers basic game programming and
includes a variety of samples. I really liked
that the book uses a low-end C++ compil-
er (Borland’s Turbo C++, which sells for
under $80). The games you learn how to
develop are not sophisticated—card
games, a dungeon quest, versions of Wari
and Life—but they serve as a good spring-
board for more detailed programs, and all
use 256-color VGA to look sharp.

Walnum’s style is friendly and care-
ful as he explains the various components
in constructing a game and using C++.
For those new to the language, he even
includes a short primer in the back of the
book explaining object-oriented program-
ming and classes.

The downside is that the games
Walnum focuses on are very simple. Top-

Verdict: Seemingly limited appeal
but well written. Would be of most
interest to flight simulator fans.

48 GAME DEVELOPER • APRIL/MAY 1995

ics like sound, joystick interfaces, and
killer animation just aren’t in the book, so
ambitious game developers may require
other sources of information to get to the
next level of proficiency. Of all the books
I reviewed, this one may be the best if you
want to design strategy games. The fun-
damentals for programming strategy
games are here; you just have to figure out
how to use them.

Tricks of the Game
Programming Gurus
The most detailed, information-packed
book of the seven books I looked at is
Tricks of the Game Programming Gurus
(SAMS Publishing, 1994, $45.00) by
Andre LaMothe, John Ratcliffe, Mark
Seminatore, and Denise Tyler. This is a
must-have for beginning and intermedi-
ate programmers, even if you don’t have a
CD-ROM player to access the enclosed
disc. This 740-page book touches on
everything: sound, artificial intelligence,
networking, assembly language, graphics,
and more. The focus is on developing a
256-color VGA Doom-like game. Since
this may be the most difficult type of
game to develop, understanding the rou-
tines here may make programming other
types of games easier.

The writing style tends toward a
sophomoric buddy-buddy style at times,
but the information, tricks, and explana-
tions more than make up for it. The book
presents information well, despite the fact
that it starts with the topic of assembly
language and then dives into matrix alge-
bra two chapters later. These subjects,

which are nightmarish yet vital, are han-
dled well and made very accessible.

The book is not perfect: nowhere is
it clearly stated what compiler is recom-
mended, though Microsoft C 7.0 seemed
to be the chosen tool (e-mail to one of
the authors revealed that Watcom was
also used). Many advanced topics, such as
converting graphics routines to SVGA,
are hinted at but then left as exercises for
the reader. No code is included for saving
and restoring games, but unlike many of
the other books here, at least the authors
mention the topic.

The accompanying CD-ROM is
loaded not only with source code but
many shareware games, such as Doom,
and Blake Stone, and useful tools such as
DigiPak and MidiPak to help you develop
sounds for your programs. Also included
is Warlock, a rudimentary Doom-like
game whose code you can tinker with.

Action Arcade
Adventure Set
A newer book is Action Arcade Adventure
Set (The Coriolis Group, 1994, $39.95)
by Diana Gruber of Ted Gruber Soft-
ware. Her book focuses on developing a
256-color VGA side-scrolling arcade
game similar to Commander Keen or
Duke Nukem. Ted Gruber Software
makes Fastgraph, a set of graphics rou-
tines, and the book includes a subset of
this package, called Fastgraph Light.

Verdict: A must-have! I only wish it
went into even more detail—like
using DOS extenders and memory
management. The CD-ROM is
loaded with source code, tools, and
shareware.

Verdict: Great book for C++
beginners.

It used to be difficult

to find any program-

ming books —much

less game-specific

ones—in your local

bookstore. Now,such

texts are the order of

the day. Here are the

latest books on using

C to develop games.

Dean Oisboid

GAME DEVELOPER • APRIL/MAY 1995 49

I have two points to make about this
book. First, too much space is devoted to
explaining the source code of the included
tools, such as the sprite editor. Almost
one hundred pages of the book are devot-
ed to the tools’ code, which is great if you
want to modify those tools. However,
most of us don’t want to know how
DeluxePaint or Renderman work—we
just want to use them. Walnum also
explains his graphics tools in Turbo C++
Games, but he takes only 30 pages and
then quickly returns to game design.

Second, I feel the book reads like an
advertisement for Fastgraph, as all the
important functions the book describes
come from that product. For example, the
other books I reviewed explain how to
write a joystick interface, but Gruber’s
doesn’t; she suggests you use the Fast-
graph routines for this event. No other
help is given on the topic.

By relying on a product like Fast-
graph, beginning- to intermediate-level
developers don’t learn how to write vital
functions such as keyboard interrupt han-
dlers. What may be worse is losing the
ability—especially for the experienced
programmer—to tweak any of the Fast-
graph functions if there are speed bottle-
necks. The entire book relies so much on
Fastgraph that to extract the information
of writing a side-scrolling arcade game
without it would be darn near impossible.

There is a flip side to this opinion,
however. Some programmers prefer this
reliance, as packages such as Fastgraph
and Fastgraph Light let you can concen-
trate on game design. The products take
care of the difficult graphics routines, doc-
ument them, and if you encounter prob-
lems, you can call technical support. Fast-
graph runs on most C/C++ compilers.

Reactions aside, the most interesting
readings were the headers for the game
programs. The headers explain the struc-
ture of the game and its components—
and right there you get a ton of informa-
tion. You can see what kind of thought
and programming goes into a side-
scrolling arcade game and how the plan-
ning evolves. Also of interest are the final
chapters on marketing and resources.
How to sell your finished product is a
topic not really touched by many of the

books and the resources listing is a very
nice addition. The listing includes sources
for custom music, sound effects, maga-
zines that may interest developers, and
other contacts.

Programming
Computer Games in C
Robert B. Marmelstein’s book, Program-
ming Computer Games in C (M&T Books,
1994, $34.95) is similar to Walnum’s
Turbo C++ Games in that it describes the
development of simple games in depth.
The games in this book tend toward the
“action arcade” side, putting it somewhat
in competition with Gruber’s book. How-
ever, unlike Gruber’s book, development
doesn’t rely on high-powered graphics
routines—and it shows. In fact, many
samples use 16-color EGA, which places
this book about four years out of date.

While each aspect of game construc-
tion gets some mention, I felt the pro-
grams and logic were too simplistic and
that more efficient coding schemes could
be used. Marmelstein’s use of bitmapping
seems very inefficient when compared to
LaMothe or Gruber. In fact, Marmelstein
explains various design options and then
chooses the easiest option, whereas the
other authors might have chosen a more
efficient yet difficult option. This book
would have stood out two years ago, but in
order to compete against the LaMothe
tome it needs to include much more detail
and ascribe to a higher level of game.

PC Game
Programming Explorer
In contrast to Marmelstein’s and Gruber’s
books, Dave Roberts’ PC Game Program-

ming Explorer (The Coriolis Group,
1994, $34.95) takes the coding challenge
and spells things out. This 500-page book
strives to develop one type of game: a top-
to-bottom 256-color VGA scroller, simi-
lar to Apogee’s Raptor (but more rudi-
mentary in play). Roberts uses Borland C
3.1 (4.0 will also work) as the compiler.

The book is very readable and covers
the expected topics—interfacing, imple-
menting VGA graphics and special
effects, and sound, which makes it an
excellent choice for beginners. But, as
with Lampton’s Flights of Fantasy, the
next technical step is up to you; to gener-
alize beyond the type of game demon-
strated would require some work.

Ironically, The Coriolis Group pub-
lished both Roberts’s and Gruber’s book,
and my reaction while reading PC Game
Programming Explorer was that this is
what Gruber should have written. Every-
thing, including a joystick routine, is
clearly explained—with no reliance on
prepackaged graphics routines.

I greatly appreciated the chapter on
what shareware and freeware program-
ming tools to get, and where to get them.

Teach Yourself Game
Programming in 21 Days
As if one huge book weren’t enough for
him, Andre LaMothe wrote another one.
Teach Yourself Game Programming in 21
Days (SAMS Publishing, 1994, $39.99) is
another required monster, coming in at
950 pages. Topics are broken into daily
chunks and each “day” ends with a sum-
mary, questions and answers, a quiz, and
exercise. He also throws in weekly reviews:
a repetition of information that helps you
retain the important stuff. Yes, the
answers are in the back of the book. As for
the compiler, LaMothe recommends
Microsoft C/C++ 7.0 and MASM 5.0.

Unlike his previous book, LaMothe
tackles a variety of game types instead of
just a Doom clone. In fact, he covers some
unique topics:
• Text adventures. LaMothe includes a

Verdict: Great book for beginners to
low-intermediates. The narrow range
of topics may prove too limited for
more experienced programmers.

Verdict: Well written but not chal-
lenging enough. This could have
been a much more useful book if
Marmelstein tackled, at least, a VGA
platform and more advanced detailed
games. When compared to the other
books, it is painfully obvious that this
is the weakest of the bunch.

Verdict: Great or to be avoided,
depending on whether you want to
use Fastgraph as a primary graphics
package.

B O O K R E V I E W

50 GAME DEVELOPER • APRIL/MAY 1995

chapter on designing an old-fashioned
text adventure. These games sound
easy to program mainly because they’ve
been around for so long. However, the
implementation of these games is actu-
ally difficult if you want to advance
beyond the “Get fish,” “Eat fish” stage.
He explains the difference between
lexical, syntactical, and semantic analy-
ses—that is, parsing input into compo-
nents, “understanding” the compo-
nents of the input, and finally acting
from the components if it’s logical to
do so—as he develops the adventure
game Shadow Lands. As an additional
demonstration and a wonderful bonus,
the enclosed CD-ROM contains the
source code for Zork 1.

• DOS extenders. My gripe about his first
book has been partially answered.
LaMothe acknowledges DOS exten-
ders and gives recommendations and
tips for using them, but still doesn’t
actually show how to use them.

• Marketing. While some of the other
books I reviewed also mention market-
ing, LaMothe explains how to protect
your work by copyrighting and regis-
tering your program with the copyright
office. This is a nice touch.

Since LaMothe has coauthored one
of the other reviewed books, I’m inclined
to compare the two and see what is miss-
ing from this newer book. The most obvi-
ous difference is that this book doesn’t
cover three-dimensional games. In fact,
you might want to consider both books as
a set—his first book covers three-dimen-
sional games and this one explains every-
thing else. Taken as such, the differences
are minimal.

Gardens of Imagination
Clayton Walnum’s Gardens of Imagina-
tion: Programming 3D Maze Games in

C/C++ (The Waite Group Press, 1994,
$34.95) follows up on his Flights of Fanta-
sy by exploring the construction of maze
games like Doom using Borland C/C++.
Unfortunately, Walnum covers much the
same ground as LaMothe and his coau-
thors in their Gurus epic—but without as
much detail. In fact, the bulk of the 580-
page book explores ways to produce a
first-person, three-dimensional graphics
background. In the final chapter, Walnum
rushes through the other aspects that go
into a game. Implementing sound isn’t
even mentioned (although Walnum pro-
vides neat code for an automap feature).
The book therefore reads more like a
How-to graphics manual rather than one
for a game.

On its own, the book is readable and
useful, covering a variety of advanced top-
ics such as ray tracing, ray and height
casting, and the always vital code opti-
mization. Of interest is the inclusion of
Persistence of Vision, an incredible
graphics generator and programming lan-
guage, that has quite a following of its
own. Walnum uses it to produce various
parts of the maze background but even
this interesting program is not enough to
save the book. The focus stays too long
on producing different maze types and
snazzy background generation and not
enough on game development. The book
should have been called Producing 3D
Mazes in C/C++.

A Final Word
All these books provide some good
information. If you can afford just one
book, invest in either of the LaMothe
books; both give you a lot of informa-
tion, code, and programs for your money
and are the most current in terms of

techniques. (Teach Yourself Game Pro-
gramming in 21 Days does have the
newer versions of many shareware
games, though.)

For the complete beginner awed by
the prospect of wading through either of
LaMothe’s books, my recommendation
is Roberts’ PC Game Programming
Explorer for the depth and clarity of
writing. For C++ aficionados, Walnum’s
Creating Turbo C++ Games gets the nod.
It covers a variety of game types in a
well-written manner.

One caveat about these books is
that they all claim to reveal the deepest,
darkest secrets of game programming,
which each one does to an extent. They
all reach a certain point before waffling.
None of the books dared to show how to
program SVGA or implement DOS
extenders (and try to write a decent
Doom clone without using some sort of
extender). Many of these advanced areas
were left as exercises for the reader to
figure out. Also left as an exercise, sur-
prisingly, is how to implement save and
restore routines. Some of the books
mentioned the topic but none offered
any real code.

Realistically, as games continue to
push the envelope of hardware, a
prospective game programmer just start-
ing out will quickly hit a wall. Indeed,
the in crowd of game developers will
still remain “in” when it comes to the
high level, SVGA, network and or
modem-capable, AI-intensive, next gen-
eration games. The fact that there is so
much to learn and that new techniques
are continually invented can be daunting
to the beginner. But, with work,
patience, and perhaps a little luck, the
darkest secrets of game programming
will be revealed. ■

Dean Oisboid, owner of Garlic Soft-
ware, develops database applications and is
a game designer. He can be reached via e-
mail at 73717.2343@compuserve.com. or
through Game Developer magazine.

Verdict: Bad timing kills this book.
A year ago it would have been a
groundbreaker. Though it covers
similar material, it can’t compare to
Tricks of the Game Programming
Gurus, especially when you factor in
price and the quantity and quality of
programs on the enclosed disk or
CD-ROM. Beginners will not suf-
fer, however, if this is the only book
available at their bookstore.

Verdict: Another must-have.
LaMothe has again written a book
that includes so much information
that other books can’t match up.
The CD-ROM not only has source
code, it also has more tools and
newer shareware games than the
Tricks of the Game Programming
Gurus disk.

GAME DEVELOPER • APRIL/MAY 1995 51

T
his month, we conclude our
review of TIE Fighter by
LucasArts Entertainment Com-
pany. We’ve already looked at
the TIE game engine in general,
and I wrapped up last month by
summarizing some of the data I
found in the pilot file. This

month, we’ll go through some of the
data found in the TIE mission files.
LucasArts released Defender of the
Empire, TIE Fighter’s add-on mission
disk set, just as I began writing this
review, so I’ll also cover some of the mis-
sion data I found in these new missions.

The data files in the Defender of
the Empire mission set were somewhat
different from what I expected. The
add-on missions for X-Wing, the first
game in the Star Wars series, contained
new game engines (the primary exe-
cutable plus two overlay executables) in

each mission set. TIE Fighter’s mission
set consists primarily of the new mission
files plus some graphics and sound files
for the new Missile Boat vehicle. The
absence of a new game engine in the
TIE add-on missions implies that the
original game engine had the data for
add-on missions built into it—the add-
on mission sets will activate this data as
needed. LucasArts’s strategy of creating
only one game engine is good in that it
forced the company to plan out the
entire TIE game series from the start.
This makes for cleaner and more reliable
executables—as compared to game
engines that must be updated with each
release of new missions. Also, by not
distributing new game engines with
each add-on mission set, LucasArts
saves money on duplicating and distrib-
uting mission disks, because the game
engine files are quite sizable.

Tie Fighter,
Part II

After an initial, general

look at LucasArts‘s Tie

Fighter game engine,

Wayne Sikes digs

deeper. This month, he

scrutinizes the game‘s

data files, as well as

the structure of the

Defender of the Empire

add-on mission set.

Wayne Sikes

C H O P P I N G B L O C K

GAME DEVELOPER • APRIL/MAY 1995 53

Tie Fighter add-on missions don’t modify the original game engine, they just activate data
already incorporated in the engine.

TIE Mission File Overview
The TIE Fighter mission files have a
.TIE suffix. Refer to “TIE Fighter, Part
I” (Chopping Block, Feb./Mar. 1995)
for information on how the battle and
historical mission files are named as well
as for listings of the mission files found
in the original game distribution. The
TIE mission files range in size from
about 2,000 to 22,000 bytes. Each mis-
sion file contains essentially all the flight
group data, briefing text, radio messages,
mission objective summaries, mission
accomplishments, enemy opposition
summaries, and instruction or warning
messages that appear during a mission.
X-Wing, on the other hand, had sepa-
rate mission and briefing data files, and
its mission and briefing text was
nowhere as detailed as TIE Fighter’s.

The data for each flight group is
contained in a 292-byte structure. All
flight group structures are grouped
together with the first structure begin-
ning at offset 1CA (hex) in the mission
file. The flight group structures, and
hence the flight groups, are ordered in a
one-up manner with the first flight
group structure in the file as “flight
group 0”.

The TIE mission data is one of the
most complex mission structures I have
seen. Due to this complexity, I will be
able to discuss only a few of the mission
details. Hopefully, the mission parame-
ters I cover here will give you a broad
idea of the types of data used by the TIE
game engine for setting up missions.

General Mission Parameters
Listing 1 gives several parameters con-
tained in the flight group structures. As
you can see, each structure contains a
large amount of flight group data, and
we are just getting started! The flight
group Name, Cargo 1, and Cargo 2 data
are standard C null-terminated string
arrays. The last character of each array
must be null (0), so each string can con-
tain up to 11 characters.

The Vehicle byte specifies the vehi-
cle used by the flight group. Each game
vehicle is referenced by a specific value—
a value of 1 specifies an X-Wing, 2 is a
Y-Wing, 3 is an A-Wing, and so on.
TIE Fighter has many more vehicles
than X-Wing. The Vehicles Per Wave
variable specifies the number of vehicles
that will appear with each wave of craft,
and the Number Of Waves byte specifies

the total number of waves allowed to
appear.

Several parameters specify the con-
dition of the flight group vehicles when
the group first appears in the game. The
Starting Configuration specifies normal,
extra weapon, damaged, and special
(shields off, hyperdrive off) configura-
tions. The Weapons variable gives the
default weapon load and the Beam
Weapons details any beam weapon load-
out. The Beam Weapons data is espe-
cially fun to alter because in the original
game only Darth Vader had a Decoy
Beam weapon. Now you can give your-
self one too!

The Artificial Intelligence byte tells
how good the pilots in the flight group
are. You can set this level from Novice
(not very good) to Super Ace. (I usually
avoid the Super Ace settings because I
get destroyed very quickly.) The Affilia-
tion variable sets the allegiance of the
flight group (such as Rebel, Imperial, or
Neutral), and the Talk Flag toggles your
ability to talk to or command the flight
groups. (I usually turn this flag on when
programming enemy flight groups so I
can tell them to “go home” when I’m
being beaten badly.)

Every flight group can arrive and
depart via hyperspace or a mothership.
The Arrival and Departure Mother Ship
Flight Group variables specify the flight
group designated as the mother ships.
The master controls for how vehicles
arrive and depart are in the Arrival and
Departure Method bytes. If you program
a flight group to jump into hyperspace in
the game, the vehicle you select for the
flight group must have hyperdrive engine
capability.

Flight Group
Start Conditions
Listing 2 summarizes the flight group
structure data that specifies when a
group enters the game. I have given two
start conditions the arbitrary label of Pri-
mary and Secondary Start Conditions.
Both start conditions function in the
same manner.

Several possible Primary and Sec-
ondary Start Conditions exist. These
conditions include an “always start” con-

C H O P P I N G B L O C K

54 GAME DEVELOPER • APRIL/MAY 1995

STRUCTURE DATA DESCRIPTION
OFFSET (DECIMAL) TYPE*

0-11 byte Flight Group Name. 12-byte null-terminated array.
24-35 byte Cargo 1 text. 12-byte null-terminated array.
36-47 byte Cargo 2 text. 12-byte null-terminated array.
48 byte Special Craft Position.
50 byte Vehicle. 1=X-Wing, 2=Y-Wing, 3=A-Wing, etc.
51 byte Vehicles Per Wave.
52 byte Starting Configuration. 0=Normal -> 8=Shields off
53 byte Weapons. 0=None -> Magnetic Pulse
54 byte Beam Weapons. 0=None -> 3=Decoy Beam
55 byte Affiliation. 0=Rebel, 1=Imperial, 2=Neutral, etc.
56 byte Artificial Intelligence. 0=Novice -> 5=Super Ace
58 byte Talk Flag. 0=Talk off. 1=Talk on.
60 byte Formation. 0=Vic -> 9=Vertical
64 byte Number Of Waves.
66 byte Player Position.
73 byte Difficulty. 0=All Levels -> 5=<Hard Levels
96 byte Arrival Mother Ship Flight Group.
97 byte Arrival Method. 0=Hyperspace. 1=Mothership
98 byte Departure Mother Ship Flight Group.
99 byte Departure Method. 0=Hyperspace. 1=Mothership

* “byte” references an unsigned character.

Listing 1. General Flight Group Parameters

dition (0), “the designated object must
have arrived” (1), “the object must have
been destroyed” (2), and so on. The start
condition depends on actions happening
to another object. This object may be
another flight group, a certain type of
vehicle (X-Wing, Y-Wing, and the like),
or a vehicle that has a specified allegiance
(Rebel, Imperial, and so on). The condi-
tion may also depend on a range of flight
groups (flight groups 1 to 6, for exam-
ple). The Primary and Secondary Depen-
dency Type variables specify the type of
object used for the start condition and
the Primary and Secondary Start Data
variables contain the data for the object.
If the object is specified as a flight group,
the data variables will contain the num-
ber of the flight group. If the object is a
type of craft, the data will specify the
craft in the dependency condition.

In addition to all the Primary and
Secondary conditions, there can also be
time delays that prevent a flight group
from entering the game for a specified
time interval. The Start Minute Delay
counts in units of minutes, and the Start
Second Delay counts in intervals of five
seconds per data increment.

The Primary And Secondary Logic
Switch is interesting in that it specifies
whether the player or game must accom-
plish both the Primary and Secondary
Start Conditions or just either one of
them. When you set this switch to 0, a
logical AND condition is specified and
the game or player must meet both start
conditions. A value of 1 specifies a logi-
cal OR condition and only one of the
start conditions must be met for the
flight group to enter the game.

Commanding
The Flight Groups
Commanding the flight groups is one of
the most interesting yet complex areas of
the TIE game engine. A lot of fore-
thought went into the design of the
algorithms used for the orders that can
be given to a flight group.

Each flight group can have primary,
secondary, and tertiary orders. The flight
group structure stores each order as an
18-byte structure with the three orders
structures occurring sequentially in the

flight group structure, beginning at off-
set 104 (decimal) and ending at offset
157 (decimal). Listing 3 summarizes
some of the parameters found in each of
the orders structures. Notice the detail
given to each order.

The Order variable contains at least
35 commanded orders. A value of 0
commands the flight group to remain
stationary, 1 instructs it to fly away, 2
commands it to fly a loop, and so on.
Any details associated with the order,
such as time constraints or the number
of loops to fly, are found in the Indica-
tor1, Indicator2, and Indicator3 bytes.
The Commanded Speed byte details the
velocity for the flight group while it is
carrying out the order. The speed values
increment in units of 10% of vehicle
velocity.

Up to four targets can be associated
with each order. Each of these targets is
specified in the Target X Data and Tar-
get X Type variables (where X is targets
1 to 4). The Target X Type variable
specifies the type of target and the Tar-
get X Data variable contains the data for
the target. Among the available target
types are flight groups, types of craft (X-
Wing, A-Wing, and so on), or craft hav-
ing a specified allegiance (Rebel, Imperi-
al, and the like). The Global Player is a
special target type. The Global Player
type and its associated data are “modi-
fiers” of other target objects (I’ll discuss
global data types in more detail later.).
The data for each target (Target X Data)

GAME DEVELOPER • APRIL/MAY 1995 55

STRUCTURE DATA DESCRIPTION
OFFSET (DECIMAL) TYPE*

74 byte Primary Start Condition. 0=Always. 1=Arrived, etc.
75 byte Primary Dependency Type. 0=no dependence, 1=flight

group dependence, 2=vehicle type dependence, etc.
76 byte Primary Start Data.
78 byte Secondary Start Condition. 0=Always. 1=Arrived, etc.
79 byte Secondary Dependency Type. 0=no dependence, 1=flight

group dependence, 2=vehicle type dependence, etc.
80 byte Secondary Start Data.
82 byte Primary And Secondary Logic Switch. 0=AND. 1=OR.
84 byte Start Minute Delay.
85 byte Start Second Delay.

* “byte” references an unsigned character.

Listing 2. Start Condition Data

LucasArts‘s single

game engine-

forced the com-

pany to plan out

the whole game

from the start,

which makes for

more reliable

executables.

can be a flight group number (assuming
Target X Type specified flight groups), a
vehicle type (assuming Target X Type
called for a type of craft), an allegiance
(assuming Target X Type called for alle-
giance types), and so on.

If this discussion of targets hasn’t
already been complex enough, let’s add
in the logic switches and global types. In
Listing 3, the data for targets 1 and 2 is
grouped together, as is the data for tar-
gets 3 and 4. These data were not placed

in the orders structure randomly. Targets
1 and 2 can be grouped together into a
single target specification, and the same
goes for targets 3 and 4. The grouping is
done by using two Boolean flags—the
Targets 1 And 2 Logic Flag and the
Targets 3 And 4 Logic Flag variables. A
value of 0 commands that the two tar-
gets function in an AND manner (both
groups work together), and a value of 1
signals an OR condition (the two target
groups work independently). As I previ-

ously mentioned, the Global Player tar-
get type is a modifier of other targets. It
is used in conjunction with these logic
flags to modify the actions a flight group
takes against a target.

Let’s look at an example to help
simplify this targeting information. Let’s
assume you are flying a TIE Fighter and
you want to program a flight group to
attack all TIE Fighter vehicles—that is,
all TIE Fighter craft except yours. How
would you do this? First of all, program
the flight group with the Attack Flight
Group orders (give the Order byte a
value of 7). Let’s arbitarily use targets 1
and 2 for this order. We would set Tar-
get 1 Type to specify a type of craft (a
value of 2 commands for a type of craft),
and next we would set Target 1 Data to
a value of 4, which would specify TIE
Fighters.

If we stopped right here, then all
TIE Fighter craft, including yours,
would be attacked. Set Target 2 Type to
7, which invokes the Global Player type,
and set Target 2 Data to 10 (decimal)
which is the Global Not Player option.
Finally, set the Targets 1 And 2 Logic
Flag to 0 to force the AND combination of
targets 1 and 2. Now all TIE Fighter
craft except yours will be attacked. I real-
ize that I have left out lots of detail here,
but I hope you understand some of the
logic used in commanding flight groups.
(I said previously that the orders system
in TIE Fighter is complex. Was I right?)

Winning the Game
There are Primary (Win 1) and Sec-
ondary (Win 2) win conditions that
players must meet to win a mission.
Refer to Listing 4 for a summary of the
win and bonus conditions specified in
the flight group structure. You’ll see that
I’ve included a possible Win 3 condition,
but I do not have much evidence that
indicates this condition exists.

The Win 1 Condition and Win 2
Condition variables contain the condi-
tions that must be met. The values in
these conditions are the same as those
found in the start condition variables. A
value of 1 specifies that the group must
have arrived, 2 means the group must be
destroyed, and so on. The Win 1 Detail

C H O P P I N G B L O C K

56 GAME DEVELOPER • APRIL/MAY 1995

STRUCTURE DATA DESCRIPTION
OFFSET (DECIMAL) TYPE*

0 byte Order. 0=remain stationary, 1=fly home, 2=fly loop,
3=fly loop and evade, 4=rendezvous, etc.

1 byte Commanded Speed. 0=stopped -> 10=100% velocity
2 byte Indicator1. General timer, loop counter, etc.
3 byte Indicator2. General timer, loop counter, etc.
4 byte Indicator3. General timer, loop counter, etc.
6 byte Target 1 Type. 1=flight group, 2=type of craft,

5=allegiance, 7=global, 8=flight group range
7 byte Target 2 Type. 1=flight group, 2=type of craft,

5=allegiance, 7=global, 8=flight group range
8 byte Target 1 Data. flight group, vehicle, etc.
9 byte Target 2 Data. flight group, vehicle, etc.
10 byte Targets 1 And 2 Logic Flag. 0=AND, 1=OR
12 byte Target 3 Type. 1=flight group, 2=type of craft,

5=allegiance, 7=global, 8=flight group range
13 byte Target 3 Data. flight group, vehicle, etc.
14 byte Target 4 Type. 1=flight group, 2=type of craft,

5=allegiance, 7=global, 8=flight group range
15 byte Target 4 Data. flight group, vehicle, etc.
16 byte Targets 3 And 4 Logic Flag. 0=AND, 1=OR

* “byte” references an unsigned character.

Listing 3. The Orders Structure

STRUCTURE DATA DESCRIPTION
OFFSET (DECIMAL) TYPE*

158 byte Win 1 Condition. 1=created, 2=destroyed, etc.
159 byte Win 1 Detail. 1=50%, 4=special vehicle, etc.
160 byte Win 2 Condition. 1=created, 2=destroyed, etc.
161 byte Win 2 Detail. 1=50%, 4=special vehicle, etc.
162 byte Possible Win 3 Condition.
163 byte Possible Win 3 Detail.
164 byte Bonus Condition. 1=created, 2=destroyed, etc.
165 byte Bonus Detail. 1=50%, 4=special vehicle, etc.
166 signed char Bonus Points. 1 increment = 50 points.

* “byte” references an unsigned character.

Listing 4. Win and Bonus Variables

and Win 2 Detail bytes function as
modifiers of the conditions. For exam-
ple, if the condition specifies that a flight
group be destroyed, the detail might
modify this situation to mean that only
the special craft in the group be
destroyed to win.

The Bonus Condition byte func-
tions the same as the win condition vari-
ables and the Bonus Detail functions the
same as the win detail parameters. If the
bonus condition and detail are met,
bonus points can be awarded. The
Bonus Points variable is a signed char

value. Each increment in the value rep-
resents 50 points. Since the bonus vari-
able is a signed value, note that negative
or penalty bonus points can occur. For
example, if the bonus condition on your
mother ship is that it be destroyed, a
penalty of -10,000 points may be
“awarded” if the enemy gets past you and
takes out your mother ship.

Want to Edit
Some Missions?
When analyzing the more detailed
aspects of a game, I frequently write util-
ities that help with my analysis. The end
result of my analysis of the TIE mission
structures is a routine called TIEDIT. If
you’ve read this far, then you know how
complex the TIE mission data is. For
this reason, I opted to write TIEDIT in
MS Windows because it is relative easy
to implement list boxes, edit boxes, and
the like in Windows. The sheer number
of mission items I could edit was enough
to make me abandon any thoughts of a
DOS-based TIE mission editor. Com-
pletion of TIEDIT took longer than I
anticipated because every time I tested it
I would get “hooked” by the new mis-
sions I was creating, and then I’d spend
too much time playing the game! TIED-
IT.ZIP is on CompuServe in the Flight
Simulation Forum (GO FSFORUM),
Space Combat Library.

We Have A Winner Here!
As I’ve said before, LucasArts gaming
products are generally well written and
executed, and TIE Fighter is no excep-
tion. The level of detail LucasArts devel-
opers have given to TIE Fighter’s mis-

sion structures is fantastic, to say the
least. This dedication to a product will
considerably prolong TIE Fighter’s life
on the shelves via more add-on mission
disks. I’d really like to see LucasArts
release some form of the mission editor
used in creating the retail missions.
Obviously, the company might want to
wait until it’s done creating more add-on
missions, but a retail LucasArts TIE
mission editor could possibly extend the
life of the game by years. ■

Wayne Sikes has been a computer
hardware and software engineer for the last
10 years. He has an extensive backgrond in
C, C++, and assembly language program-
ming. He also has several years experience
as a computer systems intelligence analyst,
where he specialized in deciphering and dis-
assembling computer code on classified gov-
ernment projects. He has written numerous
computer gaming help utitlities. You can
reach him via e-mail at 70733.1562@com-
puserve.com or through Game Developer.

GAME DEVELOPER • APRIL/MAY 1995 57

A
s computer game companies
expand, they often tend to lose
their identity. The game
responsible for the company’s
initial success gives way to
other projects, and soon several
creative teams are working on
different games, some of which

are successful and some of which aren’t.
The next thing you know they’re hawking
some Doom clone and you say to your-
self, “This is the company that did x?”
This is not the case with Maxis.

At Maxis, the apple never falls far
from the tree. And that tree, of course, is
SimCity, the game of civic management
that has not only gone on to sell more
than one million copies across a number
of platforms, but has also inspired count-
less articles in famous periodicals, imita-
tors aplenty, and everything short of a
Nobel prize. SimCity was followed by
SimEarth, SimAnt, and SimLife, which
extended the Sim product line and cor-
nered a certain mental niche among
gameplayers.

Indeed Maxis is one of the names
people are likely to invoke when they talk
about the positive aspects of computer
games. The “software toy” that educates
as it entertains became Maxis’s hallmark,
and the company thrived on it. Using the
magic formula that combined provocative
games with well-written manuals, excel-
lent distribution, and some of the highest
registration rates in the industry, Maxis
was often able to guide even the most
complex game into six-figure sales.

In 1994, after releasing the much
anticipated sequel to SimCity, SimCity
2000, the Orinda, Calif.-based Maxis was
becoming one of the largest computer

game companies in the industry. It had
grown to over 130 employees in five years
and was moving toward going public. But
first there were two development issues
Maxis had to deal with.

First, Maxis was still primarily a
Macintosh developer in what was rapidly
becoming a PC market. Co-founder Will
Wright was a diehard Macintosh fan
who developed most of Maxis’ games
first on his favorite development environ-
ment, the Macintosh. Unfortunately the
sales breakdown favored the DOS mar-
ket by a three-to-one factor, so when
DOS versions of Maxis’s games were
often six months to a year behind the
Macintosh versions the company ended
up losing revenue.

This is a problem that Brian Con-
rad, technical director of Maxis, has had
to deal with. Maxis developed SimCity
2000 for DOS and Macintosh simulta-
neously, but, due to the complex nature
of DOS platforms and trouble with the
VESA video drivers, the DOS version
still ended up three months behind the
Macintosh version.

For the long term, Maxis hopes to
come up with a cross-platform develop-
ment environment that favors what it
thinks will be the big market over the
next couple of years—Windows. In the
meantime its developers still use the stan-
dard DOS development environment
consisting of Miles Design sound drivers,
Tenberry’s DOS Extender, and Watcom
C++ 10.0. The company is very close to
moving to NT with Visual C++, but until
Microsoft can guarantee that what works
under Windows will work under NT,
Maxis will hold off. Conrad expects that
the company’s last DOS products will be

It’s a Sim, Sim,
Sim, Sim World

When it was first

released, SimCity,

from Maxis, was the

sleeper of computer

games. Now, numer-

ous sequels later,

Maxis is embarking on

a new venture that

will spawn a whole

new SimWorld.

Alexander
Antoniades

B Y D E S I G N

GAME DEVELOPER • APRIL/MAY 1995 59

the upcoming SimTown and SimIsle,
unless running three-dimensional graphics
under WinG invites a huge performance
penalty.

While Maxis addressed the Macin-
tosh vs. DOS issue, it was still struggling
with another one—namely, the inter-
locking nature of Maxis’ games, and the
future of its cash cow, the SimCity series.
While SimCity 2000 was a smash hit,
Maxis couldn’t see a clear path for
improving the series by adding new
games to it. But most Maxis games occu-
pied some of the same intellectual real
estate, which made them natural candi-
dates to extend into each other. For
example, one of the central strategies a
player can use in SimCity is to develop a
mass transit system to help the city grow.
In A-Train, a game Maxis imported from
the Japanese company ArtDink, the goal
is to help a community expand using a
commuter rail line. In the same vein, the
monster towers of the future in SimCity
2000 are similar in nature to those players
build in another Japanese game imported
by Maxis, SimTower.

Thus the SimWorld project was
born. The goal of this project was
twofold. It would allow Maxis to create
future games with the capability to extend
and merge into other preexisting and
future games. And it would leverage Sim-
City and the millions of hours worth of
playtime that people have invested in
SimCity saved games into new markets.

SimWorld
“Most of the project is formalizing the
interface,” says Jim Mackraz, director of
Maxis’ newly formed Core Technology
Group. Using his experience as a systems
designer (Mackraz worked on the
Amiga’s Intuition interface), he and his
group are trying to set the ground rules
for the SimWorld project so that devel-
opers can integrate them into future
Maxis games as they are making them.

The first version of the SimWorld
architecture will be based around games
similar in scale to SimCity 2000’s data
structure with one more layer of detail.
This first stage of SimWorld will rely on
static data exchange—that is, a foundation
of users’ saved games. Maxis would like

the first exchange to occur between Will
Wright’s “Project X,” the likely successor
to SimCity 2000, and a three-dimensional
helicopter rescue game that uses the same
data set to create scenarios. In this case,
players of Project X can use the helicopter
game to perform rescues in cities they’ve
created in Project X.

For the next stage of the project,
Mackraz envisions developers breaking
down games into modular programs that
could pipe data to one another. For exam-
ple SimCity 4000 might contain a Sim-
City data server that would feed an editor
client and a three-dimensional viewer,
and a supplemental product like SimRail
would include more data objects and sep-
arate train builder client.

Mackraz stresses SimWorld will not
be a low-level infrastructure or an applica-

tion framework for games, but various
games pieces that are connected. He is
currently leaning toward the lowest com-
mon denominator of object technology,
Microsoft’s OLE and COM, but hasn’t
ruled out other technology. Maxis sees
this as the framework that will allow its
developers to write common tools that
can be used by any SimWorld game.
Developers may also be able to build
translation layers that can exchange Sim-
World data with other gaming systems.

As far as developer relations are con-
cerned, the SimWorld project will go
through three stages. SimWorld will first
appear as an internal set of development

libraries; next, Maxis will release a software
development kit to close partners; and
finally, the company will put out a software
development kit for any interested devel-
opers. Being an old operating systems guy,
Mackraz is worried about letting a host of
developers work on SimWorld because
someone might create a killer app that
cheats on the specs—and Maxis would
have to continue to support it.

Everyone at Maxis agrees that dri-
ving this technology should be great
games and not the other way around—the
industry should never put technology over
game play. Maxis’s goal is that all of the
SimWorld components should feel like
one world, and a synergy will exist
between the games developers create using
those components. “We’re going to title
our way to an operating system,” says Jim
Mackraz, indicating that SimWorld will
be extended with each new game.

Project X
SimCity was born while Will Wright was
working on a Commodore 64 action
game called Raid on Bungling Bay for
Broderbund in 1985. He became interest-
ed in the utility that he used to build the
islands that were going to be bombed in
the game. After he finished the game, he
developed the first version of SimCity for
the Commodore 64. Unfortunately,
Broderbund passed on the game, so it was
never released.

In 1987, Wright bumped into Jeff
Braun, who wanted to start a game com-
pany and was interested in helping devel-
op SimCity for the new 16-bit computer
systems. Wright started working on Sim-
City for the Amiga and Macintosh. When
SimCity was released for the Macintosh in
1989, Time magazine did a cover story on
it, and the rest is history.

Reflecting on critics and reporters
using SimCity as a socio-economic urban
divining rod, Will Wright says, “I don’t
think anybody can build an accurate
model of something as complex as a city.
It’s just too chaotic.” But somehow that
never stops him from trying.

His latest game, code-named Project
X, is perhaps the closest he has come yet.
It goes deeper than any of the previous
SimCity projects—in this game the player

B Y D E S I G N

60 GAME DEVELOPER • APRIL/MAY 1995

SimTower, a Japanese game, is just one
of the many titles currently out that falls
under the Sim umbrella.

will be able to interact in the city he or she
builds. I got to see this firsthand. Using an
existing SimCity 2000 saved game, Will
Wright demoed some of the working code
for Project X.

The game starts out on the same
detail level as SimCity 2000 and then
zooms down until one SimCity 2000 tile
fills the screen. The player then creates
people who will walk around and interact
with each other. As the central character
walks, the screen scrolls and follows his or
her path. This person will eventually meet
other “simpeople,” randomly determined
by the surrounding socioeconomic condi-
tions based on the SimCity 2000 data.

Project X will likely determine the
data structure that the first version of
SimWorld will use. That data structure is
such that managing the level of detail will
be one of the biggest challenges in this
project. Wright estimates that in order to
expand the current SimCity 2000 model
to where the player can walk on every
floor of every building will take about
30MB to 40MB worth of datasets, which

definitely makes this game CD-ROM
based. The data will be loaded on the fly
as the character walks all the way through
game—the only data saved in the actual
game will be where specific interactions
occur. For example, if you stop to buy a
newspaper, and the newspaper agent tells
you his name is Joe, that will now be part
of the saved game.

The danger seems to be the inherent
difficulty in saving large games. But
Wright remains confident that he can
keep the data sufficiently compressed that
size will not be an issue. The current
model would make a completely data-rich
Project X saved game, that is, one where
everything had been tracked or modified,
at 3 gigabytes worth of data. But Wright
says playing the game every day for a
month would only result in a saved game
that was about 1MB in size, which isn’t
bad for that amount of playtime.

Project X will put an important com-
ponent of the SimWorld concept to the
test—Maxis’s object-oriented data struc-
ture, which the company hopes to use to

extend its future games. Static objects in
Project X can be embedded with behav-
ioral characteristics for the simpeople. The
simpeople here aren’t bitmaps, but stored
pieces of component-based geometry with
basic rules governing how they move. So
objects can be introduced into an environ-
ment that wasn’t designed to support
them. For example, a soccer ball could
contain the rules of soccer, so when the
soccerball object appears, a simperson
would simply start playing soccer.

Project X will provide the early
foundation of the SimWorld model, and
its success or failure will guide Maxis into
what is likely the most ambitious project
this young industry has seen. It looks like
Maxis, using game play and not technol-
ogy as it guide, will build the first inte-
grated game environment. But in com-
plex data models like the computer game
market, no simulation can accurately pre-
dict what will really happen. ■

Alexander Antoniades is Game Devel-
oper’s editor-at-large.

GAME DEVELOPER • APRIL/MAY 1995 61

62 GAME DEVELOPER • APRIL/MAY 1995

A
s the processing power of com-
puters and consoles becomes
ever greater and the expecta-
tions of game designers and
consumers alike rise yet higher,
the artist is forced to wade
waters of increasing depth,
treading further from shore

while the comforts of two-frame sprite
animation and tiled backgrounds recede
in the distance.

This is not a bad thing—far from it.
Artists can now exercise greater creativity
in game creation, flexing muscles that
had previously been underused, given the
limited graphics capabilities of yesterday’s
games. Yet at the same time, this new-
found “freedom” brings with it new chal-
lenges. Consumers want flash and sizzle.
Glossy, cinematic title sequences and
transitional animations are now all but
obligatory. And with multimedia PCs
already in an estimated 10 million U.S.
households, the demand for “interactive
movie” titles is growing.

With digital entertainment acquir-
ing more and more the characteristics of
cinematic entertainment, game artists are
being called upon to adopt the roles of
the traditional film crew and to reinter-
pret on their computers the functions of a
movie set. Whether these complex “vir-
tual sets” will be used throughout game-
play or only in title and in-between
sequences, their creation requires a
diverse array of skills ranging from set
designer and propmaster to lighting tech-
nician and cinematographer, not to men-
tion the technical demands of creating
full-fledged animation. You can skirt the
significance of these roles, certainly—you
can approach an animation without giv-

ing much consideration to viewpoint or
composition or quick cuts—but the cost
is in visual quality, and these days that
can be a high price to pay.

Let’s Go To The Movies
If we are, then, to adapt the roles of myr-
iad film technicians to our task as com-
puter artists, it is appropriate that for
inspiration and guidance we turn to the
movies in which their work comes
together. We can benefit from their
hard-earned experience as we usher in a
new era of digital entertainment.

Watching a good film is an immer-
sive experience. The willing viewer is car-
ried along by the plot as by a current.
Yet, though the storyline and action may
seem to flow naturally, the film itself is
an assemblage of artificial devices
painstakingly combined for effect. In our
quest to incorporate similar narrative
sequences in the animations so common
now in computer games, we would do
well to note how and why effective cine-
matic storytelling works.

Few moviegoers dissect a film as
they watch it, preferring to suspend dis-
belief and enjoy the show. But cinematic
technique can only be understood by
observing a film rather than merely being
swept along by it. Observe the cuts with-
in a scene and note that though the view
may switch from close-up to medium
shot to tracking shot and back to close-
up, the overall effect is still fluid; try to
determine the placement of lighting
required to achieve just that effect; pay
attention to camera position and angle
and the way they affect the mood or
meaning of a shot. When the machinery
behind the illusion is revealed, the magic

Would You Like
Virtual Buttery
Flavoring
With That?

A R T I S T ‘ S V I E W

Hand-animated sequences distinguish a rou-
tine fighting game and reward players for
clearing each level. Pictured here is Mutant
Rampage: Bodyslam, by Animation Magic for
CD-i.

of cinema’s ability to transport the audi-
ence becomes all the more miraculous,
the artistry of the film crew all the more
admirable.

The aesthetic considerations of the
digital entertainment artist mirror those
of the filmmaker, whether that artist is
creating animations in two dimensions or
three. For the most part, the creative
decisions we must make transcend tech-
nique or the actual tools an artist may use
to create a scene; aesthetic considerations
are the same regardless of the method we
use to bring them about. Whether to
work in two-dimensional or three-dimen-
sional graphics, then, is chiefly a stylistic
preference. Both require a demanding
skill set and both rely, ultimately, on the
artist’s masterful control of the elements
that combine to make a scene.

If It Was Good
Enough For Walt ...
At Animation Magic, a fairly typical
fighting game (CD-i’s Mutant Rampage:
Body Slam) was jazzed up by means of
between-play interviews with the combat-
ants, à la TV wrestling. The artists han-
dled the animation using traditional tech-
niques—pen and paper—then scanned
the results. Later, they used the computer
to clean up and “paint” the hand-rendered
frames. The final look is of a comic book
in motion, which suits the game to a tee.

Fractal Design Painter offers anoth-
er two-dimensional solution, with an
“onionskin” function that lets you view
several still frames simultaneously, like
tracing-paper overlays, to aid in rendering
animations. You can also create a new
image by tracing an existing one, say a
digitized photo or frame of film or video.

Added to these helpful features is the
ability to emulate natural media such as
oil pastel or watercolor, creating effects so
convincingly “hands-on” you expect to
find finger smudges in the corners.

The resulting hand-drawn look of
such two-dimensional approaches can be a
refreshing and effective departure from the
sometimes sterile slickness or chunky pix-
elization of computer graphics. If you’re
not already a fluent practitioner of tradi-
tional animation techniques, however, this
can be a tough way to start trying to flesh
out your game graphics. While it certainly
speeds up the inking and painting time of
old-fashioned cel animation, two-dimen-
sional software provides no help with cre-
ating the illusion of space—perspective,
foreshortening, lighting effects, cast shad-
ows, and the like are all up to the artist to
figure out—and if you elect to reframe a
shot to depict it from a different view for
heightened mood, you’re talking about
redrawing from scratch.

What’s New
Such limitations are nothing new; it’s
essentially the way all hand-rendered art
has been made throughout history. How-
ever, with the arrival of three-dimensional
modeling and animation programs, the
computer artist can leave behind the
drudgy concerns of the draughtsman and
concentrate on the creative challenges of
visual narrative. And you don’t need to
sell your spare organs to scrape up the
price of a Silicon Graphics workstation to
take advantage of the power of three-
dimensional animation, either. Programs
like Caligari trueSpace, Visual Software’s
Visual Reality, 3DStudio from Autodesk,
and many others are available for a variety

GAME DEVELOPER • APRIL/MAY 1995 63

Game animators can

often take their cue

from what‘s happen-

ing (and been hap-

pening) in Hollywood.

The creative

processes of movie

making and game

design are

strikingly similar.

David Sieks

of platforms at down-to-earth prices, rel-
atively speaking. Some are significantly
closer to terra firma than others, but com-
pared to a $100k SGI set-up these all
qualify as terrestrial in price while still
delivering out-of-this-world graphics
effects.

To a greater or lesser extent these
programs all offer variations on the same
glorious theme; your monitor becomes a
window onto a virtual world of your cre-
ation. Look at it from any angle. Light it
brightly or dimly or fill it with fog.
Change the textures of its surfaces. Do
what you will, then undo it and try it a
different way. The power is dizzying.

The range of options is dizzying,
too, and a formidable knowledge base is
required to make full use of them. A 250-
page manual is required, for example, to
illuminate just the “new features” in
Release 4 of 3DStudio.

In the Director’s Chair
Regardless of whether you already have
experience with two-dimensional or
three-dimensional animation, or whether
you are even now wondering what
method you’ll use to incorporate cinemat-
ic sequences into your next game, giving
some thought to film art techniques can
probably help you add something special
to that next project.

Think About Lighting
While a camera certainly needs light in
order to capture images, any cinematogra-
pher will tell you that lighting in a film
serves more functions than mere practical
illumination. Perhaps more than any other
visual element, lighting sest the mood for
a scene. Tension builds in darkness and
shadows. Flickering firelight can instantly
make a scene appear cozy, or hellish, or
both in turn. Shading can transform a face
from angelic to monstrous.

It’s important for lighting effects to
seem naturalistic, but Hollywood learned
long ago that realism is secondary to
results. In many shots, each major figure
in a scene will be illumined by three or
more lights: a key light for the defining
highlights and shadows; fill light , used to
soften the effect of the key light; and a
backlight to separate the figure from the

background.
A two-dimensional animator can

draw in the shading and highlights that
seem appropriate. A three-dimensional
animator must create them by positioning
virtual lights within the virtual set. Three-
dimensional modeling programs will
allow you to set a brightness value and
color for ambient light and position spot-
lights to customize the illumination of
objects and figures. With 3DStudio, you
can even indicate where on an object you
wish the highlight to appear and position
the light accordingly.

Think About
Framing and Focus
Viewpoint is a powerful and yet nearly
invisible tool in the cinematographer’s kit.
Careful placement of the camera can
underscore the relationships of figures or
objects in a scene by visually grouping or
separating them. Close-ups can focus
attention on a detail or a fleeting facial
expression, while an extreme long shot
can establish locale or serve to make the
clash of two armies seem puny against the
scale of their surroundings. A high angle
shot makes the subject appear smaller and
might suggest weakness, whereas a low
angle shot is often used to impart power
and stature to the subject.

Such varying viewpoints go unques-
tioned by the audience—we don’t even
wonder why, for example, we are appar-
ently looking down on a scene from a cor-
ner near the ceiling—because of the nat-
ural way in which viewpoint fits narrative
structure and works to contribute to
mood and meaning. But while the range
of camera positions and angles is essen-
tially limitless, their successful usage is a
carefully considered decision.

This is worth keeping in mind, as
three-dimensional modeling and anima-
tion software will enable you to position
the viewpoint anywhere in relation to the
scene, and it’s easy to get carried away. As
with placement of lights, the virtual cam-
era can be positioned visually or by means
of Cartesian (X,Y,Z) coordinates to dic-
tate a precise location. Involved camera
movements are also facilitated by three-
dimensional animation software. With
two-dimensional methods, character ani-

mation is readily manageable but it can be
a real challenge to move the viewpoint
around or through a scene.

Another subtly powerful tool pro-
vided by three-dimensional programs is
the ability to affect lens optics. Just as a real
camera can be outfitted with varying
degrees of lenses to affect focal length, so
can your virtual camera. The effect is a
distortion of perspective, which affects
the perception of depth in a scene. The
ability to alter the appearance of a view in
such a manner is crucial to the filmmak-
er’s art, and, again, it can be extremely
difficult to duplicate with traditional,
two-dimensional animation methods.

Think About Editing
The art of editing within a scene is per-
haps the most significant aspect of narra-
tive film technique, yet it is also the least
noticeable. Editing is so intrinsic to the
way we expect a scene to unfold that the
details of each cut slide by without regis-
tering on the consciousness of the viewer.

Pay attention next time you watch a
film to the way editing moves the plot
along. Observe how shots are juxtaposed,
how one leads to the next. Notice how
movement is handled with editing. How
long does each cut last, and how many go
into a scene?

Filmmakers have been working with
these ideas throughout the past century
and have become quite accomplished in
their use. So adept are they in the manip-
ulation of these techniques that, for the
most part, we don’t even notice them at
work. Now, as digital entertainment
strides toward new creative horizons, we
can make use of their experience to
improve our own art.

If you want to add stunning anima-
tion sequences to your next title—and of
course you do—here are the first two
steps: look into a three-dimensional mod-
eling/animation program, and start pick-
ing apart every movie you watch. Oh, and
save me the aisle seat.

David Sieks is a contributing editor to
Game Developer and is absolutely no fun to
go to the movies with. Contact him via e-
mail at dsieks@arnarb.harvard.edu or
through Game Developer.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • APRIL/MAY 1995

	back:

