
Using the D3D-style stereo projection matrix and projecting a point into the left view gives us: 

After the reciprocal divide and considering only the 

x values, we end up with:

Where x_center is the result of non-stereo projection. 

Expanding and simplifying, we end up with:

(Recall that d is cot(fov/2)). Similarly, for x_right:

Subtracting these gives the displacement between 

the left and right views in NDC space:

However, NDC space has a range from -1 to 1. 

To convert this to a displacement for texture 

coordinates, which range from 0 to 1, we halve the 

distance, which gives us: 

If we replace S with s, this is clearly the same as the equation in
Figure 6, so s is just S when reprojecting from a left eye view to 
a right eye view. Note that for center reprojection, we would split 
the difference going from center to left and center to right, and so 
halve the displacement.

Again, signs are important for computing this: for reprojecting 
and rendering the left eye, we’d use –s, +sc/z, –S, and +T. For the 
right eye, we invert the signs and so use +s, –sc/z, +S, and -T.

The end result is quite nice. We get most of the speed benefits 
of reprojection, with the good-looking alpha of standard stereo, 
and all it took was a little bit of math and some extra setup.


